1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 // We introduce this threshold to help performance of instrumentation based 75 // PGO before we actually hook up inliner with analysis passes such as BPI and 76 // BFI. 77 static cl::opt<int> ColdThreshold( 78 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 79 cl::desc("Threshold for inlining functions with cold attribute")); 80 81 static cl::opt<int> 82 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 83 cl::ZeroOrMore, 84 cl::desc("Threshold for hot callsites ")); 85 86 static cl::opt<int> LocallyHotCallSiteThreshold( 87 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 88 cl::desc("Threshold for locally hot callsites ")); 89 90 static cl::opt<int> ColdCallSiteRelFreq( 91 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 92 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 93 "entry frequency, for a callsite to be cold in the absence of " 94 "profile information.")); 95 96 static cl::opt<int> HotCallSiteRelFreq( 97 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 98 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 99 "entry frequency, for a callsite to be hot in the absence of " 100 "profile information.")); 101 102 static cl::opt<bool> OptComputeFullInlineCost( 103 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 104 cl::desc("Compute the full inline cost of a call site even when the cost " 105 "exceeds the threshold.")); 106 107 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 108 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 109 cl::ZeroOrMore, 110 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 111 "attributes.")); 112 113 static cl::opt<bool> DisableGEPConstOperand( 114 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 115 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 116 117 namespace { 118 class InlineCostCallAnalyzer; 119 120 // This struct is used to store information about inline cost of a 121 // particular instruction 122 struct InstructionCostDetail { 123 int CostBefore = 0; 124 int CostAfter = 0; 125 int ThresholdBefore = 0; 126 int ThresholdAfter = 0; 127 128 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 129 130 int getCostDelta() const { return CostAfter - CostBefore; } 131 132 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 133 }; 134 135 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 136 private: 137 InlineCostCallAnalyzer *const ICCA; 138 139 public: 140 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 141 virtual void emitInstructionAnnot(const Instruction *I, 142 formatted_raw_ostream &OS) override; 143 }; 144 145 /// Carry out call site analysis, in order to evaluate inlinability. 146 /// NOTE: the type is currently used as implementation detail of functions such 147 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 148 /// expectation is that they come from the outer scope, from the wrapper 149 /// functions. If we want to support constructing CallAnalyzer objects where 150 /// lambdas are provided inline at construction, or where the object needs to 151 /// otherwise survive past the scope of the provided functions, we need to 152 /// revisit the argument types. 153 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 154 typedef InstVisitor<CallAnalyzer, bool> Base; 155 friend class InstVisitor<CallAnalyzer, bool>; 156 157 protected: 158 virtual ~CallAnalyzer() {} 159 /// The TargetTransformInfo available for this compilation. 160 const TargetTransformInfo &TTI; 161 162 /// Getter for the cache of @llvm.assume intrinsics. 163 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 164 165 /// Getter for BlockFrequencyInfo 166 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 167 168 /// Profile summary information. 169 ProfileSummaryInfo *PSI; 170 171 /// The called function. 172 Function &F; 173 174 // Cache the DataLayout since we use it a lot. 175 const DataLayout &DL; 176 177 /// The OptimizationRemarkEmitter available for this compilation. 178 OptimizationRemarkEmitter *ORE; 179 180 /// The candidate callsite being analyzed. Please do not use this to do 181 /// analysis in the caller function; we want the inline cost query to be 182 /// easily cacheable. Instead, use the cover function paramHasAttr. 183 CallBase &CandidateCall; 184 185 /// Extension points for handling callsite features. 186 /// Called after a basic block was analyzed. 187 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 188 189 /// Called before an instruction was analyzed 190 virtual void onInstructionAnalysisStart(const Instruction *I) {} 191 192 /// Called after an instruction was analyzed 193 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 194 195 /// Called at the end of the analysis of the callsite. Return the outcome of 196 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 197 /// the reason it can't. 198 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 199 /// Called when we're about to start processing a basic block, and every time 200 /// we are done processing an instruction. Return true if there is no point in 201 /// continuing the analysis (e.g. we've determined already the call site is 202 /// too expensive to inline) 203 virtual bool shouldStop() { return false; } 204 205 /// Called before the analysis of the callee body starts (with callsite 206 /// contexts propagated). It checks callsite-specific information. Return a 207 /// reason analysis can't continue if that's the case, or 'true' if it may 208 /// continue. 209 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 210 /// Called if the analysis engine decides SROA cannot be done for the given 211 /// alloca. 212 virtual void onDisableSROA(AllocaInst *Arg) {} 213 214 /// Called the analysis engine determines load elimination won't happen. 215 virtual void onDisableLoadElimination() {} 216 217 /// Called to account for a call. 218 virtual void onCallPenalty() {} 219 220 /// Called to account for the expectation the inlining would result in a load 221 /// elimination. 222 virtual void onLoadEliminationOpportunity() {} 223 224 /// Called to account for the cost of argument setup for the Call in the 225 /// callee's body (not the callsite currently under analysis). 226 virtual void onCallArgumentSetup(const CallBase &Call) {} 227 228 /// Called to account for a load relative intrinsic. 229 virtual void onLoadRelativeIntrinsic() {} 230 231 /// Called to account for a lowered call. 232 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 233 } 234 235 /// Account for a jump table of given size. Return false to stop further 236 /// processing the switch instruction 237 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 238 239 /// Account for a case cluster of given size. Return false to stop further 240 /// processing of the instruction. 241 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 242 243 /// Called at the end of processing a switch instruction, with the given 244 /// number of case clusters. 245 virtual void onFinalizeSwitch(unsigned JumpTableSize, 246 unsigned NumCaseCluster) {} 247 248 /// Called to account for any other instruction not specifically accounted 249 /// for. 250 virtual void onMissedSimplification() {} 251 252 /// Start accounting potential benefits due to SROA for the given alloca. 253 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 254 255 /// Account SROA savings for the AllocaInst value. 256 virtual void onAggregateSROAUse(AllocaInst *V) {} 257 258 bool handleSROA(Value *V, bool DoNotDisable) { 259 // Check for SROA candidates in comparisons. 260 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 261 if (DoNotDisable) { 262 onAggregateSROAUse(SROAArg); 263 return true; 264 } 265 disableSROAForArg(SROAArg); 266 } 267 return false; 268 } 269 270 bool IsCallerRecursive = false; 271 bool IsRecursiveCall = false; 272 bool ExposesReturnsTwice = false; 273 bool HasDynamicAlloca = false; 274 bool ContainsNoDuplicateCall = false; 275 bool HasReturn = false; 276 bool HasIndirectBr = false; 277 bool HasUninlineableIntrinsic = false; 278 bool InitsVargArgs = false; 279 280 /// Number of bytes allocated statically by the callee. 281 uint64_t AllocatedSize = 0; 282 unsigned NumInstructions = 0; 283 unsigned NumVectorInstructions = 0; 284 285 /// While we walk the potentially-inlined instructions, we build up and 286 /// maintain a mapping of simplified values specific to this callsite. The 287 /// idea is to propagate any special information we have about arguments to 288 /// this call through the inlinable section of the function, and account for 289 /// likely simplifications post-inlining. The most important aspect we track 290 /// is CFG altering simplifications -- when we prove a basic block dead, that 291 /// can cause dramatic shifts in the cost of inlining a function. 292 DenseMap<Value *, Constant *> SimplifiedValues; 293 294 /// Keep track of the values which map back (through function arguments) to 295 /// allocas on the caller stack which could be simplified through SROA. 296 DenseMap<Value *, AllocaInst *> SROAArgValues; 297 298 /// Keep track of Allocas for which we believe we may get SROA optimization. 299 DenseSet<AllocaInst *> EnabledSROAAllocas; 300 301 /// Keep track of values which map to a pointer base and constant offset. 302 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 303 304 /// Keep track of dead blocks due to the constant arguments. 305 SetVector<BasicBlock *> DeadBlocks; 306 307 /// The mapping of the blocks to their known unique successors due to the 308 /// constant arguments. 309 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 310 311 /// Model the elimination of repeated loads that is expected to happen 312 /// whenever we simplify away the stores that would otherwise cause them to be 313 /// loads. 314 bool EnableLoadElimination; 315 SmallPtrSet<Value *, 16> LoadAddrSet; 316 317 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 318 auto It = SROAArgValues.find(V); 319 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 320 return nullptr; 321 return It->second; 322 } 323 324 // Custom simplification helper routines. 325 bool isAllocaDerivedArg(Value *V); 326 void disableSROAForArg(AllocaInst *SROAArg); 327 void disableSROA(Value *V); 328 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 329 void disableLoadElimination(); 330 bool isGEPFree(GetElementPtrInst &GEP); 331 bool canFoldInboundsGEP(GetElementPtrInst &I); 332 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 333 bool simplifyCallSite(Function *F, CallBase &Call); 334 template <typename Callable> 335 bool simplifyInstruction(Instruction &I, Callable Evaluate); 336 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 337 338 /// Return true if the given argument to the function being considered for 339 /// inlining has the given attribute set either at the call site or the 340 /// function declaration. Primarily used to inspect call site specific 341 /// attributes since these can be more precise than the ones on the callee 342 /// itself. 343 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 344 345 /// Return true if the given value is known non null within the callee if 346 /// inlined through this particular callsite. 347 bool isKnownNonNullInCallee(Value *V); 348 349 /// Return true if size growth is allowed when inlining the callee at \p Call. 350 bool allowSizeGrowth(CallBase &Call); 351 352 // Custom analysis routines. 353 InlineResult analyzeBlock(BasicBlock *BB, 354 SmallPtrSetImpl<const Value *> &EphValues); 355 356 // Disable several entry points to the visitor so we don't accidentally use 357 // them by declaring but not defining them here. 358 void visit(Module *); 359 void visit(Module &); 360 void visit(Function *); 361 void visit(Function &); 362 void visit(BasicBlock *); 363 void visit(BasicBlock &); 364 365 // Provide base case for our instruction visit. 366 bool visitInstruction(Instruction &I); 367 368 // Our visit overrides. 369 bool visitAlloca(AllocaInst &I); 370 bool visitPHI(PHINode &I); 371 bool visitGetElementPtr(GetElementPtrInst &I); 372 bool visitBitCast(BitCastInst &I); 373 bool visitPtrToInt(PtrToIntInst &I); 374 bool visitIntToPtr(IntToPtrInst &I); 375 bool visitCastInst(CastInst &I); 376 bool visitUnaryInstruction(UnaryInstruction &I); 377 bool visitCmpInst(CmpInst &I); 378 bool visitSub(BinaryOperator &I); 379 bool visitBinaryOperator(BinaryOperator &I); 380 bool visitFNeg(UnaryOperator &I); 381 bool visitLoad(LoadInst &I); 382 bool visitStore(StoreInst &I); 383 bool visitExtractValue(ExtractValueInst &I); 384 bool visitInsertValue(InsertValueInst &I); 385 bool visitCallBase(CallBase &Call); 386 bool visitReturnInst(ReturnInst &RI); 387 bool visitBranchInst(BranchInst &BI); 388 bool visitSelectInst(SelectInst &SI); 389 bool visitSwitchInst(SwitchInst &SI); 390 bool visitIndirectBrInst(IndirectBrInst &IBI); 391 bool visitResumeInst(ResumeInst &RI); 392 bool visitCleanupReturnInst(CleanupReturnInst &RI); 393 bool visitCatchReturnInst(CatchReturnInst &RI); 394 bool visitUnreachableInst(UnreachableInst &I); 395 396 public: 397 CallAnalyzer( 398 Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 399 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 400 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 401 ProfileSummaryInfo *PSI = nullptr, 402 OptimizationRemarkEmitter *ORE = nullptr) 403 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 404 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 405 CandidateCall(Call), EnableLoadElimination(true) {} 406 407 InlineResult analyze(); 408 409 Optional<Constant*> getSimplifiedValue(Instruction *I) { 410 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 411 return SimplifiedValues[I]; 412 return None; 413 } 414 415 // Keep a bunch of stats about the cost savings found so we can print them 416 // out when debugging. 417 unsigned NumConstantArgs = 0; 418 unsigned NumConstantOffsetPtrArgs = 0; 419 unsigned NumAllocaArgs = 0; 420 unsigned NumConstantPtrCmps = 0; 421 unsigned NumConstantPtrDiffs = 0; 422 unsigned NumInstructionsSimplified = 0; 423 424 void dump(); 425 }; 426 427 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 428 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 429 class InlineCostCallAnalyzer final : public CallAnalyzer { 430 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 431 const bool ComputeFullInlineCost; 432 int LoadEliminationCost = 0; 433 /// Bonus to be applied when percentage of vector instructions in callee is 434 /// high (see more details in updateThreshold). 435 int VectorBonus = 0; 436 /// Bonus to be applied when the callee has only one reachable basic block. 437 int SingleBBBonus = 0; 438 439 /// Tunable parameters that control the analysis. 440 const InlineParams &Params; 441 442 // This DenseMap stores the delta change in cost and threshold after 443 // accounting for the given instruction. The map is filled only with the 444 // flag PrintInstructionComments on. 445 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 446 447 /// Upper bound for the inlining cost. Bonuses are being applied to account 448 /// for speculative "expected profit" of the inlining decision. 449 int Threshold = 0; 450 451 /// Attempt to evaluate indirect calls to boost its inline cost. 452 const bool BoostIndirectCalls; 453 454 /// Ignore the threshold when finalizing analysis. 455 const bool IgnoreThreshold; 456 457 /// Inlining cost measured in abstract units, accounts for all the 458 /// instructions expected to be executed for a given function invocation. 459 /// Instructions that are statically proven to be dead based on call-site 460 /// arguments are not counted here. 461 int Cost = 0; 462 463 bool SingleBB = true; 464 465 unsigned SROACostSavings = 0; 466 unsigned SROACostSavingsLost = 0; 467 468 /// The mapping of caller Alloca values to their accumulated cost savings. If 469 /// we have to disable SROA for one of the allocas, this tells us how much 470 /// cost must be added. 471 DenseMap<AllocaInst *, int> SROAArgCosts; 472 473 /// Return true if \p Call is a cold callsite. 474 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 475 476 /// Update Threshold based on callsite properties such as callee 477 /// attributes and callee hotness for PGO builds. The Callee is explicitly 478 /// passed to support analyzing indirect calls whose target is inferred by 479 /// analysis. 480 void updateThreshold(CallBase &Call, Function &Callee); 481 /// Return a higher threshold if \p Call is a hot callsite. 482 Optional<int> getHotCallSiteThreshold(CallBase &Call, 483 BlockFrequencyInfo *CallerBFI); 484 485 /// Handle a capped 'int' increment for Cost. 486 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 487 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 488 Cost = (int)std::min(UpperBound, Cost + Inc); 489 } 490 491 void onDisableSROA(AllocaInst *Arg) override { 492 auto CostIt = SROAArgCosts.find(Arg); 493 if (CostIt == SROAArgCosts.end()) 494 return; 495 addCost(CostIt->second); 496 SROACostSavings -= CostIt->second; 497 SROACostSavingsLost += CostIt->second; 498 SROAArgCosts.erase(CostIt); 499 } 500 501 void onDisableLoadElimination() override { 502 addCost(LoadEliminationCost); 503 LoadEliminationCost = 0; 504 } 505 void onCallPenalty() override { addCost(InlineConstants::CallPenalty); } 506 void onCallArgumentSetup(const CallBase &Call) override { 507 // Pay the price of the argument setup. We account for the average 1 508 // instruction per call argument setup here. 509 addCost(Call.arg_size() * InlineConstants::InstrCost); 510 } 511 void onLoadRelativeIntrinsic() override { 512 // This is normally lowered to 4 LLVM instructions. 513 addCost(3 * InlineConstants::InstrCost); 514 } 515 void onLoweredCall(Function *F, CallBase &Call, 516 bool IsIndirectCall) override { 517 // We account for the average 1 instruction per call argument setup here. 518 addCost(Call.arg_size() * InlineConstants::InstrCost); 519 520 // If we have a constant that we are calling as a function, we can peer 521 // through it and see the function target. This happens not infrequently 522 // during devirtualization and so we want to give it a hefty bonus for 523 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 524 // Pretend to inline the function, with a custom threshold. 525 if (IsIndirectCall && BoostIndirectCalls) { 526 auto IndirectCallParams = Params; 527 IndirectCallParams.DefaultThreshold = 528 InlineConstants::IndirectCallThreshold; 529 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 530 /// to instantiate the derived class. 531 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 532 GetAssumptionCache, GetBFI, PSI, ORE, false); 533 if (CA.analyze().isSuccess()) { 534 // We were able to inline the indirect call! Subtract the cost from the 535 // threshold to get the bonus we want to apply, but don't go below zero. 536 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 537 } 538 } else 539 // Otherwise simply add the cost for merely making the call. 540 addCost(InlineConstants::CallPenalty); 541 } 542 543 void onFinalizeSwitch(unsigned JumpTableSize, 544 unsigned NumCaseCluster) override { 545 // If suitable for a jump table, consider the cost for the table size and 546 // branch to destination. 547 // Maximum valid cost increased in this function. 548 if (JumpTableSize) { 549 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 550 4 * InlineConstants::InstrCost; 551 552 addCost(JTCost, (int64_t)CostUpperBound); 553 return; 554 } 555 // Considering forming a binary search, we should find the number of nodes 556 // which is same as the number of comparisons when lowered. For a given 557 // number of clusters, n, we can define a recursive function, f(n), to find 558 // the number of nodes in the tree. The recursion is : 559 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 560 // and f(n) = n, when n <= 3. 561 // This will lead a binary tree where the leaf should be either f(2) or f(3) 562 // when n > 3. So, the number of comparisons from leaves should be n, while 563 // the number of non-leaf should be : 564 // 2^(log2(n) - 1) - 1 565 // = 2^log2(n) * 2^-1 - 1 566 // = n / 2 - 1. 567 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 568 // number of comparisons in a simple closed form : 569 // n + n / 2 - 1 = n * 3 / 2 - 1 570 if (NumCaseCluster <= 3) { 571 // Suppose a comparison includes one compare and one conditional branch. 572 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 573 return; 574 } 575 576 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; 577 int64_t SwitchCost = 578 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 579 580 addCost(SwitchCost, (int64_t)CostUpperBound); 581 } 582 void onMissedSimplification() override { 583 addCost(InlineConstants::InstrCost); 584 } 585 586 void onInitializeSROAArg(AllocaInst *Arg) override { 587 assert(Arg != nullptr && 588 "Should not initialize SROA costs for null value."); 589 SROAArgCosts[Arg] = 0; 590 } 591 592 void onAggregateSROAUse(AllocaInst *SROAArg) override { 593 auto CostIt = SROAArgCosts.find(SROAArg); 594 assert(CostIt != SROAArgCosts.end() && 595 "expected this argument to have a cost"); 596 CostIt->second += InlineConstants::InstrCost; 597 SROACostSavings += InlineConstants::InstrCost; 598 } 599 600 void onBlockAnalyzed(const BasicBlock *BB) override { 601 auto *TI = BB->getTerminator(); 602 // If we had any successors at this point, than post-inlining is likely to 603 // have them as well. Note that we assume any basic blocks which existed 604 // due to branches or switches which folded above will also fold after 605 // inlining. 606 if (SingleBB && TI->getNumSuccessors() > 1) { 607 // Take off the bonus we applied to the threshold. 608 Threshold -= SingleBBBonus; 609 SingleBB = false; 610 } 611 } 612 613 void onInstructionAnalysisStart(const Instruction *I) override { 614 // This function is called to store the initial cost of inlining before 615 // the given instruction was assessed. 616 if (!PrintInstructionComments) 617 return; 618 InstructionCostDetailMap[I].CostBefore = Cost; 619 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 620 } 621 622 void onInstructionAnalysisFinish(const Instruction *I) override { 623 // This function is called to find new values of cost and threshold after 624 // the instruction has been assessed. 625 if (!PrintInstructionComments) 626 return; 627 InstructionCostDetailMap[I].CostAfter = Cost; 628 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 629 } 630 631 InlineResult finalizeAnalysis() override { 632 // Loops generally act a lot like calls in that they act like barriers to 633 // movement, require a certain amount of setup, etc. So when optimising for 634 // size, we penalise any call sites that perform loops. We do this after all 635 // other costs here, so will likely only be dealing with relatively small 636 // functions (and hence DT and LI will hopefully be cheap). 637 auto *Caller = CandidateCall.getFunction(); 638 if (Caller->hasMinSize()) { 639 DominatorTree DT(F); 640 LoopInfo LI(DT); 641 int NumLoops = 0; 642 for (Loop *L : LI) { 643 // Ignore loops that will not be executed 644 if (DeadBlocks.count(L->getHeader())) 645 continue; 646 NumLoops++; 647 } 648 addCost(NumLoops * InlineConstants::CallPenalty); 649 } 650 651 // We applied the maximum possible vector bonus at the beginning. Now, 652 // subtract the excess bonus, if any, from the Threshold before 653 // comparing against Cost. 654 if (NumVectorInstructions <= NumInstructions / 10) 655 Threshold -= VectorBonus; 656 else if (NumVectorInstructions <= NumInstructions / 2) 657 Threshold -= VectorBonus / 2; 658 659 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 660 return InlineResult::success(); 661 return InlineResult::failure("Cost over threshold."); 662 } 663 bool shouldStop() override { 664 // Bail out the moment we cross the threshold. This means we'll under-count 665 // the cost, but only when undercounting doesn't matter. 666 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 667 } 668 669 void onLoadEliminationOpportunity() override { 670 LoadEliminationCost += InlineConstants::InstrCost; 671 } 672 673 InlineResult onAnalysisStart() override { 674 // Perform some tweaks to the cost and threshold based on the direct 675 // callsite information. 676 677 // We want to more aggressively inline vector-dense kernels, so up the 678 // threshold, and we'll lower it if the % of vector instructions gets too 679 // low. Note that these bonuses are some what arbitrary and evolved over 680 // time by accident as much as because they are principled bonuses. 681 // 682 // FIXME: It would be nice to remove all such bonuses. At least it would be 683 // nice to base the bonus values on something more scientific. 684 assert(NumInstructions == 0); 685 assert(NumVectorInstructions == 0); 686 687 // Update the threshold based on callsite properties 688 updateThreshold(CandidateCall, F); 689 690 // While Threshold depends on commandline options that can take negative 691 // values, we want to enforce the invariant that the computed threshold and 692 // bonuses are non-negative. 693 assert(Threshold >= 0); 694 assert(SingleBBBonus >= 0); 695 assert(VectorBonus >= 0); 696 697 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 698 // this Threshold any time, and cost cannot decrease, we can stop processing 699 // the rest of the function body. 700 Threshold += (SingleBBBonus + VectorBonus); 701 702 // Give out bonuses for the callsite, as the instructions setting them up 703 // will be gone after inlining. 704 addCost(-getCallsiteCost(this->CandidateCall, DL)); 705 706 // If this function uses the coldcc calling convention, prefer not to inline 707 // it. 708 if (F.getCallingConv() == CallingConv::Cold) 709 Cost += InlineConstants::ColdccPenalty; 710 711 // Check if we're done. This can happen due to bonuses and penalties. 712 if (Cost >= Threshold && !ComputeFullInlineCost) 713 return InlineResult::failure("high cost"); 714 715 return InlineResult::success(); 716 } 717 718 public: 719 InlineCostCallAnalyzer( 720 Function &Callee, CallBase &Call, const InlineParams &Params, 721 const TargetTransformInfo &TTI, 722 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 723 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 724 ProfileSummaryInfo *PSI = nullptr, 725 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 726 bool IgnoreThreshold = false) 727 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 728 ComputeFullInlineCost(OptComputeFullInlineCost || 729 Params.ComputeFullInlineCost || ORE), 730 Params(Params), Threshold(Params.DefaultThreshold), 731 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 732 Writer(this) {} 733 734 /// Annotation Writer for instruction details 735 InlineCostAnnotationWriter Writer; 736 737 void dump(); 738 739 // Prints the same analysis as dump(), but its definition is not dependent 740 // on the build. 741 void print(); 742 743 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 744 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 745 return InstructionCostDetailMap[I]; 746 return None; 747 } 748 749 virtual ~InlineCostCallAnalyzer() {} 750 int getThreshold() { return Threshold; } 751 int getCost() { return Cost; } 752 }; 753 } // namespace 754 755 /// Test whether the given value is an Alloca-derived function argument. 756 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 757 return SROAArgValues.count(V); 758 } 759 760 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 761 onDisableSROA(SROAArg); 762 EnabledSROAAllocas.erase(SROAArg); 763 disableLoadElimination(); 764 } 765 766 void InlineCostAnnotationWriter::emitInstructionAnnot(const Instruction *I, 767 formatted_raw_ostream &OS) { 768 // The cost of inlining of the given instruction is printed always. 769 // The threshold delta is printed only when it is non-zero. It happens 770 // when we decided to give a bonus at a particular instruction. 771 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 772 if (!Record) 773 OS << "; No analysis for the instruction"; 774 else { 775 OS << "; cost before = " << Record->CostBefore 776 << ", cost after = " << Record->CostAfter 777 << ", threshold before = " << Record->ThresholdBefore 778 << ", threshold after = " << Record->ThresholdAfter << ", "; 779 OS << "cost delta = " << Record->getCostDelta(); 780 if (Record->hasThresholdChanged()) 781 OS << ", threshold delta = " << Record->getThresholdDelta(); 782 } 783 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 784 if (C) { 785 OS << ", simplified to "; 786 C.getValue()->print(OS, true); 787 } 788 OS << "\n"; 789 } 790 791 /// If 'V' maps to a SROA candidate, disable SROA for it. 792 void CallAnalyzer::disableSROA(Value *V) { 793 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 794 disableSROAForArg(SROAArg); 795 } 796 } 797 798 void CallAnalyzer::disableLoadElimination() { 799 if (EnableLoadElimination) { 800 onDisableLoadElimination(); 801 EnableLoadElimination = false; 802 } 803 } 804 805 /// Accumulate a constant GEP offset into an APInt if possible. 806 /// 807 /// Returns false if unable to compute the offset for any reason. Respects any 808 /// simplified values known during the analysis of this callsite. 809 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 810 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 811 assert(IntPtrWidth == Offset.getBitWidth()); 812 813 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 814 GTI != GTE; ++GTI) { 815 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 816 if (!OpC) 817 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 818 OpC = dyn_cast<ConstantInt>(SimpleOp); 819 if (!OpC) 820 return false; 821 if (OpC->isZero()) 822 continue; 823 824 // Handle a struct index, which adds its field offset to the pointer. 825 if (StructType *STy = GTI.getStructTypeOrNull()) { 826 unsigned ElementIdx = OpC->getZExtValue(); 827 const StructLayout *SL = DL.getStructLayout(STy); 828 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 829 continue; 830 } 831 832 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 833 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 834 } 835 return true; 836 } 837 838 /// Use TTI to check whether a GEP is free. 839 /// 840 /// Respects any simplified values known during the analysis of this callsite. 841 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 842 SmallVector<Value *, 4> Operands; 843 Operands.push_back(GEP.getOperand(0)); 844 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 845 if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) 846 Operands.push_back(SimpleOp); 847 else 848 Operands.push_back(*I); 849 return TargetTransformInfo::TCC_Free == 850 TTI.getUserCost(&GEP, Operands, 851 TargetTransformInfo::TCK_SizeAndLatency); 852 } 853 854 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 855 // Check whether inlining will turn a dynamic alloca into a static 856 // alloca and handle that case. 857 if (I.isArrayAllocation()) { 858 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 859 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 860 // Sometimes a dynamic alloca could be converted into a static alloca 861 // after this constant prop, and become a huge static alloca on an 862 // unconditional CFG path. Avoid inlining if this is going to happen above 863 // a threshold. 864 // FIXME: If the threshold is removed or lowered too much, we could end up 865 // being too pessimistic and prevent inlining non-problematic code. This 866 // could result in unintended perf regressions. A better overall strategy 867 // is needed to track stack usage during inlining. 868 Type *Ty = I.getAllocatedType(); 869 AllocatedSize = SaturatingMultiplyAdd( 870 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(), 871 AllocatedSize); 872 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) { 873 HasDynamicAlloca = true; 874 return false; 875 } 876 return Base::visitAlloca(I); 877 } 878 } 879 880 // Accumulate the allocated size. 881 if (I.isStaticAlloca()) { 882 Type *Ty = I.getAllocatedType(); 883 AllocatedSize = 884 SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize); 885 } 886 887 // We will happily inline static alloca instructions. 888 if (I.isStaticAlloca()) 889 return Base::visitAlloca(I); 890 891 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 892 // a variety of reasons, and so we would like to not inline them into 893 // functions which don't currently have a dynamic alloca. This simply 894 // disables inlining altogether in the presence of a dynamic alloca. 895 HasDynamicAlloca = true; 896 return false; 897 } 898 899 bool CallAnalyzer::visitPHI(PHINode &I) { 900 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 901 // though we don't want to propagate it's bonuses. The idea is to disable 902 // SROA if it *might* be used in an inappropriate manner. 903 904 // Phi nodes are always zero-cost. 905 // FIXME: Pointer sizes may differ between different address spaces, so do we 906 // need to use correct address space in the call to getPointerSizeInBits here? 907 // Or could we skip the getPointerSizeInBits call completely? As far as I can 908 // see the ZeroOffset is used as a dummy value, so we can probably use any 909 // bit width for the ZeroOffset? 910 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 911 bool CheckSROA = I.getType()->isPointerTy(); 912 913 // Track the constant or pointer with constant offset we've seen so far. 914 Constant *FirstC = nullptr; 915 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 916 Value *FirstV = nullptr; 917 918 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 919 BasicBlock *Pred = I.getIncomingBlock(i); 920 // If the incoming block is dead, skip the incoming block. 921 if (DeadBlocks.count(Pred)) 922 continue; 923 // If the parent block of phi is not the known successor of the incoming 924 // block, skip the incoming block. 925 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 926 if (KnownSuccessor && KnownSuccessor != I.getParent()) 927 continue; 928 929 Value *V = I.getIncomingValue(i); 930 // If the incoming value is this phi itself, skip the incoming value. 931 if (&I == V) 932 continue; 933 934 Constant *C = dyn_cast<Constant>(V); 935 if (!C) 936 C = SimplifiedValues.lookup(V); 937 938 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 939 if (!C && CheckSROA) 940 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 941 942 if (!C && !BaseAndOffset.first) 943 // The incoming value is neither a constant nor a pointer with constant 944 // offset, exit early. 945 return true; 946 947 if (FirstC) { 948 if (FirstC == C) 949 // If we've seen a constant incoming value before and it is the same 950 // constant we see this time, continue checking the next incoming value. 951 continue; 952 // Otherwise early exit because we either see a different constant or saw 953 // a constant before but we have a pointer with constant offset this time. 954 return true; 955 } 956 957 if (FirstV) { 958 // The same logic as above, but check pointer with constant offset here. 959 if (FirstBaseAndOffset == BaseAndOffset) 960 continue; 961 return true; 962 } 963 964 if (C) { 965 // This is the 1st time we've seen a constant, record it. 966 FirstC = C; 967 continue; 968 } 969 970 // The remaining case is that this is the 1st time we've seen a pointer with 971 // constant offset, record it. 972 FirstV = V; 973 FirstBaseAndOffset = BaseAndOffset; 974 } 975 976 // Check if we can map phi to a constant. 977 if (FirstC) { 978 SimplifiedValues[&I] = FirstC; 979 return true; 980 } 981 982 // Check if we can map phi to a pointer with constant offset. 983 if (FirstBaseAndOffset.first) { 984 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 985 986 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 987 SROAArgValues[&I] = SROAArg; 988 } 989 990 return true; 991 } 992 993 /// Check we can fold GEPs of constant-offset call site argument pointers. 994 /// This requires target data and inbounds GEPs. 995 /// 996 /// \return true if the specified GEP can be folded. 997 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 998 // Check if we have a base + offset for the pointer. 999 std::pair<Value *, APInt> BaseAndOffset = 1000 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1001 if (!BaseAndOffset.first) 1002 return false; 1003 1004 // Check if the offset of this GEP is constant, and if so accumulate it 1005 // into Offset. 1006 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1007 return false; 1008 1009 // Add the result as a new mapping to Base + Offset. 1010 ConstantOffsetPtrs[&I] = BaseAndOffset; 1011 1012 return true; 1013 } 1014 1015 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1016 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1017 1018 // Lambda to check whether a GEP's indices are all constant. 1019 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1020 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 1021 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) 1022 return false; 1023 return true; 1024 }; 1025 1026 if (!DisableGEPConstOperand) 1027 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1028 SmallVector<Constant *, 2> Indices; 1029 for (unsigned int Index = 1 ; Index < COps.size() ; ++Index) 1030 Indices.push_back(COps[Index]); 1031 return ConstantExpr::getGetElementPtr(I.getSourceElementType(), COps[0], 1032 Indices, I.isInBounds()); 1033 })) 1034 return true; 1035 1036 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1037 if (SROAArg) 1038 SROAArgValues[&I] = SROAArg; 1039 1040 // Constant GEPs are modeled as free. 1041 return true; 1042 } 1043 1044 // Variable GEPs will require math and will disable SROA. 1045 if (SROAArg) 1046 disableSROAForArg(SROAArg); 1047 return isGEPFree(I); 1048 } 1049 1050 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1051 /// \p Evaluate is a callable specific to instruction type that evaluates the 1052 /// instruction when all the operands are constants. 1053 template <typename Callable> 1054 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1055 SmallVector<Constant *, 2> COps; 1056 for (Value *Op : I.operands()) { 1057 Constant *COp = dyn_cast<Constant>(Op); 1058 if (!COp) 1059 COp = SimplifiedValues.lookup(Op); 1060 if (!COp) 1061 return false; 1062 COps.push_back(COp); 1063 } 1064 auto *C = Evaluate(COps); 1065 if (!C) 1066 return false; 1067 SimplifiedValues[&I] = C; 1068 return true; 1069 } 1070 1071 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1072 // Propagate constants through bitcasts. 1073 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1074 return ConstantExpr::getBitCast(COps[0], I.getType()); 1075 })) 1076 return true; 1077 1078 // Track base/offsets through casts 1079 std::pair<Value *, APInt> BaseAndOffset = 1080 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1081 // Casts don't change the offset, just wrap it up. 1082 if (BaseAndOffset.first) 1083 ConstantOffsetPtrs[&I] = BaseAndOffset; 1084 1085 // Also look for SROA candidates here. 1086 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1087 SROAArgValues[&I] = SROAArg; 1088 1089 // Bitcasts are always zero cost. 1090 return true; 1091 } 1092 1093 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1094 // Propagate constants through ptrtoint. 1095 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1096 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1097 })) 1098 return true; 1099 1100 // Track base/offset pairs when converted to a plain integer provided the 1101 // integer is large enough to represent the pointer. 1102 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1103 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1104 if (IntegerSize >= DL.getPointerSizeInBits(AS)) { 1105 std::pair<Value *, APInt> BaseAndOffset = 1106 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1107 if (BaseAndOffset.first) 1108 ConstantOffsetPtrs[&I] = BaseAndOffset; 1109 } 1110 1111 // This is really weird. Technically, ptrtoint will disable SROA. However, 1112 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1113 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1114 // would block SROA would also block SROA if applied directly to a pointer, 1115 // and so we can just add the integer in here. The only places where SROA is 1116 // preserved either cannot fire on an integer, or won't in-and-of themselves 1117 // disable SROA (ext) w/o some later use that we would see and disable. 1118 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1119 SROAArgValues[&I] = SROAArg; 1120 1121 return TargetTransformInfo::TCC_Free == 1122 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1123 } 1124 1125 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1126 // Propagate constants through ptrtoint. 1127 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1128 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1129 })) 1130 return true; 1131 1132 // Track base/offset pairs when round-tripped through a pointer without 1133 // modifications provided the integer is not too large. 1134 Value *Op = I.getOperand(0); 1135 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1136 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1137 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1138 if (BaseAndOffset.first) 1139 ConstantOffsetPtrs[&I] = BaseAndOffset; 1140 } 1141 1142 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1143 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1144 SROAArgValues[&I] = SROAArg; 1145 1146 return TargetTransformInfo::TCC_Free == 1147 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1148 } 1149 1150 bool CallAnalyzer::visitCastInst(CastInst &I) { 1151 // Propagate constants through casts. 1152 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1153 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1154 })) 1155 return true; 1156 1157 // Disable SROA in the face of arbitrary casts we don't explicitly list 1158 // elsewhere. 1159 disableSROA(I.getOperand(0)); 1160 1161 // If this is a floating-point cast, and the target says this operation 1162 // is expensive, this may eventually become a library call. Treat the cost 1163 // as such. 1164 switch (I.getOpcode()) { 1165 case Instruction::FPTrunc: 1166 case Instruction::FPExt: 1167 case Instruction::UIToFP: 1168 case Instruction::SIToFP: 1169 case Instruction::FPToUI: 1170 case Instruction::FPToSI: 1171 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1172 onCallPenalty(); 1173 break; 1174 default: 1175 break; 1176 } 1177 1178 return TargetTransformInfo::TCC_Free == 1179 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1180 } 1181 1182 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 1183 Value *Operand = I.getOperand(0); 1184 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1185 return ConstantFoldInstOperands(&I, COps[0], DL); 1186 })) 1187 return true; 1188 1189 // Disable any SROA on the argument to arbitrary unary instructions. 1190 disableSROA(Operand); 1191 1192 return false; 1193 } 1194 1195 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1196 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1197 } 1198 1199 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1200 // Does the *call site* have the NonNull attribute set on an argument? We 1201 // use the attribute on the call site to memoize any analysis done in the 1202 // caller. This will also trip if the callee function has a non-null 1203 // parameter attribute, but that's a less interesting case because hopefully 1204 // the callee would already have been simplified based on that. 1205 if (Argument *A = dyn_cast<Argument>(V)) 1206 if (paramHasAttr(A, Attribute::NonNull)) 1207 return true; 1208 1209 // Is this an alloca in the caller? This is distinct from the attribute case 1210 // above because attributes aren't updated within the inliner itself and we 1211 // always want to catch the alloca derived case. 1212 if (isAllocaDerivedArg(V)) 1213 // We can actually predict the result of comparisons between an 1214 // alloca-derived value and null. Note that this fires regardless of 1215 // SROA firing. 1216 return true; 1217 1218 return false; 1219 } 1220 1221 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1222 // If the normal destination of the invoke or the parent block of the call 1223 // site is unreachable-terminated, there is little point in inlining this 1224 // unless there is literally zero cost. 1225 // FIXME: Note that it is possible that an unreachable-terminated block has a 1226 // hot entry. For example, in below scenario inlining hot_call_X() may be 1227 // beneficial : 1228 // main() { 1229 // hot_call_1(); 1230 // ... 1231 // hot_call_N() 1232 // exit(0); 1233 // } 1234 // For now, we are not handling this corner case here as it is rare in real 1235 // code. In future, we should elaborate this based on BPI and BFI in more 1236 // general threshold adjusting heuristics in updateThreshold(). 1237 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1238 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1239 return false; 1240 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1241 return false; 1242 1243 return true; 1244 } 1245 1246 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1247 BlockFrequencyInfo *CallerBFI) { 1248 // If global profile summary is available, then callsite's coldness is 1249 // determined based on that. 1250 if (PSI && PSI->hasProfileSummary()) 1251 return PSI->isColdCallSite(Call, CallerBFI); 1252 1253 // Otherwise we need BFI to be available. 1254 if (!CallerBFI) 1255 return false; 1256 1257 // Determine if the callsite is cold relative to caller's entry. We could 1258 // potentially cache the computation of scaled entry frequency, but the added 1259 // complexity is not worth it unless this scaling shows up high in the 1260 // profiles. 1261 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1262 auto CallSiteBB = Call.getParent(); 1263 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1264 auto CallerEntryFreq = 1265 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1266 return CallSiteFreq < CallerEntryFreq * ColdProb; 1267 } 1268 1269 Optional<int> 1270 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1271 BlockFrequencyInfo *CallerBFI) { 1272 1273 // If global profile summary is available, then callsite's hotness is 1274 // determined based on that. 1275 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1276 return Params.HotCallSiteThreshold; 1277 1278 // Otherwise we need BFI to be available and to have a locally hot callsite 1279 // threshold. 1280 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1281 return None; 1282 1283 // Determine if the callsite is hot relative to caller's entry. We could 1284 // potentially cache the computation of scaled entry frequency, but the added 1285 // complexity is not worth it unless this scaling shows up high in the 1286 // profiles. 1287 auto CallSiteBB = Call.getParent(); 1288 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1289 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1290 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1291 return Params.LocallyHotCallSiteThreshold; 1292 1293 // Otherwise treat it normally. 1294 return None; 1295 } 1296 1297 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1298 // If no size growth is allowed for this inlining, set Threshold to 0. 1299 if (!allowSizeGrowth(Call)) { 1300 Threshold = 0; 1301 return; 1302 } 1303 1304 Function *Caller = Call.getCaller(); 1305 1306 // return min(A, B) if B is valid. 1307 auto MinIfValid = [](int A, Optional<int> B) { 1308 return B ? std::min(A, B.getValue()) : A; 1309 }; 1310 1311 // return max(A, B) if B is valid. 1312 auto MaxIfValid = [](int A, Optional<int> B) { 1313 return B ? std::max(A, B.getValue()) : A; 1314 }; 1315 1316 // Various bonus percentages. These are multiplied by Threshold to get the 1317 // bonus values. 1318 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1319 // basic block at the given callsite context. This is speculatively applied 1320 // and withdrawn if more than one basic block is seen. 1321 // 1322 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1323 // of the last call to a static function as inlining such functions is 1324 // guaranteed to reduce code size. 1325 // 1326 // These bonus percentages may be set to 0 based on properties of the caller 1327 // and the callsite. 1328 int SingleBBBonusPercent = 50; 1329 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1330 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1331 1332 // Lambda to set all the above bonus and bonus percentages to 0. 1333 auto DisallowAllBonuses = [&]() { 1334 SingleBBBonusPercent = 0; 1335 VectorBonusPercent = 0; 1336 LastCallToStaticBonus = 0; 1337 }; 1338 1339 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1340 // and reduce the threshold if the caller has the necessary attribute. 1341 if (Caller->hasMinSize()) { 1342 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1343 // For minsize, we want to disable the single BB bonus and the vector 1344 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1345 // a static function will, at the minimum, eliminate the parameter setup and 1346 // call/return instructions. 1347 SingleBBBonusPercent = 0; 1348 VectorBonusPercent = 0; 1349 } else if (Caller->hasOptSize()) 1350 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1351 1352 // Adjust the threshold based on inlinehint attribute and profile based 1353 // hotness information if the caller does not have MinSize attribute. 1354 if (!Caller->hasMinSize()) { 1355 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1356 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1357 1358 // FIXME: After switching to the new passmanager, simplify the logic below 1359 // by checking only the callsite hotness/coldness as we will reliably 1360 // have local profile information. 1361 // 1362 // Callsite hotness and coldness can be determined if sample profile is 1363 // used (which adds hotness metadata to calls) or if caller's 1364 // BlockFrequencyInfo is available. 1365 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1366 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1367 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1368 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1369 // FIXME: This should update the threshold only if it exceeds the 1370 // current threshold, but AutoFDO + ThinLTO currently relies on this 1371 // behavior to prevent inlining of hot callsites during ThinLTO 1372 // compile phase. 1373 Threshold = HotCallSiteThreshold.getValue(); 1374 } else if (isColdCallSite(Call, CallerBFI)) { 1375 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1376 // Do not apply bonuses for a cold callsite including the 1377 // LastCallToStatic bonus. While this bonus might result in code size 1378 // reduction, it can cause the size of a non-cold caller to increase 1379 // preventing it from being inlined. 1380 DisallowAllBonuses(); 1381 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1382 } else if (PSI) { 1383 // Use callee's global profile information only if we have no way of 1384 // determining this via callsite information. 1385 if (PSI->isFunctionEntryHot(&Callee)) { 1386 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1387 // If callsite hotness can not be determined, we may still know 1388 // that the callee is hot and treat it as a weaker hint for threshold 1389 // increase. 1390 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1391 } else if (PSI->isFunctionEntryCold(&Callee)) { 1392 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1393 // Do not apply bonuses for a cold callee including the 1394 // LastCallToStatic bonus. While this bonus might result in code size 1395 // reduction, it can cause the size of a non-cold caller to increase 1396 // preventing it from being inlined. 1397 DisallowAllBonuses(); 1398 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1399 } 1400 } 1401 } 1402 1403 // Finally, take the target-specific inlining threshold multiplier into 1404 // account. 1405 Threshold *= TTI.getInliningThresholdMultiplier(); 1406 1407 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1408 VectorBonus = Threshold * VectorBonusPercent / 100; 1409 1410 bool OnlyOneCallAndLocalLinkage = 1411 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1412 // If there is only one call of the function, and it has internal linkage, 1413 // the cost of inlining it drops dramatically. It may seem odd to update 1414 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1415 if (OnlyOneCallAndLocalLinkage) 1416 Cost -= LastCallToStaticBonus; 1417 } 1418 1419 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1420 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1421 // First try to handle simplified comparisons. 1422 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1423 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1424 })) 1425 return true; 1426 1427 if (I.getOpcode() == Instruction::FCmp) 1428 return false; 1429 1430 // Otherwise look for a comparison between constant offset pointers with 1431 // a common base. 1432 Value *LHSBase, *RHSBase; 1433 APInt LHSOffset, RHSOffset; 1434 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1435 if (LHSBase) { 1436 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1437 if (RHSBase && LHSBase == RHSBase) { 1438 // We have common bases, fold the icmp to a constant based on the 1439 // offsets. 1440 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1441 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1442 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1443 SimplifiedValues[&I] = C; 1444 ++NumConstantPtrCmps; 1445 return true; 1446 } 1447 } 1448 } 1449 1450 // If the comparison is an equality comparison with null, we can simplify it 1451 // if we know the value (argument) can't be null 1452 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1453 isKnownNonNullInCallee(I.getOperand(0))) { 1454 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1455 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1456 : ConstantInt::getFalse(I.getType()); 1457 return true; 1458 } 1459 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1460 } 1461 1462 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1463 // Try to handle a special case: we can fold computing the difference of two 1464 // constant-related pointers. 1465 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1466 Value *LHSBase, *RHSBase; 1467 APInt LHSOffset, RHSOffset; 1468 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1469 if (LHSBase) { 1470 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1471 if (RHSBase && LHSBase == RHSBase) { 1472 // We have common bases, fold the subtract to a constant based on the 1473 // offsets. 1474 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1475 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1476 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1477 SimplifiedValues[&I] = C; 1478 ++NumConstantPtrDiffs; 1479 return true; 1480 } 1481 } 1482 } 1483 1484 // Otherwise, fall back to the generic logic for simplifying and handling 1485 // instructions. 1486 return Base::visitSub(I); 1487 } 1488 1489 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1490 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1491 Constant *CLHS = dyn_cast<Constant>(LHS); 1492 if (!CLHS) 1493 CLHS = SimplifiedValues.lookup(LHS); 1494 Constant *CRHS = dyn_cast<Constant>(RHS); 1495 if (!CRHS) 1496 CRHS = SimplifiedValues.lookup(RHS); 1497 1498 Value *SimpleV = nullptr; 1499 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1500 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1501 FI->getFastMathFlags(), DL); 1502 else 1503 SimpleV = 1504 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1505 1506 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1507 SimplifiedValues[&I] = C; 1508 1509 if (SimpleV) 1510 return true; 1511 1512 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1513 disableSROA(LHS); 1514 disableSROA(RHS); 1515 1516 // If the instruction is floating point, and the target says this operation 1517 // is expensive, this may eventually become a library call. Treat the cost 1518 // as such. Unless it's fneg which can be implemented with an xor. 1519 using namespace llvm::PatternMatch; 1520 if (I.getType()->isFloatingPointTy() && 1521 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1522 !match(&I, m_FNeg(m_Value()))) 1523 onCallPenalty(); 1524 1525 return false; 1526 } 1527 1528 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1529 Value *Op = I.getOperand(0); 1530 Constant *COp = dyn_cast<Constant>(Op); 1531 if (!COp) 1532 COp = SimplifiedValues.lookup(Op); 1533 1534 Value *SimpleV = SimplifyFNegInst( 1535 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1536 1537 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1538 SimplifiedValues[&I] = C; 1539 1540 if (SimpleV) 1541 return true; 1542 1543 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1544 disableSROA(Op); 1545 1546 return false; 1547 } 1548 1549 bool CallAnalyzer::visitLoad(LoadInst &I) { 1550 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1551 return true; 1552 1553 // If the data is already loaded from this address and hasn't been clobbered 1554 // by any stores or calls, this load is likely to be redundant and can be 1555 // eliminated. 1556 if (EnableLoadElimination && 1557 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1558 onLoadEliminationOpportunity(); 1559 return true; 1560 } 1561 1562 return false; 1563 } 1564 1565 bool CallAnalyzer::visitStore(StoreInst &I) { 1566 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1567 return true; 1568 1569 // The store can potentially clobber loads and prevent repeated loads from 1570 // being eliminated. 1571 // FIXME: 1572 // 1. We can probably keep an initial set of eliminatable loads substracted 1573 // from the cost even when we finally see a store. We just need to disable 1574 // *further* accumulation of elimination savings. 1575 // 2. We should probably at some point thread MemorySSA for the callee into 1576 // this and then use that to actually compute *really* precise savings. 1577 disableLoadElimination(); 1578 return false; 1579 } 1580 1581 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1582 // Constant folding for extract value is trivial. 1583 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1584 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1585 })) 1586 return true; 1587 1588 // SROA can look through these but give them a cost. 1589 return false; 1590 } 1591 1592 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1593 // Constant folding for insert value is trivial. 1594 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1595 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1596 /*InsertedValueOperand*/ COps[1], 1597 I.getIndices()); 1598 })) 1599 return true; 1600 1601 // SROA can look through these but give them a cost. 1602 return false; 1603 } 1604 1605 /// Try to simplify a call site. 1606 /// 1607 /// Takes a concrete function and callsite and tries to actually simplify it by 1608 /// analyzing the arguments and call itself with instsimplify. Returns true if 1609 /// it has simplified the callsite to some other entity (a constant), making it 1610 /// free. 1611 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 1612 // FIXME: Using the instsimplify logic directly for this is inefficient 1613 // because we have to continually rebuild the argument list even when no 1614 // simplifications can be performed. Until that is fixed with remapping 1615 // inside of instsimplify, directly constant fold calls here. 1616 if (!canConstantFoldCallTo(&Call, F)) 1617 return false; 1618 1619 // Try to re-map the arguments to constants. 1620 SmallVector<Constant *, 4> ConstantArgs; 1621 ConstantArgs.reserve(Call.arg_size()); 1622 for (Value *I : Call.args()) { 1623 Constant *C = dyn_cast<Constant>(I); 1624 if (!C) 1625 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 1626 if (!C) 1627 return false; // This argument doesn't map to a constant. 1628 1629 ConstantArgs.push_back(C); 1630 } 1631 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 1632 SimplifiedValues[&Call] = C; 1633 return true; 1634 } 1635 1636 return false; 1637 } 1638 1639 bool CallAnalyzer::visitCallBase(CallBase &Call) { 1640 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 1641 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 1642 // This aborts the entire analysis. 1643 ExposesReturnsTwice = true; 1644 return false; 1645 } 1646 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 1647 ContainsNoDuplicateCall = true; 1648 1649 Value *Callee = Call.getCalledOperand(); 1650 Function *F = dyn_cast_or_null<Function>(Callee); 1651 bool IsIndirectCall = !F; 1652 if (IsIndirectCall) { 1653 // Check if this happens to be an indirect function call to a known function 1654 // in this inline context. If not, we've done all we can. 1655 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 1656 if (!F) { 1657 onCallArgumentSetup(Call); 1658 1659 if (!Call.onlyReadsMemory()) 1660 disableLoadElimination(); 1661 return Base::visitCallBase(Call); 1662 } 1663 } 1664 1665 assert(F && "Expected a call to a known function"); 1666 1667 // When we have a concrete function, first try to simplify it directly. 1668 if (simplifyCallSite(F, Call)) 1669 return true; 1670 1671 // Next check if it is an intrinsic we know about. 1672 // FIXME: Lift this into part of the InstVisitor. 1673 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 1674 switch (II->getIntrinsicID()) { 1675 default: 1676 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 1677 disableLoadElimination(); 1678 return Base::visitCallBase(Call); 1679 1680 case Intrinsic::load_relative: 1681 onLoadRelativeIntrinsic(); 1682 return false; 1683 1684 case Intrinsic::memset: 1685 case Intrinsic::memcpy: 1686 case Intrinsic::memmove: 1687 disableLoadElimination(); 1688 // SROA can usually chew through these intrinsics, but they aren't free. 1689 return false; 1690 case Intrinsic::icall_branch_funnel: 1691 case Intrinsic::localescape: 1692 HasUninlineableIntrinsic = true; 1693 return false; 1694 case Intrinsic::vastart: 1695 InitsVargArgs = true; 1696 return false; 1697 } 1698 } 1699 1700 if (F == Call.getFunction()) { 1701 // This flag will fully abort the analysis, so don't bother with anything 1702 // else. 1703 IsRecursiveCall = true; 1704 return false; 1705 } 1706 1707 if (TTI.isLoweredToCall(F)) { 1708 onLoweredCall(F, Call, IsIndirectCall); 1709 } 1710 1711 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 1712 disableLoadElimination(); 1713 return Base::visitCallBase(Call); 1714 } 1715 1716 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 1717 // At least one return instruction will be free after inlining. 1718 bool Free = !HasReturn; 1719 HasReturn = true; 1720 return Free; 1721 } 1722 1723 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 1724 // We model unconditional branches as essentially free -- they really 1725 // shouldn't exist at all, but handling them makes the behavior of the 1726 // inliner more regular and predictable. Interestingly, conditional branches 1727 // which will fold away are also free. 1728 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 1729 dyn_cast_or_null<ConstantInt>( 1730 SimplifiedValues.lookup(BI.getCondition())); 1731 } 1732 1733 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 1734 bool CheckSROA = SI.getType()->isPointerTy(); 1735 Value *TrueVal = SI.getTrueValue(); 1736 Value *FalseVal = SI.getFalseValue(); 1737 1738 Constant *TrueC = dyn_cast<Constant>(TrueVal); 1739 if (!TrueC) 1740 TrueC = SimplifiedValues.lookup(TrueVal); 1741 Constant *FalseC = dyn_cast<Constant>(FalseVal); 1742 if (!FalseC) 1743 FalseC = SimplifiedValues.lookup(FalseVal); 1744 Constant *CondC = 1745 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 1746 1747 if (!CondC) { 1748 // Select C, X, X => X 1749 if (TrueC == FalseC && TrueC) { 1750 SimplifiedValues[&SI] = TrueC; 1751 return true; 1752 } 1753 1754 if (!CheckSROA) 1755 return Base::visitSelectInst(SI); 1756 1757 std::pair<Value *, APInt> TrueBaseAndOffset = 1758 ConstantOffsetPtrs.lookup(TrueVal); 1759 std::pair<Value *, APInt> FalseBaseAndOffset = 1760 ConstantOffsetPtrs.lookup(FalseVal); 1761 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 1762 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 1763 1764 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 1765 SROAArgValues[&SI] = SROAArg; 1766 return true; 1767 } 1768 1769 return Base::visitSelectInst(SI); 1770 } 1771 1772 // Select condition is a constant. 1773 Value *SelectedV = CondC->isAllOnesValue() 1774 ? TrueVal 1775 : (CondC->isNullValue()) ? FalseVal : nullptr; 1776 if (!SelectedV) { 1777 // Condition is a vector constant that is not all 1s or all 0s. If all 1778 // operands are constants, ConstantExpr::getSelect() can handle the cases 1779 // such as select vectors. 1780 if (TrueC && FalseC) { 1781 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 1782 SimplifiedValues[&SI] = C; 1783 return true; 1784 } 1785 } 1786 return Base::visitSelectInst(SI); 1787 } 1788 1789 // Condition is either all 1s or all 0s. SI can be simplified. 1790 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 1791 SimplifiedValues[&SI] = SelectedC; 1792 return true; 1793 } 1794 1795 if (!CheckSROA) 1796 return true; 1797 1798 std::pair<Value *, APInt> BaseAndOffset = 1799 ConstantOffsetPtrs.lookup(SelectedV); 1800 if (BaseAndOffset.first) { 1801 ConstantOffsetPtrs[&SI] = BaseAndOffset; 1802 1803 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 1804 SROAArgValues[&SI] = SROAArg; 1805 } 1806 1807 return true; 1808 } 1809 1810 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 1811 // We model unconditional switches as free, see the comments on handling 1812 // branches. 1813 if (isa<ConstantInt>(SI.getCondition())) 1814 return true; 1815 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 1816 if (isa<ConstantInt>(V)) 1817 return true; 1818 1819 // Assume the most general case where the switch is lowered into 1820 // either a jump table, bit test, or a balanced binary tree consisting of 1821 // case clusters without merging adjacent clusters with the same 1822 // destination. We do not consider the switches that are lowered with a mix 1823 // of jump table/bit test/binary search tree. The cost of the switch is 1824 // proportional to the size of the tree or the size of jump table range. 1825 // 1826 // NB: We convert large switches which are just used to initialize large phi 1827 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 1828 // inlining those. It will prevent inlining in cases where the optimization 1829 // does not (yet) fire. 1830 1831 unsigned JumpTableSize = 0; 1832 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 1833 unsigned NumCaseCluster = 1834 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 1835 1836 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 1837 return false; 1838 } 1839 1840 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 1841 // We never want to inline functions that contain an indirectbr. This is 1842 // incorrect because all the blockaddress's (in static global initializers 1843 // for example) would be referring to the original function, and this 1844 // indirect jump would jump from the inlined copy of the function into the 1845 // original function which is extremely undefined behavior. 1846 // FIXME: This logic isn't really right; we can safely inline functions with 1847 // indirectbr's as long as no other function or global references the 1848 // blockaddress of a block within the current function. 1849 HasIndirectBr = true; 1850 return false; 1851 } 1852 1853 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 1854 // FIXME: It's not clear that a single instruction is an accurate model for 1855 // the inline cost of a resume instruction. 1856 return false; 1857 } 1858 1859 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 1860 // FIXME: It's not clear that a single instruction is an accurate model for 1861 // the inline cost of a cleanupret instruction. 1862 return false; 1863 } 1864 1865 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 1866 // FIXME: It's not clear that a single instruction is an accurate model for 1867 // the inline cost of a catchret instruction. 1868 return false; 1869 } 1870 1871 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 1872 // FIXME: It might be reasonably to discount the cost of instructions leading 1873 // to unreachable as they have the lowest possible impact on both runtime and 1874 // code size. 1875 return true; // No actual code is needed for unreachable. 1876 } 1877 1878 bool CallAnalyzer::visitInstruction(Instruction &I) { 1879 // Some instructions are free. All of the free intrinsics can also be 1880 // handled by SROA, etc. 1881 if (TargetTransformInfo::TCC_Free == 1882 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency)) 1883 return true; 1884 1885 // We found something we don't understand or can't handle. Mark any SROA-able 1886 // values in the operand list as no longer viable. 1887 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) 1888 disableSROA(*OI); 1889 1890 return false; 1891 } 1892 1893 /// Analyze a basic block for its contribution to the inline cost. 1894 /// 1895 /// This method walks the analyzer over every instruction in the given basic 1896 /// block and accounts for their cost during inlining at this callsite. It 1897 /// aborts early if the threshold has been exceeded or an impossible to inline 1898 /// construct has been detected. It returns false if inlining is no longer 1899 /// viable, and true if inlining remains viable. 1900 InlineResult 1901 CallAnalyzer::analyzeBlock(BasicBlock *BB, 1902 SmallPtrSetImpl<const Value *> &EphValues) { 1903 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1904 // FIXME: Currently, the number of instructions in a function regardless of 1905 // our ability to simplify them during inline to constants or dead code, 1906 // are actually used by the vector bonus heuristic. As long as that's true, 1907 // we have to special case debug intrinsics here to prevent differences in 1908 // inlining due to debug symbols. Eventually, the number of unsimplified 1909 // instructions shouldn't factor into the cost computation, but until then, 1910 // hack around it here. 1911 if (isa<DbgInfoIntrinsic>(I)) 1912 continue; 1913 1914 // Skip ephemeral values. 1915 if (EphValues.count(&*I)) 1916 continue; 1917 1918 ++NumInstructions; 1919 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) 1920 ++NumVectorInstructions; 1921 1922 // If the instruction simplified to a constant, there is no cost to this 1923 // instruction. Visit the instructions using our InstVisitor to account for 1924 // all of the per-instruction logic. The visit tree returns true if we 1925 // consumed the instruction in any way, and false if the instruction's base 1926 // cost should count against inlining. 1927 onInstructionAnalysisStart(&*I); 1928 1929 if (Base::visit(&*I)) 1930 ++NumInstructionsSimplified; 1931 else 1932 onMissedSimplification(); 1933 1934 onInstructionAnalysisFinish(&*I); 1935 using namespace ore; 1936 // If the visit this instruction detected an uninlinable pattern, abort. 1937 InlineResult IR = InlineResult::success(); 1938 if (IsRecursiveCall) 1939 IR = InlineResult::failure("recursive"); 1940 else if (ExposesReturnsTwice) 1941 IR = InlineResult::failure("exposes returns twice"); 1942 else if (HasDynamicAlloca) 1943 IR = InlineResult::failure("dynamic alloca"); 1944 else if (HasIndirectBr) 1945 IR = InlineResult::failure("indirect branch"); 1946 else if (HasUninlineableIntrinsic) 1947 IR = InlineResult::failure("uninlinable intrinsic"); 1948 else if (InitsVargArgs) 1949 IR = InlineResult::failure("varargs"); 1950 if (!IR.isSuccess()) { 1951 if (ORE) 1952 ORE->emit([&]() { 1953 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1954 &CandidateCall) 1955 << NV("Callee", &F) << " has uninlinable pattern (" 1956 << NV("InlineResult", IR.getFailureReason()) 1957 << ") and cost is not fully computed"; 1958 }); 1959 return IR; 1960 } 1961 1962 // If the caller is a recursive function then we don't want to inline 1963 // functions which allocate a lot of stack space because it would increase 1964 // the caller stack usage dramatically. 1965 if (IsCallerRecursive && 1966 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 1967 auto IR = 1968 InlineResult::failure("recursive and allocates too much stack space"); 1969 if (ORE) 1970 ORE->emit([&]() { 1971 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1972 &CandidateCall) 1973 << NV("Callee", &F) << " is " 1974 << NV("InlineResult", IR.getFailureReason()) 1975 << ". Cost is not fully computed"; 1976 }); 1977 return IR; 1978 } 1979 1980 if (shouldStop()) 1981 return InlineResult::failure( 1982 "Call site analysis is not favorable to inlining."); 1983 } 1984 1985 return InlineResult::success(); 1986 } 1987 1988 /// Compute the base pointer and cumulative constant offsets for V. 1989 /// 1990 /// This strips all constant offsets off of V, leaving it the base pointer, and 1991 /// accumulates the total constant offset applied in the returned constant. It 1992 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 1993 /// no constant offsets applied. 1994 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 1995 if (!V->getType()->isPointerTy()) 1996 return nullptr; 1997 1998 unsigned AS = V->getType()->getPointerAddressSpace(); 1999 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2000 APInt Offset = APInt::getNullValue(IntPtrWidth); 2001 2002 // Even though we don't look through PHI nodes, we could be called on an 2003 // instruction in an unreachable block, which may be on a cycle. 2004 SmallPtrSet<Value *, 4> Visited; 2005 Visited.insert(V); 2006 do { 2007 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2008 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2009 return nullptr; 2010 V = GEP->getPointerOperand(); 2011 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2012 V = cast<Operator>(V)->getOperand(0); 2013 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2014 if (GA->isInterposable()) 2015 break; 2016 V = GA->getAliasee(); 2017 } else { 2018 break; 2019 } 2020 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2021 } while (Visited.insert(V).second); 2022 2023 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2024 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2025 } 2026 2027 /// Find dead blocks due to deleted CFG edges during inlining. 2028 /// 2029 /// If we know the successor of the current block, \p CurrBB, has to be \p 2030 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2031 /// no live incoming CFG edges. If one block is found to be dead, we can 2032 /// continue growing the dead block list by checking the successors of the dead 2033 /// blocks to see if all their incoming edges are dead or not. 2034 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2035 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2036 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2037 // known successor which is not the one under exam. 2038 return (DeadBlocks.count(Pred) || 2039 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2040 }; 2041 2042 auto IsNewlyDead = [&](BasicBlock *BB) { 2043 // If all the edges to a block are dead, the block is also dead. 2044 return (!DeadBlocks.count(BB) && 2045 llvm::all_of(predecessors(BB), 2046 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2047 }; 2048 2049 for (BasicBlock *Succ : successors(CurrBB)) { 2050 if (Succ == NextBB || !IsNewlyDead(Succ)) 2051 continue; 2052 SmallVector<BasicBlock *, 4> NewDead; 2053 NewDead.push_back(Succ); 2054 while (!NewDead.empty()) { 2055 BasicBlock *Dead = NewDead.pop_back_val(); 2056 if (DeadBlocks.insert(Dead)) 2057 // Continue growing the dead block lists. 2058 for (BasicBlock *S : successors(Dead)) 2059 if (IsNewlyDead(S)) 2060 NewDead.push_back(S); 2061 } 2062 } 2063 } 2064 2065 /// Analyze a call site for potential inlining. 2066 /// 2067 /// Returns true if inlining this call is viable, and false if it is not 2068 /// viable. It computes the cost and adjusts the threshold based on numerous 2069 /// factors and heuristics. If this method returns false but the computed cost 2070 /// is below the computed threshold, then inlining was forcibly disabled by 2071 /// some artifact of the routine. 2072 InlineResult CallAnalyzer::analyze() { 2073 ++NumCallsAnalyzed; 2074 2075 auto Result = onAnalysisStart(); 2076 if (!Result.isSuccess()) 2077 return Result; 2078 2079 if (F.empty()) 2080 return InlineResult::success(); 2081 2082 Function *Caller = CandidateCall.getFunction(); 2083 // Check if the caller function is recursive itself. 2084 for (User *U : Caller->users()) { 2085 CallBase *Call = dyn_cast<CallBase>(U); 2086 if (Call && Call->getFunction() == Caller) { 2087 IsCallerRecursive = true; 2088 break; 2089 } 2090 } 2091 2092 // Populate our simplified values by mapping from function arguments to call 2093 // arguments with known important simplifications. 2094 auto CAI = CandidateCall.arg_begin(); 2095 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); 2096 FAI != FAE; ++FAI, ++CAI) { 2097 assert(CAI != CandidateCall.arg_end()); 2098 if (Constant *C = dyn_cast<Constant>(CAI)) 2099 SimplifiedValues[&*FAI] = C; 2100 2101 Value *PtrArg = *CAI; 2102 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2103 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); 2104 2105 // We can SROA any pointer arguments derived from alloca instructions. 2106 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2107 SROAArgValues[&*FAI] = SROAArg; 2108 onInitializeSROAArg(SROAArg); 2109 EnabledSROAAllocas.insert(SROAArg); 2110 } 2111 } 2112 } 2113 NumConstantArgs = SimplifiedValues.size(); 2114 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2115 NumAllocaArgs = SROAArgValues.size(); 2116 2117 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2118 // the ephemeral values multiple times (and they're completely determined by 2119 // the callee, so this is purely duplicate work). 2120 SmallPtrSet<const Value *, 32> EphValues; 2121 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2122 2123 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2124 // adding basic blocks of the callee which can be proven to be dead for this 2125 // particular call site in order to get more accurate cost estimates. This 2126 // requires a somewhat heavyweight iteration pattern: we need to walk the 2127 // basic blocks in a breadth-first order as we insert live successors. To 2128 // accomplish this, prioritizing for small iterations because we exit after 2129 // crossing our threshold, we use a small-size optimized SetVector. 2130 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2131 SmallPtrSet<BasicBlock *, 16>> 2132 BBSetVector; 2133 BBSetVector BBWorklist; 2134 BBWorklist.insert(&F.getEntryBlock()); 2135 2136 // Note that we *must not* cache the size, this loop grows the worklist. 2137 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2138 if (shouldStop()) 2139 break; 2140 2141 BasicBlock *BB = BBWorklist[Idx]; 2142 if (BB->empty()) 2143 continue; 2144 2145 // Disallow inlining a blockaddress with uses other than strictly callbr. 2146 // A blockaddress only has defined behavior for an indirect branch in the 2147 // same function, and we do not currently support inlining indirect 2148 // branches. But, the inliner may not see an indirect branch that ends up 2149 // being dead code at a particular call site. If the blockaddress escapes 2150 // the function, e.g., via a global variable, inlining may lead to an 2151 // invalid cross-function reference. 2152 // FIXME: pr/39560: continue relaxing this overt restriction. 2153 if (BB->hasAddressTaken()) 2154 for (User *U : BlockAddress::get(&*BB)->users()) 2155 if (!isa<CallBrInst>(*U)) 2156 return InlineResult::failure("blockaddress used outside of callbr"); 2157 2158 // Analyze the cost of this block. If we blow through the threshold, this 2159 // returns false, and we can bail on out. 2160 InlineResult IR = analyzeBlock(BB, EphValues); 2161 if (!IR.isSuccess()) 2162 return IR; 2163 2164 Instruction *TI = BB->getTerminator(); 2165 2166 // Add in the live successors by first checking whether we have terminator 2167 // that may be simplified based on the values simplified by this call. 2168 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2169 if (BI->isConditional()) { 2170 Value *Cond = BI->getCondition(); 2171 if (ConstantInt *SimpleCond = 2172 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2173 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2174 BBWorklist.insert(NextBB); 2175 KnownSuccessors[BB] = NextBB; 2176 findDeadBlocks(BB, NextBB); 2177 continue; 2178 } 2179 } 2180 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2181 Value *Cond = SI->getCondition(); 2182 if (ConstantInt *SimpleCond = 2183 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2184 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2185 BBWorklist.insert(NextBB); 2186 KnownSuccessors[BB] = NextBB; 2187 findDeadBlocks(BB, NextBB); 2188 continue; 2189 } 2190 } 2191 2192 // If we're unable to select a particular successor, just count all of 2193 // them. 2194 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2195 ++TIdx) 2196 BBWorklist.insert(TI->getSuccessor(TIdx)); 2197 2198 onBlockAnalyzed(BB); 2199 } 2200 2201 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2202 &F == CandidateCall.getCalledFunction(); 2203 // If this is a noduplicate call, we can still inline as long as 2204 // inlining this would cause the removal of the caller (so the instruction 2205 // is not actually duplicated, just moved). 2206 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2207 return InlineResult::failure("noduplicate"); 2208 2209 return finalizeAnalysis(); 2210 } 2211 2212 void InlineCostCallAnalyzer::print() { 2213 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2214 if (PrintInstructionComments) 2215 F.print(dbgs(), &Writer); 2216 DEBUG_PRINT_STAT(NumConstantArgs); 2217 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2218 DEBUG_PRINT_STAT(NumAllocaArgs); 2219 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2220 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2221 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2222 DEBUG_PRINT_STAT(NumInstructions); 2223 DEBUG_PRINT_STAT(SROACostSavings); 2224 DEBUG_PRINT_STAT(SROACostSavingsLost); 2225 DEBUG_PRINT_STAT(LoadEliminationCost); 2226 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2227 DEBUG_PRINT_STAT(Cost); 2228 DEBUG_PRINT_STAT(Threshold); 2229 #undef DEBUG_PRINT_STAT 2230 } 2231 2232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2233 /// Dump stats about this call's analysis. 2234 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { 2235 print(); 2236 } 2237 #endif 2238 2239 /// Test that there are no attribute conflicts between Caller and Callee 2240 /// that prevent inlining. 2241 static bool functionsHaveCompatibleAttributes( 2242 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2243 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2244 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2245 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2246 // object, and always returns the same object (which is overwritten on each 2247 // GetTLI call). Therefore we copy the first result. 2248 auto CalleeTLI = GetTLI(*Callee); 2249 return TTI.areInlineCompatible(Caller, Callee) && 2250 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2251 InlineCallerSupersetNoBuiltin) && 2252 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2253 } 2254 2255 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2256 int Cost = 0; 2257 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2258 if (Call.isByValArgument(I)) { 2259 // We approximate the number of loads and stores needed by dividing the 2260 // size of the byval type by the target's pointer size. 2261 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2262 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); 2263 unsigned AS = PTy->getAddressSpace(); 2264 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2265 // Ceiling division. 2266 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2267 2268 // If it generates more than 8 stores it is likely to be expanded as an 2269 // inline memcpy so we take that as an upper bound. Otherwise we assume 2270 // one load and one store per word copied. 2271 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2272 // here instead of a magic number of 8, but it's not available via 2273 // DataLayout. 2274 NumStores = std::min(NumStores, 8U); 2275 2276 Cost += 2 * NumStores * InlineConstants::InstrCost; 2277 } else { 2278 // For non-byval arguments subtract off one instruction per call 2279 // argument. 2280 Cost += InlineConstants::InstrCost; 2281 } 2282 } 2283 // The call instruction also disappears after inlining. 2284 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; 2285 return Cost; 2286 } 2287 2288 InlineCost llvm::getInlineCost( 2289 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2290 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2291 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2292 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2293 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2294 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2295 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2296 } 2297 2298 Optional<int> llvm::getInliningCostEstimate( 2299 CallBase &Call, TargetTransformInfo &CalleeTTI, 2300 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2301 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2302 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2303 const InlineParams Params = {/* DefaultThreshold*/ 0, 2304 /*HintThreshold*/ {}, 2305 /*ColdThreshold*/ {}, 2306 /*OptSizeThreshold*/ {}, 2307 /*OptMinSizeThreshold*/ {}, 2308 /*HotCallSiteThreshold*/ {}, 2309 /*LocallyHotCallSiteThreshold*/ {}, 2310 /*ColdCallSiteThreshold*/ {}, 2311 /*ComputeFullInlineCost*/ true, 2312 /*EnableDeferral*/ true}; 2313 2314 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2315 GetAssumptionCache, GetBFI, PSI, ORE, true, 2316 /*IgnoreThreshold*/ true); 2317 auto R = CA.analyze(); 2318 if (!R.isSuccess()) 2319 return None; 2320 return CA.getCost(); 2321 } 2322 2323 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2324 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2325 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2326 2327 // Cannot inline indirect calls. 2328 if (!Callee) 2329 return InlineResult::failure("indirect call"); 2330 2331 // Never inline calls with byval arguments that does not have the alloca 2332 // address space. Since byval arguments can be replaced with a copy to an 2333 // alloca, the inlined code would need to be adjusted to handle that the 2334 // argument is in the alloca address space (so it is a little bit complicated 2335 // to solve). 2336 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2337 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2338 if (Call.isByValArgument(I)) { 2339 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2340 if (PTy->getAddressSpace() != AllocaAS) 2341 return InlineResult::failure("byval arguments without alloca" 2342 " address space"); 2343 } 2344 2345 // Calls to functions with always-inline attributes should be inlined 2346 // whenever possible. 2347 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2348 auto IsViable = isInlineViable(*Callee); 2349 if (IsViable.isSuccess()) 2350 return InlineResult::success(); 2351 return InlineResult::failure(IsViable.getFailureReason()); 2352 } 2353 2354 // Never inline functions with conflicting attributes (unless callee has 2355 // always-inline attribute). 2356 Function *Caller = Call.getCaller(); 2357 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2358 return InlineResult::failure("conflicting attributes"); 2359 2360 // Don't inline this call if the caller has the optnone attribute. 2361 if (Caller->hasOptNone()) 2362 return InlineResult::failure("optnone attribute"); 2363 2364 // Don't inline a function that treats null pointer as valid into a caller 2365 // that does not have this attribute. 2366 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2367 return InlineResult::failure("nullptr definitions incompatible"); 2368 2369 // Don't inline functions which can be interposed at link-time. 2370 if (Callee->isInterposable()) 2371 return InlineResult::failure("interposable"); 2372 2373 // Don't inline functions marked noinline. 2374 if (Callee->hasFnAttribute(Attribute::NoInline)) 2375 return InlineResult::failure("noinline function attribute"); 2376 2377 // Don't inline call sites marked noinline. 2378 if (Call.isNoInline()) 2379 return InlineResult::failure("noinline call site attribute"); 2380 2381 return None; 2382 } 2383 2384 InlineCost llvm::getInlineCost( 2385 CallBase &Call, Function *Callee, const InlineParams &Params, 2386 TargetTransformInfo &CalleeTTI, 2387 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2388 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2389 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2390 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2391 2392 auto UserDecision = 2393 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2394 2395 if (UserDecision.hasValue()) { 2396 if (UserDecision->isSuccess()) 2397 return llvm::InlineCost::getAlways("always inline attribute"); 2398 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2399 } 2400 2401 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2402 << "... (caller:" << Call.getCaller()->getName() 2403 << ")\n"); 2404 2405 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2406 GetAssumptionCache, GetBFI, PSI, ORE); 2407 InlineResult ShouldInline = CA.analyze(); 2408 2409 LLVM_DEBUG(CA.dump()); 2410 2411 // Check if there was a reason to force inlining or no inlining. 2412 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2413 return InlineCost::getNever(ShouldInline.getFailureReason()); 2414 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2415 return InlineCost::getAlways("empty function"); 2416 2417 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2418 } 2419 2420 InlineResult llvm::isInlineViable(Function &F) { 2421 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2422 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2423 // Disallow inlining of functions which contain indirect branches. 2424 if (isa<IndirectBrInst>(BI->getTerminator())) 2425 return InlineResult::failure("contains indirect branches"); 2426 2427 // Disallow inlining of blockaddresses which are used by non-callbr 2428 // instructions. 2429 if (BI->hasAddressTaken()) 2430 for (User *U : BlockAddress::get(&*BI)->users()) 2431 if (!isa<CallBrInst>(*U)) 2432 return InlineResult::failure("blockaddress used outside of callbr"); 2433 2434 for (auto &II : *BI) { 2435 CallBase *Call = dyn_cast<CallBase>(&II); 2436 if (!Call) 2437 continue; 2438 2439 // Disallow recursive calls. 2440 if (&F == Call->getCalledFunction()) 2441 return InlineResult::failure("recursive call"); 2442 2443 // Disallow calls which expose returns-twice to a function not previously 2444 // attributed as such. 2445 if (!ReturnsTwice && isa<CallInst>(Call) && 2446 cast<CallInst>(Call)->canReturnTwice()) 2447 return InlineResult::failure("exposes returns-twice attribute"); 2448 2449 if (Call->getCalledFunction()) 2450 switch (Call->getCalledFunction()->getIntrinsicID()) { 2451 default: 2452 break; 2453 case llvm::Intrinsic::icall_branch_funnel: 2454 // Disallow inlining of @llvm.icall.branch.funnel because current 2455 // backend can't separate call targets from call arguments. 2456 return InlineResult::failure( 2457 "disallowed inlining of @llvm.icall.branch.funnel"); 2458 case llvm::Intrinsic::localescape: 2459 // Disallow inlining functions that call @llvm.localescape. Doing this 2460 // correctly would require major changes to the inliner. 2461 return InlineResult::failure( 2462 "disallowed inlining of @llvm.localescape"); 2463 case llvm::Intrinsic::vastart: 2464 // Disallow inlining of functions that initialize VarArgs with 2465 // va_start. 2466 return InlineResult::failure( 2467 "contains VarArgs initialized with va_start"); 2468 } 2469 } 2470 } 2471 2472 return InlineResult::success(); 2473 } 2474 2475 // APIs to create InlineParams based on command line flags and/or other 2476 // parameters. 2477 2478 InlineParams llvm::getInlineParams(int Threshold) { 2479 InlineParams Params; 2480 2481 // This field is the threshold to use for a callee by default. This is 2482 // derived from one or more of: 2483 // * optimization or size-optimization levels, 2484 // * a value passed to createFunctionInliningPass function, or 2485 // * the -inline-threshold flag. 2486 // If the -inline-threshold flag is explicitly specified, that is used 2487 // irrespective of anything else. 2488 if (InlineThreshold.getNumOccurrences() > 0) 2489 Params.DefaultThreshold = InlineThreshold; 2490 else 2491 Params.DefaultThreshold = Threshold; 2492 2493 // Set the HintThreshold knob from the -inlinehint-threshold. 2494 Params.HintThreshold = HintThreshold; 2495 2496 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2497 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2498 2499 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2500 // populate LocallyHotCallSiteThreshold. Later, we populate 2501 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2502 // we know that optimization level is O3 (in the getInlineParams variant that 2503 // takes the opt and size levels). 2504 // FIXME: Remove this check (and make the assignment unconditional) after 2505 // addressing size regression issues at O2. 2506 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2507 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2508 2509 // Set the ColdCallSiteThreshold knob from the 2510 // -inline-cold-callsite-threshold. 2511 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2512 2513 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2514 // -inlinehint-threshold commandline option is not explicitly given. If that 2515 // option is present, then its value applies even for callees with size and 2516 // minsize attributes. 2517 // If the -inline-threshold is not specified, set the ColdThreshold from the 2518 // -inlinecold-threshold even if it is not explicitly passed. If 2519 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2520 // explicitly specified to set the ColdThreshold knob 2521 if (InlineThreshold.getNumOccurrences() == 0) { 2522 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2523 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2524 Params.ColdThreshold = ColdThreshold; 2525 } else if (ColdThreshold.getNumOccurrences() > 0) { 2526 Params.ColdThreshold = ColdThreshold; 2527 } 2528 return Params; 2529 } 2530 2531 InlineParams llvm::getInlineParams() { 2532 return getInlineParams(DefaultThreshold); 2533 } 2534 2535 // Compute the default threshold for inlining based on the opt level and the 2536 // size opt level. 2537 static int computeThresholdFromOptLevels(unsigned OptLevel, 2538 unsigned SizeOptLevel) { 2539 if (OptLevel > 2) 2540 return InlineConstants::OptAggressiveThreshold; 2541 if (SizeOptLevel == 1) // -Os 2542 return InlineConstants::OptSizeThreshold; 2543 if (SizeOptLevel == 2) // -Oz 2544 return InlineConstants::OptMinSizeThreshold; 2545 return DefaultThreshold; 2546 } 2547 2548 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2549 auto Params = 2550 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2551 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2552 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2553 // when it is specified explicitly. 2554 if (OptLevel > 2) 2555 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2556 return Params; 2557 } 2558 2559 PreservedAnalyses 2560 InlineCostAnnotationPrinterPass::run(Function &F, 2561 FunctionAnalysisManager &FAM) { 2562 PrintInstructionComments = true; 2563 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 2564 Function &F) -> AssumptionCache & { 2565 return FAM.getResult<AssumptionAnalysis>(F); 2566 }; 2567 Module *M = F.getParent(); 2568 ProfileSummaryInfo PSI(*M); 2569 DataLayout DL(M); 2570 TargetTransformInfo TTI(DL); 2571 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 2572 // In the current implementation, the type of InlineParams doesn't matter as 2573 // the pass serves only for verification of inliner's decisions. 2574 // We can add a flag which determines InlineParams for this run. Right now, 2575 // the default InlineParams are used. 2576 const InlineParams Params = llvm::getInlineParams(); 2577 for (BasicBlock &BB : F) { 2578 for (Instruction &I : BB) { 2579 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2580 Function *CalledFunction = CI->getCalledFunction(); 2581 if (!CalledFunction || CalledFunction->isDeclaration()) 2582 continue; 2583 OptimizationRemarkEmitter ORE(CalledFunction); 2584 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 2585 GetAssumptionCache, nullptr, &PSI, &ORE); 2586 ICCA.analyze(); 2587 OS << " Analyzing call of " << CalledFunction->getName() 2588 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 2589 ICCA.print(); 2590 } 2591 } 2592 } 2593 return PreservedAnalyses::all(); 2594 } 2595