1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/InstVisitor.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/FormattedStream.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <climits> 47 #include <limits> 48 #include <optional> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "inline-cost" 53 54 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 55 56 static cl::opt<int> 57 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 58 cl::desc("Default amount of inlining to perform")); 59 60 // We introduce this option since there is a minor compile-time win by avoiding 61 // addition of TTI attributes (target-features in particular) to inline 62 // candidates when they are guaranteed to be the same as top level methods in 63 // some use cases. If we avoid adding the attribute, we need an option to avoid 64 // checking these attributes. 65 static cl::opt<bool> IgnoreTTIInlineCompatible( 66 "ignore-tti-inline-compatible", cl::Hidden, cl::init(false), 67 cl::desc("Ignore TTI attributes compatibility check between callee/caller " 68 "during inline cost calculation")); 69 70 static cl::opt<bool> PrintInstructionComments( 71 "print-instruction-comments", cl::Hidden, cl::init(false), 72 cl::desc("Prints comments for instruction based on inline cost analysis")); 73 74 static cl::opt<int> InlineThreshold( 75 "inline-threshold", cl::Hidden, cl::init(225), 76 cl::desc("Control the amount of inlining to perform (default = 225)")); 77 78 static cl::opt<int> HintThreshold( 79 "inlinehint-threshold", cl::Hidden, cl::init(325), 80 cl::desc("Threshold for inlining functions with inline hint")); 81 82 static cl::opt<int> 83 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 84 cl::init(45), 85 cl::desc("Threshold for inlining cold callsites")); 86 87 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 88 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 89 cl::desc("Enable the cost-benefit analysis for the inliner")); 90 91 // InlineSavingsMultiplier overrides per TTI multipliers iff it is 92 // specified explicitly in command line options. This option is exposed 93 // for tuning and testing. 94 static cl::opt<int> InlineSavingsMultiplier( 95 "inline-savings-multiplier", cl::Hidden, cl::init(8), 96 cl::desc("Multiplier to multiply cycle savings by during inlining")); 97 98 // InlineSavingsProfitableMultiplier overrides per TTI multipliers iff it is 99 // specified explicitly in command line options. This option is exposed 100 // for tuning and testing. 101 static cl::opt<int> InlineSavingsProfitableMultiplier( 102 "inline-savings-profitable-multiplier", cl::Hidden, cl::init(4), 103 cl::desc("A multiplier on top of cycle savings to decide whether the " 104 "savings won't justify the cost")); 105 106 static cl::opt<int> 107 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 108 cl::desc("The maximum size of a callee that get's " 109 "inlined without sufficient cycle savings")); 110 111 // We introduce this threshold to help performance of instrumentation based 112 // PGO before we actually hook up inliner with analysis passes such as BPI and 113 // BFI. 114 static cl::opt<int> ColdThreshold( 115 "inlinecold-threshold", cl::Hidden, cl::init(45), 116 cl::desc("Threshold for inlining functions with cold attribute")); 117 118 static cl::opt<int> 119 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 120 cl::desc("Threshold for hot callsites ")); 121 122 static cl::opt<int> LocallyHotCallSiteThreshold( 123 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), 124 cl::desc("Threshold for locally hot callsites ")); 125 126 static cl::opt<int> ColdCallSiteRelFreq( 127 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), 128 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 129 "entry frequency, for a callsite to be cold in the absence of " 130 "profile information.")); 131 132 static cl::opt<uint64_t> HotCallSiteRelFreq( 133 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), 134 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 135 "entry frequency, for a callsite to be hot in the absence of " 136 "profile information.")); 137 138 static cl::opt<int> 139 InstrCost("inline-instr-cost", cl::Hidden, cl::init(5), 140 cl::desc("Cost of a single instruction when inlining")); 141 142 static cl::opt<int> 143 MemAccessCost("inline-memaccess-cost", cl::Hidden, cl::init(0), 144 cl::desc("Cost of load/store instruction when inlining")); 145 146 static cl::opt<int> CallPenalty( 147 "inline-call-penalty", cl::Hidden, cl::init(25), 148 cl::desc("Call penalty that is applied per callsite when inlining")); 149 150 static cl::opt<size_t> 151 StackSizeThreshold("inline-max-stacksize", cl::Hidden, 152 cl::init(std::numeric_limits<size_t>::max()), 153 cl::desc("Do not inline functions with a stack size " 154 "that exceeds the specified limit")); 155 156 static cl::opt<size_t> RecurStackSizeThreshold( 157 "recursive-inline-max-stacksize", cl::Hidden, 158 cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller), 159 cl::desc("Do not inline recursive functions with a stack " 160 "size that exceeds the specified limit")); 161 162 static cl::opt<bool> OptComputeFullInlineCost( 163 "inline-cost-full", cl::Hidden, 164 cl::desc("Compute the full inline cost of a call site even when the cost " 165 "exceeds the threshold.")); 166 167 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 168 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 169 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 170 "attributes.")); 171 172 static cl::opt<bool> DisableGEPConstOperand( 173 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 174 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 175 176 namespace llvm { 177 std::optional<int> getStringFnAttrAsInt(const Attribute &Attr) { 178 if (Attr.isValid()) { 179 int AttrValue = 0; 180 if (!Attr.getValueAsString().getAsInteger(10, AttrValue)) 181 return AttrValue; 182 } 183 return std::nullopt; 184 } 185 186 std::optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 187 return getStringFnAttrAsInt(CB.getFnAttr(AttrKind)); 188 } 189 190 std::optional<int> getStringFnAttrAsInt(Function *F, StringRef AttrKind) { 191 return getStringFnAttrAsInt(F->getFnAttribute(AttrKind)); 192 } 193 194 namespace InlineConstants { 195 int getInstrCost() { return InstrCost; } 196 197 } // namespace InlineConstants 198 199 } // namespace llvm 200 201 namespace { 202 class InlineCostCallAnalyzer; 203 204 // This struct is used to store information about inline cost of a 205 // particular instruction 206 struct InstructionCostDetail { 207 int CostBefore = 0; 208 int CostAfter = 0; 209 int ThresholdBefore = 0; 210 int ThresholdAfter = 0; 211 212 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 213 214 int getCostDelta() const { return CostAfter - CostBefore; } 215 216 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 217 }; 218 219 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 220 private: 221 InlineCostCallAnalyzer *const ICCA; 222 223 public: 224 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 225 void emitInstructionAnnot(const Instruction *I, 226 formatted_raw_ostream &OS) override; 227 }; 228 229 /// Carry out call site analysis, in order to evaluate inlinability. 230 /// NOTE: the type is currently used as implementation detail of functions such 231 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 232 /// expectation is that they come from the outer scope, from the wrapper 233 /// functions. If we want to support constructing CallAnalyzer objects where 234 /// lambdas are provided inline at construction, or where the object needs to 235 /// otherwise survive past the scope of the provided functions, we need to 236 /// revisit the argument types. 237 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 238 typedef InstVisitor<CallAnalyzer, bool> Base; 239 friend class InstVisitor<CallAnalyzer, bool>; 240 241 protected: 242 virtual ~CallAnalyzer() = default; 243 /// The TargetTransformInfo available for this compilation. 244 const TargetTransformInfo &TTI; 245 246 /// Getter for the cache of @llvm.assume intrinsics. 247 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 248 249 /// Getter for BlockFrequencyInfo 250 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 251 252 /// Profile summary information. 253 ProfileSummaryInfo *PSI; 254 255 /// The called function. 256 Function &F; 257 258 // Cache the DataLayout since we use it a lot. 259 const DataLayout &DL; 260 261 /// The OptimizationRemarkEmitter available for this compilation. 262 OptimizationRemarkEmitter *ORE; 263 264 /// The candidate callsite being analyzed. Please do not use this to do 265 /// analysis in the caller function; we want the inline cost query to be 266 /// easily cacheable. Instead, use the cover function paramHasAttr. 267 CallBase &CandidateCall; 268 269 /// Extension points for handling callsite features. 270 // Called before a basic block was analyzed. 271 virtual void onBlockStart(const BasicBlock *BB) {} 272 273 /// Called after a basic block was analyzed. 274 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 275 276 /// Called before an instruction was analyzed 277 virtual void onInstructionAnalysisStart(const Instruction *I) {} 278 279 /// Called after an instruction was analyzed 280 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 281 282 /// Called at the end of the analysis of the callsite. Return the outcome of 283 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 284 /// the reason it can't. 285 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 286 /// Called when we're about to start processing a basic block, and every time 287 /// we are done processing an instruction. Return true if there is no point in 288 /// continuing the analysis (e.g. we've determined already the call site is 289 /// too expensive to inline) 290 virtual bool shouldStop() { return false; } 291 292 /// Called before the analysis of the callee body starts (with callsite 293 /// contexts propagated). It checks callsite-specific information. Return a 294 /// reason analysis can't continue if that's the case, or 'true' if it may 295 /// continue. 296 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 297 /// Called if the analysis engine decides SROA cannot be done for the given 298 /// alloca. 299 virtual void onDisableSROA(AllocaInst *Arg) {} 300 301 /// Called the analysis engine determines load elimination won't happen. 302 virtual void onDisableLoadElimination() {} 303 304 /// Called when we visit a CallBase, before the analysis starts. Return false 305 /// to stop further processing of the instruction. 306 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 307 308 /// Called to account for a call. 309 virtual void onCallPenalty() {} 310 311 /// Called to account for a load or store. 312 virtual void onMemAccess(){}; 313 314 /// Called to account for the expectation the inlining would result in a load 315 /// elimination. 316 virtual void onLoadEliminationOpportunity() {} 317 318 /// Called to account for the cost of argument setup for the Call in the 319 /// callee's body (not the callsite currently under analysis). 320 virtual void onCallArgumentSetup(const CallBase &Call) {} 321 322 /// Called to account for a load relative intrinsic. 323 virtual void onLoadRelativeIntrinsic() {} 324 325 /// Called to account for a lowered call. 326 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 327 } 328 329 /// Account for a jump table of given size. Return false to stop further 330 /// processing the switch instruction 331 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 332 333 /// Account for a case cluster of given size. Return false to stop further 334 /// processing of the instruction. 335 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 336 337 /// Called at the end of processing a switch instruction, with the given 338 /// number of case clusters. 339 virtual void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster, 340 bool DefaultDestUndefined) {} 341 342 /// Called to account for any other instruction not specifically accounted 343 /// for. 344 virtual void onMissedSimplification() {} 345 346 /// Start accounting potential benefits due to SROA for the given alloca. 347 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 348 349 /// Account SROA savings for the AllocaInst value. 350 virtual void onAggregateSROAUse(AllocaInst *V) {} 351 352 bool handleSROA(Value *V, bool DoNotDisable) { 353 // Check for SROA candidates in comparisons. 354 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 355 if (DoNotDisable) { 356 onAggregateSROAUse(SROAArg); 357 return true; 358 } 359 disableSROAForArg(SROAArg); 360 } 361 return false; 362 } 363 364 bool IsCallerRecursive = false; 365 bool IsRecursiveCall = false; 366 bool ExposesReturnsTwice = false; 367 bool HasDynamicAlloca = false; 368 bool ContainsNoDuplicateCall = false; 369 bool HasReturn = false; 370 bool HasIndirectBr = false; 371 bool HasUninlineableIntrinsic = false; 372 bool InitsVargArgs = false; 373 374 /// Number of bytes allocated statically by the callee. 375 uint64_t AllocatedSize = 0; 376 unsigned NumInstructions = 0; 377 unsigned NumVectorInstructions = 0; 378 379 /// While we walk the potentially-inlined instructions, we build up and 380 /// maintain a mapping of simplified values specific to this callsite. The 381 /// idea is to propagate any special information we have about arguments to 382 /// this call through the inlinable section of the function, and account for 383 /// likely simplifications post-inlining. The most important aspect we track 384 /// is CFG altering simplifications -- when we prove a basic block dead, that 385 /// can cause dramatic shifts in the cost of inlining a function. 386 DenseMap<Value *, Constant *> SimplifiedValues; 387 388 /// Keep track of the values which map back (through function arguments) to 389 /// allocas on the caller stack which could be simplified through SROA. 390 DenseMap<Value *, AllocaInst *> SROAArgValues; 391 392 /// Keep track of Allocas for which we believe we may get SROA optimization. 393 DenseSet<AllocaInst *> EnabledSROAAllocas; 394 395 /// Keep track of values which map to a pointer base and constant offset. 396 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 397 398 /// Keep track of dead blocks due to the constant arguments. 399 SmallPtrSet<BasicBlock *, 16> DeadBlocks; 400 401 /// The mapping of the blocks to their known unique successors due to the 402 /// constant arguments. 403 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 404 405 /// Model the elimination of repeated loads that is expected to happen 406 /// whenever we simplify away the stores that would otherwise cause them to be 407 /// loads. 408 bool EnableLoadElimination = true; 409 410 /// Whether we allow inlining for recursive call. 411 bool AllowRecursiveCall = false; 412 413 SmallPtrSet<Value *, 16> LoadAddrSet; 414 415 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 416 auto It = SROAArgValues.find(V); 417 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 418 return nullptr; 419 return It->second; 420 } 421 422 // Custom simplification helper routines. 423 bool isAllocaDerivedArg(Value *V); 424 void disableSROAForArg(AllocaInst *SROAArg); 425 void disableSROA(Value *V); 426 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 427 void disableLoadElimination(); 428 bool isGEPFree(GetElementPtrInst &GEP); 429 bool canFoldInboundsGEP(GetElementPtrInst &I); 430 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 431 bool simplifyCallSite(Function *F, CallBase &Call); 432 bool simplifyInstruction(Instruction &I); 433 bool simplifyIntrinsicCallIsConstant(CallBase &CB); 434 bool simplifyIntrinsicCallObjectSize(CallBase &CB); 435 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 436 437 /// Return true if the given argument to the function being considered for 438 /// inlining has the given attribute set either at the call site or the 439 /// function declaration. Primarily used to inspect call site specific 440 /// attributes since these can be more precise than the ones on the callee 441 /// itself. 442 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 443 444 /// Return true if the given value is known non null within the callee if 445 /// inlined through this particular callsite. 446 bool isKnownNonNullInCallee(Value *V); 447 448 /// Return true if size growth is allowed when inlining the callee at \p Call. 449 bool allowSizeGrowth(CallBase &Call); 450 451 // Custom analysis routines. 452 InlineResult analyzeBlock(BasicBlock *BB, 453 SmallPtrSetImpl<const Value *> &EphValues); 454 455 // Disable several entry points to the visitor so we don't accidentally use 456 // them by declaring but not defining them here. 457 void visit(Module *); 458 void visit(Module &); 459 void visit(Function *); 460 void visit(Function &); 461 void visit(BasicBlock *); 462 void visit(BasicBlock &); 463 464 // Provide base case for our instruction visit. 465 bool visitInstruction(Instruction &I); 466 467 // Our visit overrides. 468 bool visitAlloca(AllocaInst &I); 469 bool visitPHI(PHINode &I); 470 bool visitGetElementPtr(GetElementPtrInst &I); 471 bool visitBitCast(BitCastInst &I); 472 bool visitPtrToInt(PtrToIntInst &I); 473 bool visitIntToPtr(IntToPtrInst &I); 474 bool visitCastInst(CastInst &I); 475 bool visitCmpInst(CmpInst &I); 476 bool visitSub(BinaryOperator &I); 477 bool visitBinaryOperator(BinaryOperator &I); 478 bool visitFNeg(UnaryOperator &I); 479 bool visitLoad(LoadInst &I); 480 bool visitStore(StoreInst &I); 481 bool visitExtractValue(ExtractValueInst &I); 482 bool visitInsertValue(InsertValueInst &I); 483 bool visitCallBase(CallBase &Call); 484 bool visitReturnInst(ReturnInst &RI); 485 bool visitBranchInst(BranchInst &BI); 486 bool visitSelectInst(SelectInst &SI); 487 bool visitSwitchInst(SwitchInst &SI); 488 bool visitIndirectBrInst(IndirectBrInst &IBI); 489 bool visitResumeInst(ResumeInst &RI); 490 bool visitCleanupReturnInst(CleanupReturnInst &RI); 491 bool visitCatchReturnInst(CatchReturnInst &RI); 492 bool visitUnreachableInst(UnreachableInst &I); 493 494 public: 495 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 496 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 497 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 498 ProfileSummaryInfo *PSI = nullptr, 499 OptimizationRemarkEmitter *ORE = nullptr) 500 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 501 PSI(PSI), F(Callee), DL(F.getDataLayout()), ORE(ORE), 502 CandidateCall(Call) {} 503 504 InlineResult analyze(); 505 506 std::optional<Constant *> getSimplifiedValue(Instruction *I) { 507 if (SimplifiedValues.contains(I)) 508 return SimplifiedValues[I]; 509 return std::nullopt; 510 } 511 512 // Keep a bunch of stats about the cost savings found so we can print them 513 // out when debugging. 514 unsigned NumConstantArgs = 0; 515 unsigned NumConstantOffsetPtrArgs = 0; 516 unsigned NumAllocaArgs = 0; 517 unsigned NumConstantPtrCmps = 0; 518 unsigned NumConstantPtrDiffs = 0; 519 unsigned NumInstructionsSimplified = 0; 520 521 void dump(); 522 }; 523 524 // Considering forming a binary search, we should find the number of nodes 525 // which is same as the number of comparisons when lowered. For a given 526 // number of clusters, n, we can define a recursive function, f(n), to find 527 // the number of nodes in the tree. The recursion is : 528 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 529 // and f(n) = n, when n <= 3. 530 // This will lead a binary tree where the leaf should be either f(2) or f(3) 531 // when n > 3. So, the number of comparisons from leaves should be n, while 532 // the number of non-leaf should be : 533 // 2^(log2(n) - 1) - 1 534 // = 2^log2(n) * 2^-1 - 1 535 // = n / 2 - 1. 536 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 537 // number of comparisons in a simple closed form : 538 // n + n / 2 - 1 = n * 3 / 2 - 1 539 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 540 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 541 } 542 543 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 544 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 545 class InlineCostCallAnalyzer final : public CallAnalyzer { 546 const bool ComputeFullInlineCost; 547 int LoadEliminationCost = 0; 548 /// Bonus to be applied when percentage of vector instructions in callee is 549 /// high (see more details in updateThreshold). 550 int VectorBonus = 0; 551 /// Bonus to be applied when the callee has only one reachable basic block. 552 int SingleBBBonus = 0; 553 554 /// Tunable parameters that control the analysis. 555 const InlineParams &Params; 556 557 // This DenseMap stores the delta change in cost and threshold after 558 // accounting for the given instruction. The map is filled only with the 559 // flag PrintInstructionComments on. 560 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 561 562 /// Upper bound for the inlining cost. Bonuses are being applied to account 563 /// for speculative "expected profit" of the inlining decision. 564 int Threshold = 0; 565 566 /// The amount of StaticBonus applied. 567 int StaticBonusApplied = 0; 568 569 /// Attempt to evaluate indirect calls to boost its inline cost. 570 const bool BoostIndirectCalls; 571 572 /// Ignore the threshold when finalizing analysis. 573 const bool IgnoreThreshold; 574 575 // True if the cost-benefit-analysis-based inliner is enabled. 576 const bool CostBenefitAnalysisEnabled; 577 578 /// Inlining cost measured in abstract units, accounts for all the 579 /// instructions expected to be executed for a given function invocation. 580 /// Instructions that are statically proven to be dead based on call-site 581 /// arguments are not counted here. 582 int Cost = 0; 583 584 // The cumulative cost at the beginning of the basic block being analyzed. At 585 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 586 // the size of that basic block. 587 int CostAtBBStart = 0; 588 589 // The static size of live but cold basic blocks. This is "static" in the 590 // sense that it's not weighted by profile counts at all. 591 int ColdSize = 0; 592 593 // Whether inlining is decided by cost-threshold analysis. 594 bool DecidedByCostThreshold = false; 595 596 // Whether inlining is decided by cost-benefit analysis. 597 bool DecidedByCostBenefit = false; 598 599 // The cost-benefit pair computed by cost-benefit analysis. 600 std::optional<CostBenefitPair> CostBenefit; 601 602 bool SingleBB = true; 603 604 unsigned SROACostSavings = 0; 605 unsigned SROACostSavingsLost = 0; 606 607 /// The mapping of caller Alloca values to their accumulated cost savings. If 608 /// we have to disable SROA for one of the allocas, this tells us how much 609 /// cost must be added. 610 DenseMap<AllocaInst *, int> SROAArgCosts; 611 612 /// Return true if \p Call is a cold callsite. 613 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 614 615 /// Update Threshold based on callsite properties such as callee 616 /// attributes and callee hotness for PGO builds. The Callee is explicitly 617 /// passed to support analyzing indirect calls whose target is inferred by 618 /// analysis. 619 void updateThreshold(CallBase &Call, Function &Callee); 620 /// Return a higher threshold if \p Call is a hot callsite. 621 std::optional<int> getHotCallSiteThreshold(CallBase &Call, 622 BlockFrequencyInfo *CallerBFI); 623 624 /// Handle a capped 'int' increment for Cost. 625 void addCost(int64_t Inc) { 626 Inc = std::clamp<int64_t>(Inc, INT_MIN, INT_MAX); 627 Cost = std::clamp<int64_t>(Inc + Cost, INT_MIN, INT_MAX); 628 } 629 630 void onDisableSROA(AllocaInst *Arg) override { 631 auto CostIt = SROAArgCosts.find(Arg); 632 if (CostIt == SROAArgCosts.end()) 633 return; 634 addCost(CostIt->second); 635 SROACostSavings -= CostIt->second; 636 SROACostSavingsLost += CostIt->second; 637 SROAArgCosts.erase(CostIt); 638 } 639 640 void onDisableLoadElimination() override { 641 addCost(LoadEliminationCost); 642 LoadEliminationCost = 0; 643 } 644 645 bool onCallBaseVisitStart(CallBase &Call) override { 646 if (std::optional<int> AttrCallThresholdBonus = 647 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 648 Threshold += *AttrCallThresholdBonus; 649 650 if (std::optional<int> AttrCallCost = 651 getStringFnAttrAsInt(Call, "call-inline-cost")) { 652 addCost(*AttrCallCost); 653 // Prevent further processing of the call since we want to override its 654 // inline cost, not just add to it. 655 return false; 656 } 657 return true; 658 } 659 660 void onCallPenalty() override { addCost(CallPenalty); } 661 662 void onMemAccess() override { addCost(MemAccessCost); } 663 664 void onCallArgumentSetup(const CallBase &Call) override { 665 // Pay the price of the argument setup. We account for the average 1 666 // instruction per call argument setup here. 667 addCost(Call.arg_size() * InstrCost); 668 } 669 void onLoadRelativeIntrinsic() override { 670 // This is normally lowered to 4 LLVM instructions. 671 addCost(3 * InstrCost); 672 } 673 void onLoweredCall(Function *F, CallBase &Call, 674 bool IsIndirectCall) override { 675 // We account for the average 1 instruction per call argument setup here. 676 addCost(Call.arg_size() * InstrCost); 677 678 // If we have a constant that we are calling as a function, we can peer 679 // through it and see the function target. This happens not infrequently 680 // during devirtualization and so we want to give it a hefty bonus for 681 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 682 // Pretend to inline the function, with a custom threshold. 683 if (IsIndirectCall && BoostIndirectCalls) { 684 auto IndirectCallParams = Params; 685 IndirectCallParams.DefaultThreshold = 686 InlineConstants::IndirectCallThreshold; 687 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 688 /// to instantiate the derived class. 689 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 690 GetAssumptionCache, GetBFI, PSI, ORE, false); 691 if (CA.analyze().isSuccess()) { 692 // We were able to inline the indirect call! Subtract the cost from the 693 // threshold to get the bonus we want to apply, but don't go below zero. 694 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 695 } 696 } else 697 // Otherwise simply add the cost for merely making the call. 698 addCost(TTI.getInlineCallPenalty(CandidateCall.getCaller(), Call, 699 CallPenalty)); 700 } 701 702 void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster, 703 bool DefaultDestUndefined) override { 704 // If suitable for a jump table, consider the cost for the table size and 705 // branch to destination. 706 // Maximum valid cost increased in this function. 707 if (JumpTableSize) { 708 // Suppose a default branch includes one compare and one conditional 709 // branch if it's reachable. 710 if (!DefaultDestUndefined) 711 addCost(2 * InstrCost); 712 // Suppose a jump table requires one load and one jump instruction. 713 int64_t JTCost = 714 static_cast<int64_t>(JumpTableSize) * InstrCost + 2 * InstrCost; 715 addCost(JTCost); 716 return; 717 } 718 719 if (NumCaseCluster <= 3) { 720 // Suppose a comparison includes one compare and one conditional branch. 721 // We can reduce a set of instructions if the default branch is 722 // undefined. 723 addCost((NumCaseCluster - DefaultDestUndefined) * 2 * InstrCost); 724 return; 725 } 726 727 int64_t ExpectedNumberOfCompare = 728 getExpectedNumberOfCompare(NumCaseCluster); 729 int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InstrCost; 730 731 addCost(SwitchCost); 732 } 733 void onMissedSimplification() override { addCost(InstrCost); } 734 735 void onInitializeSROAArg(AllocaInst *Arg) override { 736 assert(Arg != nullptr && 737 "Should not initialize SROA costs for null value."); 738 auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg); 739 SROACostSavings += SROAArgCost; 740 SROAArgCosts[Arg] = SROAArgCost; 741 } 742 743 void onAggregateSROAUse(AllocaInst *SROAArg) override { 744 auto CostIt = SROAArgCosts.find(SROAArg); 745 assert(CostIt != SROAArgCosts.end() && 746 "expected this argument to have a cost"); 747 CostIt->second += InstrCost; 748 SROACostSavings += InstrCost; 749 } 750 751 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 752 753 void onBlockAnalyzed(const BasicBlock *BB) override { 754 if (CostBenefitAnalysisEnabled) { 755 // Keep track of the static size of live but cold basic blocks. For now, 756 // we define a cold basic block to be one that's never executed. 757 assert(GetBFI && "GetBFI must be available"); 758 BlockFrequencyInfo *BFI = &(GetBFI(F)); 759 assert(BFI && "BFI must be available"); 760 auto ProfileCount = BFI->getBlockProfileCount(BB); 761 if (*ProfileCount == 0) 762 ColdSize += Cost - CostAtBBStart; 763 } 764 765 auto *TI = BB->getTerminator(); 766 // If we had any successors at this point, than post-inlining is likely to 767 // have them as well. Note that we assume any basic blocks which existed 768 // due to branches or switches which folded above will also fold after 769 // inlining. 770 if (SingleBB && TI->getNumSuccessors() > 1) { 771 // Take off the bonus we applied to the threshold. 772 Threshold -= SingleBBBonus; 773 SingleBB = false; 774 } 775 } 776 777 void onInstructionAnalysisStart(const Instruction *I) override { 778 // This function is called to store the initial cost of inlining before 779 // the given instruction was assessed. 780 if (!PrintInstructionComments) 781 return; 782 InstructionCostDetailMap[I].CostBefore = Cost; 783 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 784 } 785 786 void onInstructionAnalysisFinish(const Instruction *I) override { 787 // This function is called to find new values of cost and threshold after 788 // the instruction has been assessed. 789 if (!PrintInstructionComments) 790 return; 791 InstructionCostDetailMap[I].CostAfter = Cost; 792 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 793 } 794 795 bool isCostBenefitAnalysisEnabled() { 796 if (!PSI || !PSI->hasProfileSummary()) 797 return false; 798 799 if (!GetBFI) 800 return false; 801 802 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 803 // Honor the explicit request from the user. 804 if (!InlineEnableCostBenefitAnalysis) 805 return false; 806 } else { 807 // Otherwise, require instrumentation profile. 808 if (!PSI->hasInstrumentationProfile()) 809 return false; 810 } 811 812 auto *Caller = CandidateCall.getParent()->getParent(); 813 if (!Caller->getEntryCount()) 814 return false; 815 816 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 817 if (!CallerBFI) 818 return false; 819 820 // For now, limit to hot call site. 821 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 822 return false; 823 824 // Make sure we have a nonzero entry count. 825 auto EntryCount = F.getEntryCount(); 826 if (!EntryCount || !EntryCount->getCount()) 827 return false; 828 829 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 830 if (!CalleeBFI) 831 return false; 832 833 return true; 834 } 835 836 // A helper function to choose between command line override and default. 837 unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const { 838 if (InlineSavingsMultiplier.getNumOccurrences()) 839 return InlineSavingsMultiplier; 840 return TTI.getInliningCostBenefitAnalysisSavingsMultiplier(); 841 } 842 843 // A helper function to choose between command line override and default. 844 unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const { 845 if (InlineSavingsProfitableMultiplier.getNumOccurrences()) 846 return InlineSavingsProfitableMultiplier; 847 return TTI.getInliningCostBenefitAnalysisProfitableMultiplier(); 848 } 849 850 void OverrideCycleSavingsAndSizeForTesting(APInt &CycleSavings, int &Size) { 851 if (std::optional<int> AttrCycleSavings = getStringFnAttrAsInt( 852 CandidateCall, "inline-cycle-savings-for-test")) { 853 CycleSavings = *AttrCycleSavings; 854 } 855 856 if (std::optional<int> AttrRuntimeCost = getStringFnAttrAsInt( 857 CandidateCall, "inline-runtime-cost-for-test")) { 858 Size = *AttrRuntimeCost; 859 } 860 } 861 862 // Determine whether we should inline the given call site, taking into account 863 // both the size cost and the cycle savings. Return std::nullopt if we don't 864 // have sufficient profiling information to determine. 865 std::optional<bool> costBenefitAnalysis() { 866 if (!CostBenefitAnalysisEnabled) 867 return std::nullopt; 868 869 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 870 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 871 // falling back to the cost-based metric. 872 // TODO: Improve this hacky condition. 873 if (Threshold == 0) 874 return std::nullopt; 875 876 assert(GetBFI); 877 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 878 assert(CalleeBFI); 879 880 // The cycle savings expressed as the sum of InstrCost 881 // multiplied by the estimated dynamic count of each instruction we can 882 // avoid. Savings come from the call site cost, such as argument setup and 883 // the call instruction, as well as the instructions that are folded. 884 // 885 // We use 128-bit APInt here to avoid potential overflow. This variable 886 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 887 // assumes that we can avoid or fold a billion instructions, each with a 888 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 889 // period on a 4GHz machine. 890 APInt CycleSavings(128, 0); 891 892 for (auto &BB : F) { 893 APInt CurrentSavings(128, 0); 894 for (auto &I : BB) { 895 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 896 // Count a conditional branch as savings if it becomes unconditional. 897 if (BI->isConditional() && 898 isa_and_nonnull<ConstantInt>( 899 SimplifiedValues.lookup(BI->getCondition()))) { 900 CurrentSavings += InstrCost; 901 } 902 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) { 903 if (isa_and_present<ConstantInt>(SimplifiedValues.lookup(SI->getCondition()))) 904 CurrentSavings += InstrCost; 905 } else if (Value *V = dyn_cast<Value>(&I)) { 906 // Count an instruction as savings if we can fold it. 907 if (SimplifiedValues.count(V)) { 908 CurrentSavings += InstrCost; 909 } 910 } 911 } 912 913 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 914 CurrentSavings *= *ProfileCount; 915 CycleSavings += CurrentSavings; 916 } 917 918 // Compute the cycle savings per call. 919 auto EntryProfileCount = F.getEntryCount(); 920 assert(EntryProfileCount && EntryProfileCount->getCount()); 921 auto EntryCount = EntryProfileCount->getCount(); 922 CycleSavings += EntryCount / 2; 923 CycleSavings = CycleSavings.udiv(EntryCount); 924 925 // Compute the total savings for the call site. 926 auto *CallerBB = CandidateCall.getParent(); 927 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 928 CycleSavings += getCallsiteCost(TTI, this->CandidateCall, DL); 929 CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB); 930 931 // Remove the cost of the cold basic blocks to model the runtime cost more 932 // accurately. Both machine block placement and function splitting could 933 // place cold blocks further from hot blocks. 934 int Size = Cost - ColdSize; 935 936 // Allow tiny callees to be inlined regardless of whether they meet the 937 // savings threshold. 938 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 939 940 OverrideCycleSavingsAndSizeForTesting(CycleSavings, Size); 941 CostBenefit.emplace(APInt(128, Size), CycleSavings); 942 943 // Let R be the ratio of CycleSavings to Size. We accept the inlining 944 // opportunity if R is really high and reject if R is really low. If R is 945 // somewhere in the middle, we fall back to the cost-based analysis. 946 // 947 // Specifically, let R = CycleSavings / Size, we accept the inlining 948 // opportunity if: 949 // 950 // PSI->getOrCompHotCountThreshold() 951 // R > ------------------------------------------------- 952 // getInliningCostBenefitAnalysisSavingsMultiplier() 953 // 954 // and reject the inlining opportunity if: 955 // 956 // PSI->getOrCompHotCountThreshold() 957 // R <= ---------------------------------------------------- 958 // getInliningCostBenefitAnalysisProfitableMultiplier() 959 // 960 // Otherwise, we fall back to the cost-based analysis. 961 // 962 // Implementation-wise, use multiplication (CycleSavings * Multiplier, 963 // HotCountThreshold * Size) rather than division to avoid precision loss. 964 APInt Threshold(128, PSI->getOrCompHotCountThreshold()); 965 Threshold *= Size; 966 967 APInt UpperBoundCycleSavings = CycleSavings; 968 UpperBoundCycleSavings *= getInliningCostBenefitAnalysisSavingsMultiplier(); 969 if (UpperBoundCycleSavings.uge(Threshold)) 970 return true; 971 972 APInt LowerBoundCycleSavings = CycleSavings; 973 LowerBoundCycleSavings *= 974 getInliningCostBenefitAnalysisProfitableMultiplier(); 975 if (LowerBoundCycleSavings.ult(Threshold)) 976 return false; 977 978 // Otherwise, fall back to the cost-based analysis. 979 return std::nullopt; 980 } 981 982 InlineResult finalizeAnalysis() override { 983 // Loops generally act a lot like calls in that they act like barriers to 984 // movement, require a certain amount of setup, etc. So when optimising for 985 // size, we penalise any call sites that perform loops. We do this after all 986 // other costs here, so will likely only be dealing with relatively small 987 // functions (and hence DT and LI will hopefully be cheap). 988 auto *Caller = CandidateCall.getFunction(); 989 if (Caller->hasMinSize()) { 990 DominatorTree DT(F); 991 LoopInfo LI(DT); 992 int NumLoops = 0; 993 for (Loop *L : LI) { 994 // Ignore loops that will not be executed 995 if (DeadBlocks.count(L->getHeader())) 996 continue; 997 NumLoops++; 998 } 999 addCost(NumLoops * InlineConstants::LoopPenalty); 1000 } 1001 1002 // We applied the maximum possible vector bonus at the beginning. Now, 1003 // subtract the excess bonus, if any, from the Threshold before 1004 // comparing against Cost. 1005 if (NumVectorInstructions <= NumInstructions / 10) 1006 Threshold -= VectorBonus; 1007 else if (NumVectorInstructions <= NumInstructions / 2) 1008 Threshold -= VectorBonus / 2; 1009 1010 if (std::optional<int> AttrCost = 1011 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 1012 Cost = *AttrCost; 1013 1014 if (std::optional<int> AttrCostMult = getStringFnAttrAsInt( 1015 CandidateCall, 1016 InlineConstants::FunctionInlineCostMultiplierAttributeName)) 1017 Cost *= *AttrCostMult; 1018 1019 if (std::optional<int> AttrThreshold = 1020 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 1021 Threshold = *AttrThreshold; 1022 1023 if (auto Result = costBenefitAnalysis()) { 1024 DecidedByCostBenefit = true; 1025 if (*Result) 1026 return InlineResult::success(); 1027 else 1028 return InlineResult::failure("Cost over threshold."); 1029 } 1030 1031 if (IgnoreThreshold) 1032 return InlineResult::success(); 1033 1034 DecidedByCostThreshold = true; 1035 return Cost < std::max(1, Threshold) 1036 ? InlineResult::success() 1037 : InlineResult::failure("Cost over threshold."); 1038 } 1039 1040 bool shouldStop() override { 1041 if (IgnoreThreshold || ComputeFullInlineCost) 1042 return false; 1043 // Bail out the moment we cross the threshold. This means we'll under-count 1044 // the cost, but only when undercounting doesn't matter. 1045 if (Cost < Threshold) 1046 return false; 1047 DecidedByCostThreshold = true; 1048 return true; 1049 } 1050 1051 void onLoadEliminationOpportunity() override { 1052 LoadEliminationCost += InstrCost; 1053 } 1054 1055 InlineResult onAnalysisStart() override { 1056 // Perform some tweaks to the cost and threshold based on the direct 1057 // callsite information. 1058 1059 // We want to more aggressively inline vector-dense kernels, so up the 1060 // threshold, and we'll lower it if the % of vector instructions gets too 1061 // low. Note that these bonuses are some what arbitrary and evolved over 1062 // time by accident as much as because they are principled bonuses. 1063 // 1064 // FIXME: It would be nice to remove all such bonuses. At least it would be 1065 // nice to base the bonus values on something more scientific. 1066 assert(NumInstructions == 0); 1067 assert(NumVectorInstructions == 0); 1068 1069 // Update the threshold based on callsite properties 1070 updateThreshold(CandidateCall, F); 1071 1072 // While Threshold depends on commandline options that can take negative 1073 // values, we want to enforce the invariant that the computed threshold and 1074 // bonuses are non-negative. 1075 assert(Threshold >= 0); 1076 assert(SingleBBBonus >= 0); 1077 assert(VectorBonus >= 0); 1078 1079 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 1080 // this Threshold any time, and cost cannot decrease, we can stop processing 1081 // the rest of the function body. 1082 Threshold += (SingleBBBonus + VectorBonus); 1083 1084 // Give out bonuses for the callsite, as the instructions setting them up 1085 // will be gone after inlining. 1086 addCost(-getCallsiteCost(TTI, this->CandidateCall, DL)); 1087 1088 // If this function uses the coldcc calling convention, prefer not to inline 1089 // it. 1090 if (F.getCallingConv() == CallingConv::Cold) 1091 Cost += InlineConstants::ColdccPenalty; 1092 1093 LLVM_DEBUG(dbgs() << " Initial cost: " << Cost << "\n"); 1094 1095 // Check if we're done. This can happen due to bonuses and penalties. 1096 if (Cost >= Threshold && !ComputeFullInlineCost) 1097 return InlineResult::failure("high cost"); 1098 1099 return InlineResult::success(); 1100 } 1101 1102 public: 1103 InlineCostCallAnalyzer( 1104 Function &Callee, CallBase &Call, const InlineParams &Params, 1105 const TargetTransformInfo &TTI, 1106 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 1107 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 1108 ProfileSummaryInfo *PSI = nullptr, 1109 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 1110 bool IgnoreThreshold = false) 1111 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 1112 ComputeFullInlineCost(OptComputeFullInlineCost || 1113 Params.ComputeFullInlineCost || ORE || 1114 isCostBenefitAnalysisEnabled()), 1115 Params(Params), Threshold(Params.DefaultThreshold), 1116 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 1117 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 1118 Writer(this) { 1119 AllowRecursiveCall = *Params.AllowRecursiveCall; 1120 } 1121 1122 /// Annotation Writer for instruction details 1123 InlineCostAnnotationWriter Writer; 1124 1125 void dump(); 1126 1127 // Prints the same analysis as dump(), but its definition is not dependent 1128 // on the build. 1129 void print(raw_ostream &OS); 1130 1131 std::optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1132 if (InstructionCostDetailMap.contains(I)) 1133 return InstructionCostDetailMap[I]; 1134 return std::nullopt; 1135 } 1136 1137 virtual ~InlineCostCallAnalyzer() = default; 1138 int getThreshold() const { return Threshold; } 1139 int getCost() const { return Cost; } 1140 int getStaticBonusApplied() const { return StaticBonusApplied; } 1141 std::optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1142 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1143 bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; } 1144 }; 1145 1146 // Return true if CB is the sole call to local function Callee. 1147 static bool isSoleCallToLocalFunction(const CallBase &CB, 1148 const Function &Callee) { 1149 return Callee.hasLocalLinkage() && Callee.hasOneLiveUse() && 1150 &Callee == CB.getCalledFunction(); 1151 } 1152 1153 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1154 private: 1155 InlineCostFeatures Cost = {}; 1156 1157 // FIXME: These constants are taken from the heuristic-based cost visitor. 1158 // These should be removed entirely in a later revision to avoid reliance on 1159 // heuristics in the ML inliner. 1160 static constexpr int JTCostMultiplier = 2; 1161 static constexpr int CaseClusterCostMultiplier = 2; 1162 static constexpr int SwitchDefaultDestCostMultiplier = 2; 1163 static constexpr int SwitchCostMultiplier = 2; 1164 1165 // FIXME: These are taken from the heuristic-based cost visitor: we should 1166 // eventually abstract these to the CallAnalyzer to avoid duplication. 1167 unsigned SROACostSavingOpportunities = 0; 1168 int VectorBonus = 0; 1169 int SingleBBBonus = 0; 1170 int Threshold = 5; 1171 1172 DenseMap<AllocaInst *, unsigned> SROACosts; 1173 1174 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1175 Cost[static_cast<size_t>(Feature)] += Delta; 1176 } 1177 1178 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1179 Cost[static_cast<size_t>(Feature)] = Value; 1180 } 1181 1182 void onDisableSROA(AllocaInst *Arg) override { 1183 auto CostIt = SROACosts.find(Arg); 1184 if (CostIt == SROACosts.end()) 1185 return; 1186 1187 increment(InlineCostFeatureIndex::sroa_losses, CostIt->second); 1188 SROACostSavingOpportunities -= CostIt->second; 1189 SROACosts.erase(CostIt); 1190 } 1191 1192 void onDisableLoadElimination() override { 1193 set(InlineCostFeatureIndex::load_elimination, 1); 1194 } 1195 1196 void onCallPenalty() override { 1197 increment(InlineCostFeatureIndex::call_penalty, CallPenalty); 1198 } 1199 1200 void onCallArgumentSetup(const CallBase &Call) override { 1201 increment(InlineCostFeatureIndex::call_argument_setup, 1202 Call.arg_size() * InstrCost); 1203 } 1204 1205 void onLoadRelativeIntrinsic() override { 1206 increment(InlineCostFeatureIndex::load_relative_intrinsic, 3 * InstrCost); 1207 } 1208 1209 void onLoweredCall(Function *F, CallBase &Call, 1210 bool IsIndirectCall) override { 1211 increment(InlineCostFeatureIndex::lowered_call_arg_setup, 1212 Call.arg_size() * InstrCost); 1213 1214 if (IsIndirectCall) { 1215 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1216 /*HintThreshold*/ {}, 1217 /*ColdThreshold*/ {}, 1218 /*OptSizeThreshold*/ {}, 1219 /*OptMinSizeThreshold*/ {}, 1220 /*HotCallSiteThreshold*/ {}, 1221 /*LocallyHotCallSiteThreshold*/ {}, 1222 /*ColdCallSiteThreshold*/ {}, 1223 /*ComputeFullInlineCost*/ true, 1224 /*EnableDeferral*/ true}; 1225 IndirectCallParams.DefaultThreshold = 1226 InlineConstants::IndirectCallThreshold; 1227 1228 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1229 GetAssumptionCache, GetBFI, PSI, ORE, false, 1230 true); 1231 if (CA.analyze().isSuccess()) { 1232 increment(InlineCostFeatureIndex::nested_inline_cost_estimate, 1233 CA.getCost()); 1234 increment(InlineCostFeatureIndex::nested_inlines, 1); 1235 } 1236 } else { 1237 onCallPenalty(); 1238 } 1239 } 1240 1241 void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster, 1242 bool DefaultDestUndefined) override { 1243 if (JumpTableSize) { 1244 if (!DefaultDestUndefined) 1245 increment(InlineCostFeatureIndex::switch_default_dest_penalty, 1246 SwitchDefaultDestCostMultiplier * InstrCost); 1247 int64_t JTCost = static_cast<int64_t>(JumpTableSize) * InstrCost + 1248 JTCostMultiplier * InstrCost; 1249 increment(InlineCostFeatureIndex::jump_table_penalty, JTCost); 1250 return; 1251 } 1252 1253 if (NumCaseCluster <= 3) { 1254 increment(InlineCostFeatureIndex::case_cluster_penalty, 1255 (NumCaseCluster - DefaultDestUndefined) * 1256 CaseClusterCostMultiplier * InstrCost); 1257 return; 1258 } 1259 1260 int64_t ExpectedNumberOfCompare = 1261 getExpectedNumberOfCompare(NumCaseCluster); 1262 1263 int64_t SwitchCost = 1264 ExpectedNumberOfCompare * SwitchCostMultiplier * InstrCost; 1265 increment(InlineCostFeatureIndex::switch_penalty, SwitchCost); 1266 } 1267 1268 void onMissedSimplification() override { 1269 increment(InlineCostFeatureIndex::unsimplified_common_instructions, 1270 InstrCost); 1271 } 1272 1273 void onInitializeSROAArg(AllocaInst *Arg) override { 1274 auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg); 1275 SROACosts[Arg] = SROAArgCost; 1276 SROACostSavingOpportunities += SROAArgCost; 1277 } 1278 1279 void onAggregateSROAUse(AllocaInst *Arg) override { 1280 SROACosts.find(Arg)->second += InstrCost; 1281 SROACostSavingOpportunities += InstrCost; 1282 } 1283 1284 void onBlockAnalyzed(const BasicBlock *BB) override { 1285 if (BB->getTerminator()->getNumSuccessors() > 1) 1286 set(InlineCostFeatureIndex::is_multiple_blocks, 1); 1287 Threshold -= SingleBBBonus; 1288 } 1289 1290 InlineResult finalizeAnalysis() override { 1291 auto *Caller = CandidateCall.getFunction(); 1292 if (Caller->hasMinSize()) { 1293 DominatorTree DT(F); 1294 LoopInfo LI(DT); 1295 for (Loop *L : LI) { 1296 // Ignore loops that will not be executed 1297 if (DeadBlocks.count(L->getHeader())) 1298 continue; 1299 increment(InlineCostFeatureIndex::num_loops, 1300 InlineConstants::LoopPenalty); 1301 } 1302 } 1303 set(InlineCostFeatureIndex::dead_blocks, DeadBlocks.size()); 1304 set(InlineCostFeatureIndex::simplified_instructions, 1305 NumInstructionsSimplified); 1306 set(InlineCostFeatureIndex::constant_args, NumConstantArgs); 1307 set(InlineCostFeatureIndex::constant_offset_ptr_args, 1308 NumConstantOffsetPtrArgs); 1309 set(InlineCostFeatureIndex::sroa_savings, SROACostSavingOpportunities); 1310 1311 if (NumVectorInstructions <= NumInstructions / 10) 1312 Threshold -= VectorBonus; 1313 else if (NumVectorInstructions <= NumInstructions / 2) 1314 Threshold -= VectorBonus / 2; 1315 1316 set(InlineCostFeatureIndex::threshold, Threshold); 1317 1318 return InlineResult::success(); 1319 } 1320 1321 bool shouldStop() override { return false; } 1322 1323 void onLoadEliminationOpportunity() override { 1324 increment(InlineCostFeatureIndex::load_elimination, 1); 1325 } 1326 1327 InlineResult onAnalysisStart() override { 1328 increment(InlineCostFeatureIndex::callsite_cost, 1329 -1 * getCallsiteCost(TTI, this->CandidateCall, DL)); 1330 1331 set(InlineCostFeatureIndex::cold_cc_penalty, 1332 (F.getCallingConv() == CallingConv::Cold)); 1333 1334 set(InlineCostFeatureIndex::last_call_to_static_bonus, 1335 isSoleCallToLocalFunction(CandidateCall, F)); 1336 1337 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1338 // analyzer - instead, we should abstract it to a common method in the 1339 // CallAnalyzer 1340 int SingleBBBonusPercent = 50; 1341 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1342 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1343 Threshold *= TTI.getInliningThresholdMultiplier(); 1344 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1345 VectorBonus = Threshold * VectorBonusPercent / 100; 1346 Threshold += (SingleBBBonus + VectorBonus); 1347 1348 return InlineResult::success(); 1349 } 1350 1351 public: 1352 InlineCostFeaturesAnalyzer( 1353 const TargetTransformInfo &TTI, 1354 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1355 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1356 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1357 CallBase &Call) 1358 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1359 1360 const InlineCostFeatures &features() const { return Cost; } 1361 }; 1362 1363 } // namespace 1364 1365 /// Test whether the given value is an Alloca-derived function argument. 1366 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1367 return SROAArgValues.count(V); 1368 } 1369 1370 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1371 onDisableSROA(SROAArg); 1372 EnabledSROAAllocas.erase(SROAArg); 1373 disableLoadElimination(); 1374 } 1375 1376 void InlineCostAnnotationWriter::emitInstructionAnnot( 1377 const Instruction *I, formatted_raw_ostream &OS) { 1378 // The cost of inlining of the given instruction is printed always. 1379 // The threshold delta is printed only when it is non-zero. It happens 1380 // when we decided to give a bonus at a particular instruction. 1381 std::optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1382 if (!Record) 1383 OS << "; No analysis for the instruction"; 1384 else { 1385 OS << "; cost before = " << Record->CostBefore 1386 << ", cost after = " << Record->CostAfter 1387 << ", threshold before = " << Record->ThresholdBefore 1388 << ", threshold after = " << Record->ThresholdAfter << ", "; 1389 OS << "cost delta = " << Record->getCostDelta(); 1390 if (Record->hasThresholdChanged()) 1391 OS << ", threshold delta = " << Record->getThresholdDelta(); 1392 } 1393 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1394 if (C) { 1395 OS << ", simplified to "; 1396 (*C)->print(OS, true); 1397 } 1398 OS << "\n"; 1399 } 1400 1401 /// If 'V' maps to a SROA candidate, disable SROA for it. 1402 void CallAnalyzer::disableSROA(Value *V) { 1403 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1404 disableSROAForArg(SROAArg); 1405 } 1406 } 1407 1408 void CallAnalyzer::disableLoadElimination() { 1409 if (EnableLoadElimination) { 1410 onDisableLoadElimination(); 1411 EnableLoadElimination = false; 1412 } 1413 } 1414 1415 /// Accumulate a constant GEP offset into an APInt if possible. 1416 /// 1417 /// Returns false if unable to compute the offset for any reason. Respects any 1418 /// simplified values known during the analysis of this callsite. 1419 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1420 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1421 assert(IntPtrWidth == Offset.getBitWidth()); 1422 1423 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1424 GTI != GTE; ++GTI) { 1425 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1426 if (!OpC) 1427 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1428 OpC = dyn_cast<ConstantInt>(SimpleOp); 1429 if (!OpC) 1430 return false; 1431 if (OpC->isZero()) 1432 continue; 1433 1434 // Handle a struct index, which adds its field offset to the pointer. 1435 if (StructType *STy = GTI.getStructTypeOrNull()) { 1436 unsigned ElementIdx = OpC->getZExtValue(); 1437 const StructLayout *SL = DL.getStructLayout(STy); 1438 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1439 continue; 1440 } 1441 1442 APInt TypeSize(IntPtrWidth, GTI.getSequentialElementStride(DL)); 1443 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1444 } 1445 return true; 1446 } 1447 1448 /// Use TTI to check whether a GEP is free. 1449 /// 1450 /// Respects any simplified values known during the analysis of this callsite. 1451 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1452 SmallVector<Value *, 4> Operands; 1453 Operands.push_back(GEP.getOperand(0)); 1454 for (const Use &Op : GEP.indices()) 1455 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1456 Operands.push_back(SimpleOp); 1457 else 1458 Operands.push_back(Op); 1459 return TTI.getInstructionCost(&GEP, Operands, 1460 TargetTransformInfo::TCK_SizeAndLatency) == 1461 TargetTransformInfo::TCC_Free; 1462 } 1463 1464 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1465 disableSROA(I.getOperand(0)); 1466 1467 // Check whether inlining will turn a dynamic alloca into a static 1468 // alloca and handle that case. 1469 if (I.isArrayAllocation()) { 1470 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1471 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1472 // Sometimes a dynamic alloca could be converted into a static alloca 1473 // after this constant prop, and become a huge static alloca on an 1474 // unconditional CFG path. Avoid inlining if this is going to happen above 1475 // a threshold. 1476 // FIXME: If the threshold is removed or lowered too much, we could end up 1477 // being too pessimistic and prevent inlining non-problematic code. This 1478 // could result in unintended perf regressions. A better overall strategy 1479 // is needed to track stack usage during inlining. 1480 Type *Ty = I.getAllocatedType(); 1481 AllocatedSize = SaturatingMultiplyAdd( 1482 AllocSize->getLimitedValue(), 1483 DL.getTypeAllocSize(Ty).getKnownMinValue(), AllocatedSize); 1484 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1485 HasDynamicAlloca = true; 1486 return false; 1487 } 1488 } 1489 1490 // Accumulate the allocated size. 1491 if (I.isStaticAlloca()) { 1492 Type *Ty = I.getAllocatedType(); 1493 AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinValue(), 1494 AllocatedSize); 1495 } 1496 1497 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1498 // a variety of reasons, and so we would like to not inline them into 1499 // functions which don't currently have a dynamic alloca. This simply 1500 // disables inlining altogether in the presence of a dynamic alloca. 1501 if (!I.isStaticAlloca()) 1502 HasDynamicAlloca = true; 1503 1504 return false; 1505 } 1506 1507 bool CallAnalyzer::visitPHI(PHINode &I) { 1508 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1509 // though we don't want to propagate it's bonuses. The idea is to disable 1510 // SROA if it *might* be used in an inappropriate manner. 1511 1512 // Phi nodes are always zero-cost. 1513 // FIXME: Pointer sizes may differ between different address spaces, so do we 1514 // need to use correct address space in the call to getPointerSizeInBits here? 1515 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1516 // see the ZeroOffset is used as a dummy value, so we can probably use any 1517 // bit width for the ZeroOffset? 1518 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); 1519 bool CheckSROA = I.getType()->isPointerTy(); 1520 1521 // Track the constant or pointer with constant offset we've seen so far. 1522 Constant *FirstC = nullptr; 1523 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1524 Value *FirstV = nullptr; 1525 1526 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1527 BasicBlock *Pred = I.getIncomingBlock(i); 1528 // If the incoming block is dead, skip the incoming block. 1529 if (DeadBlocks.count(Pred)) 1530 continue; 1531 // If the parent block of phi is not the known successor of the incoming 1532 // block, skip the incoming block. 1533 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1534 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1535 continue; 1536 1537 Value *V = I.getIncomingValue(i); 1538 // If the incoming value is this phi itself, skip the incoming value. 1539 if (&I == V) 1540 continue; 1541 1542 Constant *C = dyn_cast<Constant>(V); 1543 if (!C) 1544 C = SimplifiedValues.lookup(V); 1545 1546 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1547 if (!C && CheckSROA) 1548 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1549 1550 if (!C && !BaseAndOffset.first) 1551 // The incoming value is neither a constant nor a pointer with constant 1552 // offset, exit early. 1553 return true; 1554 1555 if (FirstC) { 1556 if (FirstC == C) 1557 // If we've seen a constant incoming value before and it is the same 1558 // constant we see this time, continue checking the next incoming value. 1559 continue; 1560 // Otherwise early exit because we either see a different constant or saw 1561 // a constant before but we have a pointer with constant offset this time. 1562 return true; 1563 } 1564 1565 if (FirstV) { 1566 // The same logic as above, but check pointer with constant offset here. 1567 if (FirstBaseAndOffset == BaseAndOffset) 1568 continue; 1569 return true; 1570 } 1571 1572 if (C) { 1573 // This is the 1st time we've seen a constant, record it. 1574 FirstC = C; 1575 continue; 1576 } 1577 1578 // The remaining case is that this is the 1st time we've seen a pointer with 1579 // constant offset, record it. 1580 FirstV = V; 1581 FirstBaseAndOffset = BaseAndOffset; 1582 } 1583 1584 // Check if we can map phi to a constant. 1585 if (FirstC) { 1586 SimplifiedValues[&I] = FirstC; 1587 return true; 1588 } 1589 1590 // Check if we can map phi to a pointer with constant offset. 1591 if (FirstBaseAndOffset.first) { 1592 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1593 1594 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1595 SROAArgValues[&I] = SROAArg; 1596 } 1597 1598 return true; 1599 } 1600 1601 /// Check we can fold GEPs of constant-offset call site argument pointers. 1602 /// This requires target data and inbounds GEPs. 1603 /// 1604 /// \return true if the specified GEP can be folded. 1605 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1606 // Check if we have a base + offset for the pointer. 1607 std::pair<Value *, APInt> BaseAndOffset = 1608 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1609 if (!BaseAndOffset.first) 1610 return false; 1611 1612 // Check if the offset of this GEP is constant, and if so accumulate it 1613 // into Offset. 1614 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1615 return false; 1616 1617 // Add the result as a new mapping to Base + Offset. 1618 ConstantOffsetPtrs[&I] = BaseAndOffset; 1619 1620 return true; 1621 } 1622 1623 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1624 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1625 1626 // Lambda to check whether a GEP's indices are all constant. 1627 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1628 for (const Use &Op : GEP.indices()) 1629 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1630 return false; 1631 return true; 1632 }; 1633 1634 if (!DisableGEPConstOperand) 1635 if (simplifyInstruction(I)) 1636 return true; 1637 1638 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1639 if (SROAArg) 1640 SROAArgValues[&I] = SROAArg; 1641 1642 // Constant GEPs are modeled as free. 1643 return true; 1644 } 1645 1646 // Variable GEPs will require math and will disable SROA. 1647 if (SROAArg) 1648 disableSROAForArg(SROAArg); 1649 return isGEPFree(I); 1650 } 1651 1652 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1653 bool CallAnalyzer::simplifyInstruction(Instruction &I) { 1654 SmallVector<Constant *> COps; 1655 for (Value *Op : I.operands()) { 1656 Constant *COp = dyn_cast<Constant>(Op); 1657 if (!COp) 1658 COp = SimplifiedValues.lookup(Op); 1659 if (!COp) 1660 return false; 1661 COps.push_back(COp); 1662 } 1663 auto *C = ConstantFoldInstOperands(&I, COps, DL); 1664 if (!C) 1665 return false; 1666 SimplifiedValues[&I] = C; 1667 return true; 1668 } 1669 1670 /// Try to simplify a call to llvm.is.constant. 1671 /// 1672 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since 1673 /// we expect calls of this specific intrinsic to be infrequent. 1674 /// 1675 /// FIXME: Given that we know CB's parent (F) caller 1676 /// (CandidateCall->getParent()->getParent()), we might be able to determine 1677 /// whether inlining F into F's caller would change how the call to 1678 /// llvm.is.constant would evaluate. 1679 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { 1680 Value *Arg = CB.getArgOperand(0); 1681 auto *C = dyn_cast<Constant>(Arg); 1682 1683 if (!C) 1684 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg)); 1685 1686 Type *RT = CB.getFunctionType()->getReturnType(); 1687 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); 1688 return true; 1689 } 1690 1691 bool CallAnalyzer::simplifyIntrinsicCallObjectSize(CallBase &CB) { 1692 // As per the langref, "The fourth argument to llvm.objectsize determines if 1693 // the value should be evaluated at runtime." 1694 if (cast<ConstantInt>(CB.getArgOperand(3))->isOne()) 1695 return false; 1696 1697 Value *V = lowerObjectSizeCall(&cast<IntrinsicInst>(CB), DL, nullptr, 1698 /*MustSucceed=*/true); 1699 Constant *C = dyn_cast_or_null<Constant>(V); 1700 if (C) 1701 SimplifiedValues[&CB] = C; 1702 return C; 1703 } 1704 1705 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1706 // Propagate constants through bitcasts. 1707 if (simplifyInstruction(I)) 1708 return true; 1709 1710 // Track base/offsets through casts 1711 std::pair<Value *, APInt> BaseAndOffset = 1712 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1713 // Casts don't change the offset, just wrap it up. 1714 if (BaseAndOffset.first) 1715 ConstantOffsetPtrs[&I] = BaseAndOffset; 1716 1717 // Also look for SROA candidates here. 1718 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1719 SROAArgValues[&I] = SROAArg; 1720 1721 // Bitcasts are always zero cost. 1722 return true; 1723 } 1724 1725 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1726 // Propagate constants through ptrtoint. 1727 if (simplifyInstruction(I)) 1728 return true; 1729 1730 // Track base/offset pairs when converted to a plain integer provided the 1731 // integer is large enough to represent the pointer. 1732 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1733 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1734 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1735 std::pair<Value *, APInt> BaseAndOffset = 1736 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1737 if (BaseAndOffset.first) 1738 ConstantOffsetPtrs[&I] = BaseAndOffset; 1739 } 1740 1741 // This is really weird. Technically, ptrtoint will disable SROA. However, 1742 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1743 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1744 // would block SROA would also block SROA if applied directly to a pointer, 1745 // and so we can just add the integer in here. The only places where SROA is 1746 // preserved either cannot fire on an integer, or won't in-and-of themselves 1747 // disable SROA (ext) w/o some later use that we would see and disable. 1748 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1749 SROAArgValues[&I] = SROAArg; 1750 1751 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1752 TargetTransformInfo::TCC_Free; 1753 } 1754 1755 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1756 // Propagate constants through ptrtoint. 1757 if (simplifyInstruction(I)) 1758 return true; 1759 1760 // Track base/offset pairs when round-tripped through a pointer without 1761 // modifications provided the integer is not too large. 1762 Value *Op = I.getOperand(0); 1763 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1764 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1765 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1766 if (BaseAndOffset.first) 1767 ConstantOffsetPtrs[&I] = BaseAndOffset; 1768 } 1769 1770 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1771 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1772 SROAArgValues[&I] = SROAArg; 1773 1774 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1775 TargetTransformInfo::TCC_Free; 1776 } 1777 1778 bool CallAnalyzer::visitCastInst(CastInst &I) { 1779 // Propagate constants through casts. 1780 if (simplifyInstruction(I)) 1781 return true; 1782 1783 // Disable SROA in the face of arbitrary casts we don't explicitly list 1784 // elsewhere. 1785 disableSROA(I.getOperand(0)); 1786 1787 // If this is a floating-point cast, and the target says this operation 1788 // is expensive, this may eventually become a library call. Treat the cost 1789 // as such. 1790 switch (I.getOpcode()) { 1791 case Instruction::FPTrunc: 1792 case Instruction::FPExt: 1793 case Instruction::UIToFP: 1794 case Instruction::SIToFP: 1795 case Instruction::FPToUI: 1796 case Instruction::FPToSI: 1797 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1798 onCallPenalty(); 1799 break; 1800 default: 1801 break; 1802 } 1803 1804 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1805 TargetTransformInfo::TCC_Free; 1806 } 1807 1808 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1809 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1810 } 1811 1812 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1813 // Does the *call site* have the NonNull attribute set on an argument? We 1814 // use the attribute on the call site to memoize any analysis done in the 1815 // caller. This will also trip if the callee function has a non-null 1816 // parameter attribute, but that's a less interesting case because hopefully 1817 // the callee would already have been simplified based on that. 1818 if (Argument *A = dyn_cast<Argument>(V)) 1819 if (paramHasAttr(A, Attribute::NonNull)) 1820 return true; 1821 1822 // Is this an alloca in the caller? This is distinct from the attribute case 1823 // above because attributes aren't updated within the inliner itself and we 1824 // always want to catch the alloca derived case. 1825 if (isAllocaDerivedArg(V)) 1826 // We can actually predict the result of comparisons between an 1827 // alloca-derived value and null. Note that this fires regardless of 1828 // SROA firing. 1829 return true; 1830 1831 return false; 1832 } 1833 1834 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1835 // If the normal destination of the invoke or the parent block of the call 1836 // site is unreachable-terminated, there is little point in inlining this 1837 // unless there is literally zero cost. 1838 // FIXME: Note that it is possible that an unreachable-terminated block has a 1839 // hot entry. For example, in below scenario inlining hot_call_X() may be 1840 // beneficial : 1841 // main() { 1842 // hot_call_1(); 1843 // ... 1844 // hot_call_N() 1845 // exit(0); 1846 // } 1847 // For now, we are not handling this corner case here as it is rare in real 1848 // code. In future, we should elaborate this based on BPI and BFI in more 1849 // general threshold adjusting heuristics in updateThreshold(). 1850 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1851 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1852 return false; 1853 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1854 return false; 1855 1856 return true; 1857 } 1858 1859 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1860 BlockFrequencyInfo *CallerBFI) { 1861 // If global profile summary is available, then callsite's coldness is 1862 // determined based on that. 1863 if (PSI && PSI->hasProfileSummary()) 1864 return PSI->isColdCallSite(Call, CallerBFI); 1865 1866 // Otherwise we need BFI to be available. 1867 if (!CallerBFI) 1868 return false; 1869 1870 // Determine if the callsite is cold relative to caller's entry. We could 1871 // potentially cache the computation of scaled entry frequency, but the added 1872 // complexity is not worth it unless this scaling shows up high in the 1873 // profiles. 1874 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1875 auto CallSiteBB = Call.getParent(); 1876 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1877 auto CallerEntryFreq = 1878 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1879 return CallSiteFreq < CallerEntryFreq * ColdProb; 1880 } 1881 1882 std::optional<int> 1883 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1884 BlockFrequencyInfo *CallerBFI) { 1885 1886 // If global profile summary is available, then callsite's hotness is 1887 // determined based on that. 1888 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1889 return Params.HotCallSiteThreshold; 1890 1891 // Otherwise we need BFI to be available and to have a locally hot callsite 1892 // threshold. 1893 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1894 return std::nullopt; 1895 1896 // Determine if the callsite is hot relative to caller's entry. We could 1897 // potentially cache the computation of scaled entry frequency, but the added 1898 // complexity is not worth it unless this scaling shows up high in the 1899 // profiles. 1900 const BasicBlock *CallSiteBB = Call.getParent(); 1901 BlockFrequency CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1902 BlockFrequency CallerEntryFreq = CallerBFI->getEntryFreq(); 1903 std::optional<BlockFrequency> Limit = CallerEntryFreq.mul(HotCallSiteRelFreq); 1904 if (Limit && CallSiteFreq >= *Limit) 1905 return Params.LocallyHotCallSiteThreshold; 1906 1907 // Otherwise treat it normally. 1908 return std::nullopt; 1909 } 1910 1911 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1912 // If no size growth is allowed for this inlining, set Threshold to 0. 1913 if (!allowSizeGrowth(Call)) { 1914 Threshold = 0; 1915 return; 1916 } 1917 1918 Function *Caller = Call.getCaller(); 1919 1920 // return min(A, B) if B is valid. 1921 auto MinIfValid = [](int A, std::optional<int> B) { 1922 return B ? std::min(A, *B) : A; 1923 }; 1924 1925 // return max(A, B) if B is valid. 1926 auto MaxIfValid = [](int A, std::optional<int> B) { 1927 return B ? std::max(A, *B) : A; 1928 }; 1929 1930 // Various bonus percentages. These are multiplied by Threshold to get the 1931 // bonus values. 1932 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1933 // basic block at the given callsite context. This is speculatively applied 1934 // and withdrawn if more than one basic block is seen. 1935 // 1936 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1937 // of the last call to a static function as inlining such functions is 1938 // guaranteed to reduce code size. 1939 // 1940 // These bonus percentages may be set to 0 based on properties of the caller 1941 // and the callsite. 1942 int SingleBBBonusPercent = 50; 1943 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1944 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1945 1946 // Lambda to set all the above bonus and bonus percentages to 0. 1947 auto DisallowAllBonuses = [&]() { 1948 SingleBBBonusPercent = 0; 1949 VectorBonusPercent = 0; 1950 LastCallToStaticBonus = 0; 1951 }; 1952 1953 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1954 // and reduce the threshold if the caller has the necessary attribute. 1955 if (Caller->hasMinSize()) { 1956 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1957 // For minsize, we want to disable the single BB bonus and the vector 1958 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1959 // a static function will, at the minimum, eliminate the parameter setup and 1960 // call/return instructions. 1961 SingleBBBonusPercent = 0; 1962 VectorBonusPercent = 0; 1963 } else if (Caller->hasOptSize()) 1964 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1965 1966 // Adjust the threshold based on inlinehint attribute and profile based 1967 // hotness information if the caller does not have MinSize attribute. 1968 if (!Caller->hasMinSize()) { 1969 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1970 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1971 1972 // FIXME: After switching to the new passmanager, simplify the logic below 1973 // by checking only the callsite hotness/coldness as we will reliably 1974 // have local profile information. 1975 // 1976 // Callsite hotness and coldness can be determined if sample profile is 1977 // used (which adds hotness metadata to calls) or if caller's 1978 // BlockFrequencyInfo is available. 1979 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1980 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1981 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1982 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1983 // FIXME: This should update the threshold only if it exceeds the 1984 // current threshold, but AutoFDO + ThinLTO currently relies on this 1985 // behavior to prevent inlining of hot callsites during ThinLTO 1986 // compile phase. 1987 Threshold = *HotCallSiteThreshold; 1988 } else if (isColdCallSite(Call, CallerBFI)) { 1989 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1990 // Do not apply bonuses for a cold callsite including the 1991 // LastCallToStatic bonus. While this bonus might result in code size 1992 // reduction, it can cause the size of a non-cold caller to increase 1993 // preventing it from being inlined. 1994 DisallowAllBonuses(); 1995 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1996 } else if (PSI) { 1997 // Use callee's global profile information only if we have no way of 1998 // determining this via callsite information. 1999 if (PSI->isFunctionEntryHot(&Callee)) { 2000 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 2001 // If callsite hotness can not be determined, we may still know 2002 // that the callee is hot and treat it as a weaker hint for threshold 2003 // increase. 2004 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 2005 } else if (PSI->isFunctionEntryCold(&Callee)) { 2006 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 2007 // Do not apply bonuses for a cold callee including the 2008 // LastCallToStatic bonus. While this bonus might result in code size 2009 // reduction, it can cause the size of a non-cold caller to increase 2010 // preventing it from being inlined. 2011 DisallowAllBonuses(); 2012 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 2013 } 2014 } 2015 } 2016 2017 Threshold += TTI.adjustInliningThreshold(&Call); 2018 2019 // Finally, take the target-specific inlining threshold multiplier into 2020 // account. 2021 Threshold *= TTI.getInliningThresholdMultiplier(); 2022 2023 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 2024 VectorBonus = Threshold * VectorBonusPercent / 100; 2025 2026 // If there is only one call of the function, and it has internal linkage, 2027 // the cost of inlining it drops dramatically. It may seem odd to update 2028 // Cost in updateThreshold, but the bonus depends on the logic in this method. 2029 if (isSoleCallToLocalFunction(Call, F)) { 2030 Cost -= LastCallToStaticBonus; 2031 StaticBonusApplied = LastCallToStaticBonus; 2032 } 2033 } 2034 2035 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 2036 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 2037 // First try to handle simplified comparisons. 2038 if (simplifyInstruction(I)) 2039 return true; 2040 2041 if (I.getOpcode() == Instruction::FCmp) 2042 return false; 2043 2044 // Otherwise look for a comparison between constant offset pointers with 2045 // a common base. 2046 Value *LHSBase, *RHSBase; 2047 APInt LHSOffset, RHSOffset; 2048 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 2049 if (LHSBase) { 2050 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 2051 if (RHSBase && LHSBase == RHSBase) { 2052 // We have common bases, fold the icmp to a constant based on the 2053 // offsets. 2054 SimplifiedValues[&I] = ConstantInt::getBool( 2055 I.getType(), 2056 ICmpInst::compare(LHSOffset, RHSOffset, I.getPredicate())); 2057 ++NumConstantPtrCmps; 2058 return true; 2059 } 2060 } 2061 2062 auto isImplicitNullCheckCmp = [](const CmpInst &I) { 2063 for (auto *User : I.users()) 2064 if (auto *Instr = dyn_cast<Instruction>(User)) 2065 if (!Instr->getMetadata(LLVMContext::MD_make_implicit)) 2066 return false; 2067 return true; 2068 }; 2069 2070 // If the comparison is an equality comparison with null, we can simplify it 2071 // if we know the value (argument) can't be null 2072 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) { 2073 if (isKnownNonNullInCallee(I.getOperand(0))) { 2074 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 2075 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 2076 : ConstantInt::getFalse(I.getType()); 2077 return true; 2078 } 2079 // Implicit null checks act as unconditional branches and their comparisons 2080 // should be treated as simplified and free of cost. 2081 if (isImplicitNullCheckCmp(I)) 2082 return true; 2083 } 2084 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 2085 } 2086 2087 bool CallAnalyzer::visitSub(BinaryOperator &I) { 2088 // Try to handle a special case: we can fold computing the difference of two 2089 // constant-related pointers. 2090 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 2091 Value *LHSBase, *RHSBase; 2092 APInt LHSOffset, RHSOffset; 2093 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 2094 if (LHSBase) { 2095 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 2096 if (RHSBase && LHSBase == RHSBase) { 2097 // We have common bases, fold the subtract to a constant based on the 2098 // offsets. 2099 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 2100 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 2101 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 2102 SimplifiedValues[&I] = C; 2103 ++NumConstantPtrDiffs; 2104 return true; 2105 } 2106 } 2107 } 2108 2109 // Otherwise, fall back to the generic logic for simplifying and handling 2110 // instructions. 2111 return Base::visitSub(I); 2112 } 2113 2114 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 2115 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 2116 Constant *CLHS = dyn_cast<Constant>(LHS); 2117 if (!CLHS) 2118 CLHS = SimplifiedValues.lookup(LHS); 2119 Constant *CRHS = dyn_cast<Constant>(RHS); 2120 if (!CRHS) 2121 CRHS = SimplifiedValues.lookup(RHS); 2122 2123 Value *SimpleV = nullptr; 2124 if (auto FI = dyn_cast<FPMathOperator>(&I)) 2125 SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 2126 FI->getFastMathFlags(), DL); 2127 else 2128 SimpleV = 2129 simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 2130 2131 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2132 SimplifiedValues[&I] = C; 2133 2134 if (SimpleV) 2135 return true; 2136 2137 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 2138 disableSROA(LHS); 2139 disableSROA(RHS); 2140 2141 // If the instruction is floating point, and the target says this operation 2142 // is expensive, this may eventually become a library call. Treat the cost 2143 // as such. Unless it's fneg which can be implemented with an xor. 2144 using namespace llvm::PatternMatch; 2145 if (I.getType()->isFloatingPointTy() && 2146 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 2147 !match(&I, m_FNeg(m_Value()))) 2148 onCallPenalty(); 2149 2150 return false; 2151 } 2152 2153 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 2154 Value *Op = I.getOperand(0); 2155 Constant *COp = dyn_cast<Constant>(Op); 2156 if (!COp) 2157 COp = SimplifiedValues.lookup(Op); 2158 2159 Value *SimpleV = simplifyFNegInst( 2160 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 2161 2162 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2163 SimplifiedValues[&I] = C; 2164 2165 if (SimpleV) 2166 return true; 2167 2168 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 2169 disableSROA(Op); 2170 2171 return false; 2172 } 2173 2174 bool CallAnalyzer::visitLoad(LoadInst &I) { 2175 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2176 return true; 2177 2178 // If the data is already loaded from this address and hasn't been clobbered 2179 // by any stores or calls, this load is likely to be redundant and can be 2180 // eliminated. 2181 if (EnableLoadElimination && 2182 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2183 onLoadEliminationOpportunity(); 2184 return true; 2185 } 2186 2187 onMemAccess(); 2188 return false; 2189 } 2190 2191 bool CallAnalyzer::visitStore(StoreInst &I) { 2192 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2193 return true; 2194 2195 // The store can potentially clobber loads and prevent repeated loads from 2196 // being eliminated. 2197 // FIXME: 2198 // 1. We can probably keep an initial set of eliminatable loads substracted 2199 // from the cost even when we finally see a store. We just need to disable 2200 // *further* accumulation of elimination savings. 2201 // 2. We should probably at some point thread MemorySSA for the callee into 2202 // this and then use that to actually compute *really* precise savings. 2203 disableLoadElimination(); 2204 2205 onMemAccess(); 2206 return false; 2207 } 2208 2209 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2210 // Constant folding for extract value is trivial. 2211 if (simplifyInstruction(I)) 2212 return true; 2213 2214 // SROA can't look through these, but they may be free. 2215 return Base::visitExtractValue(I); 2216 } 2217 2218 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2219 // Constant folding for insert value is trivial. 2220 if (simplifyInstruction(I)) 2221 return true; 2222 2223 // SROA can't look through these, but they may be free. 2224 return Base::visitInsertValue(I); 2225 } 2226 2227 /// Try to simplify a call site. 2228 /// 2229 /// Takes a concrete function and callsite and tries to actually simplify it by 2230 /// analyzing the arguments and call itself with instsimplify. Returns true if 2231 /// it has simplified the callsite to some other entity (a constant), making it 2232 /// free. 2233 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2234 // FIXME: Using the instsimplify logic directly for this is inefficient 2235 // because we have to continually rebuild the argument list even when no 2236 // simplifications can be performed. Until that is fixed with remapping 2237 // inside of instsimplify, directly constant fold calls here. 2238 if (!canConstantFoldCallTo(&Call, F)) 2239 return false; 2240 2241 // Try to re-map the arguments to constants. 2242 SmallVector<Constant *, 4> ConstantArgs; 2243 ConstantArgs.reserve(Call.arg_size()); 2244 for (Value *I : Call.args()) { 2245 Constant *C = dyn_cast<Constant>(I); 2246 if (!C) 2247 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2248 if (!C) 2249 return false; // This argument doesn't map to a constant. 2250 2251 ConstantArgs.push_back(C); 2252 } 2253 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2254 SimplifiedValues[&Call] = C; 2255 return true; 2256 } 2257 2258 return false; 2259 } 2260 2261 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2262 if (!onCallBaseVisitStart(Call)) 2263 return true; 2264 2265 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2266 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2267 // This aborts the entire analysis. 2268 ExposesReturnsTwice = true; 2269 return false; 2270 } 2271 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2272 ContainsNoDuplicateCall = true; 2273 2274 Function *F = Call.getCalledFunction(); 2275 bool IsIndirectCall = !F; 2276 if (IsIndirectCall) { 2277 // Check if this happens to be an indirect function call to a known function 2278 // in this inline context. If not, we've done all we can. 2279 Value *Callee = Call.getCalledOperand(); 2280 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2281 if (!F || F->getFunctionType() != Call.getFunctionType()) { 2282 onCallArgumentSetup(Call); 2283 2284 if (!Call.onlyReadsMemory()) 2285 disableLoadElimination(); 2286 return Base::visitCallBase(Call); 2287 } 2288 } 2289 2290 assert(F && "Expected a call to a known function"); 2291 2292 // When we have a concrete function, first try to simplify it directly. 2293 if (simplifyCallSite(F, Call)) 2294 return true; 2295 2296 // Next check if it is an intrinsic we know about. 2297 // FIXME: Lift this into part of the InstVisitor. 2298 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2299 switch (II->getIntrinsicID()) { 2300 default: 2301 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2302 disableLoadElimination(); 2303 return Base::visitCallBase(Call); 2304 2305 case Intrinsic::load_relative: 2306 onLoadRelativeIntrinsic(); 2307 return false; 2308 2309 case Intrinsic::memset: 2310 case Intrinsic::memcpy: 2311 case Intrinsic::memmove: 2312 disableLoadElimination(); 2313 // SROA can usually chew through these intrinsics, but they aren't free. 2314 return false; 2315 case Intrinsic::icall_branch_funnel: 2316 case Intrinsic::localescape: 2317 HasUninlineableIntrinsic = true; 2318 return false; 2319 case Intrinsic::vastart: 2320 InitsVargArgs = true; 2321 return false; 2322 case Intrinsic::launder_invariant_group: 2323 case Intrinsic::strip_invariant_group: 2324 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2325 SROAArgValues[II] = SROAArg; 2326 return true; 2327 case Intrinsic::is_constant: 2328 return simplifyIntrinsicCallIsConstant(Call); 2329 case Intrinsic::objectsize: 2330 return simplifyIntrinsicCallObjectSize(Call); 2331 } 2332 } 2333 2334 if (F == Call.getFunction()) { 2335 // This flag will fully abort the analysis, so don't bother with anything 2336 // else. 2337 IsRecursiveCall = true; 2338 if (!AllowRecursiveCall) 2339 return false; 2340 } 2341 2342 if (TTI.isLoweredToCall(F)) { 2343 onLoweredCall(F, Call, IsIndirectCall); 2344 } 2345 2346 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2347 disableLoadElimination(); 2348 return Base::visitCallBase(Call); 2349 } 2350 2351 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2352 // At least one return instruction will be free after inlining. 2353 bool Free = !HasReturn; 2354 HasReturn = true; 2355 return Free; 2356 } 2357 2358 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2359 // We model unconditional branches as essentially free -- they really 2360 // shouldn't exist at all, but handling them makes the behavior of the 2361 // inliner more regular and predictable. Interestingly, conditional branches 2362 // which will fold away are also free. 2363 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2364 BI.getMetadata(LLVMContext::MD_make_implicit) || 2365 isa_and_nonnull<ConstantInt>( 2366 SimplifiedValues.lookup(BI.getCondition())); 2367 } 2368 2369 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2370 bool CheckSROA = SI.getType()->isPointerTy(); 2371 Value *TrueVal = SI.getTrueValue(); 2372 Value *FalseVal = SI.getFalseValue(); 2373 2374 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2375 if (!TrueC) 2376 TrueC = SimplifiedValues.lookup(TrueVal); 2377 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2378 if (!FalseC) 2379 FalseC = SimplifiedValues.lookup(FalseVal); 2380 Constant *CondC = 2381 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2382 2383 if (!CondC) { 2384 // Select C, X, X => X 2385 if (TrueC == FalseC && TrueC) { 2386 SimplifiedValues[&SI] = TrueC; 2387 return true; 2388 } 2389 2390 if (!CheckSROA) 2391 return Base::visitSelectInst(SI); 2392 2393 std::pair<Value *, APInt> TrueBaseAndOffset = 2394 ConstantOffsetPtrs.lookup(TrueVal); 2395 std::pair<Value *, APInt> FalseBaseAndOffset = 2396 ConstantOffsetPtrs.lookup(FalseVal); 2397 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2398 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2399 2400 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2401 SROAArgValues[&SI] = SROAArg; 2402 return true; 2403 } 2404 2405 return Base::visitSelectInst(SI); 2406 } 2407 2408 // Select condition is a constant. 2409 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2410 : (CondC->isNullValue()) ? FalseVal 2411 : nullptr; 2412 if (!SelectedV) { 2413 // Condition is a vector constant that is not all 1s or all 0s. If all 2414 // operands are constants, ConstantFoldSelectInstruction() can handle the 2415 // cases such as select vectors. 2416 if (TrueC && FalseC) { 2417 if (auto *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) { 2418 SimplifiedValues[&SI] = C; 2419 return true; 2420 } 2421 } 2422 return Base::visitSelectInst(SI); 2423 } 2424 2425 // Condition is either all 1s or all 0s. SI can be simplified. 2426 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2427 SimplifiedValues[&SI] = SelectedC; 2428 return true; 2429 } 2430 2431 if (!CheckSROA) 2432 return true; 2433 2434 std::pair<Value *, APInt> BaseAndOffset = 2435 ConstantOffsetPtrs.lookup(SelectedV); 2436 if (BaseAndOffset.first) { 2437 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2438 2439 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2440 SROAArgValues[&SI] = SROAArg; 2441 } 2442 2443 return true; 2444 } 2445 2446 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2447 // We model unconditional switches as free, see the comments on handling 2448 // branches. 2449 if (isa<ConstantInt>(SI.getCondition())) 2450 return true; 2451 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2452 if (isa<ConstantInt>(V)) 2453 return true; 2454 2455 // Assume the most general case where the switch is lowered into 2456 // either a jump table, bit test, or a balanced binary tree consisting of 2457 // case clusters without merging adjacent clusters with the same 2458 // destination. We do not consider the switches that are lowered with a mix 2459 // of jump table/bit test/binary search tree. The cost of the switch is 2460 // proportional to the size of the tree or the size of jump table range. 2461 // 2462 // NB: We convert large switches which are just used to initialize large phi 2463 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2464 // inlining those. It will prevent inlining in cases where the optimization 2465 // does not (yet) fire. 2466 2467 unsigned JumpTableSize = 0; 2468 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2469 unsigned NumCaseCluster = 2470 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2471 2472 onFinalizeSwitch(JumpTableSize, NumCaseCluster, SI.defaultDestUndefined()); 2473 return false; 2474 } 2475 2476 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2477 // We never want to inline functions that contain an indirectbr. This is 2478 // incorrect because all the blockaddress's (in static global initializers 2479 // for example) would be referring to the original function, and this 2480 // indirect jump would jump from the inlined copy of the function into the 2481 // original function which is extremely undefined behavior. 2482 // FIXME: This logic isn't really right; we can safely inline functions with 2483 // indirectbr's as long as no other function or global references the 2484 // blockaddress of a block within the current function. 2485 HasIndirectBr = true; 2486 return false; 2487 } 2488 2489 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2490 // FIXME: It's not clear that a single instruction is an accurate model for 2491 // the inline cost of a resume instruction. 2492 return false; 2493 } 2494 2495 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2496 // FIXME: It's not clear that a single instruction is an accurate model for 2497 // the inline cost of a cleanupret instruction. 2498 return false; 2499 } 2500 2501 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2502 // FIXME: It's not clear that a single instruction is an accurate model for 2503 // the inline cost of a catchret instruction. 2504 return false; 2505 } 2506 2507 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2508 // FIXME: It might be reasonably to discount the cost of instructions leading 2509 // to unreachable as they have the lowest possible impact on both runtime and 2510 // code size. 2511 return true; // No actual code is needed for unreachable. 2512 } 2513 2514 bool CallAnalyzer::visitInstruction(Instruction &I) { 2515 // Some instructions are free. All of the free intrinsics can also be 2516 // handled by SROA, etc. 2517 if (TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2518 TargetTransformInfo::TCC_Free) 2519 return true; 2520 2521 // We found something we don't understand or can't handle. Mark any SROA-able 2522 // values in the operand list as no longer viable. 2523 for (const Use &Op : I.operands()) 2524 disableSROA(Op); 2525 2526 return false; 2527 } 2528 2529 /// Analyze a basic block for its contribution to the inline cost. 2530 /// 2531 /// This method walks the analyzer over every instruction in the given basic 2532 /// block and accounts for their cost during inlining at this callsite. It 2533 /// aborts early if the threshold has been exceeded or an impossible to inline 2534 /// construct has been detected. It returns false if inlining is no longer 2535 /// viable, and true if inlining remains viable. 2536 InlineResult 2537 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2538 SmallPtrSetImpl<const Value *> &EphValues) { 2539 for (Instruction &I : *BB) { 2540 // FIXME: Currently, the number of instructions in a function regardless of 2541 // our ability to simplify them during inline to constants or dead code, 2542 // are actually used by the vector bonus heuristic. As long as that's true, 2543 // we have to special case debug intrinsics here to prevent differences in 2544 // inlining due to debug symbols. Eventually, the number of unsimplified 2545 // instructions shouldn't factor into the cost computation, but until then, 2546 // hack around it here. 2547 // Similarly, skip pseudo-probes. 2548 if (I.isDebugOrPseudoInst()) 2549 continue; 2550 2551 // Skip ephemeral values. 2552 if (EphValues.count(&I)) 2553 continue; 2554 2555 ++NumInstructions; 2556 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2557 ++NumVectorInstructions; 2558 2559 // If the instruction simplified to a constant, there is no cost to this 2560 // instruction. Visit the instructions using our InstVisitor to account for 2561 // all of the per-instruction logic. The visit tree returns true if we 2562 // consumed the instruction in any way, and false if the instruction's base 2563 // cost should count against inlining. 2564 onInstructionAnalysisStart(&I); 2565 2566 if (Base::visit(&I)) 2567 ++NumInstructionsSimplified; 2568 else 2569 onMissedSimplification(); 2570 2571 onInstructionAnalysisFinish(&I); 2572 using namespace ore; 2573 // If the visit this instruction detected an uninlinable pattern, abort. 2574 InlineResult IR = InlineResult::success(); 2575 if (IsRecursiveCall && !AllowRecursiveCall) 2576 IR = InlineResult::failure("recursive"); 2577 else if (ExposesReturnsTwice) 2578 IR = InlineResult::failure("exposes returns twice"); 2579 else if (HasDynamicAlloca) 2580 IR = InlineResult::failure("dynamic alloca"); 2581 else if (HasIndirectBr) 2582 IR = InlineResult::failure("indirect branch"); 2583 else if (HasUninlineableIntrinsic) 2584 IR = InlineResult::failure("uninlinable intrinsic"); 2585 else if (InitsVargArgs) 2586 IR = InlineResult::failure("varargs"); 2587 if (!IR.isSuccess()) { 2588 if (ORE) 2589 ORE->emit([&]() { 2590 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2591 &CandidateCall) 2592 << NV("Callee", &F) << " has uninlinable pattern (" 2593 << NV("InlineResult", IR.getFailureReason()) 2594 << ") and cost is not fully computed"; 2595 }); 2596 return IR; 2597 } 2598 2599 // If the caller is a recursive function then we don't want to inline 2600 // functions which allocate a lot of stack space because it would increase 2601 // the caller stack usage dramatically. 2602 if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) { 2603 auto IR = 2604 InlineResult::failure("recursive and allocates too much stack space"); 2605 if (ORE) 2606 ORE->emit([&]() { 2607 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2608 &CandidateCall) 2609 << NV("Callee", &F) << " is " 2610 << NV("InlineResult", IR.getFailureReason()) 2611 << ". Cost is not fully computed"; 2612 }); 2613 return IR; 2614 } 2615 2616 if (shouldStop()) 2617 return InlineResult::failure( 2618 "Call site analysis is not favorable to inlining."); 2619 } 2620 2621 return InlineResult::success(); 2622 } 2623 2624 /// Compute the base pointer and cumulative constant offsets for V. 2625 /// 2626 /// This strips all constant offsets off of V, leaving it the base pointer, and 2627 /// accumulates the total constant offset applied in the returned constant. It 2628 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2629 /// no constant offsets applied. 2630 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2631 if (!V->getType()->isPointerTy()) 2632 return nullptr; 2633 2634 unsigned AS = V->getType()->getPointerAddressSpace(); 2635 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2636 APInt Offset = APInt::getZero(IntPtrWidth); 2637 2638 // Even though we don't look through PHI nodes, we could be called on an 2639 // instruction in an unreachable block, which may be on a cycle. 2640 SmallPtrSet<Value *, 4> Visited; 2641 Visited.insert(V); 2642 do { 2643 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2644 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2645 return nullptr; 2646 V = GEP->getPointerOperand(); 2647 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2648 if (GA->isInterposable()) 2649 break; 2650 V = GA->getAliasee(); 2651 } else { 2652 break; 2653 } 2654 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2655 } while (Visited.insert(V).second); 2656 2657 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2658 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2659 } 2660 2661 /// Find dead blocks due to deleted CFG edges during inlining. 2662 /// 2663 /// If we know the successor of the current block, \p CurrBB, has to be \p 2664 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2665 /// no live incoming CFG edges. If one block is found to be dead, we can 2666 /// continue growing the dead block list by checking the successors of the dead 2667 /// blocks to see if all their incoming edges are dead or not. 2668 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2669 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2670 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2671 // known successor which is not the one under exam. 2672 return (DeadBlocks.count(Pred) || 2673 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2674 }; 2675 2676 auto IsNewlyDead = [&](BasicBlock *BB) { 2677 // If all the edges to a block are dead, the block is also dead. 2678 return (!DeadBlocks.count(BB) && 2679 llvm::all_of(predecessors(BB), 2680 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2681 }; 2682 2683 for (BasicBlock *Succ : successors(CurrBB)) { 2684 if (Succ == NextBB || !IsNewlyDead(Succ)) 2685 continue; 2686 SmallVector<BasicBlock *, 4> NewDead; 2687 NewDead.push_back(Succ); 2688 while (!NewDead.empty()) { 2689 BasicBlock *Dead = NewDead.pop_back_val(); 2690 if (DeadBlocks.insert(Dead).second) 2691 // Continue growing the dead block lists. 2692 for (BasicBlock *S : successors(Dead)) 2693 if (IsNewlyDead(S)) 2694 NewDead.push_back(S); 2695 } 2696 } 2697 } 2698 2699 /// Analyze a call site for potential inlining. 2700 /// 2701 /// Returns true if inlining this call is viable, and false if it is not 2702 /// viable. It computes the cost and adjusts the threshold based on numerous 2703 /// factors and heuristics. If this method returns false but the computed cost 2704 /// is below the computed threshold, then inlining was forcibly disabled by 2705 /// some artifact of the routine. 2706 InlineResult CallAnalyzer::analyze() { 2707 ++NumCallsAnalyzed; 2708 2709 auto Result = onAnalysisStart(); 2710 if (!Result.isSuccess()) 2711 return Result; 2712 2713 if (F.empty()) 2714 return InlineResult::success(); 2715 2716 Function *Caller = CandidateCall.getFunction(); 2717 // Check if the caller function is recursive itself. 2718 for (User *U : Caller->users()) { 2719 CallBase *Call = dyn_cast<CallBase>(U); 2720 if (Call && Call->getFunction() == Caller) { 2721 IsCallerRecursive = true; 2722 break; 2723 } 2724 } 2725 2726 // Populate our simplified values by mapping from function arguments to call 2727 // arguments with known important simplifications. 2728 auto CAI = CandidateCall.arg_begin(); 2729 for (Argument &FAI : F.args()) { 2730 assert(CAI != CandidateCall.arg_end()); 2731 if (Constant *C = dyn_cast<Constant>(CAI)) 2732 SimplifiedValues[&FAI] = C; 2733 2734 Value *PtrArg = *CAI; 2735 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2736 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2737 2738 // We can SROA any pointer arguments derived from alloca instructions. 2739 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2740 SROAArgValues[&FAI] = SROAArg; 2741 onInitializeSROAArg(SROAArg); 2742 EnabledSROAAllocas.insert(SROAArg); 2743 } 2744 } 2745 ++CAI; 2746 } 2747 NumConstantArgs = SimplifiedValues.size(); 2748 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2749 NumAllocaArgs = SROAArgValues.size(); 2750 2751 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2752 // the ephemeral values multiple times (and they're completely determined by 2753 // the callee, so this is purely duplicate work). 2754 SmallPtrSet<const Value *, 32> EphValues; 2755 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2756 2757 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2758 // adding basic blocks of the callee which can be proven to be dead for this 2759 // particular call site in order to get more accurate cost estimates. This 2760 // requires a somewhat heavyweight iteration pattern: we need to walk the 2761 // basic blocks in a breadth-first order as we insert live successors. To 2762 // accomplish this, prioritizing for small iterations because we exit after 2763 // crossing our threshold, we use a small-size optimized SetVector. 2764 typedef SmallSetVector<BasicBlock *, 16> BBSetVector; 2765 BBSetVector BBWorklist; 2766 BBWorklist.insert(&F.getEntryBlock()); 2767 2768 // Note that we *must not* cache the size, this loop grows the worklist. 2769 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2770 if (shouldStop()) 2771 break; 2772 2773 BasicBlock *BB = BBWorklist[Idx]; 2774 if (BB->empty()) 2775 continue; 2776 2777 onBlockStart(BB); 2778 2779 // Disallow inlining a blockaddress with uses other than strictly callbr. 2780 // A blockaddress only has defined behavior for an indirect branch in the 2781 // same function, and we do not currently support inlining indirect 2782 // branches. But, the inliner may not see an indirect branch that ends up 2783 // being dead code at a particular call site. If the blockaddress escapes 2784 // the function, e.g., via a global variable, inlining may lead to an 2785 // invalid cross-function reference. 2786 // FIXME: pr/39560: continue relaxing this overt restriction. 2787 if (BB->hasAddressTaken()) 2788 for (User *U : BlockAddress::get(&*BB)->users()) 2789 if (!isa<CallBrInst>(*U)) 2790 return InlineResult::failure("blockaddress used outside of callbr"); 2791 2792 // Analyze the cost of this block. If we blow through the threshold, this 2793 // returns false, and we can bail on out. 2794 InlineResult IR = analyzeBlock(BB, EphValues); 2795 if (!IR.isSuccess()) 2796 return IR; 2797 2798 Instruction *TI = BB->getTerminator(); 2799 2800 // Add in the live successors by first checking whether we have terminator 2801 // that may be simplified based on the values simplified by this call. 2802 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2803 if (BI->isConditional()) { 2804 Value *Cond = BI->getCondition(); 2805 if (ConstantInt *SimpleCond = 2806 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2807 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2808 BBWorklist.insert(NextBB); 2809 KnownSuccessors[BB] = NextBB; 2810 findDeadBlocks(BB, NextBB); 2811 continue; 2812 } 2813 } 2814 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2815 Value *Cond = SI->getCondition(); 2816 if (ConstantInt *SimpleCond = 2817 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2818 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2819 BBWorklist.insert(NextBB); 2820 KnownSuccessors[BB] = NextBB; 2821 findDeadBlocks(BB, NextBB); 2822 continue; 2823 } 2824 } 2825 2826 // If we're unable to select a particular successor, just count all of 2827 // them. 2828 for (BasicBlock *Succ : successors(BB)) 2829 BBWorklist.insert(Succ); 2830 2831 onBlockAnalyzed(BB); 2832 } 2833 2834 // If this is a noduplicate call, we can still inline as long as 2835 // inlining this would cause the removal of the caller (so the instruction 2836 // is not actually duplicated, just moved). 2837 if (!isSoleCallToLocalFunction(CandidateCall, F) && ContainsNoDuplicateCall) 2838 return InlineResult::failure("noduplicate"); 2839 2840 // If the callee's stack size exceeds the user-specified threshold, 2841 // do not let it be inlined. 2842 // The command line option overrides a limit set in the function attributes. 2843 size_t FinalStackSizeThreshold = StackSizeThreshold; 2844 if (!StackSizeThreshold.getNumOccurrences()) 2845 if (std::optional<int> AttrMaxStackSize = getStringFnAttrAsInt( 2846 Caller, InlineConstants::MaxInlineStackSizeAttributeName)) 2847 FinalStackSizeThreshold = *AttrMaxStackSize; 2848 if (AllocatedSize > FinalStackSizeThreshold) 2849 return InlineResult::failure("stacksize"); 2850 2851 return finalizeAnalysis(); 2852 } 2853 2854 void InlineCostCallAnalyzer::print(raw_ostream &OS) { 2855 #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n" 2856 if (PrintInstructionComments) 2857 F.print(OS, &Writer); 2858 DEBUG_PRINT_STAT(NumConstantArgs); 2859 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2860 DEBUG_PRINT_STAT(NumAllocaArgs); 2861 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2862 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2863 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2864 DEBUG_PRINT_STAT(NumInstructions); 2865 DEBUG_PRINT_STAT(SROACostSavings); 2866 DEBUG_PRINT_STAT(SROACostSavingsLost); 2867 DEBUG_PRINT_STAT(LoadEliminationCost); 2868 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2869 DEBUG_PRINT_STAT(Cost); 2870 DEBUG_PRINT_STAT(Threshold); 2871 #undef DEBUG_PRINT_STAT 2872 } 2873 2874 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2875 /// Dump stats about this call's analysis. 2876 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); } 2877 #endif 2878 2879 /// Test that there are no attribute conflicts between Caller and Callee 2880 /// that prevent inlining. 2881 static bool functionsHaveCompatibleAttributes( 2882 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2883 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2884 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2885 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2886 // object, and always returns the same object (which is overwritten on each 2887 // GetTLI call). Therefore we copy the first result. 2888 auto CalleeTLI = GetTLI(*Callee); 2889 return (IgnoreTTIInlineCompatible || 2890 TTI.areInlineCompatible(Caller, Callee)) && 2891 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2892 InlineCallerSupersetNoBuiltin) && 2893 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2894 } 2895 2896 int llvm::getCallsiteCost(const TargetTransformInfo &TTI, const CallBase &Call, 2897 const DataLayout &DL) { 2898 int64_t Cost = 0; 2899 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2900 if (Call.isByValArgument(I)) { 2901 // We approximate the number of loads and stores needed by dividing the 2902 // size of the byval type by the target's pointer size. 2903 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2904 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2905 unsigned AS = PTy->getAddressSpace(); 2906 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2907 // Ceiling division. 2908 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2909 2910 // If it generates more than 8 stores it is likely to be expanded as an 2911 // inline memcpy so we take that as an upper bound. Otherwise we assume 2912 // one load and one store per word copied. 2913 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2914 // here instead of a magic number of 8, but it's not available via 2915 // DataLayout. 2916 NumStores = std::min(NumStores, 8U); 2917 2918 Cost += 2 * NumStores * InstrCost; 2919 } else { 2920 // For non-byval arguments subtract off one instruction per call 2921 // argument. 2922 Cost += InstrCost; 2923 } 2924 } 2925 // The call instruction also disappears after inlining. 2926 Cost += InstrCost; 2927 Cost += TTI.getInlineCallPenalty(Call.getCaller(), Call, CallPenalty); 2928 2929 return std::min<int64_t>(Cost, INT_MAX); 2930 } 2931 2932 InlineCost llvm::getInlineCost( 2933 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2934 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2935 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2936 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2937 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2938 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2939 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2940 } 2941 2942 std::optional<int> llvm::getInliningCostEstimate( 2943 CallBase &Call, TargetTransformInfo &CalleeTTI, 2944 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2945 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2946 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2947 const InlineParams Params = {/* DefaultThreshold*/ 0, 2948 /*HintThreshold*/ {}, 2949 /*ColdThreshold*/ {}, 2950 /*OptSizeThreshold*/ {}, 2951 /*OptMinSizeThreshold*/ {}, 2952 /*HotCallSiteThreshold*/ {}, 2953 /*LocallyHotCallSiteThreshold*/ {}, 2954 /*ColdCallSiteThreshold*/ {}, 2955 /*ComputeFullInlineCost*/ true, 2956 /*EnableDeferral*/ true}; 2957 2958 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2959 GetAssumptionCache, GetBFI, PSI, ORE, true, 2960 /*IgnoreThreshold*/ true); 2961 auto R = CA.analyze(); 2962 if (!R.isSuccess()) 2963 return std::nullopt; 2964 return CA.getCost(); 2965 } 2966 2967 std::optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2968 CallBase &Call, TargetTransformInfo &CalleeTTI, 2969 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2970 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2971 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2972 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2973 ORE, *Call.getCalledFunction(), Call); 2974 auto R = CFA.analyze(); 2975 if (!R.isSuccess()) 2976 return std::nullopt; 2977 return CFA.features(); 2978 } 2979 2980 std::optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2981 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2982 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2983 2984 // Cannot inline indirect calls. 2985 if (!Callee) 2986 return InlineResult::failure("indirect call"); 2987 2988 // When callee coroutine function is inlined into caller coroutine function 2989 // before coro-split pass, 2990 // coro-early pass can not handle this quiet well. 2991 // So we won't inline the coroutine function if it have not been unsplited 2992 if (Callee->isPresplitCoroutine()) 2993 return InlineResult::failure("unsplited coroutine call"); 2994 2995 // Never inline calls with byval arguments that does not have the alloca 2996 // address space. Since byval arguments can be replaced with a copy to an 2997 // alloca, the inlined code would need to be adjusted to handle that the 2998 // argument is in the alloca address space (so it is a little bit complicated 2999 // to solve). 3000 unsigned AllocaAS = Callee->getDataLayout().getAllocaAddrSpace(); 3001 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 3002 if (Call.isByValArgument(I)) { 3003 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 3004 if (PTy->getAddressSpace() != AllocaAS) 3005 return InlineResult::failure("byval arguments without alloca" 3006 " address space"); 3007 } 3008 3009 // Calls to functions with always-inline attributes should be inlined 3010 // whenever possible. 3011 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 3012 if (Call.getAttributes().hasFnAttr(Attribute::NoInline)) 3013 return InlineResult::failure("noinline call site attribute"); 3014 3015 auto IsViable = isInlineViable(*Callee); 3016 if (IsViable.isSuccess()) 3017 return InlineResult::success(); 3018 return InlineResult::failure(IsViable.getFailureReason()); 3019 } 3020 3021 // Never inline functions with conflicting attributes (unless callee has 3022 // always-inline attribute). 3023 Function *Caller = Call.getCaller(); 3024 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 3025 return InlineResult::failure("conflicting attributes"); 3026 3027 // Don't inline this call if the caller has the optnone attribute. 3028 if (Caller->hasOptNone()) 3029 return InlineResult::failure("optnone attribute"); 3030 3031 // Don't inline a function that treats null pointer as valid into a caller 3032 // that does not have this attribute. 3033 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 3034 return InlineResult::failure("nullptr definitions incompatible"); 3035 3036 // Don't inline functions which can be interposed at link-time. 3037 if (Callee->isInterposable()) 3038 return InlineResult::failure("interposable"); 3039 3040 // Don't inline functions marked noinline. 3041 if (Callee->hasFnAttribute(Attribute::NoInline)) 3042 return InlineResult::failure("noinline function attribute"); 3043 3044 // Don't inline call sites marked noinline. 3045 if (Call.isNoInline()) 3046 return InlineResult::failure("noinline call site attribute"); 3047 3048 return std::nullopt; 3049 } 3050 3051 InlineCost llvm::getInlineCost( 3052 CallBase &Call, Function *Callee, const InlineParams &Params, 3053 TargetTransformInfo &CalleeTTI, 3054 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 3055 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 3056 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 3057 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 3058 3059 auto UserDecision = 3060 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 3061 3062 if (UserDecision) { 3063 if (UserDecision->isSuccess()) 3064 return llvm::InlineCost::getAlways("always inline attribute"); 3065 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 3066 } 3067 3068 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 3069 << "... (caller:" << Call.getCaller()->getName() 3070 << ")\n"); 3071 3072 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 3073 GetAssumptionCache, GetBFI, PSI, ORE); 3074 InlineResult ShouldInline = CA.analyze(); 3075 3076 LLVM_DEBUG(CA.dump()); 3077 3078 // Always make cost benefit based decision explicit. 3079 // We use always/never here since threshold is not meaningful, 3080 // as it's not what drives cost-benefit analysis. 3081 if (CA.wasDecidedByCostBenefit()) { 3082 if (ShouldInline.isSuccess()) 3083 return InlineCost::getAlways("benefit over cost", 3084 CA.getCostBenefitPair()); 3085 else 3086 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 3087 } 3088 3089 if (CA.wasDecidedByCostThreshold()) 3090 return InlineCost::get(CA.getCost(), CA.getThreshold(), 3091 CA.getStaticBonusApplied()); 3092 3093 // No details on how the decision was made, simply return always or never. 3094 return ShouldInline.isSuccess() 3095 ? InlineCost::getAlways("empty function") 3096 : InlineCost::getNever(ShouldInline.getFailureReason()); 3097 } 3098 3099 InlineResult llvm::isInlineViable(Function &F) { 3100 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 3101 for (BasicBlock &BB : F) { 3102 // Disallow inlining of functions which contain indirect branches. 3103 if (isa<IndirectBrInst>(BB.getTerminator())) 3104 return InlineResult::failure("contains indirect branches"); 3105 3106 // Disallow inlining of blockaddresses which are used by non-callbr 3107 // instructions. 3108 if (BB.hasAddressTaken()) 3109 for (User *U : BlockAddress::get(&BB)->users()) 3110 if (!isa<CallBrInst>(*U)) 3111 return InlineResult::failure("blockaddress used outside of callbr"); 3112 3113 for (auto &II : BB) { 3114 CallBase *Call = dyn_cast<CallBase>(&II); 3115 if (!Call) 3116 continue; 3117 3118 // Disallow recursive calls. 3119 Function *Callee = Call->getCalledFunction(); 3120 if (&F == Callee) 3121 return InlineResult::failure("recursive call"); 3122 3123 // Disallow calls which expose returns-twice to a function not previously 3124 // attributed as such. 3125 if (!ReturnsTwice && isa<CallInst>(Call) && 3126 cast<CallInst>(Call)->canReturnTwice()) 3127 return InlineResult::failure("exposes returns-twice attribute"); 3128 3129 if (Callee) 3130 switch (Callee->getIntrinsicID()) { 3131 default: 3132 break; 3133 case llvm::Intrinsic::icall_branch_funnel: 3134 // Disallow inlining of @llvm.icall.branch.funnel because current 3135 // backend can't separate call targets from call arguments. 3136 return InlineResult::failure( 3137 "disallowed inlining of @llvm.icall.branch.funnel"); 3138 case llvm::Intrinsic::localescape: 3139 // Disallow inlining functions that call @llvm.localescape. Doing this 3140 // correctly would require major changes to the inliner. 3141 return InlineResult::failure( 3142 "disallowed inlining of @llvm.localescape"); 3143 case llvm::Intrinsic::vastart: 3144 // Disallow inlining of functions that initialize VarArgs with 3145 // va_start. 3146 return InlineResult::failure( 3147 "contains VarArgs initialized with va_start"); 3148 } 3149 } 3150 } 3151 3152 return InlineResult::success(); 3153 } 3154 3155 // APIs to create InlineParams based on command line flags and/or other 3156 // parameters. 3157 3158 InlineParams llvm::getInlineParams(int Threshold) { 3159 InlineParams Params; 3160 3161 // This field is the threshold to use for a callee by default. This is 3162 // derived from one or more of: 3163 // * optimization or size-optimization levels, 3164 // * a value passed to createFunctionInliningPass function, or 3165 // * the -inline-threshold flag. 3166 // If the -inline-threshold flag is explicitly specified, that is used 3167 // irrespective of anything else. 3168 if (InlineThreshold.getNumOccurrences() > 0) 3169 Params.DefaultThreshold = InlineThreshold; 3170 else 3171 Params.DefaultThreshold = Threshold; 3172 3173 // Set the HintThreshold knob from the -inlinehint-threshold. 3174 Params.HintThreshold = HintThreshold; 3175 3176 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3177 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3178 3179 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3180 // populate LocallyHotCallSiteThreshold. Later, we populate 3181 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3182 // we know that optimization level is O3 (in the getInlineParams variant that 3183 // takes the opt and size levels). 3184 // FIXME: Remove this check (and make the assignment unconditional) after 3185 // addressing size regression issues at O2. 3186 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3187 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3188 3189 // Set the ColdCallSiteThreshold knob from the 3190 // -inline-cold-callsite-threshold. 3191 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3192 3193 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3194 // -inlinehint-threshold commandline option is not explicitly given. If that 3195 // option is present, then its value applies even for callees with size and 3196 // minsize attributes. 3197 // If the -inline-threshold is not specified, set the ColdThreshold from the 3198 // -inlinecold-threshold even if it is not explicitly passed. If 3199 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3200 // explicitly specified to set the ColdThreshold knob 3201 if (InlineThreshold.getNumOccurrences() == 0) { 3202 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3203 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3204 Params.ColdThreshold = ColdThreshold; 3205 } else if (ColdThreshold.getNumOccurrences() > 0) { 3206 Params.ColdThreshold = ColdThreshold; 3207 } 3208 return Params; 3209 } 3210 3211 InlineParams llvm::getInlineParams() { 3212 return getInlineParams(DefaultThreshold); 3213 } 3214 3215 // Compute the default threshold for inlining based on the opt level and the 3216 // size opt level. 3217 static int computeThresholdFromOptLevels(unsigned OptLevel, 3218 unsigned SizeOptLevel) { 3219 if (OptLevel > 2) 3220 return InlineConstants::OptAggressiveThreshold; 3221 if (SizeOptLevel == 1) // -Os 3222 return InlineConstants::OptSizeThreshold; 3223 if (SizeOptLevel == 2) // -Oz 3224 return InlineConstants::OptMinSizeThreshold; 3225 return DefaultThreshold; 3226 } 3227 3228 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3229 auto Params = 3230 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3231 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3232 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3233 // when it is specified explicitly. 3234 if (OptLevel > 2) 3235 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3236 return Params; 3237 } 3238 3239 PreservedAnalyses 3240 InlineCostAnnotationPrinterPass::run(Function &F, 3241 FunctionAnalysisManager &FAM) { 3242 PrintInstructionComments = true; 3243 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3244 [&](Function &F) -> AssumptionCache & { 3245 return FAM.getResult<AssumptionAnalysis>(F); 3246 }; 3247 Module *M = F.getParent(); 3248 ProfileSummaryInfo PSI(*M); 3249 DataLayout DL(M); 3250 TargetTransformInfo TTI(DL); 3251 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3252 // In the current implementation, the type of InlineParams doesn't matter as 3253 // the pass serves only for verification of inliner's decisions. 3254 // We can add a flag which determines InlineParams for this run. Right now, 3255 // the default InlineParams are used. 3256 const InlineParams Params = llvm::getInlineParams(); 3257 for (BasicBlock &BB : F) { 3258 for (Instruction &I : BB) { 3259 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3260 Function *CalledFunction = CI->getCalledFunction(); 3261 if (!CalledFunction || CalledFunction->isDeclaration()) 3262 continue; 3263 OptimizationRemarkEmitter ORE(CalledFunction); 3264 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3265 GetAssumptionCache, nullptr, &PSI, &ORE); 3266 ICCA.analyze(); 3267 OS << " Analyzing call of " << CalledFunction->getName() 3268 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3269 ICCA.print(OS); 3270 OS << "\n"; 3271 } 3272 } 3273 } 3274 return PreservedAnalyses::all(); 3275 } 3276