1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 75 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 76 cl::desc("Enable the cost-benefit analysis for the inliner")); 77 78 static cl::opt<int> InlineSavingsMultiplier( 79 "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 80 cl::desc("Multiplier to multiply cycle savings by during inlining")); 81 82 static cl::opt<int> 83 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 84 cl::ZeroOrMore, 85 cl::desc("The maximum size of a callee that get's " 86 "inlined without sufficient cycle savings")); 87 88 // We introduce this threshold to help performance of instrumentation based 89 // PGO before we actually hook up inliner with analysis passes such as BPI and 90 // BFI. 91 static cl::opt<int> ColdThreshold( 92 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 93 cl::desc("Threshold for inlining functions with cold attribute")); 94 95 static cl::opt<int> 96 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 97 cl::ZeroOrMore, 98 cl::desc("Threshold for hot callsites ")); 99 100 static cl::opt<int> LocallyHotCallSiteThreshold( 101 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 102 cl::desc("Threshold for locally hot callsites ")); 103 104 static cl::opt<int> ColdCallSiteRelFreq( 105 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 106 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a callsite to be cold in the absence of " 108 "profile information.")); 109 110 static cl::opt<int> HotCallSiteRelFreq( 111 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 112 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 113 "entry frequency, for a callsite to be hot in the absence of " 114 "profile information.")); 115 116 static cl::opt<bool> OptComputeFullInlineCost( 117 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 118 cl::desc("Compute the full inline cost of a call site even when the cost " 119 "exceeds the threshold.")); 120 121 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 122 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 123 cl::ZeroOrMore, 124 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 125 "attributes.")); 126 127 static cl::opt<bool> DisableGEPConstOperand( 128 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 129 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 130 131 namespace { 132 class InlineCostCallAnalyzer; 133 134 // This struct is used to store information about inline cost of a 135 // particular instruction 136 struct InstructionCostDetail { 137 int CostBefore = 0; 138 int CostAfter = 0; 139 int ThresholdBefore = 0; 140 int ThresholdAfter = 0; 141 142 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 143 144 int getCostDelta() const { return CostAfter - CostBefore; } 145 146 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 147 }; 148 149 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 150 private: 151 InlineCostCallAnalyzer *const ICCA; 152 153 public: 154 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 155 virtual void emitInstructionAnnot(const Instruction *I, 156 formatted_raw_ostream &OS) override; 157 }; 158 159 /// Carry out call site analysis, in order to evaluate inlinability. 160 /// NOTE: the type is currently used as implementation detail of functions such 161 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 162 /// expectation is that they come from the outer scope, from the wrapper 163 /// functions. If we want to support constructing CallAnalyzer objects where 164 /// lambdas are provided inline at construction, or where the object needs to 165 /// otherwise survive past the scope of the provided functions, we need to 166 /// revisit the argument types. 167 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 168 typedef InstVisitor<CallAnalyzer, bool> Base; 169 friend class InstVisitor<CallAnalyzer, bool>; 170 171 protected: 172 virtual ~CallAnalyzer() {} 173 /// The TargetTransformInfo available for this compilation. 174 const TargetTransformInfo &TTI; 175 176 /// Getter for the cache of @llvm.assume intrinsics. 177 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 178 179 /// Getter for BlockFrequencyInfo 180 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 181 182 /// Profile summary information. 183 ProfileSummaryInfo *PSI; 184 185 /// The called function. 186 Function &F; 187 188 // Cache the DataLayout since we use it a lot. 189 const DataLayout &DL; 190 191 /// The OptimizationRemarkEmitter available for this compilation. 192 OptimizationRemarkEmitter *ORE; 193 194 /// The candidate callsite being analyzed. Please do not use this to do 195 /// analysis in the caller function; we want the inline cost query to be 196 /// easily cacheable. Instead, use the cover function paramHasAttr. 197 CallBase &CandidateCall; 198 199 /// Extension points for handling callsite features. 200 // Called before a basic block was analyzed. 201 virtual void onBlockStart(const BasicBlock *BB) {} 202 203 /// Called after a basic block was analyzed. 204 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 205 206 /// Called before an instruction was analyzed 207 virtual void onInstructionAnalysisStart(const Instruction *I) {} 208 209 /// Called after an instruction was analyzed 210 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 211 212 /// Called at the end of the analysis of the callsite. Return the outcome of 213 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 214 /// the reason it can't. 215 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 216 /// Called when we're about to start processing a basic block, and every time 217 /// we are done processing an instruction. Return true if there is no point in 218 /// continuing the analysis (e.g. we've determined already the call site is 219 /// too expensive to inline) 220 virtual bool shouldStop() { return false; } 221 222 /// Called before the analysis of the callee body starts (with callsite 223 /// contexts propagated). It checks callsite-specific information. Return a 224 /// reason analysis can't continue if that's the case, or 'true' if it may 225 /// continue. 226 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 227 /// Called if the analysis engine decides SROA cannot be done for the given 228 /// alloca. 229 virtual void onDisableSROA(AllocaInst *Arg) {} 230 231 /// Called the analysis engine determines load elimination won't happen. 232 virtual void onDisableLoadElimination() {} 233 234 /// Called to account for a call. 235 virtual void onCallPenalty() {} 236 237 /// Called to account for the expectation the inlining would result in a load 238 /// elimination. 239 virtual void onLoadEliminationOpportunity() {} 240 241 /// Called to account for the cost of argument setup for the Call in the 242 /// callee's body (not the callsite currently under analysis). 243 virtual void onCallArgumentSetup(const CallBase &Call) {} 244 245 /// Called to account for a load relative intrinsic. 246 virtual void onLoadRelativeIntrinsic() {} 247 248 /// Called to account for a lowered call. 249 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 250 } 251 252 /// Account for a jump table of given size. Return false to stop further 253 /// processing the switch instruction 254 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 255 256 /// Account for a case cluster of given size. Return false to stop further 257 /// processing of the instruction. 258 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 259 260 /// Called at the end of processing a switch instruction, with the given 261 /// number of case clusters. 262 virtual void onFinalizeSwitch(unsigned JumpTableSize, 263 unsigned NumCaseCluster) {} 264 265 /// Called to account for any other instruction not specifically accounted 266 /// for. 267 virtual void onMissedSimplification() {} 268 269 /// Start accounting potential benefits due to SROA for the given alloca. 270 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 271 272 /// Account SROA savings for the AllocaInst value. 273 virtual void onAggregateSROAUse(AllocaInst *V) {} 274 275 bool handleSROA(Value *V, bool DoNotDisable) { 276 // Check for SROA candidates in comparisons. 277 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 278 if (DoNotDisable) { 279 onAggregateSROAUse(SROAArg); 280 return true; 281 } 282 disableSROAForArg(SROAArg); 283 } 284 return false; 285 } 286 287 bool IsCallerRecursive = false; 288 bool IsRecursiveCall = false; 289 bool ExposesReturnsTwice = false; 290 bool HasDynamicAlloca = false; 291 bool ContainsNoDuplicateCall = false; 292 bool HasReturn = false; 293 bool HasIndirectBr = false; 294 bool HasUninlineableIntrinsic = false; 295 bool InitsVargArgs = false; 296 297 /// Number of bytes allocated statically by the callee. 298 uint64_t AllocatedSize = 0; 299 unsigned NumInstructions = 0; 300 unsigned NumVectorInstructions = 0; 301 302 /// While we walk the potentially-inlined instructions, we build up and 303 /// maintain a mapping of simplified values specific to this callsite. The 304 /// idea is to propagate any special information we have about arguments to 305 /// this call through the inlinable section of the function, and account for 306 /// likely simplifications post-inlining. The most important aspect we track 307 /// is CFG altering simplifications -- when we prove a basic block dead, that 308 /// can cause dramatic shifts in the cost of inlining a function. 309 DenseMap<Value *, Constant *> SimplifiedValues; 310 311 /// Keep track of the values which map back (through function arguments) to 312 /// allocas on the caller stack which could be simplified through SROA. 313 DenseMap<Value *, AllocaInst *> SROAArgValues; 314 315 /// Keep track of Allocas for which we believe we may get SROA optimization. 316 DenseSet<AllocaInst *> EnabledSROAAllocas; 317 318 /// Keep track of values which map to a pointer base and constant offset. 319 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 320 321 /// Keep track of dead blocks due to the constant arguments. 322 SetVector<BasicBlock *> DeadBlocks; 323 324 /// The mapping of the blocks to their known unique successors due to the 325 /// constant arguments. 326 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 327 328 /// Model the elimination of repeated loads that is expected to happen 329 /// whenever we simplify away the stores that would otherwise cause them to be 330 /// loads. 331 bool EnableLoadElimination; 332 SmallPtrSet<Value *, 16> LoadAddrSet; 333 334 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 335 auto It = SROAArgValues.find(V); 336 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 337 return nullptr; 338 return It->second; 339 } 340 341 // Custom simplification helper routines. 342 bool isAllocaDerivedArg(Value *V); 343 void disableSROAForArg(AllocaInst *SROAArg); 344 void disableSROA(Value *V); 345 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 346 void disableLoadElimination(); 347 bool isGEPFree(GetElementPtrInst &GEP); 348 bool canFoldInboundsGEP(GetElementPtrInst &I); 349 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 350 bool simplifyCallSite(Function *F, CallBase &Call); 351 template <typename Callable> 352 bool simplifyInstruction(Instruction &I, Callable Evaluate); 353 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 354 355 /// Return true if the given argument to the function being considered for 356 /// inlining has the given attribute set either at the call site or the 357 /// function declaration. Primarily used to inspect call site specific 358 /// attributes since these can be more precise than the ones on the callee 359 /// itself. 360 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 361 362 /// Return true if the given value is known non null within the callee if 363 /// inlined through this particular callsite. 364 bool isKnownNonNullInCallee(Value *V); 365 366 /// Return true if size growth is allowed when inlining the callee at \p Call. 367 bool allowSizeGrowth(CallBase &Call); 368 369 // Custom analysis routines. 370 InlineResult analyzeBlock(BasicBlock *BB, 371 SmallPtrSetImpl<const Value *> &EphValues); 372 373 // Disable several entry points to the visitor so we don't accidentally use 374 // them by declaring but not defining them here. 375 void visit(Module *); 376 void visit(Module &); 377 void visit(Function *); 378 void visit(Function &); 379 void visit(BasicBlock *); 380 void visit(BasicBlock &); 381 382 // Provide base case for our instruction visit. 383 bool visitInstruction(Instruction &I); 384 385 // Our visit overrides. 386 bool visitAlloca(AllocaInst &I); 387 bool visitPHI(PHINode &I); 388 bool visitGetElementPtr(GetElementPtrInst &I); 389 bool visitBitCast(BitCastInst &I); 390 bool visitPtrToInt(PtrToIntInst &I); 391 bool visitIntToPtr(IntToPtrInst &I); 392 bool visitCastInst(CastInst &I); 393 bool visitUnaryInstruction(UnaryInstruction &I); 394 bool visitCmpInst(CmpInst &I); 395 bool visitSub(BinaryOperator &I); 396 bool visitBinaryOperator(BinaryOperator &I); 397 bool visitFNeg(UnaryOperator &I); 398 bool visitLoad(LoadInst &I); 399 bool visitStore(StoreInst &I); 400 bool visitExtractValue(ExtractValueInst &I); 401 bool visitInsertValue(InsertValueInst &I); 402 bool visitCallBase(CallBase &Call); 403 bool visitReturnInst(ReturnInst &RI); 404 bool visitBranchInst(BranchInst &BI); 405 bool visitSelectInst(SelectInst &SI); 406 bool visitSwitchInst(SwitchInst &SI); 407 bool visitIndirectBrInst(IndirectBrInst &IBI); 408 bool visitResumeInst(ResumeInst &RI); 409 bool visitCleanupReturnInst(CleanupReturnInst &RI); 410 bool visitCatchReturnInst(CatchReturnInst &RI); 411 bool visitUnreachableInst(UnreachableInst &I); 412 413 public: 414 CallAnalyzer( 415 Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 416 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 417 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 418 ProfileSummaryInfo *PSI = nullptr, 419 OptimizationRemarkEmitter *ORE = nullptr) 420 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 421 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 422 CandidateCall(Call), EnableLoadElimination(true) {} 423 424 InlineResult analyze(); 425 426 Optional<Constant*> getSimplifiedValue(Instruction *I) { 427 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 428 return SimplifiedValues[I]; 429 return None; 430 } 431 432 // Keep a bunch of stats about the cost savings found so we can print them 433 // out when debugging. 434 unsigned NumConstantArgs = 0; 435 unsigned NumConstantOffsetPtrArgs = 0; 436 unsigned NumAllocaArgs = 0; 437 unsigned NumConstantPtrCmps = 0; 438 unsigned NumConstantPtrDiffs = 0; 439 unsigned NumInstructionsSimplified = 0; 440 441 void dump(); 442 }; 443 444 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 445 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 446 class InlineCostCallAnalyzer final : public CallAnalyzer { 447 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 448 const bool ComputeFullInlineCost; 449 int LoadEliminationCost = 0; 450 /// Bonus to be applied when percentage of vector instructions in callee is 451 /// high (see more details in updateThreshold). 452 int VectorBonus = 0; 453 /// Bonus to be applied when the callee has only one reachable basic block. 454 int SingleBBBonus = 0; 455 456 /// Tunable parameters that control the analysis. 457 const InlineParams &Params; 458 459 // This DenseMap stores the delta change in cost and threshold after 460 // accounting for the given instruction. The map is filled only with the 461 // flag PrintInstructionComments on. 462 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 463 464 /// Upper bound for the inlining cost. Bonuses are being applied to account 465 /// for speculative "expected profit" of the inlining decision. 466 int Threshold = 0; 467 468 /// Attempt to evaluate indirect calls to boost its inline cost. 469 const bool BoostIndirectCalls; 470 471 /// Ignore the threshold when finalizing analysis. 472 const bool IgnoreThreshold; 473 474 // True if the cost-benefit-analysis-based inliner is enabled. 475 const bool CostBenefitAnalysisEnabled; 476 477 /// Inlining cost measured in abstract units, accounts for all the 478 /// instructions expected to be executed for a given function invocation. 479 /// Instructions that are statically proven to be dead based on call-site 480 /// arguments are not counted here. 481 int Cost = 0; 482 483 // The cumulative cost at the beginning of the basic block being analyzed. At 484 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 485 // the size of that basic block. 486 int CostAtBBStart = 0; 487 488 // The static size of live but cold basic blocks. This is "static" in the 489 // sense that it's not weighted by profile counts at all. 490 int ColdSize = 0; 491 492 bool SingleBB = true; 493 494 unsigned SROACostSavings = 0; 495 unsigned SROACostSavingsLost = 0; 496 497 /// The mapping of caller Alloca values to their accumulated cost savings. If 498 /// we have to disable SROA for one of the allocas, this tells us how much 499 /// cost must be added. 500 DenseMap<AllocaInst *, int> SROAArgCosts; 501 502 /// Return true if \p Call is a cold callsite. 503 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 504 505 /// Update Threshold based on callsite properties such as callee 506 /// attributes and callee hotness for PGO builds. The Callee is explicitly 507 /// passed to support analyzing indirect calls whose target is inferred by 508 /// analysis. 509 void updateThreshold(CallBase &Call, Function &Callee); 510 /// Return a higher threshold if \p Call is a hot callsite. 511 Optional<int> getHotCallSiteThreshold(CallBase &Call, 512 BlockFrequencyInfo *CallerBFI); 513 514 /// Handle a capped 'int' increment for Cost. 515 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 516 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 517 Cost = (int)std::min(UpperBound, Cost + Inc); 518 } 519 520 void onDisableSROA(AllocaInst *Arg) override { 521 auto CostIt = SROAArgCosts.find(Arg); 522 if (CostIt == SROAArgCosts.end()) 523 return; 524 addCost(CostIt->second); 525 SROACostSavings -= CostIt->second; 526 SROACostSavingsLost += CostIt->second; 527 SROAArgCosts.erase(CostIt); 528 } 529 530 void onDisableLoadElimination() override { 531 addCost(LoadEliminationCost); 532 LoadEliminationCost = 0; 533 } 534 void onCallPenalty() override { addCost(InlineConstants::CallPenalty); } 535 void onCallArgumentSetup(const CallBase &Call) override { 536 // Pay the price of the argument setup. We account for the average 1 537 // instruction per call argument setup here. 538 addCost(Call.arg_size() * InlineConstants::InstrCost); 539 } 540 void onLoadRelativeIntrinsic() override { 541 // This is normally lowered to 4 LLVM instructions. 542 addCost(3 * InlineConstants::InstrCost); 543 } 544 void onLoweredCall(Function *F, CallBase &Call, 545 bool IsIndirectCall) override { 546 // We account for the average 1 instruction per call argument setup here. 547 addCost(Call.arg_size() * InlineConstants::InstrCost); 548 549 // If we have a constant that we are calling as a function, we can peer 550 // through it and see the function target. This happens not infrequently 551 // during devirtualization and so we want to give it a hefty bonus for 552 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 553 // Pretend to inline the function, with a custom threshold. 554 if (IsIndirectCall && BoostIndirectCalls) { 555 auto IndirectCallParams = Params; 556 IndirectCallParams.DefaultThreshold = 557 InlineConstants::IndirectCallThreshold; 558 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 559 /// to instantiate the derived class. 560 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 561 GetAssumptionCache, GetBFI, PSI, ORE, false); 562 if (CA.analyze().isSuccess()) { 563 // We were able to inline the indirect call! Subtract the cost from the 564 // threshold to get the bonus we want to apply, but don't go below zero. 565 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 566 } 567 } else 568 // Otherwise simply add the cost for merely making the call. 569 addCost(InlineConstants::CallPenalty); 570 } 571 572 void onFinalizeSwitch(unsigned JumpTableSize, 573 unsigned NumCaseCluster) override { 574 // If suitable for a jump table, consider the cost for the table size and 575 // branch to destination. 576 // Maximum valid cost increased in this function. 577 if (JumpTableSize) { 578 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 579 4 * InlineConstants::InstrCost; 580 581 addCost(JTCost, (int64_t)CostUpperBound); 582 return; 583 } 584 // Considering forming a binary search, we should find the number of nodes 585 // which is same as the number of comparisons when lowered. For a given 586 // number of clusters, n, we can define a recursive function, f(n), to find 587 // the number of nodes in the tree. The recursion is : 588 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 589 // and f(n) = n, when n <= 3. 590 // This will lead a binary tree where the leaf should be either f(2) or f(3) 591 // when n > 3. So, the number of comparisons from leaves should be n, while 592 // the number of non-leaf should be : 593 // 2^(log2(n) - 1) - 1 594 // = 2^log2(n) * 2^-1 - 1 595 // = n / 2 - 1. 596 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 597 // number of comparisons in a simple closed form : 598 // n + n / 2 - 1 = n * 3 / 2 - 1 599 if (NumCaseCluster <= 3) { 600 // Suppose a comparison includes one compare and one conditional branch. 601 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 602 return; 603 } 604 605 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; 606 int64_t SwitchCost = 607 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 608 609 addCost(SwitchCost, (int64_t)CostUpperBound); 610 } 611 void onMissedSimplification() override { 612 addCost(InlineConstants::InstrCost); 613 } 614 615 void onInitializeSROAArg(AllocaInst *Arg) override { 616 assert(Arg != nullptr && 617 "Should not initialize SROA costs for null value."); 618 SROAArgCosts[Arg] = 0; 619 } 620 621 void onAggregateSROAUse(AllocaInst *SROAArg) override { 622 auto CostIt = SROAArgCosts.find(SROAArg); 623 assert(CostIt != SROAArgCosts.end() && 624 "expected this argument to have a cost"); 625 CostIt->second += InlineConstants::InstrCost; 626 SROACostSavings += InlineConstants::InstrCost; 627 } 628 629 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 630 631 void onBlockAnalyzed(const BasicBlock *BB) override { 632 if (CostBenefitAnalysisEnabled) { 633 // Keep track of the static size of live but cold basic blocks. For now, 634 // we define a cold basic block to be one that's never executed. 635 assert(GetBFI && "GetBFI must be available"); 636 BlockFrequencyInfo *BFI = &(GetBFI(F)); 637 assert(BFI && "BFI must be available"); 638 auto ProfileCount = BFI->getBlockProfileCount(BB); 639 assert(ProfileCount.hasValue()); 640 if (ProfileCount.getValue() == 0) 641 ColdSize += Cost - CostAtBBStart; 642 } 643 644 auto *TI = BB->getTerminator(); 645 // If we had any successors at this point, than post-inlining is likely to 646 // have them as well. Note that we assume any basic blocks which existed 647 // due to branches or switches which folded above will also fold after 648 // inlining. 649 if (SingleBB && TI->getNumSuccessors() > 1) { 650 // Take off the bonus we applied to the threshold. 651 Threshold -= SingleBBBonus; 652 SingleBB = false; 653 } 654 } 655 656 void onInstructionAnalysisStart(const Instruction *I) override { 657 // This function is called to store the initial cost of inlining before 658 // the given instruction was assessed. 659 if (!PrintInstructionComments) 660 return; 661 InstructionCostDetailMap[I].CostBefore = Cost; 662 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 663 } 664 665 void onInstructionAnalysisFinish(const Instruction *I) override { 666 // This function is called to find new values of cost and threshold after 667 // the instruction has been assessed. 668 if (!PrintInstructionComments) 669 return; 670 InstructionCostDetailMap[I].CostAfter = Cost; 671 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 672 } 673 674 bool isCostBenefitAnalysisEnabled() { 675 if (!InlineEnableCostBenefitAnalysis) 676 return false; 677 678 if (!PSI || !PSI->hasProfileSummary()) 679 return false; 680 681 if (!GetBFI) 682 return false; 683 684 auto *Caller = CandidateCall.getParent()->getParent(); 685 if (!Caller->getEntryCount()) 686 return false; 687 688 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 689 if (!CallerBFI) 690 return false; 691 692 // For now, limit to hot call site. 693 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 694 return false; 695 696 if (!F.getEntryCount()) 697 return false; 698 699 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 700 if (!CalleeBFI) 701 return false; 702 703 return true; 704 } 705 706 // Determine whether we should inline the given call site, taking into account 707 // both the size cost and the cycle savings. Return None if we don't have 708 // suficient profiling information to determine. 709 Optional<bool> costBenefitAnalysis() { 710 if (!CostBenefitAnalysisEnabled) 711 return None; 712 713 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 714 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 715 // falling back to the cost-based metric. 716 // TODO: Improve this hacky condition. 717 if (Threshold == 0) 718 return None; 719 720 assert(GetBFI); 721 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 722 assert(CalleeBFI); 723 724 // The cycle savings expressed as the sum of InlineConstants::InstrCost 725 // multiplied by the estimated dynamic count of each instruction we can 726 // avoid. Savings come from the call site cost, such as argument setup and 727 // the call instruction, as well as the instructions that are folded. 728 // 729 // We use 128-bit APInt here to avoid potential overflow. This variable 730 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 731 // assumes that we can avoid or fold a billion instructions, each with a 732 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 733 // period on a 4GHz machine. 734 APInt CycleSavings(128, 0); 735 736 for (auto &BB : F) { 737 APInt CurrentSavings(128, 0); 738 for (auto &I : BB) { 739 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 740 // Count a conditional branch as savings if it becomes unconditional. 741 if (BI->isConditional() && 742 dyn_cast_or_null<ConstantInt>( 743 SimplifiedValues.lookup(BI->getCondition()))) { 744 CurrentSavings += InlineConstants::InstrCost; 745 } 746 } else if (Value *V = dyn_cast<Value>(&I)) { 747 // Count an instruction as savings if we can fold it. 748 if (SimplifiedValues.count(V)) { 749 CurrentSavings += InlineConstants::InstrCost; 750 } 751 } 752 // TODO: Consider other forms of savings like switch statements, 753 // indirect calls becoming direct, SROACostSavings, LoadEliminationCost, 754 // etc. 755 } 756 757 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 758 assert(ProfileCount.hasValue()); 759 CurrentSavings *= ProfileCount.getValue(); 760 CycleSavings += CurrentSavings; 761 } 762 763 // Compute the cycle savings per call. 764 auto EntryProfileCount = F.getEntryCount(); 765 assert(EntryProfileCount.hasValue()); 766 auto EntryCount = EntryProfileCount.getCount(); 767 CycleSavings += EntryCount / 2; 768 CycleSavings = CycleSavings.udiv(EntryCount); 769 770 // Compute the total savings for the call site. 771 auto *CallerBB = CandidateCall.getParent(); 772 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 773 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 774 CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 775 776 // Remove the cost of the cold basic blocks. 777 int Size = Cost - ColdSize; 778 779 // Allow tiny callees to be inlined regardless of whether they meet the 780 // savings threshold. 781 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 782 783 // Return true if the savings justify the cost of inlining. Specifically, 784 // we evaluate the following inequality: 785 // 786 // CycleSavings PSI->getOrCompHotCountThreshold() 787 // -------------- >= ----------------------------------- 788 // Size InlineSavingsMultiplier 789 // 790 // Note that the left hand side is specific to a call site. The right hand 791 // side is a constant for the entire executable. 792 APInt LHS = CycleSavings; 793 LHS *= InlineSavingsMultiplier; 794 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 795 RHS *= Size; 796 return LHS.uge(RHS); 797 } 798 799 InlineResult finalizeAnalysis() override { 800 // Loops generally act a lot like calls in that they act like barriers to 801 // movement, require a certain amount of setup, etc. So when optimising for 802 // size, we penalise any call sites that perform loops. We do this after all 803 // other costs here, so will likely only be dealing with relatively small 804 // functions (and hence DT and LI will hopefully be cheap). 805 auto *Caller = CandidateCall.getFunction(); 806 if (Caller->hasMinSize()) { 807 DominatorTree DT(F); 808 LoopInfo LI(DT); 809 int NumLoops = 0; 810 for (Loop *L : LI) { 811 // Ignore loops that will not be executed 812 if (DeadBlocks.count(L->getHeader())) 813 continue; 814 NumLoops++; 815 } 816 addCost(NumLoops * InlineConstants::CallPenalty); 817 } 818 819 // We applied the maximum possible vector bonus at the beginning. Now, 820 // subtract the excess bonus, if any, from the Threshold before 821 // comparing against Cost. 822 if (NumVectorInstructions <= NumInstructions / 10) 823 Threshold -= VectorBonus; 824 else if (NumVectorInstructions <= NumInstructions / 2) 825 Threshold -= VectorBonus / 2; 826 827 if (auto Result = costBenefitAnalysis()) { 828 if (Result.getValue()) 829 return InlineResult::success(); 830 else 831 return InlineResult::failure("Cost over threshold."); 832 } 833 834 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 835 return InlineResult::success(); 836 return InlineResult::failure("Cost over threshold."); 837 } 838 bool shouldStop() override { 839 // Bail out the moment we cross the threshold. This means we'll under-count 840 // the cost, but only when undercounting doesn't matter. 841 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 842 } 843 844 void onLoadEliminationOpportunity() override { 845 LoadEliminationCost += InlineConstants::InstrCost; 846 } 847 848 InlineResult onAnalysisStart() override { 849 // Perform some tweaks to the cost and threshold based on the direct 850 // callsite information. 851 852 // We want to more aggressively inline vector-dense kernels, so up the 853 // threshold, and we'll lower it if the % of vector instructions gets too 854 // low. Note that these bonuses are some what arbitrary and evolved over 855 // time by accident as much as because they are principled bonuses. 856 // 857 // FIXME: It would be nice to remove all such bonuses. At least it would be 858 // nice to base the bonus values on something more scientific. 859 assert(NumInstructions == 0); 860 assert(NumVectorInstructions == 0); 861 862 // Update the threshold based on callsite properties 863 updateThreshold(CandidateCall, F); 864 865 // While Threshold depends on commandline options that can take negative 866 // values, we want to enforce the invariant that the computed threshold and 867 // bonuses are non-negative. 868 assert(Threshold >= 0); 869 assert(SingleBBBonus >= 0); 870 assert(VectorBonus >= 0); 871 872 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 873 // this Threshold any time, and cost cannot decrease, we can stop processing 874 // the rest of the function body. 875 Threshold += (SingleBBBonus + VectorBonus); 876 877 // Give out bonuses for the callsite, as the instructions setting them up 878 // will be gone after inlining. 879 addCost(-getCallsiteCost(this->CandidateCall, DL)); 880 881 // If this function uses the coldcc calling convention, prefer not to inline 882 // it. 883 if (F.getCallingConv() == CallingConv::Cold) 884 Cost += InlineConstants::ColdccPenalty; 885 886 // Check if we're done. This can happen due to bonuses and penalties. 887 if (Cost >= Threshold && !ComputeFullInlineCost) 888 return InlineResult::failure("high cost"); 889 890 return InlineResult::success(); 891 } 892 893 public: 894 InlineCostCallAnalyzer( 895 Function &Callee, CallBase &Call, const InlineParams &Params, 896 const TargetTransformInfo &TTI, 897 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 898 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 899 ProfileSummaryInfo *PSI = nullptr, 900 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 901 bool IgnoreThreshold = false) 902 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 903 ComputeFullInlineCost(OptComputeFullInlineCost || 904 Params.ComputeFullInlineCost || ORE || 905 isCostBenefitAnalysisEnabled()), 906 Params(Params), Threshold(Params.DefaultThreshold), 907 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 908 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 909 Writer(this) {} 910 911 /// Annotation Writer for instruction details 912 InlineCostAnnotationWriter Writer; 913 914 void dump(); 915 916 // Prints the same analysis as dump(), but its definition is not dependent 917 // on the build. 918 void print(); 919 920 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 921 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 922 return InstructionCostDetailMap[I]; 923 return None; 924 } 925 926 virtual ~InlineCostCallAnalyzer() {} 927 int getThreshold() { return Threshold; } 928 int getCost() { return Cost; } 929 }; 930 } // namespace 931 932 /// Test whether the given value is an Alloca-derived function argument. 933 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 934 return SROAArgValues.count(V); 935 } 936 937 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 938 onDisableSROA(SROAArg); 939 EnabledSROAAllocas.erase(SROAArg); 940 disableLoadElimination(); 941 } 942 943 void InlineCostAnnotationWriter::emitInstructionAnnot(const Instruction *I, 944 formatted_raw_ostream &OS) { 945 // The cost of inlining of the given instruction is printed always. 946 // The threshold delta is printed only when it is non-zero. It happens 947 // when we decided to give a bonus at a particular instruction. 948 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 949 if (!Record) 950 OS << "; No analysis for the instruction"; 951 else { 952 OS << "; cost before = " << Record->CostBefore 953 << ", cost after = " << Record->CostAfter 954 << ", threshold before = " << Record->ThresholdBefore 955 << ", threshold after = " << Record->ThresholdAfter << ", "; 956 OS << "cost delta = " << Record->getCostDelta(); 957 if (Record->hasThresholdChanged()) 958 OS << ", threshold delta = " << Record->getThresholdDelta(); 959 } 960 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 961 if (C) { 962 OS << ", simplified to "; 963 C.getValue()->print(OS, true); 964 } 965 OS << "\n"; 966 } 967 968 /// If 'V' maps to a SROA candidate, disable SROA for it. 969 void CallAnalyzer::disableSROA(Value *V) { 970 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 971 disableSROAForArg(SROAArg); 972 } 973 } 974 975 void CallAnalyzer::disableLoadElimination() { 976 if (EnableLoadElimination) { 977 onDisableLoadElimination(); 978 EnableLoadElimination = false; 979 } 980 } 981 982 /// Accumulate a constant GEP offset into an APInt if possible. 983 /// 984 /// Returns false if unable to compute the offset for any reason. Respects any 985 /// simplified values known during the analysis of this callsite. 986 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 987 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 988 assert(IntPtrWidth == Offset.getBitWidth()); 989 990 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 991 GTI != GTE; ++GTI) { 992 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 993 if (!OpC) 994 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 995 OpC = dyn_cast<ConstantInt>(SimpleOp); 996 if (!OpC) 997 return false; 998 if (OpC->isZero()) 999 continue; 1000 1001 // Handle a struct index, which adds its field offset to the pointer. 1002 if (StructType *STy = GTI.getStructTypeOrNull()) { 1003 unsigned ElementIdx = OpC->getZExtValue(); 1004 const StructLayout *SL = DL.getStructLayout(STy); 1005 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1006 continue; 1007 } 1008 1009 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1010 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1011 } 1012 return true; 1013 } 1014 1015 /// Use TTI to check whether a GEP is free. 1016 /// 1017 /// Respects any simplified values known during the analysis of this callsite. 1018 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1019 SmallVector<Value *, 4> Operands; 1020 Operands.push_back(GEP.getOperand(0)); 1021 for (const Use &Op : GEP.indices()) 1022 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1023 Operands.push_back(SimpleOp); 1024 else 1025 Operands.push_back(Op); 1026 return TargetTransformInfo::TCC_Free == 1027 TTI.getUserCost(&GEP, Operands, 1028 TargetTransformInfo::TCK_SizeAndLatency); 1029 } 1030 1031 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1032 // Check whether inlining will turn a dynamic alloca into a static 1033 // alloca and handle that case. 1034 if (I.isArrayAllocation()) { 1035 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1036 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1037 // Sometimes a dynamic alloca could be converted into a static alloca 1038 // after this constant prop, and become a huge static alloca on an 1039 // unconditional CFG path. Avoid inlining if this is going to happen above 1040 // a threshold. 1041 // FIXME: If the threshold is removed or lowered too much, we could end up 1042 // being too pessimistic and prevent inlining non-problematic code. This 1043 // could result in unintended perf regressions. A better overall strategy 1044 // is needed to track stack usage during inlining. 1045 Type *Ty = I.getAllocatedType(); 1046 AllocatedSize = SaturatingMultiplyAdd( 1047 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getKnownMinSize(), 1048 AllocatedSize); 1049 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) { 1050 HasDynamicAlloca = true; 1051 return false; 1052 } 1053 return Base::visitAlloca(I); 1054 } 1055 } 1056 1057 // Accumulate the allocated size. 1058 if (I.isStaticAlloca()) { 1059 Type *Ty = I.getAllocatedType(); 1060 AllocatedSize = 1061 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1062 } 1063 1064 // We will happily inline static alloca instructions. 1065 if (I.isStaticAlloca()) 1066 return Base::visitAlloca(I); 1067 1068 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1069 // a variety of reasons, and so we would like to not inline them into 1070 // functions which don't currently have a dynamic alloca. This simply 1071 // disables inlining altogether in the presence of a dynamic alloca. 1072 HasDynamicAlloca = true; 1073 return false; 1074 } 1075 1076 bool CallAnalyzer::visitPHI(PHINode &I) { 1077 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1078 // though we don't want to propagate it's bonuses. The idea is to disable 1079 // SROA if it *might* be used in an inappropriate manner. 1080 1081 // Phi nodes are always zero-cost. 1082 // FIXME: Pointer sizes may differ between different address spaces, so do we 1083 // need to use correct address space in the call to getPointerSizeInBits here? 1084 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1085 // see the ZeroOffset is used as a dummy value, so we can probably use any 1086 // bit width for the ZeroOffset? 1087 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 1088 bool CheckSROA = I.getType()->isPointerTy(); 1089 1090 // Track the constant or pointer with constant offset we've seen so far. 1091 Constant *FirstC = nullptr; 1092 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1093 Value *FirstV = nullptr; 1094 1095 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1096 BasicBlock *Pred = I.getIncomingBlock(i); 1097 // If the incoming block is dead, skip the incoming block. 1098 if (DeadBlocks.count(Pred)) 1099 continue; 1100 // If the parent block of phi is not the known successor of the incoming 1101 // block, skip the incoming block. 1102 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1103 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1104 continue; 1105 1106 Value *V = I.getIncomingValue(i); 1107 // If the incoming value is this phi itself, skip the incoming value. 1108 if (&I == V) 1109 continue; 1110 1111 Constant *C = dyn_cast<Constant>(V); 1112 if (!C) 1113 C = SimplifiedValues.lookup(V); 1114 1115 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1116 if (!C && CheckSROA) 1117 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1118 1119 if (!C && !BaseAndOffset.first) 1120 // The incoming value is neither a constant nor a pointer with constant 1121 // offset, exit early. 1122 return true; 1123 1124 if (FirstC) { 1125 if (FirstC == C) 1126 // If we've seen a constant incoming value before and it is the same 1127 // constant we see this time, continue checking the next incoming value. 1128 continue; 1129 // Otherwise early exit because we either see a different constant or saw 1130 // a constant before but we have a pointer with constant offset this time. 1131 return true; 1132 } 1133 1134 if (FirstV) { 1135 // The same logic as above, but check pointer with constant offset here. 1136 if (FirstBaseAndOffset == BaseAndOffset) 1137 continue; 1138 return true; 1139 } 1140 1141 if (C) { 1142 // This is the 1st time we've seen a constant, record it. 1143 FirstC = C; 1144 continue; 1145 } 1146 1147 // The remaining case is that this is the 1st time we've seen a pointer with 1148 // constant offset, record it. 1149 FirstV = V; 1150 FirstBaseAndOffset = BaseAndOffset; 1151 } 1152 1153 // Check if we can map phi to a constant. 1154 if (FirstC) { 1155 SimplifiedValues[&I] = FirstC; 1156 return true; 1157 } 1158 1159 // Check if we can map phi to a pointer with constant offset. 1160 if (FirstBaseAndOffset.first) { 1161 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1162 1163 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1164 SROAArgValues[&I] = SROAArg; 1165 } 1166 1167 return true; 1168 } 1169 1170 /// Check we can fold GEPs of constant-offset call site argument pointers. 1171 /// This requires target data and inbounds GEPs. 1172 /// 1173 /// \return true if the specified GEP can be folded. 1174 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1175 // Check if we have a base + offset for the pointer. 1176 std::pair<Value *, APInt> BaseAndOffset = 1177 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1178 if (!BaseAndOffset.first) 1179 return false; 1180 1181 // Check if the offset of this GEP is constant, and if so accumulate it 1182 // into Offset. 1183 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1184 return false; 1185 1186 // Add the result as a new mapping to Base + Offset. 1187 ConstantOffsetPtrs[&I] = BaseAndOffset; 1188 1189 return true; 1190 } 1191 1192 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1193 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1194 1195 // Lambda to check whether a GEP's indices are all constant. 1196 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1197 for (const Use &Op : GEP.indices()) 1198 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1199 return false; 1200 return true; 1201 }; 1202 1203 if (!DisableGEPConstOperand) 1204 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1205 SmallVector<Constant *, 2> Indices; 1206 for (unsigned int Index = 1 ; Index < COps.size() ; ++Index) 1207 Indices.push_back(COps[Index]); 1208 return ConstantExpr::getGetElementPtr(I.getSourceElementType(), COps[0], 1209 Indices, I.isInBounds()); 1210 })) 1211 return true; 1212 1213 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1214 if (SROAArg) 1215 SROAArgValues[&I] = SROAArg; 1216 1217 // Constant GEPs are modeled as free. 1218 return true; 1219 } 1220 1221 // Variable GEPs will require math and will disable SROA. 1222 if (SROAArg) 1223 disableSROAForArg(SROAArg); 1224 return isGEPFree(I); 1225 } 1226 1227 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1228 /// \p Evaluate is a callable specific to instruction type that evaluates the 1229 /// instruction when all the operands are constants. 1230 template <typename Callable> 1231 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1232 SmallVector<Constant *, 2> COps; 1233 for (Value *Op : I.operands()) { 1234 Constant *COp = dyn_cast<Constant>(Op); 1235 if (!COp) 1236 COp = SimplifiedValues.lookup(Op); 1237 if (!COp) 1238 return false; 1239 COps.push_back(COp); 1240 } 1241 auto *C = Evaluate(COps); 1242 if (!C) 1243 return false; 1244 SimplifiedValues[&I] = C; 1245 return true; 1246 } 1247 1248 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1249 // Propagate constants through bitcasts. 1250 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1251 return ConstantExpr::getBitCast(COps[0], I.getType()); 1252 })) 1253 return true; 1254 1255 // Track base/offsets through casts 1256 std::pair<Value *, APInt> BaseAndOffset = 1257 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1258 // Casts don't change the offset, just wrap it up. 1259 if (BaseAndOffset.first) 1260 ConstantOffsetPtrs[&I] = BaseAndOffset; 1261 1262 // Also look for SROA candidates here. 1263 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1264 SROAArgValues[&I] = SROAArg; 1265 1266 // Bitcasts are always zero cost. 1267 return true; 1268 } 1269 1270 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1271 // Propagate constants through ptrtoint. 1272 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1273 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1274 })) 1275 return true; 1276 1277 // Track base/offset pairs when converted to a plain integer provided the 1278 // integer is large enough to represent the pointer. 1279 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1280 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1281 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1282 std::pair<Value *, APInt> BaseAndOffset = 1283 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1284 if (BaseAndOffset.first) 1285 ConstantOffsetPtrs[&I] = BaseAndOffset; 1286 } 1287 1288 // This is really weird. Technically, ptrtoint will disable SROA. However, 1289 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1290 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1291 // would block SROA would also block SROA if applied directly to a pointer, 1292 // and so we can just add the integer in here. The only places where SROA is 1293 // preserved either cannot fire on an integer, or won't in-and-of themselves 1294 // disable SROA (ext) w/o some later use that we would see and disable. 1295 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1296 SROAArgValues[&I] = SROAArg; 1297 1298 return TargetTransformInfo::TCC_Free == 1299 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1300 } 1301 1302 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1303 // Propagate constants through ptrtoint. 1304 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1305 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1306 })) 1307 return true; 1308 1309 // Track base/offset pairs when round-tripped through a pointer without 1310 // modifications provided the integer is not too large. 1311 Value *Op = I.getOperand(0); 1312 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1313 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1314 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1315 if (BaseAndOffset.first) 1316 ConstantOffsetPtrs[&I] = BaseAndOffset; 1317 } 1318 1319 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1320 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1321 SROAArgValues[&I] = SROAArg; 1322 1323 return TargetTransformInfo::TCC_Free == 1324 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1325 } 1326 1327 bool CallAnalyzer::visitCastInst(CastInst &I) { 1328 // Propagate constants through casts. 1329 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1330 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1331 })) 1332 return true; 1333 1334 // Disable SROA in the face of arbitrary casts we don't explicitly list 1335 // elsewhere. 1336 disableSROA(I.getOperand(0)); 1337 1338 // If this is a floating-point cast, and the target says this operation 1339 // is expensive, this may eventually become a library call. Treat the cost 1340 // as such. 1341 switch (I.getOpcode()) { 1342 case Instruction::FPTrunc: 1343 case Instruction::FPExt: 1344 case Instruction::UIToFP: 1345 case Instruction::SIToFP: 1346 case Instruction::FPToUI: 1347 case Instruction::FPToSI: 1348 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1349 onCallPenalty(); 1350 break; 1351 default: 1352 break; 1353 } 1354 1355 return TargetTransformInfo::TCC_Free == 1356 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1357 } 1358 1359 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 1360 Value *Operand = I.getOperand(0); 1361 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1362 return ConstantFoldInstOperands(&I, COps[0], DL); 1363 })) 1364 return true; 1365 1366 // Disable any SROA on the argument to arbitrary unary instructions. 1367 disableSROA(Operand); 1368 1369 return false; 1370 } 1371 1372 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1373 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1374 } 1375 1376 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1377 // Does the *call site* have the NonNull attribute set on an argument? We 1378 // use the attribute on the call site to memoize any analysis done in the 1379 // caller. This will also trip if the callee function has a non-null 1380 // parameter attribute, but that's a less interesting case because hopefully 1381 // the callee would already have been simplified based on that. 1382 if (Argument *A = dyn_cast<Argument>(V)) 1383 if (paramHasAttr(A, Attribute::NonNull)) 1384 return true; 1385 1386 // Is this an alloca in the caller? This is distinct from the attribute case 1387 // above because attributes aren't updated within the inliner itself and we 1388 // always want to catch the alloca derived case. 1389 if (isAllocaDerivedArg(V)) 1390 // We can actually predict the result of comparisons between an 1391 // alloca-derived value and null. Note that this fires regardless of 1392 // SROA firing. 1393 return true; 1394 1395 return false; 1396 } 1397 1398 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1399 // If the normal destination of the invoke or the parent block of the call 1400 // site is unreachable-terminated, there is little point in inlining this 1401 // unless there is literally zero cost. 1402 // FIXME: Note that it is possible that an unreachable-terminated block has a 1403 // hot entry. For example, in below scenario inlining hot_call_X() may be 1404 // beneficial : 1405 // main() { 1406 // hot_call_1(); 1407 // ... 1408 // hot_call_N() 1409 // exit(0); 1410 // } 1411 // For now, we are not handling this corner case here as it is rare in real 1412 // code. In future, we should elaborate this based on BPI and BFI in more 1413 // general threshold adjusting heuristics in updateThreshold(). 1414 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1415 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1416 return false; 1417 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1418 return false; 1419 1420 return true; 1421 } 1422 1423 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1424 BlockFrequencyInfo *CallerBFI) { 1425 // If global profile summary is available, then callsite's coldness is 1426 // determined based on that. 1427 if (PSI && PSI->hasProfileSummary()) 1428 return PSI->isColdCallSite(Call, CallerBFI); 1429 1430 // Otherwise we need BFI to be available. 1431 if (!CallerBFI) 1432 return false; 1433 1434 // Determine if the callsite is cold relative to caller's entry. We could 1435 // potentially cache the computation of scaled entry frequency, but the added 1436 // complexity is not worth it unless this scaling shows up high in the 1437 // profiles. 1438 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1439 auto CallSiteBB = Call.getParent(); 1440 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1441 auto CallerEntryFreq = 1442 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1443 return CallSiteFreq < CallerEntryFreq * ColdProb; 1444 } 1445 1446 Optional<int> 1447 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1448 BlockFrequencyInfo *CallerBFI) { 1449 1450 // If global profile summary is available, then callsite's hotness is 1451 // determined based on that. 1452 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1453 return Params.HotCallSiteThreshold; 1454 1455 // Otherwise we need BFI to be available and to have a locally hot callsite 1456 // threshold. 1457 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1458 return None; 1459 1460 // Determine if the callsite is hot relative to caller's entry. We could 1461 // potentially cache the computation of scaled entry frequency, but the added 1462 // complexity is not worth it unless this scaling shows up high in the 1463 // profiles. 1464 auto CallSiteBB = Call.getParent(); 1465 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1466 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1467 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1468 return Params.LocallyHotCallSiteThreshold; 1469 1470 // Otherwise treat it normally. 1471 return None; 1472 } 1473 1474 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1475 // If no size growth is allowed for this inlining, set Threshold to 0. 1476 if (!allowSizeGrowth(Call)) { 1477 Threshold = 0; 1478 return; 1479 } 1480 1481 Function *Caller = Call.getCaller(); 1482 1483 // return min(A, B) if B is valid. 1484 auto MinIfValid = [](int A, Optional<int> B) { 1485 return B ? std::min(A, B.getValue()) : A; 1486 }; 1487 1488 // return max(A, B) if B is valid. 1489 auto MaxIfValid = [](int A, Optional<int> B) { 1490 return B ? std::max(A, B.getValue()) : A; 1491 }; 1492 1493 // Various bonus percentages. These are multiplied by Threshold to get the 1494 // bonus values. 1495 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1496 // basic block at the given callsite context. This is speculatively applied 1497 // and withdrawn if more than one basic block is seen. 1498 // 1499 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1500 // of the last call to a static function as inlining such functions is 1501 // guaranteed to reduce code size. 1502 // 1503 // These bonus percentages may be set to 0 based on properties of the caller 1504 // and the callsite. 1505 int SingleBBBonusPercent = 50; 1506 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1507 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1508 1509 // Lambda to set all the above bonus and bonus percentages to 0. 1510 auto DisallowAllBonuses = [&]() { 1511 SingleBBBonusPercent = 0; 1512 VectorBonusPercent = 0; 1513 LastCallToStaticBonus = 0; 1514 }; 1515 1516 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1517 // and reduce the threshold if the caller has the necessary attribute. 1518 if (Caller->hasMinSize()) { 1519 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1520 // For minsize, we want to disable the single BB bonus and the vector 1521 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1522 // a static function will, at the minimum, eliminate the parameter setup and 1523 // call/return instructions. 1524 SingleBBBonusPercent = 0; 1525 VectorBonusPercent = 0; 1526 } else if (Caller->hasOptSize()) 1527 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1528 1529 // Adjust the threshold based on inlinehint attribute and profile based 1530 // hotness information if the caller does not have MinSize attribute. 1531 if (!Caller->hasMinSize()) { 1532 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1533 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1534 1535 // FIXME: After switching to the new passmanager, simplify the logic below 1536 // by checking only the callsite hotness/coldness as we will reliably 1537 // have local profile information. 1538 // 1539 // Callsite hotness and coldness can be determined if sample profile is 1540 // used (which adds hotness metadata to calls) or if caller's 1541 // BlockFrequencyInfo is available. 1542 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1543 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1544 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1545 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1546 // FIXME: This should update the threshold only if it exceeds the 1547 // current threshold, but AutoFDO + ThinLTO currently relies on this 1548 // behavior to prevent inlining of hot callsites during ThinLTO 1549 // compile phase. 1550 Threshold = HotCallSiteThreshold.getValue(); 1551 } else if (isColdCallSite(Call, CallerBFI)) { 1552 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1553 // Do not apply bonuses for a cold callsite including the 1554 // LastCallToStatic bonus. While this bonus might result in code size 1555 // reduction, it can cause the size of a non-cold caller to increase 1556 // preventing it from being inlined. 1557 DisallowAllBonuses(); 1558 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1559 } else if (PSI) { 1560 // Use callee's global profile information only if we have no way of 1561 // determining this via callsite information. 1562 if (PSI->isFunctionEntryHot(&Callee)) { 1563 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1564 // If callsite hotness can not be determined, we may still know 1565 // that the callee is hot and treat it as a weaker hint for threshold 1566 // increase. 1567 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1568 } else if (PSI->isFunctionEntryCold(&Callee)) { 1569 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1570 // Do not apply bonuses for a cold callee including the 1571 // LastCallToStatic bonus. While this bonus might result in code size 1572 // reduction, it can cause the size of a non-cold caller to increase 1573 // preventing it from being inlined. 1574 DisallowAllBonuses(); 1575 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1576 } 1577 } 1578 } 1579 1580 // Finally, take the target-specific inlining threshold multiplier into 1581 // account. 1582 Threshold *= TTI.getInliningThresholdMultiplier(); 1583 Threshold += TTI.adjustInliningThreshold(&Call); 1584 1585 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1586 VectorBonus = Threshold * VectorBonusPercent / 100; 1587 1588 bool OnlyOneCallAndLocalLinkage = 1589 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1590 // If there is only one call of the function, and it has internal linkage, 1591 // the cost of inlining it drops dramatically. It may seem odd to update 1592 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1593 if (OnlyOneCallAndLocalLinkage) 1594 Cost -= LastCallToStaticBonus; 1595 } 1596 1597 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1598 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1599 // First try to handle simplified comparisons. 1600 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1601 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1602 })) 1603 return true; 1604 1605 if (I.getOpcode() == Instruction::FCmp) 1606 return false; 1607 1608 // Otherwise look for a comparison between constant offset pointers with 1609 // a common base. 1610 Value *LHSBase, *RHSBase; 1611 APInt LHSOffset, RHSOffset; 1612 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1613 if (LHSBase) { 1614 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1615 if (RHSBase && LHSBase == RHSBase) { 1616 // We have common bases, fold the icmp to a constant based on the 1617 // offsets. 1618 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1619 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1620 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1621 SimplifiedValues[&I] = C; 1622 ++NumConstantPtrCmps; 1623 return true; 1624 } 1625 } 1626 } 1627 1628 // If the comparison is an equality comparison with null, we can simplify it 1629 // if we know the value (argument) can't be null 1630 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1631 isKnownNonNullInCallee(I.getOperand(0))) { 1632 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1633 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1634 : ConstantInt::getFalse(I.getType()); 1635 return true; 1636 } 1637 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1638 } 1639 1640 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1641 // Try to handle a special case: we can fold computing the difference of two 1642 // constant-related pointers. 1643 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1644 Value *LHSBase, *RHSBase; 1645 APInt LHSOffset, RHSOffset; 1646 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1647 if (LHSBase) { 1648 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1649 if (RHSBase && LHSBase == RHSBase) { 1650 // We have common bases, fold the subtract to a constant based on the 1651 // offsets. 1652 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1653 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1654 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1655 SimplifiedValues[&I] = C; 1656 ++NumConstantPtrDiffs; 1657 return true; 1658 } 1659 } 1660 } 1661 1662 // Otherwise, fall back to the generic logic for simplifying and handling 1663 // instructions. 1664 return Base::visitSub(I); 1665 } 1666 1667 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1668 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1669 Constant *CLHS = dyn_cast<Constant>(LHS); 1670 if (!CLHS) 1671 CLHS = SimplifiedValues.lookup(LHS); 1672 Constant *CRHS = dyn_cast<Constant>(RHS); 1673 if (!CRHS) 1674 CRHS = SimplifiedValues.lookup(RHS); 1675 1676 Value *SimpleV = nullptr; 1677 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1678 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1679 FI->getFastMathFlags(), DL); 1680 else 1681 SimpleV = 1682 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1683 1684 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1685 SimplifiedValues[&I] = C; 1686 1687 if (SimpleV) 1688 return true; 1689 1690 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1691 disableSROA(LHS); 1692 disableSROA(RHS); 1693 1694 // If the instruction is floating point, and the target says this operation 1695 // is expensive, this may eventually become a library call. Treat the cost 1696 // as such. Unless it's fneg which can be implemented with an xor. 1697 using namespace llvm::PatternMatch; 1698 if (I.getType()->isFloatingPointTy() && 1699 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1700 !match(&I, m_FNeg(m_Value()))) 1701 onCallPenalty(); 1702 1703 return false; 1704 } 1705 1706 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1707 Value *Op = I.getOperand(0); 1708 Constant *COp = dyn_cast<Constant>(Op); 1709 if (!COp) 1710 COp = SimplifiedValues.lookup(Op); 1711 1712 Value *SimpleV = SimplifyFNegInst( 1713 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1714 1715 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1716 SimplifiedValues[&I] = C; 1717 1718 if (SimpleV) 1719 return true; 1720 1721 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1722 disableSROA(Op); 1723 1724 return false; 1725 } 1726 1727 bool CallAnalyzer::visitLoad(LoadInst &I) { 1728 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1729 return true; 1730 1731 // If the data is already loaded from this address and hasn't been clobbered 1732 // by any stores or calls, this load is likely to be redundant and can be 1733 // eliminated. 1734 if (EnableLoadElimination && 1735 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1736 onLoadEliminationOpportunity(); 1737 return true; 1738 } 1739 1740 return false; 1741 } 1742 1743 bool CallAnalyzer::visitStore(StoreInst &I) { 1744 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1745 return true; 1746 1747 // The store can potentially clobber loads and prevent repeated loads from 1748 // being eliminated. 1749 // FIXME: 1750 // 1. We can probably keep an initial set of eliminatable loads substracted 1751 // from the cost even when we finally see a store. We just need to disable 1752 // *further* accumulation of elimination savings. 1753 // 2. We should probably at some point thread MemorySSA for the callee into 1754 // this and then use that to actually compute *really* precise savings. 1755 disableLoadElimination(); 1756 return false; 1757 } 1758 1759 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1760 // Constant folding for extract value is trivial. 1761 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1762 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1763 })) 1764 return true; 1765 1766 // SROA can look through these but give them a cost. 1767 return false; 1768 } 1769 1770 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1771 // Constant folding for insert value is trivial. 1772 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1773 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1774 /*InsertedValueOperand*/ COps[1], 1775 I.getIndices()); 1776 })) 1777 return true; 1778 1779 // SROA can look through these but give them a cost. 1780 return false; 1781 } 1782 1783 /// Try to simplify a call site. 1784 /// 1785 /// Takes a concrete function and callsite and tries to actually simplify it by 1786 /// analyzing the arguments and call itself with instsimplify. Returns true if 1787 /// it has simplified the callsite to some other entity (a constant), making it 1788 /// free. 1789 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 1790 // FIXME: Using the instsimplify logic directly for this is inefficient 1791 // because we have to continually rebuild the argument list even when no 1792 // simplifications can be performed. Until that is fixed with remapping 1793 // inside of instsimplify, directly constant fold calls here. 1794 if (!canConstantFoldCallTo(&Call, F)) 1795 return false; 1796 1797 // Try to re-map the arguments to constants. 1798 SmallVector<Constant *, 4> ConstantArgs; 1799 ConstantArgs.reserve(Call.arg_size()); 1800 for (Value *I : Call.args()) { 1801 Constant *C = dyn_cast<Constant>(I); 1802 if (!C) 1803 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 1804 if (!C) 1805 return false; // This argument doesn't map to a constant. 1806 1807 ConstantArgs.push_back(C); 1808 } 1809 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 1810 SimplifiedValues[&Call] = C; 1811 return true; 1812 } 1813 1814 return false; 1815 } 1816 1817 bool CallAnalyzer::visitCallBase(CallBase &Call) { 1818 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 1819 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 1820 // This aborts the entire analysis. 1821 ExposesReturnsTwice = true; 1822 return false; 1823 } 1824 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 1825 ContainsNoDuplicateCall = true; 1826 1827 Value *Callee = Call.getCalledOperand(); 1828 Function *F = dyn_cast_or_null<Function>(Callee); 1829 bool IsIndirectCall = !F; 1830 if (IsIndirectCall) { 1831 // Check if this happens to be an indirect function call to a known function 1832 // in this inline context. If not, we've done all we can. 1833 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 1834 if (!F) { 1835 onCallArgumentSetup(Call); 1836 1837 if (!Call.onlyReadsMemory()) 1838 disableLoadElimination(); 1839 return Base::visitCallBase(Call); 1840 } 1841 } 1842 1843 assert(F && "Expected a call to a known function"); 1844 1845 // When we have a concrete function, first try to simplify it directly. 1846 if (simplifyCallSite(F, Call)) 1847 return true; 1848 1849 // Next check if it is an intrinsic we know about. 1850 // FIXME: Lift this into part of the InstVisitor. 1851 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 1852 switch (II->getIntrinsicID()) { 1853 default: 1854 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 1855 disableLoadElimination(); 1856 return Base::visitCallBase(Call); 1857 1858 case Intrinsic::load_relative: 1859 onLoadRelativeIntrinsic(); 1860 return false; 1861 1862 case Intrinsic::memset: 1863 case Intrinsic::memcpy: 1864 case Intrinsic::memmove: 1865 disableLoadElimination(); 1866 // SROA can usually chew through these intrinsics, but they aren't free. 1867 return false; 1868 case Intrinsic::icall_branch_funnel: 1869 case Intrinsic::localescape: 1870 HasUninlineableIntrinsic = true; 1871 return false; 1872 case Intrinsic::vastart: 1873 InitsVargArgs = true; 1874 return false; 1875 } 1876 } 1877 1878 if (F == Call.getFunction()) { 1879 // This flag will fully abort the analysis, so don't bother with anything 1880 // else. 1881 IsRecursiveCall = true; 1882 return false; 1883 } 1884 1885 if (TTI.isLoweredToCall(F)) { 1886 onLoweredCall(F, Call, IsIndirectCall); 1887 } 1888 1889 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 1890 disableLoadElimination(); 1891 return Base::visitCallBase(Call); 1892 } 1893 1894 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 1895 // At least one return instruction will be free after inlining. 1896 bool Free = !HasReturn; 1897 HasReturn = true; 1898 return Free; 1899 } 1900 1901 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 1902 // We model unconditional branches as essentially free -- they really 1903 // shouldn't exist at all, but handling them makes the behavior of the 1904 // inliner more regular and predictable. Interestingly, conditional branches 1905 // which will fold away are also free. 1906 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 1907 dyn_cast_or_null<ConstantInt>( 1908 SimplifiedValues.lookup(BI.getCondition())); 1909 } 1910 1911 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 1912 bool CheckSROA = SI.getType()->isPointerTy(); 1913 Value *TrueVal = SI.getTrueValue(); 1914 Value *FalseVal = SI.getFalseValue(); 1915 1916 Constant *TrueC = dyn_cast<Constant>(TrueVal); 1917 if (!TrueC) 1918 TrueC = SimplifiedValues.lookup(TrueVal); 1919 Constant *FalseC = dyn_cast<Constant>(FalseVal); 1920 if (!FalseC) 1921 FalseC = SimplifiedValues.lookup(FalseVal); 1922 Constant *CondC = 1923 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 1924 1925 if (!CondC) { 1926 // Select C, X, X => X 1927 if (TrueC == FalseC && TrueC) { 1928 SimplifiedValues[&SI] = TrueC; 1929 return true; 1930 } 1931 1932 if (!CheckSROA) 1933 return Base::visitSelectInst(SI); 1934 1935 std::pair<Value *, APInt> TrueBaseAndOffset = 1936 ConstantOffsetPtrs.lookup(TrueVal); 1937 std::pair<Value *, APInt> FalseBaseAndOffset = 1938 ConstantOffsetPtrs.lookup(FalseVal); 1939 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 1940 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 1941 1942 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 1943 SROAArgValues[&SI] = SROAArg; 1944 return true; 1945 } 1946 1947 return Base::visitSelectInst(SI); 1948 } 1949 1950 // Select condition is a constant. 1951 Value *SelectedV = CondC->isAllOnesValue() 1952 ? TrueVal 1953 : (CondC->isNullValue()) ? FalseVal : nullptr; 1954 if (!SelectedV) { 1955 // Condition is a vector constant that is not all 1s or all 0s. If all 1956 // operands are constants, ConstantExpr::getSelect() can handle the cases 1957 // such as select vectors. 1958 if (TrueC && FalseC) { 1959 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 1960 SimplifiedValues[&SI] = C; 1961 return true; 1962 } 1963 } 1964 return Base::visitSelectInst(SI); 1965 } 1966 1967 // Condition is either all 1s or all 0s. SI can be simplified. 1968 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 1969 SimplifiedValues[&SI] = SelectedC; 1970 return true; 1971 } 1972 1973 if (!CheckSROA) 1974 return true; 1975 1976 std::pair<Value *, APInt> BaseAndOffset = 1977 ConstantOffsetPtrs.lookup(SelectedV); 1978 if (BaseAndOffset.first) { 1979 ConstantOffsetPtrs[&SI] = BaseAndOffset; 1980 1981 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 1982 SROAArgValues[&SI] = SROAArg; 1983 } 1984 1985 return true; 1986 } 1987 1988 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 1989 // We model unconditional switches as free, see the comments on handling 1990 // branches. 1991 if (isa<ConstantInt>(SI.getCondition())) 1992 return true; 1993 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 1994 if (isa<ConstantInt>(V)) 1995 return true; 1996 1997 // Assume the most general case where the switch is lowered into 1998 // either a jump table, bit test, or a balanced binary tree consisting of 1999 // case clusters without merging adjacent clusters with the same 2000 // destination. We do not consider the switches that are lowered with a mix 2001 // of jump table/bit test/binary search tree. The cost of the switch is 2002 // proportional to the size of the tree or the size of jump table range. 2003 // 2004 // NB: We convert large switches which are just used to initialize large phi 2005 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 2006 // inlining those. It will prevent inlining in cases where the optimization 2007 // does not (yet) fire. 2008 2009 unsigned JumpTableSize = 0; 2010 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2011 unsigned NumCaseCluster = 2012 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2013 2014 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2015 return false; 2016 } 2017 2018 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2019 // We never want to inline functions that contain an indirectbr. This is 2020 // incorrect because all the blockaddress's (in static global initializers 2021 // for example) would be referring to the original function, and this 2022 // indirect jump would jump from the inlined copy of the function into the 2023 // original function which is extremely undefined behavior. 2024 // FIXME: This logic isn't really right; we can safely inline functions with 2025 // indirectbr's as long as no other function or global references the 2026 // blockaddress of a block within the current function. 2027 HasIndirectBr = true; 2028 return false; 2029 } 2030 2031 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2032 // FIXME: It's not clear that a single instruction is an accurate model for 2033 // the inline cost of a resume instruction. 2034 return false; 2035 } 2036 2037 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2038 // FIXME: It's not clear that a single instruction is an accurate model for 2039 // the inline cost of a cleanupret instruction. 2040 return false; 2041 } 2042 2043 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2044 // FIXME: It's not clear that a single instruction is an accurate model for 2045 // the inline cost of a catchret instruction. 2046 return false; 2047 } 2048 2049 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2050 // FIXME: It might be reasonably to discount the cost of instructions leading 2051 // to unreachable as they have the lowest possible impact on both runtime and 2052 // code size. 2053 return true; // No actual code is needed for unreachable. 2054 } 2055 2056 bool CallAnalyzer::visitInstruction(Instruction &I) { 2057 // Some instructions are free. All of the free intrinsics can also be 2058 // handled by SROA, etc. 2059 if (TargetTransformInfo::TCC_Free == 2060 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency)) 2061 return true; 2062 2063 // We found something we don't understand or can't handle. Mark any SROA-able 2064 // values in the operand list as no longer viable. 2065 for (const Use &Op : I.operands()) 2066 disableSROA(Op); 2067 2068 return false; 2069 } 2070 2071 /// Analyze a basic block for its contribution to the inline cost. 2072 /// 2073 /// This method walks the analyzer over every instruction in the given basic 2074 /// block and accounts for their cost during inlining at this callsite. It 2075 /// aborts early if the threshold has been exceeded or an impossible to inline 2076 /// construct has been detected. It returns false if inlining is no longer 2077 /// viable, and true if inlining remains viable. 2078 InlineResult 2079 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2080 SmallPtrSetImpl<const Value *> &EphValues) { 2081 for (Instruction &I : *BB) { 2082 // FIXME: Currently, the number of instructions in a function regardless of 2083 // our ability to simplify them during inline to constants or dead code, 2084 // are actually used by the vector bonus heuristic. As long as that's true, 2085 // we have to special case debug intrinsics here to prevent differences in 2086 // inlining due to debug symbols. Eventually, the number of unsimplified 2087 // instructions shouldn't factor into the cost computation, but until then, 2088 // hack around it here. 2089 if (isa<DbgInfoIntrinsic>(I)) 2090 continue; 2091 2092 // Skip pseudo-probes. 2093 if (isa<PseudoProbeInst>(I)) 2094 continue; 2095 2096 // Skip ephemeral values. 2097 if (EphValues.count(&I)) 2098 continue; 2099 2100 ++NumInstructions; 2101 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2102 ++NumVectorInstructions; 2103 2104 // If the instruction simplified to a constant, there is no cost to this 2105 // instruction. Visit the instructions using our InstVisitor to account for 2106 // all of the per-instruction logic. The visit tree returns true if we 2107 // consumed the instruction in any way, and false if the instruction's base 2108 // cost should count against inlining. 2109 onInstructionAnalysisStart(&I); 2110 2111 if (Base::visit(&I)) 2112 ++NumInstructionsSimplified; 2113 else 2114 onMissedSimplification(); 2115 2116 onInstructionAnalysisFinish(&I); 2117 using namespace ore; 2118 // If the visit this instruction detected an uninlinable pattern, abort. 2119 InlineResult IR = InlineResult::success(); 2120 if (IsRecursiveCall) 2121 IR = InlineResult::failure("recursive"); 2122 else if (ExposesReturnsTwice) 2123 IR = InlineResult::failure("exposes returns twice"); 2124 else if (HasDynamicAlloca) 2125 IR = InlineResult::failure("dynamic alloca"); 2126 else if (HasIndirectBr) 2127 IR = InlineResult::failure("indirect branch"); 2128 else if (HasUninlineableIntrinsic) 2129 IR = InlineResult::failure("uninlinable intrinsic"); 2130 else if (InitsVargArgs) 2131 IR = InlineResult::failure("varargs"); 2132 if (!IR.isSuccess()) { 2133 if (ORE) 2134 ORE->emit([&]() { 2135 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2136 &CandidateCall) 2137 << NV("Callee", &F) << " has uninlinable pattern (" 2138 << NV("InlineResult", IR.getFailureReason()) 2139 << ") and cost is not fully computed"; 2140 }); 2141 return IR; 2142 } 2143 2144 // If the caller is a recursive function then we don't want to inline 2145 // functions which allocate a lot of stack space because it would increase 2146 // the caller stack usage dramatically. 2147 if (IsCallerRecursive && 2148 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 2149 auto IR = 2150 InlineResult::failure("recursive and allocates too much stack space"); 2151 if (ORE) 2152 ORE->emit([&]() { 2153 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2154 &CandidateCall) 2155 << NV("Callee", &F) << " is " 2156 << NV("InlineResult", IR.getFailureReason()) 2157 << ". Cost is not fully computed"; 2158 }); 2159 return IR; 2160 } 2161 2162 if (shouldStop()) 2163 return InlineResult::failure( 2164 "Call site analysis is not favorable to inlining."); 2165 } 2166 2167 return InlineResult::success(); 2168 } 2169 2170 /// Compute the base pointer and cumulative constant offsets for V. 2171 /// 2172 /// This strips all constant offsets off of V, leaving it the base pointer, and 2173 /// accumulates the total constant offset applied in the returned constant. It 2174 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2175 /// no constant offsets applied. 2176 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2177 if (!V->getType()->isPointerTy()) 2178 return nullptr; 2179 2180 unsigned AS = V->getType()->getPointerAddressSpace(); 2181 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2182 APInt Offset = APInt::getNullValue(IntPtrWidth); 2183 2184 // Even though we don't look through PHI nodes, we could be called on an 2185 // instruction in an unreachable block, which may be on a cycle. 2186 SmallPtrSet<Value *, 4> Visited; 2187 Visited.insert(V); 2188 do { 2189 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2190 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2191 return nullptr; 2192 V = GEP->getPointerOperand(); 2193 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2194 V = cast<Operator>(V)->getOperand(0); 2195 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2196 if (GA->isInterposable()) 2197 break; 2198 V = GA->getAliasee(); 2199 } else { 2200 break; 2201 } 2202 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2203 } while (Visited.insert(V).second); 2204 2205 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2206 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2207 } 2208 2209 /// Find dead blocks due to deleted CFG edges during inlining. 2210 /// 2211 /// If we know the successor of the current block, \p CurrBB, has to be \p 2212 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2213 /// no live incoming CFG edges. If one block is found to be dead, we can 2214 /// continue growing the dead block list by checking the successors of the dead 2215 /// blocks to see if all their incoming edges are dead or not. 2216 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2217 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2218 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2219 // known successor which is not the one under exam. 2220 return (DeadBlocks.count(Pred) || 2221 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2222 }; 2223 2224 auto IsNewlyDead = [&](BasicBlock *BB) { 2225 // If all the edges to a block are dead, the block is also dead. 2226 return (!DeadBlocks.count(BB) && 2227 llvm::all_of(predecessors(BB), 2228 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2229 }; 2230 2231 for (BasicBlock *Succ : successors(CurrBB)) { 2232 if (Succ == NextBB || !IsNewlyDead(Succ)) 2233 continue; 2234 SmallVector<BasicBlock *, 4> NewDead; 2235 NewDead.push_back(Succ); 2236 while (!NewDead.empty()) { 2237 BasicBlock *Dead = NewDead.pop_back_val(); 2238 if (DeadBlocks.insert(Dead)) 2239 // Continue growing the dead block lists. 2240 for (BasicBlock *S : successors(Dead)) 2241 if (IsNewlyDead(S)) 2242 NewDead.push_back(S); 2243 } 2244 } 2245 } 2246 2247 /// Analyze a call site for potential inlining. 2248 /// 2249 /// Returns true if inlining this call is viable, and false if it is not 2250 /// viable. It computes the cost and adjusts the threshold based on numerous 2251 /// factors and heuristics. If this method returns false but the computed cost 2252 /// is below the computed threshold, then inlining was forcibly disabled by 2253 /// some artifact of the routine. 2254 InlineResult CallAnalyzer::analyze() { 2255 ++NumCallsAnalyzed; 2256 2257 auto Result = onAnalysisStart(); 2258 if (!Result.isSuccess()) 2259 return Result; 2260 2261 if (F.empty()) 2262 return InlineResult::success(); 2263 2264 Function *Caller = CandidateCall.getFunction(); 2265 // Check if the caller function is recursive itself. 2266 for (User *U : Caller->users()) { 2267 CallBase *Call = dyn_cast<CallBase>(U); 2268 if (Call && Call->getFunction() == Caller) { 2269 IsCallerRecursive = true; 2270 break; 2271 } 2272 } 2273 2274 // Populate our simplified values by mapping from function arguments to call 2275 // arguments with known important simplifications. 2276 auto CAI = CandidateCall.arg_begin(); 2277 for (Argument &FAI : F.args()) { 2278 assert(CAI != CandidateCall.arg_end()); 2279 if (Constant *C = dyn_cast<Constant>(CAI)) 2280 SimplifiedValues[&FAI] = C; 2281 2282 Value *PtrArg = *CAI; 2283 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2284 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2285 2286 // We can SROA any pointer arguments derived from alloca instructions. 2287 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2288 SROAArgValues[&FAI] = SROAArg; 2289 onInitializeSROAArg(SROAArg); 2290 EnabledSROAAllocas.insert(SROAArg); 2291 } 2292 } 2293 ++CAI; 2294 } 2295 NumConstantArgs = SimplifiedValues.size(); 2296 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2297 NumAllocaArgs = SROAArgValues.size(); 2298 2299 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2300 // the ephemeral values multiple times (and they're completely determined by 2301 // the callee, so this is purely duplicate work). 2302 SmallPtrSet<const Value *, 32> EphValues; 2303 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2304 2305 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2306 // adding basic blocks of the callee which can be proven to be dead for this 2307 // particular call site in order to get more accurate cost estimates. This 2308 // requires a somewhat heavyweight iteration pattern: we need to walk the 2309 // basic blocks in a breadth-first order as we insert live successors. To 2310 // accomplish this, prioritizing for small iterations because we exit after 2311 // crossing our threshold, we use a small-size optimized SetVector. 2312 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2313 SmallPtrSet<BasicBlock *, 16>> 2314 BBSetVector; 2315 BBSetVector BBWorklist; 2316 BBWorklist.insert(&F.getEntryBlock()); 2317 2318 // Note that we *must not* cache the size, this loop grows the worklist. 2319 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2320 if (shouldStop()) 2321 break; 2322 2323 BasicBlock *BB = BBWorklist[Idx]; 2324 if (BB->empty()) 2325 continue; 2326 2327 onBlockStart(BB); 2328 2329 // Disallow inlining a blockaddress with uses other than strictly callbr. 2330 // A blockaddress only has defined behavior for an indirect branch in the 2331 // same function, and we do not currently support inlining indirect 2332 // branches. But, the inliner may not see an indirect branch that ends up 2333 // being dead code at a particular call site. If the blockaddress escapes 2334 // the function, e.g., via a global variable, inlining may lead to an 2335 // invalid cross-function reference. 2336 // FIXME: pr/39560: continue relaxing this overt restriction. 2337 if (BB->hasAddressTaken()) 2338 for (User *U : BlockAddress::get(&*BB)->users()) 2339 if (!isa<CallBrInst>(*U)) 2340 return InlineResult::failure("blockaddress used outside of callbr"); 2341 2342 // Analyze the cost of this block. If we blow through the threshold, this 2343 // returns false, and we can bail on out. 2344 InlineResult IR = analyzeBlock(BB, EphValues); 2345 if (!IR.isSuccess()) 2346 return IR; 2347 2348 Instruction *TI = BB->getTerminator(); 2349 2350 // Add in the live successors by first checking whether we have terminator 2351 // that may be simplified based on the values simplified by this call. 2352 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2353 if (BI->isConditional()) { 2354 Value *Cond = BI->getCondition(); 2355 if (ConstantInt *SimpleCond = 2356 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2357 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2358 BBWorklist.insert(NextBB); 2359 KnownSuccessors[BB] = NextBB; 2360 findDeadBlocks(BB, NextBB); 2361 continue; 2362 } 2363 } 2364 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2365 Value *Cond = SI->getCondition(); 2366 if (ConstantInt *SimpleCond = 2367 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2368 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2369 BBWorklist.insert(NextBB); 2370 KnownSuccessors[BB] = NextBB; 2371 findDeadBlocks(BB, NextBB); 2372 continue; 2373 } 2374 } 2375 2376 // If we're unable to select a particular successor, just count all of 2377 // them. 2378 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2379 ++TIdx) 2380 BBWorklist.insert(TI->getSuccessor(TIdx)); 2381 2382 onBlockAnalyzed(BB); 2383 } 2384 2385 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2386 &F == CandidateCall.getCalledFunction(); 2387 // If this is a noduplicate call, we can still inline as long as 2388 // inlining this would cause the removal of the caller (so the instruction 2389 // is not actually duplicated, just moved). 2390 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2391 return InlineResult::failure("noduplicate"); 2392 2393 return finalizeAnalysis(); 2394 } 2395 2396 void InlineCostCallAnalyzer::print() { 2397 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2398 if (PrintInstructionComments) 2399 F.print(dbgs(), &Writer); 2400 DEBUG_PRINT_STAT(NumConstantArgs); 2401 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2402 DEBUG_PRINT_STAT(NumAllocaArgs); 2403 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2404 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2405 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2406 DEBUG_PRINT_STAT(NumInstructions); 2407 DEBUG_PRINT_STAT(SROACostSavings); 2408 DEBUG_PRINT_STAT(SROACostSavingsLost); 2409 DEBUG_PRINT_STAT(LoadEliminationCost); 2410 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2411 DEBUG_PRINT_STAT(Cost); 2412 DEBUG_PRINT_STAT(Threshold); 2413 #undef DEBUG_PRINT_STAT 2414 } 2415 2416 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2417 /// Dump stats about this call's analysis. 2418 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { 2419 print(); 2420 } 2421 #endif 2422 2423 /// Test that there are no attribute conflicts between Caller and Callee 2424 /// that prevent inlining. 2425 static bool functionsHaveCompatibleAttributes( 2426 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2427 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2428 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2429 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2430 // object, and always returns the same object (which is overwritten on each 2431 // GetTLI call). Therefore we copy the first result. 2432 auto CalleeTLI = GetTLI(*Callee); 2433 return TTI.areInlineCompatible(Caller, Callee) && 2434 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2435 InlineCallerSupersetNoBuiltin) && 2436 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2437 } 2438 2439 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2440 int Cost = 0; 2441 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2442 if (Call.isByValArgument(I)) { 2443 // We approximate the number of loads and stores needed by dividing the 2444 // size of the byval type by the target's pointer size. 2445 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2446 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); 2447 unsigned AS = PTy->getAddressSpace(); 2448 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2449 // Ceiling division. 2450 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2451 2452 // If it generates more than 8 stores it is likely to be expanded as an 2453 // inline memcpy so we take that as an upper bound. Otherwise we assume 2454 // one load and one store per word copied. 2455 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2456 // here instead of a magic number of 8, but it's not available via 2457 // DataLayout. 2458 NumStores = std::min(NumStores, 8U); 2459 2460 Cost += 2 * NumStores * InlineConstants::InstrCost; 2461 } else { 2462 // For non-byval arguments subtract off one instruction per call 2463 // argument. 2464 Cost += InlineConstants::InstrCost; 2465 } 2466 } 2467 // The call instruction also disappears after inlining. 2468 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; 2469 return Cost; 2470 } 2471 2472 InlineCost llvm::getInlineCost( 2473 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2474 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2475 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2476 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2477 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2478 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2479 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2480 } 2481 2482 Optional<int> llvm::getInliningCostEstimate( 2483 CallBase &Call, TargetTransformInfo &CalleeTTI, 2484 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2485 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2486 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2487 const InlineParams Params = {/* DefaultThreshold*/ 0, 2488 /*HintThreshold*/ {}, 2489 /*ColdThreshold*/ {}, 2490 /*OptSizeThreshold*/ {}, 2491 /*OptMinSizeThreshold*/ {}, 2492 /*HotCallSiteThreshold*/ {}, 2493 /*LocallyHotCallSiteThreshold*/ {}, 2494 /*ColdCallSiteThreshold*/ {}, 2495 /*ComputeFullInlineCost*/ true, 2496 /*EnableDeferral*/ true}; 2497 2498 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2499 GetAssumptionCache, GetBFI, PSI, ORE, true, 2500 /*IgnoreThreshold*/ true); 2501 auto R = CA.analyze(); 2502 if (!R.isSuccess()) 2503 return None; 2504 return CA.getCost(); 2505 } 2506 2507 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2508 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2509 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2510 2511 // Cannot inline indirect calls. 2512 if (!Callee) 2513 return InlineResult::failure("indirect call"); 2514 2515 // When callee coroutine function is inlined into caller coroutine function 2516 // before coro-split pass, 2517 // coro-early pass can not handle this quiet well. 2518 // So we won't inline the coroutine function if it have not been unsplited 2519 if (Callee->isPresplitCoroutine()) 2520 return InlineResult::failure("unsplited coroutine call"); 2521 2522 // Never inline calls with byval arguments that does not have the alloca 2523 // address space. Since byval arguments can be replaced with a copy to an 2524 // alloca, the inlined code would need to be adjusted to handle that the 2525 // argument is in the alloca address space (so it is a little bit complicated 2526 // to solve). 2527 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2528 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2529 if (Call.isByValArgument(I)) { 2530 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2531 if (PTy->getAddressSpace() != AllocaAS) 2532 return InlineResult::failure("byval arguments without alloca" 2533 " address space"); 2534 } 2535 2536 // Calls to functions with always-inline attributes should be inlined 2537 // whenever possible. 2538 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2539 auto IsViable = isInlineViable(*Callee); 2540 if (IsViable.isSuccess()) 2541 return InlineResult::success(); 2542 return InlineResult::failure(IsViable.getFailureReason()); 2543 } 2544 2545 // Never inline functions with conflicting attributes (unless callee has 2546 // always-inline attribute). 2547 Function *Caller = Call.getCaller(); 2548 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2549 return InlineResult::failure("conflicting attributes"); 2550 2551 // Don't inline this call if the caller has the optnone attribute. 2552 if (Caller->hasOptNone()) 2553 return InlineResult::failure("optnone attribute"); 2554 2555 // Don't inline a function that treats null pointer as valid into a caller 2556 // that does not have this attribute. 2557 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2558 return InlineResult::failure("nullptr definitions incompatible"); 2559 2560 // Don't inline functions which can be interposed at link-time. 2561 if (Callee->isInterposable()) 2562 return InlineResult::failure("interposable"); 2563 2564 // Don't inline functions marked noinline. 2565 if (Callee->hasFnAttribute(Attribute::NoInline)) 2566 return InlineResult::failure("noinline function attribute"); 2567 2568 // Don't inline call sites marked noinline. 2569 if (Call.isNoInline()) 2570 return InlineResult::failure("noinline call site attribute"); 2571 2572 // Don't inline functions if one does not have any stack protector attribute 2573 // but the other does. 2574 if (Caller->hasStackProtectorFnAttr() && !Callee->hasStackProtectorFnAttr()) 2575 return InlineResult::failure( 2576 "stack protected caller but callee requested no stack protector"); 2577 if (Callee->hasStackProtectorFnAttr() && !Caller->hasStackProtectorFnAttr()) 2578 return InlineResult::failure( 2579 "stack protected callee but caller requested no stack protector"); 2580 2581 return None; 2582 } 2583 2584 InlineCost llvm::getInlineCost( 2585 CallBase &Call, Function *Callee, const InlineParams &Params, 2586 TargetTransformInfo &CalleeTTI, 2587 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2588 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2589 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2590 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2591 2592 auto UserDecision = 2593 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2594 2595 if (UserDecision.hasValue()) { 2596 if (UserDecision->isSuccess()) 2597 return llvm::InlineCost::getAlways("always inline attribute"); 2598 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2599 } 2600 2601 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2602 << "... (caller:" << Call.getCaller()->getName() 2603 << ")\n"); 2604 2605 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2606 GetAssumptionCache, GetBFI, PSI, ORE); 2607 InlineResult ShouldInline = CA.analyze(); 2608 2609 LLVM_DEBUG(CA.dump()); 2610 2611 // Check if there was a reason to force inlining or no inlining. 2612 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2613 return InlineCost::getNever(ShouldInline.getFailureReason()); 2614 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2615 return InlineCost::getAlways("empty function"); 2616 2617 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2618 } 2619 2620 InlineResult llvm::isInlineViable(Function &F) { 2621 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2622 for (BasicBlock &BB : F) { 2623 // Disallow inlining of functions which contain indirect branches. 2624 if (isa<IndirectBrInst>(BB.getTerminator())) 2625 return InlineResult::failure("contains indirect branches"); 2626 2627 // Disallow inlining of blockaddresses which are used by non-callbr 2628 // instructions. 2629 if (BB.hasAddressTaken()) 2630 for (User *U : BlockAddress::get(&BB)->users()) 2631 if (!isa<CallBrInst>(*U)) 2632 return InlineResult::failure("blockaddress used outside of callbr"); 2633 2634 for (auto &II : BB) { 2635 CallBase *Call = dyn_cast<CallBase>(&II); 2636 if (!Call) 2637 continue; 2638 2639 // Disallow recursive calls. 2640 Function *Callee = Call->getCalledFunction(); 2641 if (&F == Callee) 2642 return InlineResult::failure("recursive call"); 2643 2644 // Disallow calls which expose returns-twice to a function not previously 2645 // attributed as such. 2646 if (!ReturnsTwice && isa<CallInst>(Call) && 2647 cast<CallInst>(Call)->canReturnTwice()) 2648 return InlineResult::failure("exposes returns-twice attribute"); 2649 2650 if (Callee) 2651 switch (Callee->getIntrinsicID()) { 2652 default: 2653 break; 2654 case llvm::Intrinsic::icall_branch_funnel: 2655 // Disallow inlining of @llvm.icall.branch.funnel because current 2656 // backend can't separate call targets from call arguments. 2657 return InlineResult::failure( 2658 "disallowed inlining of @llvm.icall.branch.funnel"); 2659 case llvm::Intrinsic::localescape: 2660 // Disallow inlining functions that call @llvm.localescape. Doing this 2661 // correctly would require major changes to the inliner. 2662 return InlineResult::failure( 2663 "disallowed inlining of @llvm.localescape"); 2664 case llvm::Intrinsic::vastart: 2665 // Disallow inlining of functions that initialize VarArgs with 2666 // va_start. 2667 return InlineResult::failure( 2668 "contains VarArgs initialized with va_start"); 2669 } 2670 } 2671 } 2672 2673 return InlineResult::success(); 2674 } 2675 2676 // APIs to create InlineParams based on command line flags and/or other 2677 // parameters. 2678 2679 InlineParams llvm::getInlineParams(int Threshold) { 2680 InlineParams Params; 2681 2682 // This field is the threshold to use for a callee by default. This is 2683 // derived from one or more of: 2684 // * optimization or size-optimization levels, 2685 // * a value passed to createFunctionInliningPass function, or 2686 // * the -inline-threshold flag. 2687 // If the -inline-threshold flag is explicitly specified, that is used 2688 // irrespective of anything else. 2689 if (InlineThreshold.getNumOccurrences() > 0) 2690 Params.DefaultThreshold = InlineThreshold; 2691 else 2692 Params.DefaultThreshold = Threshold; 2693 2694 // Set the HintThreshold knob from the -inlinehint-threshold. 2695 Params.HintThreshold = HintThreshold; 2696 2697 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2698 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2699 2700 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2701 // populate LocallyHotCallSiteThreshold. Later, we populate 2702 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2703 // we know that optimization level is O3 (in the getInlineParams variant that 2704 // takes the opt and size levels). 2705 // FIXME: Remove this check (and make the assignment unconditional) after 2706 // addressing size regression issues at O2. 2707 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2708 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2709 2710 // Set the ColdCallSiteThreshold knob from the 2711 // -inline-cold-callsite-threshold. 2712 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2713 2714 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2715 // -inlinehint-threshold commandline option is not explicitly given. If that 2716 // option is present, then its value applies even for callees with size and 2717 // minsize attributes. 2718 // If the -inline-threshold is not specified, set the ColdThreshold from the 2719 // -inlinecold-threshold even if it is not explicitly passed. If 2720 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2721 // explicitly specified to set the ColdThreshold knob 2722 if (InlineThreshold.getNumOccurrences() == 0) { 2723 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2724 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2725 Params.ColdThreshold = ColdThreshold; 2726 } else if (ColdThreshold.getNumOccurrences() > 0) { 2727 Params.ColdThreshold = ColdThreshold; 2728 } 2729 return Params; 2730 } 2731 2732 InlineParams llvm::getInlineParams() { 2733 return getInlineParams(DefaultThreshold); 2734 } 2735 2736 // Compute the default threshold for inlining based on the opt level and the 2737 // size opt level. 2738 static int computeThresholdFromOptLevels(unsigned OptLevel, 2739 unsigned SizeOptLevel) { 2740 if (OptLevel > 2) 2741 return InlineConstants::OptAggressiveThreshold; 2742 if (SizeOptLevel == 1) // -Os 2743 return InlineConstants::OptSizeThreshold; 2744 if (SizeOptLevel == 2) // -Oz 2745 return InlineConstants::OptMinSizeThreshold; 2746 return DefaultThreshold; 2747 } 2748 2749 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2750 auto Params = 2751 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2752 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2753 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2754 // when it is specified explicitly. 2755 if (OptLevel > 2) 2756 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2757 return Params; 2758 } 2759 2760 PreservedAnalyses 2761 InlineCostAnnotationPrinterPass::run(Function &F, 2762 FunctionAnalysisManager &FAM) { 2763 PrintInstructionComments = true; 2764 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 2765 Function &F) -> AssumptionCache & { 2766 return FAM.getResult<AssumptionAnalysis>(F); 2767 }; 2768 Module *M = F.getParent(); 2769 ProfileSummaryInfo PSI(*M); 2770 DataLayout DL(M); 2771 TargetTransformInfo TTI(DL); 2772 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 2773 // In the current implementation, the type of InlineParams doesn't matter as 2774 // the pass serves only for verification of inliner's decisions. 2775 // We can add a flag which determines InlineParams for this run. Right now, 2776 // the default InlineParams are used. 2777 const InlineParams Params = llvm::getInlineParams(); 2778 for (BasicBlock &BB : F) { 2779 for (Instruction &I : BB) { 2780 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2781 Function *CalledFunction = CI->getCalledFunction(); 2782 if (!CalledFunction || CalledFunction->isDeclaration()) 2783 continue; 2784 OptimizationRemarkEmitter ORE(CalledFunction); 2785 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 2786 GetAssumptionCache, nullptr, &PSI, &ORE); 2787 ICCA.analyze(); 2788 OS << " Analyzing call of " << CalledFunction->getName() 2789 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 2790 ICCA.print(); 2791 } 2792 } 2793 } 2794 return PreservedAnalyses::all(); 2795 } 2796