xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/InlineCost.cpp (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inline cost analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/AssemblyAnnotationWriter.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/InstVisitor.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/FormattedStream.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <climits>
47 #include <limits>
48 #include <optional>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "inline-cost"
53 
54 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
55 
56 static cl::opt<int>
57     DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
58                      cl::desc("Default amount of inlining to perform"));
59 
60 // We introduce this option since there is a minor compile-time win by avoiding
61 // addition of TTI attributes (target-features in particular) to inline
62 // candidates when they are guaranteed to be the same as top level methods in
63 // some use cases. If we avoid adding the attribute, we need an option to avoid
64 // checking these attributes.
65 static cl::opt<bool> IgnoreTTIInlineCompatible(
66     "ignore-tti-inline-compatible", cl::Hidden, cl::init(false),
67     cl::desc("Ignore TTI attributes compatibility check between callee/caller "
68              "during inline cost calculation"));
69 
70 static cl::opt<bool> PrintInstructionComments(
71     "print-instruction-comments", cl::Hidden, cl::init(false),
72     cl::desc("Prints comments for instruction based on inline cost analysis"));
73 
74 static cl::opt<int> InlineThreshold(
75     "inline-threshold", cl::Hidden, cl::init(225),
76     cl::desc("Control the amount of inlining to perform (default = 225)"));
77 
78 static cl::opt<int> HintThreshold(
79     "inlinehint-threshold", cl::Hidden, cl::init(325),
80     cl::desc("Threshold for inlining functions with inline hint"));
81 
82 static cl::opt<int>
83     ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
84                           cl::init(45),
85                           cl::desc("Threshold for inlining cold callsites"));
86 
87 static cl::opt<bool> InlineEnableCostBenefitAnalysis(
88     "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false),
89     cl::desc("Enable the cost-benefit analysis for the inliner"));
90 
91 // InlineSavingsMultiplier overrides per TTI multipliers iff it is
92 // specified explicitly in command line options. This option is exposed
93 // for tuning and testing.
94 static cl::opt<int> InlineSavingsMultiplier(
95     "inline-savings-multiplier", cl::Hidden, cl::init(8),
96     cl::desc("Multiplier to multiply cycle savings by during inlining"));
97 
98 // InlineSavingsProfitableMultiplier overrides per TTI multipliers iff it is
99 // specified explicitly in command line options. This option is exposed
100 // for tuning and testing.
101 static cl::opt<int> InlineSavingsProfitableMultiplier(
102     "inline-savings-profitable-multiplier", cl::Hidden, cl::init(4),
103     cl::desc("A multiplier on top of cycle savings to decide whether the "
104              "savings won't justify the cost"));
105 
106 static cl::opt<int>
107     InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100),
108                         cl::desc("The maximum size of a callee that get's "
109                                  "inlined without sufficient cycle savings"));
110 
111 // We introduce this threshold to help performance of instrumentation based
112 // PGO before we actually hook up inliner with analysis passes such as BPI and
113 // BFI.
114 static cl::opt<int> ColdThreshold(
115     "inlinecold-threshold", cl::Hidden, cl::init(45),
116     cl::desc("Threshold for inlining functions with cold attribute"));
117 
118 static cl::opt<int>
119     HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
120                          cl::desc("Threshold for hot callsites "));
121 
122 static cl::opt<int> LocallyHotCallSiteThreshold(
123     "locally-hot-callsite-threshold", cl::Hidden, cl::init(525),
124     cl::desc("Threshold for locally hot callsites "));
125 
126 static cl::opt<int> ColdCallSiteRelFreq(
127     "cold-callsite-rel-freq", cl::Hidden, cl::init(2),
128     cl::desc("Maximum block frequency, expressed as a percentage of caller's "
129              "entry frequency, for a callsite to be cold in the absence of "
130              "profile information."));
131 
132 static cl::opt<uint64_t> HotCallSiteRelFreq(
133     "hot-callsite-rel-freq", cl::Hidden, cl::init(60),
134     cl::desc("Minimum block frequency, expressed as a multiple of caller's "
135              "entry frequency, for a callsite to be hot in the absence of "
136              "profile information."));
137 
138 static cl::opt<int>
139     InstrCost("inline-instr-cost", cl::Hidden, cl::init(5),
140               cl::desc("Cost of a single instruction when inlining"));
141 
142 static cl::opt<int>
143     MemAccessCost("inline-memaccess-cost", cl::Hidden, cl::init(0),
144                   cl::desc("Cost of load/store instruction when inlining"));
145 
146 static cl::opt<int> CallPenalty(
147     "inline-call-penalty", cl::Hidden, cl::init(25),
148     cl::desc("Call penalty that is applied per callsite when inlining"));
149 
150 static cl::opt<size_t>
151     StackSizeThreshold("inline-max-stacksize", cl::Hidden,
152                        cl::init(std::numeric_limits<size_t>::max()),
153                        cl::desc("Do not inline functions with a stack size "
154                                 "that exceeds the specified limit"));
155 
156 static cl::opt<size_t> RecurStackSizeThreshold(
157     "recursive-inline-max-stacksize", cl::Hidden,
158     cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller),
159     cl::desc("Do not inline recursive functions with a stack "
160              "size that exceeds the specified limit"));
161 
162 static cl::opt<bool> OptComputeFullInlineCost(
163     "inline-cost-full", cl::Hidden,
164     cl::desc("Compute the full inline cost of a call site even when the cost "
165              "exceeds the threshold."));
166 
167 static cl::opt<bool> InlineCallerSupersetNoBuiltin(
168     "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
169     cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
170              "attributes."));
171 
172 static cl::opt<bool> DisableGEPConstOperand(
173     "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
174     cl::desc("Disables evaluation of GetElementPtr with constant operands"));
175 
176 namespace llvm {
177 std::optional<int> getStringFnAttrAsInt(const Attribute &Attr) {
178   if (Attr.isValid()) {
179     int AttrValue = 0;
180     if (!Attr.getValueAsString().getAsInteger(10, AttrValue))
181       return AttrValue;
182   }
183   return std::nullopt;
184 }
185 
186 std::optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) {
187   return getStringFnAttrAsInt(CB.getFnAttr(AttrKind));
188 }
189 
190 std::optional<int> getStringFnAttrAsInt(Function *F, StringRef AttrKind) {
191   return getStringFnAttrAsInt(F->getFnAttribute(AttrKind));
192 }
193 
194 namespace InlineConstants {
195 int getInstrCost() { return InstrCost; }
196 
197 } // namespace InlineConstants
198 
199 } // namespace llvm
200 
201 namespace {
202 class InlineCostCallAnalyzer;
203 
204 // This struct is used to store information about inline cost of a
205 // particular instruction
206 struct InstructionCostDetail {
207   int CostBefore = 0;
208   int CostAfter = 0;
209   int ThresholdBefore = 0;
210   int ThresholdAfter = 0;
211 
212   int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }
213 
214   int getCostDelta() const { return CostAfter - CostBefore; }
215 
216   bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
217 };
218 
219 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
220 private:
221   InlineCostCallAnalyzer *const ICCA;
222 
223 public:
224   InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
225   void emitInstructionAnnot(const Instruction *I,
226                             formatted_raw_ostream &OS) override;
227 };
228 
229 /// Carry out call site analysis, in order to evaluate inlinability.
230 /// NOTE: the type is currently used as implementation detail of functions such
231 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the
232 /// expectation is that they come from the outer scope, from the wrapper
233 /// functions. If we want to support constructing CallAnalyzer objects where
234 /// lambdas are provided inline at construction, or where the object needs to
235 /// otherwise survive past the scope of the provided functions, we need to
236 /// revisit the argument types.
237 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
238   typedef InstVisitor<CallAnalyzer, bool> Base;
239   friend class InstVisitor<CallAnalyzer, bool>;
240 
241 protected:
242   virtual ~CallAnalyzer() = default;
243   /// The TargetTransformInfo available for this compilation.
244   const TargetTransformInfo &TTI;
245 
246   /// Getter for the cache of @llvm.assume intrinsics.
247   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
248 
249   /// Getter for BlockFrequencyInfo
250   function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
251 
252   /// Profile summary information.
253   ProfileSummaryInfo *PSI;
254 
255   /// The called function.
256   Function &F;
257 
258   // Cache the DataLayout since we use it a lot.
259   const DataLayout &DL;
260 
261   /// The OptimizationRemarkEmitter available for this compilation.
262   OptimizationRemarkEmitter *ORE;
263 
264   /// The candidate callsite being analyzed. Please do not use this to do
265   /// analysis in the caller function; we want the inline cost query to be
266   /// easily cacheable. Instead, use the cover function paramHasAttr.
267   CallBase &CandidateCall;
268 
269   /// Extension points for handling callsite features.
270   // Called before a basic block was analyzed.
271   virtual void onBlockStart(const BasicBlock *BB) {}
272 
273   /// Called after a basic block was analyzed.
274   virtual void onBlockAnalyzed(const BasicBlock *BB) {}
275 
276   /// Called before an instruction was analyzed
277   virtual void onInstructionAnalysisStart(const Instruction *I) {}
278 
279   /// Called after an instruction was analyzed
280   virtual void onInstructionAnalysisFinish(const Instruction *I) {}
281 
282   /// Called at the end of the analysis of the callsite. Return the outcome of
283   /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
284   /// the reason it can't.
285   virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
286   /// Called when we're about to start processing a basic block, and every time
287   /// we are done processing an instruction. Return true if there is no point in
288   /// continuing the analysis (e.g. we've determined already the call site is
289   /// too expensive to inline)
290   virtual bool shouldStop() { return false; }
291 
292   /// Called before the analysis of the callee body starts (with callsite
293   /// contexts propagated).  It checks callsite-specific information. Return a
294   /// reason analysis can't continue if that's the case, or 'true' if it may
295   /// continue.
296   virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
297   /// Called if the analysis engine decides SROA cannot be done for the given
298   /// alloca.
299   virtual void onDisableSROA(AllocaInst *Arg) {}
300 
301   /// Called the analysis engine determines load elimination won't happen.
302   virtual void onDisableLoadElimination() {}
303 
304   /// Called when we visit a CallBase, before the analysis starts. Return false
305   /// to stop further processing of the instruction.
306   virtual bool onCallBaseVisitStart(CallBase &Call) { return true; }
307 
308   /// Called to account for a call.
309   virtual void onCallPenalty() {}
310 
311   /// Called to account for a load or store.
312   virtual void onMemAccess(){};
313 
314   /// Called to account for the expectation the inlining would result in a load
315   /// elimination.
316   virtual void onLoadEliminationOpportunity() {}
317 
318   /// Called to account for the cost of argument setup for the Call in the
319   /// callee's body (not the callsite currently under analysis).
320   virtual void onCallArgumentSetup(const CallBase &Call) {}
321 
322   /// Called to account for a load relative intrinsic.
323   virtual void onLoadRelativeIntrinsic() {}
324 
325   /// Called to account for a lowered call.
326   virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
327   }
328 
329   /// Account for a jump table of given size. Return false to stop further
330   /// processing the switch instruction
331   virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
332 
333   /// Account for a case cluster of given size. Return false to stop further
334   /// processing of the instruction.
335   virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
336 
337   /// Called at the end of processing a switch instruction, with the given
338   /// number of case clusters.
339   virtual void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster,
340                                 bool DefaultDestUndefined) {}
341 
342   /// Called to account for any other instruction not specifically accounted
343   /// for.
344   virtual void onMissedSimplification() {}
345 
346   /// Start accounting potential benefits due to SROA for the given alloca.
347   virtual void onInitializeSROAArg(AllocaInst *Arg) {}
348 
349   /// Account SROA savings for the AllocaInst value.
350   virtual void onAggregateSROAUse(AllocaInst *V) {}
351 
352   bool handleSROA(Value *V, bool DoNotDisable) {
353     // Check for SROA candidates in comparisons.
354     if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
355       if (DoNotDisable) {
356         onAggregateSROAUse(SROAArg);
357         return true;
358       }
359       disableSROAForArg(SROAArg);
360     }
361     return false;
362   }
363 
364   bool IsCallerRecursive = false;
365   bool IsRecursiveCall = false;
366   bool ExposesReturnsTwice = false;
367   bool HasDynamicAlloca = false;
368   bool ContainsNoDuplicateCall = false;
369   bool HasReturn = false;
370   bool HasIndirectBr = false;
371   bool HasUninlineableIntrinsic = false;
372   bool InitsVargArgs = false;
373 
374   /// Number of bytes allocated statically by the callee.
375   uint64_t AllocatedSize = 0;
376   unsigned NumInstructions = 0;
377   unsigned NumVectorInstructions = 0;
378 
379   /// While we walk the potentially-inlined instructions, we build up and
380   /// maintain a mapping of simplified values specific to this callsite. The
381   /// idea is to propagate any special information we have about arguments to
382   /// this call through the inlinable section of the function, and account for
383   /// likely simplifications post-inlining. The most important aspect we track
384   /// is CFG altering simplifications -- when we prove a basic block dead, that
385   /// can cause dramatic shifts in the cost of inlining a function.
386   DenseMap<Value *, Constant *> SimplifiedValues;
387 
388   /// Keep track of the values which map back (through function arguments) to
389   /// allocas on the caller stack which could be simplified through SROA.
390   DenseMap<Value *, AllocaInst *> SROAArgValues;
391 
392   /// Keep track of Allocas for which we believe we may get SROA optimization.
393   DenseSet<AllocaInst *> EnabledSROAAllocas;
394 
395   /// Keep track of values which map to a pointer base and constant offset.
396   DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
397 
398   /// Keep track of dead blocks due to the constant arguments.
399   SmallPtrSet<BasicBlock *, 16> DeadBlocks;
400 
401   /// The mapping of the blocks to their known unique successors due to the
402   /// constant arguments.
403   DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
404 
405   /// Model the elimination of repeated loads that is expected to happen
406   /// whenever we simplify away the stores that would otherwise cause them to be
407   /// loads.
408   bool EnableLoadElimination = true;
409 
410   /// Whether we allow inlining for recursive call.
411   bool AllowRecursiveCall = false;
412 
413   SmallPtrSet<Value *, 16> LoadAddrSet;
414 
415   AllocaInst *getSROAArgForValueOrNull(Value *V) const {
416     auto It = SROAArgValues.find(V);
417     if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
418       return nullptr;
419     return It->second;
420   }
421 
422   // Custom simplification helper routines.
423   bool isAllocaDerivedArg(Value *V);
424   void disableSROAForArg(AllocaInst *SROAArg);
425   void disableSROA(Value *V);
426   void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
427   void disableLoadElimination();
428   bool isGEPFree(GetElementPtrInst &GEP);
429   bool canFoldInboundsGEP(GetElementPtrInst &I);
430   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
431   bool simplifyCallSite(Function *F, CallBase &Call);
432   bool simplifyInstruction(Instruction &I);
433   bool simplifyIntrinsicCallIsConstant(CallBase &CB);
434   bool simplifyIntrinsicCallObjectSize(CallBase &CB);
435   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
436 
437   /// Return true if the given argument to the function being considered for
438   /// inlining has the given attribute set either at the call site or the
439   /// function declaration.  Primarily used to inspect call site specific
440   /// attributes since these can be more precise than the ones on the callee
441   /// itself.
442   bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
443 
444   /// Return true if the given value is known non null within the callee if
445   /// inlined through this particular callsite.
446   bool isKnownNonNullInCallee(Value *V);
447 
448   /// Return true if size growth is allowed when inlining the callee at \p Call.
449   bool allowSizeGrowth(CallBase &Call);
450 
451   // Custom analysis routines.
452   InlineResult analyzeBlock(BasicBlock *BB,
453                             SmallPtrSetImpl<const Value *> &EphValues);
454 
455   // Disable several entry points to the visitor so we don't accidentally use
456   // them by declaring but not defining them here.
457   void visit(Module *);
458   void visit(Module &);
459   void visit(Function *);
460   void visit(Function &);
461   void visit(BasicBlock *);
462   void visit(BasicBlock &);
463 
464   // Provide base case for our instruction visit.
465   bool visitInstruction(Instruction &I);
466 
467   // Our visit overrides.
468   bool visitAlloca(AllocaInst &I);
469   bool visitPHI(PHINode &I);
470   bool visitGetElementPtr(GetElementPtrInst &I);
471   bool visitBitCast(BitCastInst &I);
472   bool visitPtrToInt(PtrToIntInst &I);
473   bool visitIntToPtr(IntToPtrInst &I);
474   bool visitCastInst(CastInst &I);
475   bool visitCmpInst(CmpInst &I);
476   bool visitSub(BinaryOperator &I);
477   bool visitBinaryOperator(BinaryOperator &I);
478   bool visitFNeg(UnaryOperator &I);
479   bool visitLoad(LoadInst &I);
480   bool visitStore(StoreInst &I);
481   bool visitExtractValue(ExtractValueInst &I);
482   bool visitInsertValue(InsertValueInst &I);
483   bool visitCallBase(CallBase &Call);
484   bool visitReturnInst(ReturnInst &RI);
485   bool visitBranchInst(BranchInst &BI);
486   bool visitSelectInst(SelectInst &SI);
487   bool visitSwitchInst(SwitchInst &SI);
488   bool visitIndirectBrInst(IndirectBrInst &IBI);
489   bool visitResumeInst(ResumeInst &RI);
490   bool visitCleanupReturnInst(CleanupReturnInst &RI);
491   bool visitCatchReturnInst(CatchReturnInst &RI);
492   bool visitUnreachableInst(UnreachableInst &I);
493 
494 public:
495   CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
496                function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
497                function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
498                ProfileSummaryInfo *PSI = nullptr,
499                OptimizationRemarkEmitter *ORE = nullptr)
500       : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
501         PSI(PSI), F(Callee), DL(F.getDataLayout()), ORE(ORE),
502         CandidateCall(Call) {}
503 
504   InlineResult analyze();
505 
506   std::optional<Constant *> getSimplifiedValue(Instruction *I) {
507     if (SimplifiedValues.contains(I))
508       return SimplifiedValues[I];
509     return std::nullopt;
510   }
511 
512   // Keep a bunch of stats about the cost savings found so we can print them
513   // out when debugging.
514   unsigned NumConstantArgs = 0;
515   unsigned NumConstantOffsetPtrArgs = 0;
516   unsigned NumAllocaArgs = 0;
517   unsigned NumConstantPtrCmps = 0;
518   unsigned NumConstantPtrDiffs = 0;
519   unsigned NumInstructionsSimplified = 0;
520 
521   void dump();
522 };
523 
524 // Considering forming a binary search, we should find the number of nodes
525 // which is same as the number of comparisons when lowered. For a given
526 // number of clusters, n, we can define a recursive function, f(n), to find
527 // the number of nodes in the tree. The recursion is :
528 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
529 // and f(n) = n, when n <= 3.
530 // This will lead a binary tree where the leaf should be either f(2) or f(3)
531 // when n > 3.  So, the number of comparisons from leaves should be n, while
532 // the number of non-leaf should be :
533 //   2^(log2(n) - 1) - 1
534 //   = 2^log2(n) * 2^-1 - 1
535 //   = n / 2 - 1.
536 // Considering comparisons from leaf and non-leaf nodes, we can estimate the
537 // number of comparisons in a simple closed form :
538 //   n + n / 2 - 1 = n * 3 / 2 - 1
539 int64_t getExpectedNumberOfCompare(int NumCaseCluster) {
540   return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1;
541 }
542 
543 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
544 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
545 class InlineCostCallAnalyzer final : public CallAnalyzer {
546   const bool ComputeFullInlineCost;
547   int LoadEliminationCost = 0;
548   /// Bonus to be applied when percentage of vector instructions in callee is
549   /// high (see more details in updateThreshold).
550   int VectorBonus = 0;
551   /// Bonus to be applied when the callee has only one reachable basic block.
552   int SingleBBBonus = 0;
553 
554   /// Tunable parameters that control the analysis.
555   const InlineParams &Params;
556 
557   // This DenseMap stores the delta change in cost and threshold after
558   // accounting for the given instruction. The map is filled only with the
559   // flag PrintInstructionComments on.
560   DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;
561 
562   /// Upper bound for the inlining cost. Bonuses are being applied to account
563   /// for speculative "expected profit" of the inlining decision.
564   int Threshold = 0;
565 
566   /// The amount of StaticBonus applied.
567   int StaticBonusApplied = 0;
568 
569   /// Attempt to evaluate indirect calls to boost its inline cost.
570   const bool BoostIndirectCalls;
571 
572   /// Ignore the threshold when finalizing analysis.
573   const bool IgnoreThreshold;
574 
575   // True if the cost-benefit-analysis-based inliner is enabled.
576   const bool CostBenefitAnalysisEnabled;
577 
578   /// Inlining cost measured in abstract units, accounts for all the
579   /// instructions expected to be executed for a given function invocation.
580   /// Instructions that are statically proven to be dead based on call-site
581   /// arguments are not counted here.
582   int Cost = 0;
583 
584   // The cumulative cost at the beginning of the basic block being analyzed.  At
585   // the end of analyzing each basic block, "Cost - CostAtBBStart" represents
586   // the size of that basic block.
587   int CostAtBBStart = 0;
588 
589   // The static size of live but cold basic blocks.  This is "static" in the
590   // sense that it's not weighted by profile counts at all.
591   int ColdSize = 0;
592 
593   // Whether inlining is decided by cost-threshold analysis.
594   bool DecidedByCostThreshold = false;
595 
596   // Whether inlining is decided by cost-benefit analysis.
597   bool DecidedByCostBenefit = false;
598 
599   // The cost-benefit pair computed by cost-benefit analysis.
600   std::optional<CostBenefitPair> CostBenefit;
601 
602   bool SingleBB = true;
603 
604   unsigned SROACostSavings = 0;
605   unsigned SROACostSavingsLost = 0;
606 
607   /// The mapping of caller Alloca values to their accumulated cost savings. If
608   /// we have to disable SROA for one of the allocas, this tells us how much
609   /// cost must be added.
610   DenseMap<AllocaInst *, int> SROAArgCosts;
611 
612   /// Return true if \p Call is a cold callsite.
613   bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
614 
615   /// Update Threshold based on callsite properties such as callee
616   /// attributes and callee hotness for PGO builds. The Callee is explicitly
617   /// passed to support analyzing indirect calls whose target is inferred by
618   /// analysis.
619   void updateThreshold(CallBase &Call, Function &Callee);
620   /// Return a higher threshold if \p Call is a hot callsite.
621   std::optional<int> getHotCallSiteThreshold(CallBase &Call,
622                                              BlockFrequencyInfo *CallerBFI);
623 
624   /// Handle a capped 'int' increment for Cost.
625   void addCost(int64_t Inc) {
626     Inc = std::clamp<int64_t>(Inc, INT_MIN, INT_MAX);
627     Cost = std::clamp<int64_t>(Inc + Cost, INT_MIN, INT_MAX);
628   }
629 
630   void onDisableSROA(AllocaInst *Arg) override {
631     auto CostIt = SROAArgCosts.find(Arg);
632     if (CostIt == SROAArgCosts.end())
633       return;
634     addCost(CostIt->second);
635     SROACostSavings -= CostIt->second;
636     SROACostSavingsLost += CostIt->second;
637     SROAArgCosts.erase(CostIt);
638   }
639 
640   void onDisableLoadElimination() override {
641     addCost(LoadEliminationCost);
642     LoadEliminationCost = 0;
643   }
644 
645   bool onCallBaseVisitStart(CallBase &Call) override {
646     if (std::optional<int> AttrCallThresholdBonus =
647             getStringFnAttrAsInt(Call, "call-threshold-bonus"))
648       Threshold += *AttrCallThresholdBonus;
649 
650     if (std::optional<int> AttrCallCost =
651             getStringFnAttrAsInt(Call, "call-inline-cost")) {
652       addCost(*AttrCallCost);
653       // Prevent further processing of the call since we want to override its
654       // inline cost, not just add to it.
655       return false;
656     }
657     return true;
658   }
659 
660   void onCallPenalty() override { addCost(CallPenalty); }
661 
662   void onMemAccess() override { addCost(MemAccessCost); }
663 
664   void onCallArgumentSetup(const CallBase &Call) override {
665     // Pay the price of the argument setup. We account for the average 1
666     // instruction per call argument setup here.
667     addCost(Call.arg_size() * InstrCost);
668   }
669   void onLoadRelativeIntrinsic() override {
670     // This is normally lowered to 4 LLVM instructions.
671     addCost(3 * InstrCost);
672   }
673   void onLoweredCall(Function *F, CallBase &Call,
674                      bool IsIndirectCall) override {
675     // We account for the average 1 instruction per call argument setup here.
676     addCost(Call.arg_size() * InstrCost);
677 
678     // If we have a constant that we are calling as a function, we can peer
679     // through it and see the function target. This happens not infrequently
680     // during devirtualization and so we want to give it a hefty bonus for
681     // inlining, but cap that bonus in the event that inlining wouldn't pan out.
682     // Pretend to inline the function, with a custom threshold.
683     if (IsIndirectCall && BoostIndirectCalls) {
684       auto IndirectCallParams = Params;
685       IndirectCallParams.DefaultThreshold =
686           InlineConstants::IndirectCallThreshold;
687       /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
688       /// to instantiate the derived class.
689       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
690                                 GetAssumptionCache, GetBFI, PSI, ORE, false);
691       if (CA.analyze().isSuccess()) {
692         // We were able to inline the indirect call! Subtract the cost from the
693         // threshold to get the bonus we want to apply, but don't go below zero.
694         Cost -= std::max(0, CA.getThreshold() - CA.getCost());
695       }
696     } else
697       // Otherwise simply add the cost for merely making the call.
698       addCost(TTI.getInlineCallPenalty(CandidateCall.getCaller(), Call,
699                                        CallPenalty));
700   }
701 
702   void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster,
703                         bool DefaultDestUndefined) override {
704     // If suitable for a jump table, consider the cost for the table size and
705     // branch to destination.
706     // Maximum valid cost increased in this function.
707     if (JumpTableSize) {
708       // Suppose a default branch includes one compare and one conditional
709       // branch if it's reachable.
710       if (!DefaultDestUndefined)
711         addCost(2 * InstrCost);
712       // Suppose a jump table requires one load and one jump instruction.
713       int64_t JTCost =
714           static_cast<int64_t>(JumpTableSize) * InstrCost + 2 * InstrCost;
715       addCost(JTCost);
716       return;
717     }
718 
719     if (NumCaseCluster <= 3) {
720       // Suppose a comparison includes one compare and one conditional branch.
721       // We can reduce a set of instructions if the default branch is
722       // undefined.
723       addCost((NumCaseCluster - DefaultDestUndefined) * 2 * InstrCost);
724       return;
725     }
726 
727     int64_t ExpectedNumberOfCompare =
728         getExpectedNumberOfCompare(NumCaseCluster);
729     int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InstrCost;
730 
731     addCost(SwitchCost);
732   }
733   void onMissedSimplification() override { addCost(InstrCost); }
734 
735   void onInitializeSROAArg(AllocaInst *Arg) override {
736     assert(Arg != nullptr &&
737            "Should not initialize SROA costs for null value.");
738     auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg);
739     SROACostSavings += SROAArgCost;
740     SROAArgCosts[Arg] = SROAArgCost;
741   }
742 
743   void onAggregateSROAUse(AllocaInst *SROAArg) override {
744     auto CostIt = SROAArgCosts.find(SROAArg);
745     assert(CostIt != SROAArgCosts.end() &&
746            "expected this argument to have a cost");
747     CostIt->second += InstrCost;
748     SROACostSavings += InstrCost;
749   }
750 
751   void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; }
752 
753   void onBlockAnalyzed(const BasicBlock *BB) override {
754     if (CostBenefitAnalysisEnabled) {
755       // Keep track of the static size of live but cold basic blocks.  For now,
756       // we define a cold basic block to be one that's never executed.
757       assert(GetBFI && "GetBFI must be available");
758       BlockFrequencyInfo *BFI = &(GetBFI(F));
759       assert(BFI && "BFI must be available");
760       auto ProfileCount = BFI->getBlockProfileCount(BB);
761       if (*ProfileCount == 0)
762         ColdSize += Cost - CostAtBBStart;
763     }
764 
765     auto *TI = BB->getTerminator();
766     // If we had any successors at this point, than post-inlining is likely to
767     // have them as well. Note that we assume any basic blocks which existed
768     // due to branches or switches which folded above will also fold after
769     // inlining.
770     if (SingleBB && TI->getNumSuccessors() > 1) {
771       // Take off the bonus we applied to the threshold.
772       Threshold -= SingleBBBonus;
773       SingleBB = false;
774     }
775   }
776 
777   void onInstructionAnalysisStart(const Instruction *I) override {
778     // This function is called to store the initial cost of inlining before
779     // the given instruction was assessed.
780     if (!PrintInstructionComments)
781       return;
782     InstructionCostDetailMap[I].CostBefore = Cost;
783     InstructionCostDetailMap[I].ThresholdBefore = Threshold;
784   }
785 
786   void onInstructionAnalysisFinish(const Instruction *I) override {
787     // This function is called to find new values of cost and threshold after
788     // the instruction has been assessed.
789     if (!PrintInstructionComments)
790       return;
791     InstructionCostDetailMap[I].CostAfter = Cost;
792     InstructionCostDetailMap[I].ThresholdAfter = Threshold;
793   }
794 
795   bool isCostBenefitAnalysisEnabled() {
796     if (!PSI || !PSI->hasProfileSummary())
797       return false;
798 
799     if (!GetBFI)
800       return false;
801 
802     if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) {
803       // Honor the explicit request from the user.
804       if (!InlineEnableCostBenefitAnalysis)
805         return false;
806     } else {
807       // Otherwise, require instrumentation profile.
808       if (!PSI->hasInstrumentationProfile())
809         return false;
810     }
811 
812     auto *Caller = CandidateCall.getParent()->getParent();
813     if (!Caller->getEntryCount())
814       return false;
815 
816     BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller));
817     if (!CallerBFI)
818       return false;
819 
820     // For now, limit to hot call site.
821     if (!PSI->isHotCallSite(CandidateCall, CallerBFI))
822       return false;
823 
824     // Make sure we have a nonzero entry count.
825     auto EntryCount = F.getEntryCount();
826     if (!EntryCount || !EntryCount->getCount())
827       return false;
828 
829     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
830     if (!CalleeBFI)
831       return false;
832 
833     return true;
834   }
835 
836   // A helper function to choose between command line override and default.
837   unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const {
838     if (InlineSavingsMultiplier.getNumOccurrences())
839       return InlineSavingsMultiplier;
840     return TTI.getInliningCostBenefitAnalysisSavingsMultiplier();
841   }
842 
843   // A helper function to choose between command line override and default.
844   unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const {
845     if (InlineSavingsProfitableMultiplier.getNumOccurrences())
846       return InlineSavingsProfitableMultiplier;
847     return TTI.getInliningCostBenefitAnalysisProfitableMultiplier();
848   }
849 
850   void OverrideCycleSavingsAndSizeForTesting(APInt &CycleSavings, int &Size) {
851     if (std::optional<int> AttrCycleSavings = getStringFnAttrAsInt(
852             CandidateCall, "inline-cycle-savings-for-test")) {
853       CycleSavings = *AttrCycleSavings;
854     }
855 
856     if (std::optional<int> AttrRuntimeCost = getStringFnAttrAsInt(
857             CandidateCall, "inline-runtime-cost-for-test")) {
858       Size = *AttrRuntimeCost;
859     }
860   }
861 
862   // Determine whether we should inline the given call site, taking into account
863   // both the size cost and the cycle savings.  Return std::nullopt if we don't
864   // have sufficient profiling information to determine.
865   std::optional<bool> costBenefitAnalysis() {
866     if (!CostBenefitAnalysisEnabled)
867       return std::nullopt;
868 
869     // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0
870     // for the prelink phase of the AutoFDO + ThinLTO build.  Honor the logic by
871     // falling back to the cost-based metric.
872     // TODO: Improve this hacky condition.
873     if (Threshold == 0)
874       return std::nullopt;
875 
876     assert(GetBFI);
877     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
878     assert(CalleeBFI);
879 
880     // The cycle savings expressed as the sum of InstrCost
881     // multiplied by the estimated dynamic count of each instruction we can
882     // avoid.  Savings come from the call site cost, such as argument setup and
883     // the call instruction, as well as the instructions that are folded.
884     //
885     // We use 128-bit APInt here to avoid potential overflow.  This variable
886     // should stay well below 10^^24 (or 2^^80) in practice.  This "worst" case
887     // assumes that we can avoid or fold a billion instructions, each with a
888     // profile count of 10^^15 -- roughly the number of cycles for a 24-hour
889     // period on a 4GHz machine.
890     APInt CycleSavings(128, 0);
891 
892     for (auto &BB : F) {
893       APInt CurrentSavings(128, 0);
894       for (auto &I : BB) {
895         if (BranchInst *BI = dyn_cast<BranchInst>(&I)) {
896           // Count a conditional branch as savings if it becomes unconditional.
897           if (BI->isConditional() &&
898               isa_and_nonnull<ConstantInt>(
899                   SimplifiedValues.lookup(BI->getCondition()))) {
900             CurrentSavings += InstrCost;
901           }
902         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
903           if (isa_and_present<ConstantInt>(SimplifiedValues.lookup(SI->getCondition())))
904             CurrentSavings += InstrCost;
905         } else if (Value *V = dyn_cast<Value>(&I)) {
906           // Count an instruction as savings if we can fold it.
907           if (SimplifiedValues.count(V)) {
908             CurrentSavings += InstrCost;
909           }
910         }
911       }
912 
913       auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB);
914       CurrentSavings *= *ProfileCount;
915       CycleSavings += CurrentSavings;
916     }
917 
918     // Compute the cycle savings per call.
919     auto EntryProfileCount = F.getEntryCount();
920     assert(EntryProfileCount && EntryProfileCount->getCount());
921     auto EntryCount = EntryProfileCount->getCount();
922     CycleSavings += EntryCount / 2;
923     CycleSavings = CycleSavings.udiv(EntryCount);
924 
925     // Compute the total savings for the call site.
926     auto *CallerBB = CandidateCall.getParent();
927     BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent())));
928     CycleSavings += getCallsiteCost(TTI, this->CandidateCall, DL);
929     CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB);
930 
931     // Remove the cost of the cold basic blocks to model the runtime cost more
932     // accurately. Both machine block placement and function splitting could
933     // place cold blocks further from hot blocks.
934     int Size = Cost - ColdSize;
935 
936     // Allow tiny callees to be inlined regardless of whether they meet the
937     // savings threshold.
938     Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1;
939 
940     OverrideCycleSavingsAndSizeForTesting(CycleSavings, Size);
941     CostBenefit.emplace(APInt(128, Size), CycleSavings);
942 
943     // Let R be the ratio of CycleSavings to Size.  We accept the inlining
944     // opportunity if R is really high and reject if R is really low.  If R is
945     // somewhere in the middle, we fall back to the cost-based analysis.
946     //
947     // Specifically, let R = CycleSavings / Size, we accept the inlining
948     // opportunity if:
949     //
950     //             PSI->getOrCompHotCountThreshold()
951     // R > -------------------------------------------------
952     //     getInliningCostBenefitAnalysisSavingsMultiplier()
953     //
954     // and reject the inlining opportunity if:
955     //
956     //                PSI->getOrCompHotCountThreshold()
957     // R <= ----------------------------------------------------
958     //      getInliningCostBenefitAnalysisProfitableMultiplier()
959     //
960     // Otherwise, we fall back to the cost-based analysis.
961     //
962     // Implementation-wise, use multiplication (CycleSavings * Multiplier,
963     // HotCountThreshold * Size) rather than division to avoid precision loss.
964     APInt Threshold(128, PSI->getOrCompHotCountThreshold());
965     Threshold *= Size;
966 
967     APInt UpperBoundCycleSavings = CycleSavings;
968     UpperBoundCycleSavings *= getInliningCostBenefitAnalysisSavingsMultiplier();
969     if (UpperBoundCycleSavings.uge(Threshold))
970       return true;
971 
972     APInt LowerBoundCycleSavings = CycleSavings;
973     LowerBoundCycleSavings *=
974         getInliningCostBenefitAnalysisProfitableMultiplier();
975     if (LowerBoundCycleSavings.ult(Threshold))
976       return false;
977 
978     // Otherwise, fall back to the cost-based analysis.
979     return std::nullopt;
980   }
981 
982   InlineResult finalizeAnalysis() override {
983     // Loops generally act a lot like calls in that they act like barriers to
984     // movement, require a certain amount of setup, etc. So when optimising for
985     // size, we penalise any call sites that perform loops. We do this after all
986     // other costs here, so will likely only be dealing with relatively small
987     // functions (and hence DT and LI will hopefully be cheap).
988     auto *Caller = CandidateCall.getFunction();
989     if (Caller->hasMinSize()) {
990       DominatorTree DT(F);
991       LoopInfo LI(DT);
992       int NumLoops = 0;
993       for (Loop *L : LI) {
994         // Ignore loops that will not be executed
995         if (DeadBlocks.count(L->getHeader()))
996           continue;
997         NumLoops++;
998       }
999       addCost(NumLoops * InlineConstants::LoopPenalty);
1000     }
1001 
1002     // We applied the maximum possible vector bonus at the beginning. Now,
1003     // subtract the excess bonus, if any, from the Threshold before
1004     // comparing against Cost.
1005     if (NumVectorInstructions <= NumInstructions / 10)
1006       Threshold -= VectorBonus;
1007     else if (NumVectorInstructions <= NumInstructions / 2)
1008       Threshold -= VectorBonus / 2;
1009 
1010     if (std::optional<int> AttrCost =
1011             getStringFnAttrAsInt(CandidateCall, "function-inline-cost"))
1012       Cost = *AttrCost;
1013 
1014     if (std::optional<int> AttrCostMult = getStringFnAttrAsInt(
1015             CandidateCall,
1016             InlineConstants::FunctionInlineCostMultiplierAttributeName))
1017       Cost *= *AttrCostMult;
1018 
1019     if (std::optional<int> AttrThreshold =
1020             getStringFnAttrAsInt(CandidateCall, "function-inline-threshold"))
1021       Threshold = *AttrThreshold;
1022 
1023     if (auto Result = costBenefitAnalysis()) {
1024       DecidedByCostBenefit = true;
1025       if (*Result)
1026         return InlineResult::success();
1027       else
1028         return InlineResult::failure("Cost over threshold.");
1029     }
1030 
1031     if (IgnoreThreshold)
1032       return InlineResult::success();
1033 
1034     DecidedByCostThreshold = true;
1035     return Cost < std::max(1, Threshold)
1036                ? InlineResult::success()
1037                : InlineResult::failure("Cost over threshold.");
1038   }
1039 
1040   bool shouldStop() override {
1041     if (IgnoreThreshold || ComputeFullInlineCost)
1042       return false;
1043     // Bail out the moment we cross the threshold. This means we'll under-count
1044     // the cost, but only when undercounting doesn't matter.
1045     if (Cost < Threshold)
1046       return false;
1047     DecidedByCostThreshold = true;
1048     return true;
1049   }
1050 
1051   void onLoadEliminationOpportunity() override {
1052     LoadEliminationCost += InstrCost;
1053   }
1054 
1055   InlineResult onAnalysisStart() override {
1056     // Perform some tweaks to the cost and threshold based on the direct
1057     // callsite information.
1058 
1059     // We want to more aggressively inline vector-dense kernels, so up the
1060     // threshold, and we'll lower it if the % of vector instructions gets too
1061     // low. Note that these bonuses are some what arbitrary and evolved over
1062     // time by accident as much as because they are principled bonuses.
1063     //
1064     // FIXME: It would be nice to remove all such bonuses. At least it would be
1065     // nice to base the bonus values on something more scientific.
1066     assert(NumInstructions == 0);
1067     assert(NumVectorInstructions == 0);
1068 
1069     // Update the threshold based on callsite properties
1070     updateThreshold(CandidateCall, F);
1071 
1072     // While Threshold depends on commandline options that can take negative
1073     // values, we want to enforce the invariant that the computed threshold and
1074     // bonuses are non-negative.
1075     assert(Threshold >= 0);
1076     assert(SingleBBBonus >= 0);
1077     assert(VectorBonus >= 0);
1078 
1079     // Speculatively apply all possible bonuses to Threshold. If cost exceeds
1080     // this Threshold any time, and cost cannot decrease, we can stop processing
1081     // the rest of the function body.
1082     Threshold += (SingleBBBonus + VectorBonus);
1083 
1084     // Give out bonuses for the callsite, as the instructions setting them up
1085     // will be gone after inlining.
1086     addCost(-getCallsiteCost(TTI, this->CandidateCall, DL));
1087 
1088     // If this function uses the coldcc calling convention, prefer not to inline
1089     // it.
1090     if (F.getCallingConv() == CallingConv::Cold)
1091       Cost += InlineConstants::ColdccPenalty;
1092 
1093     LLVM_DEBUG(dbgs() << "      Initial cost: " << Cost << "\n");
1094 
1095     // Check if we're done. This can happen due to bonuses and penalties.
1096     if (Cost >= Threshold && !ComputeFullInlineCost)
1097       return InlineResult::failure("high cost");
1098 
1099     return InlineResult::success();
1100   }
1101 
1102 public:
1103   InlineCostCallAnalyzer(
1104       Function &Callee, CallBase &Call, const InlineParams &Params,
1105       const TargetTransformInfo &TTI,
1106       function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
1107       function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
1108       ProfileSummaryInfo *PSI = nullptr,
1109       OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
1110       bool IgnoreThreshold = false)
1111       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
1112         ComputeFullInlineCost(OptComputeFullInlineCost ||
1113                               Params.ComputeFullInlineCost || ORE ||
1114                               isCostBenefitAnalysisEnabled()),
1115         Params(Params), Threshold(Params.DefaultThreshold),
1116         BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
1117         CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()),
1118         Writer(this) {
1119     AllowRecursiveCall = *Params.AllowRecursiveCall;
1120   }
1121 
1122   /// Annotation Writer for instruction details
1123   InlineCostAnnotationWriter Writer;
1124 
1125   void dump();
1126 
1127   // Prints the same analysis as dump(), but its definition is not dependent
1128   // on the build.
1129   void print(raw_ostream &OS);
1130 
1131   std::optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
1132     if (InstructionCostDetailMap.contains(I))
1133       return InstructionCostDetailMap[I];
1134     return std::nullopt;
1135   }
1136 
1137   virtual ~InlineCostCallAnalyzer() = default;
1138   int getThreshold() const { return Threshold; }
1139   int getCost() const { return Cost; }
1140   int getStaticBonusApplied() const { return StaticBonusApplied; }
1141   std::optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; }
1142   bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; }
1143   bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; }
1144 };
1145 
1146 // Return true if CB is the sole call to local function Callee.
1147 static bool isSoleCallToLocalFunction(const CallBase &CB,
1148                                       const Function &Callee) {
1149   return Callee.hasLocalLinkage() && Callee.hasOneLiveUse() &&
1150          &Callee == CB.getCalledFunction();
1151 }
1152 
1153 class InlineCostFeaturesAnalyzer final : public CallAnalyzer {
1154 private:
1155   InlineCostFeatures Cost = {};
1156 
1157   // FIXME: These constants are taken from the heuristic-based cost visitor.
1158   // These should be removed entirely in a later revision to avoid reliance on
1159   // heuristics in the ML inliner.
1160   static constexpr int JTCostMultiplier = 2;
1161   static constexpr int CaseClusterCostMultiplier = 2;
1162   static constexpr int SwitchDefaultDestCostMultiplier = 2;
1163   static constexpr int SwitchCostMultiplier = 2;
1164 
1165   // FIXME: These are taken from the heuristic-based cost visitor: we should
1166   // eventually abstract these to the CallAnalyzer to avoid duplication.
1167   unsigned SROACostSavingOpportunities = 0;
1168   int VectorBonus = 0;
1169   int SingleBBBonus = 0;
1170   int Threshold = 5;
1171 
1172   DenseMap<AllocaInst *, unsigned> SROACosts;
1173 
1174   void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) {
1175     Cost[static_cast<size_t>(Feature)] += Delta;
1176   }
1177 
1178   void set(InlineCostFeatureIndex Feature, int64_t Value) {
1179     Cost[static_cast<size_t>(Feature)] = Value;
1180   }
1181 
1182   void onDisableSROA(AllocaInst *Arg) override {
1183     auto CostIt = SROACosts.find(Arg);
1184     if (CostIt == SROACosts.end())
1185       return;
1186 
1187     increment(InlineCostFeatureIndex::sroa_losses, CostIt->second);
1188     SROACostSavingOpportunities -= CostIt->second;
1189     SROACosts.erase(CostIt);
1190   }
1191 
1192   void onDisableLoadElimination() override {
1193     set(InlineCostFeatureIndex::load_elimination, 1);
1194   }
1195 
1196   void onCallPenalty() override {
1197     increment(InlineCostFeatureIndex::call_penalty, CallPenalty);
1198   }
1199 
1200   void onCallArgumentSetup(const CallBase &Call) override {
1201     increment(InlineCostFeatureIndex::call_argument_setup,
1202               Call.arg_size() * InstrCost);
1203   }
1204 
1205   void onLoadRelativeIntrinsic() override {
1206     increment(InlineCostFeatureIndex::load_relative_intrinsic, 3 * InstrCost);
1207   }
1208 
1209   void onLoweredCall(Function *F, CallBase &Call,
1210                      bool IsIndirectCall) override {
1211     increment(InlineCostFeatureIndex::lowered_call_arg_setup,
1212               Call.arg_size() * InstrCost);
1213 
1214     if (IsIndirectCall) {
1215       InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0,
1216                                          /*HintThreshold*/ {},
1217                                          /*ColdThreshold*/ {},
1218                                          /*OptSizeThreshold*/ {},
1219                                          /*OptMinSizeThreshold*/ {},
1220                                          /*HotCallSiteThreshold*/ {},
1221                                          /*LocallyHotCallSiteThreshold*/ {},
1222                                          /*ColdCallSiteThreshold*/ {},
1223                                          /*ComputeFullInlineCost*/ true,
1224                                          /*EnableDeferral*/ true};
1225       IndirectCallParams.DefaultThreshold =
1226           InlineConstants::IndirectCallThreshold;
1227 
1228       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
1229                                 GetAssumptionCache, GetBFI, PSI, ORE, false,
1230                                 true);
1231       if (CA.analyze().isSuccess()) {
1232         increment(InlineCostFeatureIndex::nested_inline_cost_estimate,
1233                   CA.getCost());
1234         increment(InlineCostFeatureIndex::nested_inlines, 1);
1235       }
1236     } else {
1237       onCallPenalty();
1238     }
1239   }
1240 
1241   void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster,
1242                         bool DefaultDestUndefined) override {
1243     if (JumpTableSize) {
1244       if (!DefaultDestUndefined)
1245         increment(InlineCostFeatureIndex::switch_default_dest_penalty,
1246                   SwitchDefaultDestCostMultiplier * InstrCost);
1247       int64_t JTCost = static_cast<int64_t>(JumpTableSize) * InstrCost +
1248                        JTCostMultiplier * InstrCost;
1249       increment(InlineCostFeatureIndex::jump_table_penalty, JTCost);
1250       return;
1251     }
1252 
1253     if (NumCaseCluster <= 3) {
1254       increment(InlineCostFeatureIndex::case_cluster_penalty,
1255                 (NumCaseCluster - DefaultDestUndefined) *
1256                     CaseClusterCostMultiplier * InstrCost);
1257       return;
1258     }
1259 
1260     int64_t ExpectedNumberOfCompare =
1261         getExpectedNumberOfCompare(NumCaseCluster);
1262 
1263     int64_t SwitchCost =
1264         ExpectedNumberOfCompare * SwitchCostMultiplier * InstrCost;
1265     increment(InlineCostFeatureIndex::switch_penalty, SwitchCost);
1266   }
1267 
1268   void onMissedSimplification() override {
1269     increment(InlineCostFeatureIndex::unsimplified_common_instructions,
1270               InstrCost);
1271   }
1272 
1273   void onInitializeSROAArg(AllocaInst *Arg) override {
1274     auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg);
1275     SROACosts[Arg] = SROAArgCost;
1276     SROACostSavingOpportunities += SROAArgCost;
1277   }
1278 
1279   void onAggregateSROAUse(AllocaInst *Arg) override {
1280     SROACosts.find(Arg)->second += InstrCost;
1281     SROACostSavingOpportunities += InstrCost;
1282   }
1283 
1284   void onBlockAnalyzed(const BasicBlock *BB) override {
1285     if (BB->getTerminator()->getNumSuccessors() > 1)
1286       set(InlineCostFeatureIndex::is_multiple_blocks, 1);
1287     Threshold -= SingleBBBonus;
1288   }
1289 
1290   InlineResult finalizeAnalysis() override {
1291     auto *Caller = CandidateCall.getFunction();
1292     if (Caller->hasMinSize()) {
1293       DominatorTree DT(F);
1294       LoopInfo LI(DT);
1295       for (Loop *L : LI) {
1296         // Ignore loops that will not be executed
1297         if (DeadBlocks.count(L->getHeader()))
1298           continue;
1299         increment(InlineCostFeatureIndex::num_loops,
1300                   InlineConstants::LoopPenalty);
1301       }
1302     }
1303     set(InlineCostFeatureIndex::dead_blocks, DeadBlocks.size());
1304     set(InlineCostFeatureIndex::simplified_instructions,
1305         NumInstructionsSimplified);
1306     set(InlineCostFeatureIndex::constant_args, NumConstantArgs);
1307     set(InlineCostFeatureIndex::constant_offset_ptr_args,
1308         NumConstantOffsetPtrArgs);
1309     set(InlineCostFeatureIndex::sroa_savings, SROACostSavingOpportunities);
1310 
1311     if (NumVectorInstructions <= NumInstructions / 10)
1312       Threshold -= VectorBonus;
1313     else if (NumVectorInstructions <= NumInstructions / 2)
1314       Threshold -= VectorBonus / 2;
1315 
1316     set(InlineCostFeatureIndex::threshold, Threshold);
1317 
1318     return InlineResult::success();
1319   }
1320 
1321   bool shouldStop() override { return false; }
1322 
1323   void onLoadEliminationOpportunity() override {
1324     increment(InlineCostFeatureIndex::load_elimination, 1);
1325   }
1326 
1327   InlineResult onAnalysisStart() override {
1328     increment(InlineCostFeatureIndex::callsite_cost,
1329               -1 * getCallsiteCost(TTI, this->CandidateCall, DL));
1330 
1331     set(InlineCostFeatureIndex::cold_cc_penalty,
1332         (F.getCallingConv() == CallingConv::Cold));
1333 
1334     set(InlineCostFeatureIndex::last_call_to_static_bonus,
1335         isSoleCallToLocalFunction(CandidateCall, F));
1336 
1337     // FIXME: we shouldn't repeat this logic in both the Features and Cost
1338     // analyzer - instead, we should abstract it to a common method in the
1339     // CallAnalyzer
1340     int SingleBBBonusPercent = 50;
1341     int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1342     Threshold += TTI.adjustInliningThreshold(&CandidateCall);
1343     Threshold *= TTI.getInliningThresholdMultiplier();
1344     SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1345     VectorBonus = Threshold * VectorBonusPercent / 100;
1346     Threshold += (SingleBBBonus + VectorBonus);
1347 
1348     return InlineResult::success();
1349   }
1350 
1351 public:
1352   InlineCostFeaturesAnalyzer(
1353       const TargetTransformInfo &TTI,
1354       function_ref<AssumptionCache &(Function &)> &GetAssumptionCache,
1355       function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1356       ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee,
1357       CallBase &Call)
1358       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {}
1359 
1360   const InlineCostFeatures &features() const { return Cost; }
1361 };
1362 
1363 } // namespace
1364 
1365 /// Test whether the given value is an Alloca-derived function argument.
1366 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
1367   return SROAArgValues.count(V);
1368 }
1369 
1370 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
1371   onDisableSROA(SROAArg);
1372   EnabledSROAAllocas.erase(SROAArg);
1373   disableLoadElimination();
1374 }
1375 
1376 void InlineCostAnnotationWriter::emitInstructionAnnot(
1377     const Instruction *I, formatted_raw_ostream &OS) {
1378   // The cost of inlining of the given instruction is printed always.
1379   // The threshold delta is printed only when it is non-zero. It happens
1380   // when we decided to give a bonus at a particular instruction.
1381   std::optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
1382   if (!Record)
1383     OS << "; No analysis for the instruction";
1384   else {
1385     OS << "; cost before = " << Record->CostBefore
1386        << ", cost after = " << Record->CostAfter
1387        << ", threshold before = " << Record->ThresholdBefore
1388        << ", threshold after = " << Record->ThresholdAfter << ", ";
1389     OS << "cost delta = " << Record->getCostDelta();
1390     if (Record->hasThresholdChanged())
1391       OS << ", threshold delta = " << Record->getThresholdDelta();
1392   }
1393   auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
1394   if (C) {
1395     OS << ", simplified to ";
1396     (*C)->print(OS, true);
1397   }
1398   OS << "\n";
1399 }
1400 
1401 /// If 'V' maps to a SROA candidate, disable SROA for it.
1402 void CallAnalyzer::disableSROA(Value *V) {
1403   if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
1404     disableSROAForArg(SROAArg);
1405   }
1406 }
1407 
1408 void CallAnalyzer::disableLoadElimination() {
1409   if (EnableLoadElimination) {
1410     onDisableLoadElimination();
1411     EnableLoadElimination = false;
1412   }
1413 }
1414 
1415 /// Accumulate a constant GEP offset into an APInt if possible.
1416 ///
1417 /// Returns false if unable to compute the offset for any reason. Respects any
1418 /// simplified values known during the analysis of this callsite.
1419 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
1420   unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
1421   assert(IntPtrWidth == Offset.getBitWidth());
1422 
1423   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1424        GTI != GTE; ++GTI) {
1425     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1426     if (!OpC)
1427       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
1428         OpC = dyn_cast<ConstantInt>(SimpleOp);
1429     if (!OpC)
1430       return false;
1431     if (OpC->isZero())
1432       continue;
1433 
1434     // Handle a struct index, which adds its field offset to the pointer.
1435     if (StructType *STy = GTI.getStructTypeOrNull()) {
1436       unsigned ElementIdx = OpC->getZExtValue();
1437       const StructLayout *SL = DL.getStructLayout(STy);
1438       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
1439       continue;
1440     }
1441 
1442     APInt TypeSize(IntPtrWidth, GTI.getSequentialElementStride(DL));
1443     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
1444   }
1445   return true;
1446 }
1447 
1448 /// Use TTI to check whether a GEP is free.
1449 ///
1450 /// Respects any simplified values known during the analysis of this callsite.
1451 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
1452   SmallVector<Value *, 4> Operands;
1453   Operands.push_back(GEP.getOperand(0));
1454   for (const Use &Op : GEP.indices())
1455     if (Constant *SimpleOp = SimplifiedValues.lookup(Op))
1456       Operands.push_back(SimpleOp);
1457     else
1458       Operands.push_back(Op);
1459   return TTI.getInstructionCost(&GEP, Operands,
1460                                 TargetTransformInfo::TCK_SizeAndLatency) ==
1461          TargetTransformInfo::TCC_Free;
1462 }
1463 
1464 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
1465   disableSROA(I.getOperand(0));
1466 
1467   // Check whether inlining will turn a dynamic alloca into a static
1468   // alloca and handle that case.
1469   if (I.isArrayAllocation()) {
1470     Constant *Size = SimplifiedValues.lookup(I.getArraySize());
1471     if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
1472       // Sometimes a dynamic alloca could be converted into a static alloca
1473       // after this constant prop, and become a huge static alloca on an
1474       // unconditional CFG path. Avoid inlining if this is going to happen above
1475       // a threshold.
1476       // FIXME: If the threshold is removed or lowered too much, we could end up
1477       // being too pessimistic and prevent inlining non-problematic code. This
1478       // could result in unintended perf regressions. A better overall strategy
1479       // is needed to track stack usage during inlining.
1480       Type *Ty = I.getAllocatedType();
1481       AllocatedSize = SaturatingMultiplyAdd(
1482           AllocSize->getLimitedValue(),
1483           DL.getTypeAllocSize(Ty).getKnownMinValue(), AllocatedSize);
1484       if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline)
1485         HasDynamicAlloca = true;
1486       return false;
1487     }
1488   }
1489 
1490   // Accumulate the allocated size.
1491   if (I.isStaticAlloca()) {
1492     Type *Ty = I.getAllocatedType();
1493     AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinValue(),
1494                                   AllocatedSize);
1495   }
1496 
1497   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
1498   // a variety of reasons, and so we would like to not inline them into
1499   // functions which don't currently have a dynamic alloca. This simply
1500   // disables inlining altogether in the presence of a dynamic alloca.
1501   if (!I.isStaticAlloca())
1502     HasDynamicAlloca = true;
1503 
1504   return false;
1505 }
1506 
1507 bool CallAnalyzer::visitPHI(PHINode &I) {
1508   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
1509   // though we don't want to propagate it's bonuses. The idea is to disable
1510   // SROA if it *might* be used in an inappropriate manner.
1511 
1512   // Phi nodes are always zero-cost.
1513   // FIXME: Pointer sizes may differ between different address spaces, so do we
1514   // need to use correct address space in the call to getPointerSizeInBits here?
1515   // Or could we skip the getPointerSizeInBits call completely? As far as I can
1516   // see the ZeroOffset is used as a dummy value, so we can probably use any
1517   // bit width for the ZeroOffset?
1518   APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0));
1519   bool CheckSROA = I.getType()->isPointerTy();
1520 
1521   // Track the constant or pointer with constant offset we've seen so far.
1522   Constant *FirstC = nullptr;
1523   std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
1524   Value *FirstV = nullptr;
1525 
1526   for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
1527     BasicBlock *Pred = I.getIncomingBlock(i);
1528     // If the incoming block is dead, skip the incoming block.
1529     if (DeadBlocks.count(Pred))
1530       continue;
1531     // If the parent block of phi is not the known successor of the incoming
1532     // block, skip the incoming block.
1533     BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
1534     if (KnownSuccessor && KnownSuccessor != I.getParent())
1535       continue;
1536 
1537     Value *V = I.getIncomingValue(i);
1538     // If the incoming value is this phi itself, skip the incoming value.
1539     if (&I == V)
1540       continue;
1541 
1542     Constant *C = dyn_cast<Constant>(V);
1543     if (!C)
1544       C = SimplifiedValues.lookup(V);
1545 
1546     std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
1547     if (!C && CheckSROA)
1548       BaseAndOffset = ConstantOffsetPtrs.lookup(V);
1549 
1550     if (!C && !BaseAndOffset.first)
1551       // The incoming value is neither a constant nor a pointer with constant
1552       // offset, exit early.
1553       return true;
1554 
1555     if (FirstC) {
1556       if (FirstC == C)
1557         // If we've seen a constant incoming value before and it is the same
1558         // constant we see this time, continue checking the next incoming value.
1559         continue;
1560       // Otherwise early exit because we either see a different constant or saw
1561       // a constant before but we have a pointer with constant offset this time.
1562       return true;
1563     }
1564 
1565     if (FirstV) {
1566       // The same logic as above, but check pointer with constant offset here.
1567       if (FirstBaseAndOffset == BaseAndOffset)
1568         continue;
1569       return true;
1570     }
1571 
1572     if (C) {
1573       // This is the 1st time we've seen a constant, record it.
1574       FirstC = C;
1575       continue;
1576     }
1577 
1578     // The remaining case is that this is the 1st time we've seen a pointer with
1579     // constant offset, record it.
1580     FirstV = V;
1581     FirstBaseAndOffset = BaseAndOffset;
1582   }
1583 
1584   // Check if we can map phi to a constant.
1585   if (FirstC) {
1586     SimplifiedValues[&I] = FirstC;
1587     return true;
1588   }
1589 
1590   // Check if we can map phi to a pointer with constant offset.
1591   if (FirstBaseAndOffset.first) {
1592     ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
1593 
1594     if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
1595       SROAArgValues[&I] = SROAArg;
1596   }
1597 
1598   return true;
1599 }
1600 
1601 /// Check we can fold GEPs of constant-offset call site argument pointers.
1602 /// This requires target data and inbounds GEPs.
1603 ///
1604 /// \return true if the specified GEP can be folded.
1605 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
1606   // Check if we have a base + offset for the pointer.
1607   std::pair<Value *, APInt> BaseAndOffset =
1608       ConstantOffsetPtrs.lookup(I.getPointerOperand());
1609   if (!BaseAndOffset.first)
1610     return false;
1611 
1612   // Check if the offset of this GEP is constant, and if so accumulate it
1613   // into Offset.
1614   if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
1615     return false;
1616 
1617   // Add the result as a new mapping to Base + Offset.
1618   ConstantOffsetPtrs[&I] = BaseAndOffset;
1619 
1620   return true;
1621 }
1622 
1623 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
1624   auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
1625 
1626   // Lambda to check whether a GEP's indices are all constant.
1627   auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
1628     for (const Use &Op : GEP.indices())
1629       if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op))
1630         return false;
1631     return true;
1632   };
1633 
1634   if (!DisableGEPConstOperand)
1635     if (simplifyInstruction(I))
1636       return true;
1637 
1638   if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
1639     if (SROAArg)
1640       SROAArgValues[&I] = SROAArg;
1641 
1642     // Constant GEPs are modeled as free.
1643     return true;
1644   }
1645 
1646   // Variable GEPs will require math and will disable SROA.
1647   if (SROAArg)
1648     disableSROAForArg(SROAArg);
1649   return isGEPFree(I);
1650 }
1651 
1652 /// Simplify \p I if its operands are constants and update SimplifiedValues.
1653 bool CallAnalyzer::simplifyInstruction(Instruction &I) {
1654   SmallVector<Constant *> COps;
1655   for (Value *Op : I.operands()) {
1656     Constant *COp = dyn_cast<Constant>(Op);
1657     if (!COp)
1658       COp = SimplifiedValues.lookup(Op);
1659     if (!COp)
1660       return false;
1661     COps.push_back(COp);
1662   }
1663   auto *C = ConstantFoldInstOperands(&I, COps, DL);
1664   if (!C)
1665     return false;
1666   SimplifiedValues[&I] = C;
1667   return true;
1668 }
1669 
1670 /// Try to simplify a call to llvm.is.constant.
1671 ///
1672 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since
1673 /// we expect calls of this specific intrinsic to be infrequent.
1674 ///
1675 /// FIXME: Given that we know CB's parent (F) caller
1676 /// (CandidateCall->getParent()->getParent()), we might be able to determine
1677 /// whether inlining F into F's caller would change how the call to
1678 /// llvm.is.constant would evaluate.
1679 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) {
1680   Value *Arg = CB.getArgOperand(0);
1681   auto *C = dyn_cast<Constant>(Arg);
1682 
1683   if (!C)
1684     C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg));
1685 
1686   Type *RT = CB.getFunctionType()->getReturnType();
1687   SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0);
1688   return true;
1689 }
1690 
1691 bool CallAnalyzer::simplifyIntrinsicCallObjectSize(CallBase &CB) {
1692   // As per the langref, "The fourth argument to llvm.objectsize determines if
1693   // the value should be evaluated at runtime."
1694   if (cast<ConstantInt>(CB.getArgOperand(3))->isOne())
1695     return false;
1696 
1697   Value *V = lowerObjectSizeCall(&cast<IntrinsicInst>(CB), DL, nullptr,
1698                                  /*MustSucceed=*/true);
1699   Constant *C = dyn_cast_or_null<Constant>(V);
1700   if (C)
1701     SimplifiedValues[&CB] = C;
1702   return C;
1703 }
1704 
1705 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
1706   // Propagate constants through bitcasts.
1707   if (simplifyInstruction(I))
1708     return true;
1709 
1710   // Track base/offsets through casts
1711   std::pair<Value *, APInt> BaseAndOffset =
1712       ConstantOffsetPtrs.lookup(I.getOperand(0));
1713   // Casts don't change the offset, just wrap it up.
1714   if (BaseAndOffset.first)
1715     ConstantOffsetPtrs[&I] = BaseAndOffset;
1716 
1717   // Also look for SROA candidates here.
1718   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1719     SROAArgValues[&I] = SROAArg;
1720 
1721   // Bitcasts are always zero cost.
1722   return true;
1723 }
1724 
1725 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
1726   // Propagate constants through ptrtoint.
1727   if (simplifyInstruction(I))
1728     return true;
1729 
1730   // Track base/offset pairs when converted to a plain integer provided the
1731   // integer is large enough to represent the pointer.
1732   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
1733   unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
1734   if (IntegerSize == DL.getPointerSizeInBits(AS)) {
1735     std::pair<Value *, APInt> BaseAndOffset =
1736         ConstantOffsetPtrs.lookup(I.getOperand(0));
1737     if (BaseAndOffset.first)
1738       ConstantOffsetPtrs[&I] = BaseAndOffset;
1739   }
1740 
1741   // This is really weird. Technically, ptrtoint will disable SROA. However,
1742   // unless that ptrtoint is *used* somewhere in the live basic blocks after
1743   // inlining, it will be nuked, and SROA should proceed. All of the uses which
1744   // would block SROA would also block SROA if applied directly to a pointer,
1745   // and so we can just add the integer in here. The only places where SROA is
1746   // preserved either cannot fire on an integer, or won't in-and-of themselves
1747   // disable SROA (ext) w/o some later use that we would see and disable.
1748   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1749     SROAArgValues[&I] = SROAArg;
1750 
1751   return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1752          TargetTransformInfo::TCC_Free;
1753 }
1754 
1755 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
1756   // Propagate constants through ptrtoint.
1757   if (simplifyInstruction(I))
1758     return true;
1759 
1760   // Track base/offset pairs when round-tripped through a pointer without
1761   // modifications provided the integer is not too large.
1762   Value *Op = I.getOperand(0);
1763   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
1764   if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
1765     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
1766     if (BaseAndOffset.first)
1767       ConstantOffsetPtrs[&I] = BaseAndOffset;
1768   }
1769 
1770   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
1771   if (auto *SROAArg = getSROAArgForValueOrNull(Op))
1772     SROAArgValues[&I] = SROAArg;
1773 
1774   return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1775          TargetTransformInfo::TCC_Free;
1776 }
1777 
1778 bool CallAnalyzer::visitCastInst(CastInst &I) {
1779   // Propagate constants through casts.
1780   if (simplifyInstruction(I))
1781     return true;
1782 
1783   // Disable SROA in the face of arbitrary casts we don't explicitly list
1784   // elsewhere.
1785   disableSROA(I.getOperand(0));
1786 
1787   // If this is a floating-point cast, and the target says this operation
1788   // is expensive, this may eventually become a library call. Treat the cost
1789   // as such.
1790   switch (I.getOpcode()) {
1791   case Instruction::FPTrunc:
1792   case Instruction::FPExt:
1793   case Instruction::UIToFP:
1794   case Instruction::SIToFP:
1795   case Instruction::FPToUI:
1796   case Instruction::FPToSI:
1797     if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1798       onCallPenalty();
1799     break;
1800   default:
1801     break;
1802   }
1803 
1804   return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1805          TargetTransformInfo::TCC_Free;
1806 }
1807 
1808 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
1809   return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
1810 }
1811 
1812 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
1813   // Does the *call site* have the NonNull attribute set on an argument?  We
1814   // use the attribute on the call site to memoize any analysis done in the
1815   // caller. This will also trip if the callee function has a non-null
1816   // parameter attribute, but that's a less interesting case because hopefully
1817   // the callee would already have been simplified based on that.
1818   if (Argument *A = dyn_cast<Argument>(V))
1819     if (paramHasAttr(A, Attribute::NonNull))
1820       return true;
1821 
1822   // Is this an alloca in the caller?  This is distinct from the attribute case
1823   // above because attributes aren't updated within the inliner itself and we
1824   // always want to catch the alloca derived case.
1825   if (isAllocaDerivedArg(V))
1826     // We can actually predict the result of comparisons between an
1827     // alloca-derived value and null. Note that this fires regardless of
1828     // SROA firing.
1829     return true;
1830 
1831   return false;
1832 }
1833 
1834 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
1835   // If the normal destination of the invoke or the parent block of the call
1836   // site is unreachable-terminated, there is little point in inlining this
1837   // unless there is literally zero cost.
1838   // FIXME: Note that it is possible that an unreachable-terminated block has a
1839   // hot entry. For example, in below scenario inlining hot_call_X() may be
1840   // beneficial :
1841   // main() {
1842   //   hot_call_1();
1843   //   ...
1844   //   hot_call_N()
1845   //   exit(0);
1846   // }
1847   // For now, we are not handling this corner case here as it is rare in real
1848   // code. In future, we should elaborate this based on BPI and BFI in more
1849   // general threshold adjusting heuristics in updateThreshold().
1850   if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
1851     if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
1852       return false;
1853   } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
1854     return false;
1855 
1856   return true;
1857 }
1858 
1859 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
1860                                             BlockFrequencyInfo *CallerBFI) {
1861   // If global profile summary is available, then callsite's coldness is
1862   // determined based on that.
1863   if (PSI && PSI->hasProfileSummary())
1864     return PSI->isColdCallSite(Call, CallerBFI);
1865 
1866   // Otherwise we need BFI to be available.
1867   if (!CallerBFI)
1868     return false;
1869 
1870   // Determine if the callsite is cold relative to caller's entry. We could
1871   // potentially cache the computation of scaled entry frequency, but the added
1872   // complexity is not worth it unless this scaling shows up high in the
1873   // profiles.
1874   const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
1875   auto CallSiteBB = Call.getParent();
1876   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1877   auto CallerEntryFreq =
1878       CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
1879   return CallSiteFreq < CallerEntryFreq * ColdProb;
1880 }
1881 
1882 std::optional<int>
1883 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
1884                                                 BlockFrequencyInfo *CallerBFI) {
1885 
1886   // If global profile summary is available, then callsite's hotness is
1887   // determined based on that.
1888   if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
1889     return Params.HotCallSiteThreshold;
1890 
1891   // Otherwise we need BFI to be available and to have a locally hot callsite
1892   // threshold.
1893   if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
1894     return std::nullopt;
1895 
1896   // Determine if the callsite is hot relative to caller's entry. We could
1897   // potentially cache the computation of scaled entry frequency, but the added
1898   // complexity is not worth it unless this scaling shows up high in the
1899   // profiles.
1900   const BasicBlock *CallSiteBB = Call.getParent();
1901   BlockFrequency CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1902   BlockFrequency CallerEntryFreq = CallerBFI->getEntryFreq();
1903   std::optional<BlockFrequency> Limit = CallerEntryFreq.mul(HotCallSiteRelFreq);
1904   if (Limit && CallSiteFreq >= *Limit)
1905     return Params.LocallyHotCallSiteThreshold;
1906 
1907   // Otherwise treat it normally.
1908   return std::nullopt;
1909 }
1910 
1911 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
1912   // If no size growth is allowed for this inlining, set Threshold to 0.
1913   if (!allowSizeGrowth(Call)) {
1914     Threshold = 0;
1915     return;
1916   }
1917 
1918   Function *Caller = Call.getCaller();
1919 
1920   // return min(A, B) if B is valid.
1921   auto MinIfValid = [](int A, std::optional<int> B) {
1922     return B ? std::min(A, *B) : A;
1923   };
1924 
1925   // return max(A, B) if B is valid.
1926   auto MaxIfValid = [](int A, std::optional<int> B) {
1927     return B ? std::max(A, *B) : A;
1928   };
1929 
1930   // Various bonus percentages. These are multiplied by Threshold to get the
1931   // bonus values.
1932   // SingleBBBonus: This bonus is applied if the callee has a single reachable
1933   // basic block at the given callsite context. This is speculatively applied
1934   // and withdrawn if more than one basic block is seen.
1935   //
1936   // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
1937   // of the last call to a static function as inlining such functions is
1938   // guaranteed to reduce code size.
1939   //
1940   // These bonus percentages may be set to 0 based on properties of the caller
1941   // and the callsite.
1942   int SingleBBBonusPercent = 50;
1943   int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1944   int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
1945 
1946   // Lambda to set all the above bonus and bonus percentages to 0.
1947   auto DisallowAllBonuses = [&]() {
1948     SingleBBBonusPercent = 0;
1949     VectorBonusPercent = 0;
1950     LastCallToStaticBonus = 0;
1951   };
1952 
1953   // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
1954   // and reduce the threshold if the caller has the necessary attribute.
1955   if (Caller->hasMinSize()) {
1956     Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
1957     // For minsize, we want to disable the single BB bonus and the vector
1958     // bonuses, but not the last-call-to-static bonus. Inlining the last call to
1959     // a static function will, at the minimum, eliminate the parameter setup and
1960     // call/return instructions.
1961     SingleBBBonusPercent = 0;
1962     VectorBonusPercent = 0;
1963   } else if (Caller->hasOptSize())
1964     Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
1965 
1966   // Adjust the threshold based on inlinehint attribute and profile based
1967   // hotness information if the caller does not have MinSize attribute.
1968   if (!Caller->hasMinSize()) {
1969     if (Callee.hasFnAttribute(Attribute::InlineHint))
1970       Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1971 
1972     // FIXME: After switching to the new passmanager, simplify the logic below
1973     // by checking only the callsite hotness/coldness as we will reliably
1974     // have local profile information.
1975     //
1976     // Callsite hotness and coldness can be determined if sample profile is
1977     // used (which adds hotness metadata to calls) or if caller's
1978     // BlockFrequencyInfo is available.
1979     BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
1980     auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
1981     if (!Caller->hasOptSize() && HotCallSiteThreshold) {
1982       LLVM_DEBUG(dbgs() << "Hot callsite.\n");
1983       // FIXME: This should update the threshold only if it exceeds the
1984       // current threshold, but AutoFDO + ThinLTO currently relies on this
1985       // behavior to prevent inlining of hot callsites during ThinLTO
1986       // compile phase.
1987       Threshold = *HotCallSiteThreshold;
1988     } else if (isColdCallSite(Call, CallerBFI)) {
1989       LLVM_DEBUG(dbgs() << "Cold callsite.\n");
1990       // Do not apply bonuses for a cold callsite including the
1991       // LastCallToStatic bonus. While this bonus might result in code size
1992       // reduction, it can cause the size of a non-cold caller to increase
1993       // preventing it from being inlined.
1994       DisallowAllBonuses();
1995       Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
1996     } else if (PSI) {
1997       // Use callee's global profile information only if we have no way of
1998       // determining this via callsite information.
1999       if (PSI->isFunctionEntryHot(&Callee)) {
2000         LLVM_DEBUG(dbgs() << "Hot callee.\n");
2001         // If callsite hotness can not be determined, we may still know
2002         // that the callee is hot and treat it as a weaker hint for threshold
2003         // increase.
2004         Threshold = MaxIfValid(Threshold, Params.HintThreshold);
2005       } else if (PSI->isFunctionEntryCold(&Callee)) {
2006         LLVM_DEBUG(dbgs() << "Cold callee.\n");
2007         // Do not apply bonuses for a cold callee including the
2008         // LastCallToStatic bonus. While this bonus might result in code size
2009         // reduction, it can cause the size of a non-cold caller to increase
2010         // preventing it from being inlined.
2011         DisallowAllBonuses();
2012         Threshold = MinIfValid(Threshold, Params.ColdThreshold);
2013       }
2014     }
2015   }
2016 
2017   Threshold += TTI.adjustInliningThreshold(&Call);
2018 
2019   // Finally, take the target-specific inlining threshold multiplier into
2020   // account.
2021   Threshold *= TTI.getInliningThresholdMultiplier();
2022 
2023   SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
2024   VectorBonus = Threshold * VectorBonusPercent / 100;
2025 
2026   // If there is only one call of the function, and it has internal linkage,
2027   // the cost of inlining it drops dramatically. It may seem odd to update
2028   // Cost in updateThreshold, but the bonus depends on the logic in this method.
2029   if (isSoleCallToLocalFunction(Call, F)) {
2030     Cost -= LastCallToStaticBonus;
2031     StaticBonusApplied = LastCallToStaticBonus;
2032   }
2033 }
2034 
2035 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
2036   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2037   // First try to handle simplified comparisons.
2038   if (simplifyInstruction(I))
2039     return true;
2040 
2041   if (I.getOpcode() == Instruction::FCmp)
2042     return false;
2043 
2044   // Otherwise look for a comparison between constant offset pointers with
2045   // a common base.
2046   Value *LHSBase, *RHSBase;
2047   APInt LHSOffset, RHSOffset;
2048   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
2049   if (LHSBase) {
2050     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
2051     if (RHSBase && LHSBase == RHSBase) {
2052       // We have common bases, fold the icmp to a constant based on the
2053       // offsets.
2054       SimplifiedValues[&I] = ConstantInt::getBool(
2055           I.getType(),
2056           ICmpInst::compare(LHSOffset, RHSOffset, I.getPredicate()));
2057       ++NumConstantPtrCmps;
2058       return true;
2059     }
2060   }
2061 
2062   auto isImplicitNullCheckCmp = [](const CmpInst &I) {
2063     for (auto *User : I.users())
2064       if (auto *Instr = dyn_cast<Instruction>(User))
2065         if (!Instr->getMetadata(LLVMContext::MD_make_implicit))
2066           return false;
2067     return true;
2068   };
2069 
2070   // If the comparison is an equality comparison with null, we can simplify it
2071   // if we know the value (argument) can't be null
2072   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) {
2073     if (isKnownNonNullInCallee(I.getOperand(0))) {
2074       bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
2075       SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
2076                                         : ConstantInt::getFalse(I.getType());
2077       return true;
2078     }
2079     // Implicit null checks act as unconditional branches and their comparisons
2080     // should be treated as simplified and free of cost.
2081     if (isImplicitNullCheckCmp(I))
2082       return true;
2083   }
2084   return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
2085 }
2086 
2087 bool CallAnalyzer::visitSub(BinaryOperator &I) {
2088   // Try to handle a special case: we can fold computing the difference of two
2089   // constant-related pointers.
2090   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2091   Value *LHSBase, *RHSBase;
2092   APInt LHSOffset, RHSOffset;
2093   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
2094   if (LHSBase) {
2095     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
2096     if (RHSBase && LHSBase == RHSBase) {
2097       // We have common bases, fold the subtract to a constant based on the
2098       // offsets.
2099       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
2100       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
2101       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
2102         SimplifiedValues[&I] = C;
2103         ++NumConstantPtrDiffs;
2104         return true;
2105       }
2106     }
2107   }
2108 
2109   // Otherwise, fall back to the generic logic for simplifying and handling
2110   // instructions.
2111   return Base::visitSub(I);
2112 }
2113 
2114 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
2115   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2116   Constant *CLHS = dyn_cast<Constant>(LHS);
2117   if (!CLHS)
2118     CLHS = SimplifiedValues.lookup(LHS);
2119   Constant *CRHS = dyn_cast<Constant>(RHS);
2120   if (!CRHS)
2121     CRHS = SimplifiedValues.lookup(RHS);
2122 
2123   Value *SimpleV = nullptr;
2124   if (auto FI = dyn_cast<FPMathOperator>(&I))
2125     SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
2126                             FI->getFastMathFlags(), DL);
2127   else
2128     SimpleV =
2129         simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
2130 
2131   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
2132     SimplifiedValues[&I] = C;
2133 
2134   if (SimpleV)
2135     return true;
2136 
2137   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
2138   disableSROA(LHS);
2139   disableSROA(RHS);
2140 
2141   // If the instruction is floating point, and the target says this operation
2142   // is expensive, this may eventually become a library call. Treat the cost
2143   // as such. Unless it's fneg which can be implemented with an xor.
2144   using namespace llvm::PatternMatch;
2145   if (I.getType()->isFloatingPointTy() &&
2146       TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
2147       !match(&I, m_FNeg(m_Value())))
2148     onCallPenalty();
2149 
2150   return false;
2151 }
2152 
2153 bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
2154   Value *Op = I.getOperand(0);
2155   Constant *COp = dyn_cast<Constant>(Op);
2156   if (!COp)
2157     COp = SimplifiedValues.lookup(Op);
2158 
2159   Value *SimpleV = simplifyFNegInst(
2160       COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
2161 
2162   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
2163     SimplifiedValues[&I] = C;
2164 
2165   if (SimpleV)
2166     return true;
2167 
2168   // Disable any SROA on arguments to arbitrary, unsimplified fneg.
2169   disableSROA(Op);
2170 
2171   return false;
2172 }
2173 
2174 bool CallAnalyzer::visitLoad(LoadInst &I) {
2175   if (handleSROA(I.getPointerOperand(), I.isSimple()))
2176     return true;
2177 
2178   // If the data is already loaded from this address and hasn't been clobbered
2179   // by any stores or calls, this load is likely to be redundant and can be
2180   // eliminated.
2181   if (EnableLoadElimination &&
2182       !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
2183     onLoadEliminationOpportunity();
2184     return true;
2185   }
2186 
2187   onMemAccess();
2188   return false;
2189 }
2190 
2191 bool CallAnalyzer::visitStore(StoreInst &I) {
2192   if (handleSROA(I.getPointerOperand(), I.isSimple()))
2193     return true;
2194 
2195   // The store can potentially clobber loads and prevent repeated loads from
2196   // being eliminated.
2197   // FIXME:
2198   // 1. We can probably keep an initial set of eliminatable loads substracted
2199   // from the cost even when we finally see a store. We just need to disable
2200   // *further* accumulation of elimination savings.
2201   // 2. We should probably at some point thread MemorySSA for the callee into
2202   // this and then use that to actually compute *really* precise savings.
2203   disableLoadElimination();
2204 
2205   onMemAccess();
2206   return false;
2207 }
2208 
2209 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
2210   // Constant folding for extract value is trivial.
2211   if (simplifyInstruction(I))
2212     return true;
2213 
2214   // SROA can't look through these, but they may be free.
2215   return Base::visitExtractValue(I);
2216 }
2217 
2218 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
2219   // Constant folding for insert value is trivial.
2220   if (simplifyInstruction(I))
2221     return true;
2222 
2223   // SROA can't look through these, but they may be free.
2224   return Base::visitInsertValue(I);
2225 }
2226 
2227 /// Try to simplify a call site.
2228 ///
2229 /// Takes a concrete function and callsite and tries to actually simplify it by
2230 /// analyzing the arguments and call itself with instsimplify. Returns true if
2231 /// it has simplified the callsite to some other entity (a constant), making it
2232 /// free.
2233 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
2234   // FIXME: Using the instsimplify logic directly for this is inefficient
2235   // because we have to continually rebuild the argument list even when no
2236   // simplifications can be performed. Until that is fixed with remapping
2237   // inside of instsimplify, directly constant fold calls here.
2238   if (!canConstantFoldCallTo(&Call, F))
2239     return false;
2240 
2241   // Try to re-map the arguments to constants.
2242   SmallVector<Constant *, 4> ConstantArgs;
2243   ConstantArgs.reserve(Call.arg_size());
2244   for (Value *I : Call.args()) {
2245     Constant *C = dyn_cast<Constant>(I);
2246     if (!C)
2247       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
2248     if (!C)
2249       return false; // This argument doesn't map to a constant.
2250 
2251     ConstantArgs.push_back(C);
2252   }
2253   if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
2254     SimplifiedValues[&Call] = C;
2255     return true;
2256   }
2257 
2258   return false;
2259 }
2260 
2261 bool CallAnalyzer::visitCallBase(CallBase &Call) {
2262   if (!onCallBaseVisitStart(Call))
2263     return true;
2264 
2265   if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
2266       !F.hasFnAttribute(Attribute::ReturnsTwice)) {
2267     // This aborts the entire analysis.
2268     ExposesReturnsTwice = true;
2269     return false;
2270   }
2271   if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
2272     ContainsNoDuplicateCall = true;
2273 
2274   Function *F = Call.getCalledFunction();
2275   bool IsIndirectCall = !F;
2276   if (IsIndirectCall) {
2277     // Check if this happens to be an indirect function call to a known function
2278     // in this inline context. If not, we've done all we can.
2279     Value *Callee = Call.getCalledOperand();
2280     F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
2281     if (!F || F->getFunctionType() != Call.getFunctionType()) {
2282       onCallArgumentSetup(Call);
2283 
2284       if (!Call.onlyReadsMemory())
2285         disableLoadElimination();
2286       return Base::visitCallBase(Call);
2287     }
2288   }
2289 
2290   assert(F && "Expected a call to a known function");
2291 
2292   // When we have a concrete function, first try to simplify it directly.
2293   if (simplifyCallSite(F, Call))
2294     return true;
2295 
2296   // Next check if it is an intrinsic we know about.
2297   // FIXME: Lift this into part of the InstVisitor.
2298   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
2299     switch (II->getIntrinsicID()) {
2300     default:
2301       if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
2302         disableLoadElimination();
2303       return Base::visitCallBase(Call);
2304 
2305     case Intrinsic::load_relative:
2306       onLoadRelativeIntrinsic();
2307       return false;
2308 
2309     case Intrinsic::memset:
2310     case Intrinsic::memcpy:
2311     case Intrinsic::memmove:
2312       disableLoadElimination();
2313       // SROA can usually chew through these intrinsics, but they aren't free.
2314       return false;
2315     case Intrinsic::icall_branch_funnel:
2316     case Intrinsic::localescape:
2317       HasUninlineableIntrinsic = true;
2318       return false;
2319     case Intrinsic::vastart:
2320       InitsVargArgs = true;
2321       return false;
2322     case Intrinsic::launder_invariant_group:
2323     case Intrinsic::strip_invariant_group:
2324       if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0)))
2325         SROAArgValues[II] = SROAArg;
2326       return true;
2327     case Intrinsic::is_constant:
2328       return simplifyIntrinsicCallIsConstant(Call);
2329     case Intrinsic::objectsize:
2330       return simplifyIntrinsicCallObjectSize(Call);
2331     }
2332   }
2333 
2334   if (F == Call.getFunction()) {
2335     // This flag will fully abort the analysis, so don't bother with anything
2336     // else.
2337     IsRecursiveCall = true;
2338     if (!AllowRecursiveCall)
2339       return false;
2340   }
2341 
2342   if (TTI.isLoweredToCall(F)) {
2343     onLoweredCall(F, Call, IsIndirectCall);
2344   }
2345 
2346   if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
2347     disableLoadElimination();
2348   return Base::visitCallBase(Call);
2349 }
2350 
2351 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
2352   // At least one return instruction will be free after inlining.
2353   bool Free = !HasReturn;
2354   HasReturn = true;
2355   return Free;
2356 }
2357 
2358 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
2359   // We model unconditional branches as essentially free -- they really
2360   // shouldn't exist at all, but handling them makes the behavior of the
2361   // inliner more regular and predictable. Interestingly, conditional branches
2362   // which will fold away are also free.
2363   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
2364          BI.getMetadata(LLVMContext::MD_make_implicit) ||
2365          isa_and_nonnull<ConstantInt>(
2366              SimplifiedValues.lookup(BI.getCondition()));
2367 }
2368 
2369 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
2370   bool CheckSROA = SI.getType()->isPointerTy();
2371   Value *TrueVal = SI.getTrueValue();
2372   Value *FalseVal = SI.getFalseValue();
2373 
2374   Constant *TrueC = dyn_cast<Constant>(TrueVal);
2375   if (!TrueC)
2376     TrueC = SimplifiedValues.lookup(TrueVal);
2377   Constant *FalseC = dyn_cast<Constant>(FalseVal);
2378   if (!FalseC)
2379     FalseC = SimplifiedValues.lookup(FalseVal);
2380   Constant *CondC =
2381       dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
2382 
2383   if (!CondC) {
2384     // Select C, X, X => X
2385     if (TrueC == FalseC && TrueC) {
2386       SimplifiedValues[&SI] = TrueC;
2387       return true;
2388     }
2389 
2390     if (!CheckSROA)
2391       return Base::visitSelectInst(SI);
2392 
2393     std::pair<Value *, APInt> TrueBaseAndOffset =
2394         ConstantOffsetPtrs.lookup(TrueVal);
2395     std::pair<Value *, APInt> FalseBaseAndOffset =
2396         ConstantOffsetPtrs.lookup(FalseVal);
2397     if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
2398       ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
2399 
2400       if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
2401         SROAArgValues[&SI] = SROAArg;
2402       return true;
2403     }
2404 
2405     return Base::visitSelectInst(SI);
2406   }
2407 
2408   // Select condition is a constant.
2409   Value *SelectedV = CondC->isAllOnesValue()  ? TrueVal
2410                      : (CondC->isNullValue()) ? FalseVal
2411                                               : nullptr;
2412   if (!SelectedV) {
2413     // Condition is a vector constant that is not all 1s or all 0s.  If all
2414     // operands are constants, ConstantFoldSelectInstruction() can handle the
2415     // cases such as select vectors.
2416     if (TrueC && FalseC) {
2417       if (auto *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) {
2418         SimplifiedValues[&SI] = C;
2419         return true;
2420       }
2421     }
2422     return Base::visitSelectInst(SI);
2423   }
2424 
2425   // Condition is either all 1s or all 0s. SI can be simplified.
2426   if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
2427     SimplifiedValues[&SI] = SelectedC;
2428     return true;
2429   }
2430 
2431   if (!CheckSROA)
2432     return true;
2433 
2434   std::pair<Value *, APInt> BaseAndOffset =
2435       ConstantOffsetPtrs.lookup(SelectedV);
2436   if (BaseAndOffset.first) {
2437     ConstantOffsetPtrs[&SI] = BaseAndOffset;
2438 
2439     if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
2440       SROAArgValues[&SI] = SROAArg;
2441   }
2442 
2443   return true;
2444 }
2445 
2446 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
2447   // We model unconditional switches as free, see the comments on handling
2448   // branches.
2449   if (isa<ConstantInt>(SI.getCondition()))
2450     return true;
2451   if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
2452     if (isa<ConstantInt>(V))
2453       return true;
2454 
2455   // Assume the most general case where the switch is lowered into
2456   // either a jump table, bit test, or a balanced binary tree consisting of
2457   // case clusters without merging adjacent clusters with the same
2458   // destination. We do not consider the switches that are lowered with a mix
2459   // of jump table/bit test/binary search tree. The cost of the switch is
2460   // proportional to the size of the tree or the size of jump table range.
2461   //
2462   // NB: We convert large switches which are just used to initialize large phi
2463   // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent
2464   // inlining those. It will prevent inlining in cases where the optimization
2465   // does not (yet) fire.
2466 
2467   unsigned JumpTableSize = 0;
2468   BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
2469   unsigned NumCaseCluster =
2470       TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
2471 
2472   onFinalizeSwitch(JumpTableSize, NumCaseCluster, SI.defaultDestUndefined());
2473   return false;
2474 }
2475 
2476 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
2477   // We never want to inline functions that contain an indirectbr.  This is
2478   // incorrect because all the blockaddress's (in static global initializers
2479   // for example) would be referring to the original function, and this
2480   // indirect jump would jump from the inlined copy of the function into the
2481   // original function which is extremely undefined behavior.
2482   // FIXME: This logic isn't really right; we can safely inline functions with
2483   // indirectbr's as long as no other function or global references the
2484   // blockaddress of a block within the current function.
2485   HasIndirectBr = true;
2486   return false;
2487 }
2488 
2489 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
2490   // FIXME: It's not clear that a single instruction is an accurate model for
2491   // the inline cost of a resume instruction.
2492   return false;
2493 }
2494 
2495 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
2496   // FIXME: It's not clear that a single instruction is an accurate model for
2497   // the inline cost of a cleanupret instruction.
2498   return false;
2499 }
2500 
2501 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
2502   // FIXME: It's not clear that a single instruction is an accurate model for
2503   // the inline cost of a catchret instruction.
2504   return false;
2505 }
2506 
2507 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
2508   // FIXME: It might be reasonably to discount the cost of instructions leading
2509   // to unreachable as they have the lowest possible impact on both runtime and
2510   // code size.
2511   return true; // No actual code is needed for unreachable.
2512 }
2513 
2514 bool CallAnalyzer::visitInstruction(Instruction &I) {
2515   // Some instructions are free. All of the free intrinsics can also be
2516   // handled by SROA, etc.
2517   if (TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
2518       TargetTransformInfo::TCC_Free)
2519     return true;
2520 
2521   // We found something we don't understand or can't handle. Mark any SROA-able
2522   // values in the operand list as no longer viable.
2523   for (const Use &Op : I.operands())
2524     disableSROA(Op);
2525 
2526   return false;
2527 }
2528 
2529 /// Analyze a basic block for its contribution to the inline cost.
2530 ///
2531 /// This method walks the analyzer over every instruction in the given basic
2532 /// block and accounts for their cost during inlining at this callsite. It
2533 /// aborts early if the threshold has been exceeded or an impossible to inline
2534 /// construct has been detected. It returns false if inlining is no longer
2535 /// viable, and true if inlining remains viable.
2536 InlineResult
2537 CallAnalyzer::analyzeBlock(BasicBlock *BB,
2538                            SmallPtrSetImpl<const Value *> &EphValues) {
2539   for (Instruction &I : *BB) {
2540     // FIXME: Currently, the number of instructions in a function regardless of
2541     // our ability to simplify them during inline to constants or dead code,
2542     // are actually used by the vector bonus heuristic. As long as that's true,
2543     // we have to special case debug intrinsics here to prevent differences in
2544     // inlining due to debug symbols. Eventually, the number of unsimplified
2545     // instructions shouldn't factor into the cost computation, but until then,
2546     // hack around it here.
2547     // Similarly, skip pseudo-probes.
2548     if (I.isDebugOrPseudoInst())
2549       continue;
2550 
2551     // Skip ephemeral values.
2552     if (EphValues.count(&I))
2553       continue;
2554 
2555     ++NumInstructions;
2556     if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy())
2557       ++NumVectorInstructions;
2558 
2559     // If the instruction simplified to a constant, there is no cost to this
2560     // instruction. Visit the instructions using our InstVisitor to account for
2561     // all of the per-instruction logic. The visit tree returns true if we
2562     // consumed the instruction in any way, and false if the instruction's base
2563     // cost should count against inlining.
2564     onInstructionAnalysisStart(&I);
2565 
2566     if (Base::visit(&I))
2567       ++NumInstructionsSimplified;
2568     else
2569       onMissedSimplification();
2570 
2571     onInstructionAnalysisFinish(&I);
2572     using namespace ore;
2573     // If the visit this instruction detected an uninlinable pattern, abort.
2574     InlineResult IR = InlineResult::success();
2575     if (IsRecursiveCall && !AllowRecursiveCall)
2576       IR = InlineResult::failure("recursive");
2577     else if (ExposesReturnsTwice)
2578       IR = InlineResult::failure("exposes returns twice");
2579     else if (HasDynamicAlloca)
2580       IR = InlineResult::failure("dynamic alloca");
2581     else if (HasIndirectBr)
2582       IR = InlineResult::failure("indirect branch");
2583     else if (HasUninlineableIntrinsic)
2584       IR = InlineResult::failure("uninlinable intrinsic");
2585     else if (InitsVargArgs)
2586       IR = InlineResult::failure("varargs");
2587     if (!IR.isSuccess()) {
2588       if (ORE)
2589         ORE->emit([&]() {
2590           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2591                                           &CandidateCall)
2592                  << NV("Callee", &F) << " has uninlinable pattern ("
2593                  << NV("InlineResult", IR.getFailureReason())
2594                  << ") and cost is not fully computed";
2595         });
2596       return IR;
2597     }
2598 
2599     // If the caller is a recursive function then we don't want to inline
2600     // functions which allocate a lot of stack space because it would increase
2601     // the caller stack usage dramatically.
2602     if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) {
2603       auto IR =
2604           InlineResult::failure("recursive and allocates too much stack space");
2605       if (ORE)
2606         ORE->emit([&]() {
2607           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2608                                           &CandidateCall)
2609                  << NV("Callee", &F) << " is "
2610                  << NV("InlineResult", IR.getFailureReason())
2611                  << ". Cost is not fully computed";
2612         });
2613       return IR;
2614     }
2615 
2616     if (shouldStop())
2617       return InlineResult::failure(
2618           "Call site analysis is not favorable to inlining.");
2619   }
2620 
2621   return InlineResult::success();
2622 }
2623 
2624 /// Compute the base pointer and cumulative constant offsets for V.
2625 ///
2626 /// This strips all constant offsets off of V, leaving it the base pointer, and
2627 /// accumulates the total constant offset applied in the returned constant. It
2628 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
2629 /// no constant offsets applied.
2630 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
2631   if (!V->getType()->isPointerTy())
2632     return nullptr;
2633 
2634   unsigned AS = V->getType()->getPointerAddressSpace();
2635   unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
2636   APInt Offset = APInt::getZero(IntPtrWidth);
2637 
2638   // Even though we don't look through PHI nodes, we could be called on an
2639   // instruction in an unreachable block, which may be on a cycle.
2640   SmallPtrSet<Value *, 4> Visited;
2641   Visited.insert(V);
2642   do {
2643     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2644       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
2645         return nullptr;
2646       V = GEP->getPointerOperand();
2647     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2648       if (GA->isInterposable())
2649         break;
2650       V = GA->getAliasee();
2651     } else {
2652       break;
2653     }
2654     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2655   } while (Visited.insert(V).second);
2656 
2657   Type *IdxPtrTy = DL.getIndexType(V->getType());
2658   return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
2659 }
2660 
2661 /// Find dead blocks due to deleted CFG edges during inlining.
2662 ///
2663 /// If we know the successor of the current block, \p CurrBB, has to be \p
2664 /// NextBB, the other successors of \p CurrBB are dead if these successors have
2665 /// no live incoming CFG edges.  If one block is found to be dead, we can
2666 /// continue growing the dead block list by checking the successors of the dead
2667 /// blocks to see if all their incoming edges are dead or not.
2668 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
2669   auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
2670     // A CFG edge is dead if the predecessor is dead or the predecessor has a
2671     // known successor which is not the one under exam.
2672     return (DeadBlocks.count(Pred) ||
2673             (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
2674   };
2675 
2676   auto IsNewlyDead = [&](BasicBlock *BB) {
2677     // If all the edges to a block are dead, the block is also dead.
2678     return (!DeadBlocks.count(BB) &&
2679             llvm::all_of(predecessors(BB),
2680                          [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
2681   };
2682 
2683   for (BasicBlock *Succ : successors(CurrBB)) {
2684     if (Succ == NextBB || !IsNewlyDead(Succ))
2685       continue;
2686     SmallVector<BasicBlock *, 4> NewDead;
2687     NewDead.push_back(Succ);
2688     while (!NewDead.empty()) {
2689       BasicBlock *Dead = NewDead.pop_back_val();
2690       if (DeadBlocks.insert(Dead).second)
2691         // Continue growing the dead block lists.
2692         for (BasicBlock *S : successors(Dead))
2693           if (IsNewlyDead(S))
2694             NewDead.push_back(S);
2695     }
2696   }
2697 }
2698 
2699 /// Analyze a call site for potential inlining.
2700 ///
2701 /// Returns true if inlining this call is viable, and false if it is not
2702 /// viable. It computes the cost and adjusts the threshold based on numerous
2703 /// factors and heuristics. If this method returns false but the computed cost
2704 /// is below the computed threshold, then inlining was forcibly disabled by
2705 /// some artifact of the routine.
2706 InlineResult CallAnalyzer::analyze() {
2707   ++NumCallsAnalyzed;
2708 
2709   auto Result = onAnalysisStart();
2710   if (!Result.isSuccess())
2711     return Result;
2712 
2713   if (F.empty())
2714     return InlineResult::success();
2715 
2716   Function *Caller = CandidateCall.getFunction();
2717   // Check if the caller function is recursive itself.
2718   for (User *U : Caller->users()) {
2719     CallBase *Call = dyn_cast<CallBase>(U);
2720     if (Call && Call->getFunction() == Caller) {
2721       IsCallerRecursive = true;
2722       break;
2723     }
2724   }
2725 
2726   // Populate our simplified values by mapping from function arguments to call
2727   // arguments with known important simplifications.
2728   auto CAI = CandidateCall.arg_begin();
2729   for (Argument &FAI : F.args()) {
2730     assert(CAI != CandidateCall.arg_end());
2731     if (Constant *C = dyn_cast<Constant>(CAI))
2732       SimplifiedValues[&FAI] = C;
2733 
2734     Value *PtrArg = *CAI;
2735     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
2736       ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue());
2737 
2738       // We can SROA any pointer arguments derived from alloca instructions.
2739       if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
2740         SROAArgValues[&FAI] = SROAArg;
2741         onInitializeSROAArg(SROAArg);
2742         EnabledSROAAllocas.insert(SROAArg);
2743       }
2744     }
2745     ++CAI;
2746   }
2747   NumConstantArgs = SimplifiedValues.size();
2748   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
2749   NumAllocaArgs = SROAArgValues.size();
2750 
2751   // FIXME: If a caller has multiple calls to a callee, we end up recomputing
2752   // the ephemeral values multiple times (and they're completely determined by
2753   // the callee, so this is purely duplicate work).
2754   SmallPtrSet<const Value *, 32> EphValues;
2755   CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
2756 
2757   // The worklist of live basic blocks in the callee *after* inlining. We avoid
2758   // adding basic blocks of the callee which can be proven to be dead for this
2759   // particular call site in order to get more accurate cost estimates. This
2760   // requires a somewhat heavyweight iteration pattern: we need to walk the
2761   // basic blocks in a breadth-first order as we insert live successors. To
2762   // accomplish this, prioritizing for small iterations because we exit after
2763   // crossing our threshold, we use a small-size optimized SetVector.
2764   typedef SmallSetVector<BasicBlock *, 16> BBSetVector;
2765   BBSetVector BBWorklist;
2766   BBWorklist.insert(&F.getEntryBlock());
2767 
2768   // Note that we *must not* cache the size, this loop grows the worklist.
2769   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
2770     if (shouldStop())
2771       break;
2772 
2773     BasicBlock *BB = BBWorklist[Idx];
2774     if (BB->empty())
2775       continue;
2776 
2777     onBlockStart(BB);
2778 
2779     // Disallow inlining a blockaddress with uses other than strictly callbr.
2780     // A blockaddress only has defined behavior for an indirect branch in the
2781     // same function, and we do not currently support inlining indirect
2782     // branches.  But, the inliner may not see an indirect branch that ends up
2783     // being dead code at a particular call site. If the blockaddress escapes
2784     // the function, e.g., via a global variable, inlining may lead to an
2785     // invalid cross-function reference.
2786     // FIXME: pr/39560: continue relaxing this overt restriction.
2787     if (BB->hasAddressTaken())
2788       for (User *U : BlockAddress::get(&*BB)->users())
2789         if (!isa<CallBrInst>(*U))
2790           return InlineResult::failure("blockaddress used outside of callbr");
2791 
2792     // Analyze the cost of this block. If we blow through the threshold, this
2793     // returns false, and we can bail on out.
2794     InlineResult IR = analyzeBlock(BB, EphValues);
2795     if (!IR.isSuccess())
2796       return IR;
2797 
2798     Instruction *TI = BB->getTerminator();
2799 
2800     // Add in the live successors by first checking whether we have terminator
2801     // that may be simplified based on the values simplified by this call.
2802     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2803       if (BI->isConditional()) {
2804         Value *Cond = BI->getCondition();
2805         if (ConstantInt *SimpleCond =
2806                 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2807           BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
2808           BBWorklist.insert(NextBB);
2809           KnownSuccessors[BB] = NextBB;
2810           findDeadBlocks(BB, NextBB);
2811           continue;
2812         }
2813       }
2814     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2815       Value *Cond = SI->getCondition();
2816       if (ConstantInt *SimpleCond =
2817               dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2818         BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
2819         BBWorklist.insert(NextBB);
2820         KnownSuccessors[BB] = NextBB;
2821         findDeadBlocks(BB, NextBB);
2822         continue;
2823       }
2824     }
2825 
2826     // If we're unable to select a particular successor, just count all of
2827     // them.
2828     for (BasicBlock *Succ : successors(BB))
2829       BBWorklist.insert(Succ);
2830 
2831     onBlockAnalyzed(BB);
2832   }
2833 
2834   // If this is a noduplicate call, we can still inline as long as
2835   // inlining this would cause the removal of the caller (so the instruction
2836   // is not actually duplicated, just moved).
2837   if (!isSoleCallToLocalFunction(CandidateCall, F) && ContainsNoDuplicateCall)
2838     return InlineResult::failure("noduplicate");
2839 
2840   // If the callee's stack size exceeds the user-specified threshold,
2841   // do not let it be inlined.
2842   // The command line option overrides a limit set in the function attributes.
2843   size_t FinalStackSizeThreshold = StackSizeThreshold;
2844   if (!StackSizeThreshold.getNumOccurrences())
2845     if (std::optional<int> AttrMaxStackSize = getStringFnAttrAsInt(
2846             Caller, InlineConstants::MaxInlineStackSizeAttributeName))
2847       FinalStackSizeThreshold = *AttrMaxStackSize;
2848   if (AllocatedSize > FinalStackSizeThreshold)
2849     return InlineResult::failure("stacksize");
2850 
2851   return finalizeAnalysis();
2852 }
2853 
2854 void InlineCostCallAnalyzer::print(raw_ostream &OS) {
2855 #define DEBUG_PRINT_STAT(x) OS << "      " #x ": " << x << "\n"
2856   if (PrintInstructionComments)
2857     F.print(OS, &Writer);
2858   DEBUG_PRINT_STAT(NumConstantArgs);
2859   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
2860   DEBUG_PRINT_STAT(NumAllocaArgs);
2861   DEBUG_PRINT_STAT(NumConstantPtrCmps);
2862   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
2863   DEBUG_PRINT_STAT(NumInstructionsSimplified);
2864   DEBUG_PRINT_STAT(NumInstructions);
2865   DEBUG_PRINT_STAT(SROACostSavings);
2866   DEBUG_PRINT_STAT(SROACostSavingsLost);
2867   DEBUG_PRINT_STAT(LoadEliminationCost);
2868   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
2869   DEBUG_PRINT_STAT(Cost);
2870   DEBUG_PRINT_STAT(Threshold);
2871 #undef DEBUG_PRINT_STAT
2872 }
2873 
2874 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2875 /// Dump stats about this call's analysis.
2876 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); }
2877 #endif
2878 
2879 /// Test that there are no attribute conflicts between Caller and Callee
2880 ///        that prevent inlining.
2881 static bool functionsHaveCompatibleAttributes(
2882     Function *Caller, Function *Callee, TargetTransformInfo &TTI,
2883     function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
2884   // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
2885   // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
2886   // object, and always returns the same object (which is overwritten on each
2887   // GetTLI call). Therefore we copy the first result.
2888   auto CalleeTLI = GetTLI(*Callee);
2889   return (IgnoreTTIInlineCompatible ||
2890           TTI.areInlineCompatible(Caller, Callee)) &&
2891          GetTLI(*Caller).areInlineCompatible(CalleeTLI,
2892                                              InlineCallerSupersetNoBuiltin) &&
2893          AttributeFuncs::areInlineCompatible(*Caller, *Callee);
2894 }
2895 
2896 int llvm::getCallsiteCost(const TargetTransformInfo &TTI, const CallBase &Call,
2897                           const DataLayout &DL) {
2898   int64_t Cost = 0;
2899   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
2900     if (Call.isByValArgument(I)) {
2901       // We approximate the number of loads and stores needed by dividing the
2902       // size of the byval type by the target's pointer size.
2903       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2904       unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I));
2905       unsigned AS = PTy->getAddressSpace();
2906       unsigned PointerSize = DL.getPointerSizeInBits(AS);
2907       // Ceiling division.
2908       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
2909 
2910       // If it generates more than 8 stores it is likely to be expanded as an
2911       // inline memcpy so we take that as an upper bound. Otherwise we assume
2912       // one load and one store per word copied.
2913       // FIXME: The maxStoresPerMemcpy setting from the target should be used
2914       // here instead of a magic number of 8, but it's not available via
2915       // DataLayout.
2916       NumStores = std::min(NumStores, 8U);
2917 
2918       Cost += 2 * NumStores * InstrCost;
2919     } else {
2920       // For non-byval arguments subtract off one instruction per call
2921       // argument.
2922       Cost += InstrCost;
2923     }
2924   }
2925   // The call instruction also disappears after inlining.
2926   Cost += InstrCost;
2927   Cost += TTI.getInlineCallPenalty(Call.getCaller(), Call, CallPenalty);
2928 
2929   return std::min<int64_t>(Cost, INT_MAX);
2930 }
2931 
2932 InlineCost llvm::getInlineCost(
2933     CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2934     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2935     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2936     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2937     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2938   return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2939                        GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
2940 }
2941 
2942 std::optional<int> llvm::getInliningCostEstimate(
2943     CallBase &Call, TargetTransformInfo &CalleeTTI,
2944     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2945     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2946     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2947   const InlineParams Params = {/* DefaultThreshold*/ 0,
2948                                /*HintThreshold*/ {},
2949                                /*ColdThreshold*/ {},
2950                                /*OptSizeThreshold*/ {},
2951                                /*OptMinSizeThreshold*/ {},
2952                                /*HotCallSiteThreshold*/ {},
2953                                /*LocallyHotCallSiteThreshold*/ {},
2954                                /*ColdCallSiteThreshold*/ {},
2955                                /*ComputeFullInlineCost*/ true,
2956                                /*EnableDeferral*/ true};
2957 
2958   InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
2959                             GetAssumptionCache, GetBFI, PSI, ORE, true,
2960                             /*IgnoreThreshold*/ true);
2961   auto R = CA.analyze();
2962   if (!R.isSuccess())
2963     return std::nullopt;
2964   return CA.getCost();
2965 }
2966 
2967 std::optional<InlineCostFeatures> llvm::getInliningCostFeatures(
2968     CallBase &Call, TargetTransformInfo &CalleeTTI,
2969     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2970     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2971     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2972   InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI,
2973                                  ORE, *Call.getCalledFunction(), Call);
2974   auto R = CFA.analyze();
2975   if (!R.isSuccess())
2976     return std::nullopt;
2977   return CFA.features();
2978 }
2979 
2980 std::optional<InlineResult> llvm::getAttributeBasedInliningDecision(
2981     CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
2982     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
2983 
2984   // Cannot inline indirect calls.
2985   if (!Callee)
2986     return InlineResult::failure("indirect call");
2987 
2988   // When callee coroutine function is inlined into caller coroutine function
2989   // before coro-split pass,
2990   // coro-early pass can not handle this quiet well.
2991   // So we won't inline the coroutine function if it have not been unsplited
2992   if (Callee->isPresplitCoroutine())
2993     return InlineResult::failure("unsplited coroutine call");
2994 
2995   // Never inline calls with byval arguments that does not have the alloca
2996   // address space. Since byval arguments can be replaced with a copy to an
2997   // alloca, the inlined code would need to be adjusted to handle that the
2998   // argument is in the alloca address space (so it is a little bit complicated
2999   // to solve).
3000   unsigned AllocaAS = Callee->getDataLayout().getAllocaAddrSpace();
3001   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
3002     if (Call.isByValArgument(I)) {
3003       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
3004       if (PTy->getAddressSpace() != AllocaAS)
3005         return InlineResult::failure("byval arguments without alloca"
3006                                      " address space");
3007     }
3008 
3009   // Calls to functions with always-inline attributes should be inlined
3010   // whenever possible.
3011   if (Call.hasFnAttr(Attribute::AlwaysInline)) {
3012     if (Call.getAttributes().hasFnAttr(Attribute::NoInline))
3013       return InlineResult::failure("noinline call site attribute");
3014 
3015     auto IsViable = isInlineViable(*Callee);
3016     if (IsViable.isSuccess())
3017       return InlineResult::success();
3018     return InlineResult::failure(IsViable.getFailureReason());
3019   }
3020 
3021   // Never inline functions with conflicting attributes (unless callee has
3022   // always-inline attribute).
3023   Function *Caller = Call.getCaller();
3024   if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
3025     return InlineResult::failure("conflicting attributes");
3026 
3027   // Don't inline this call if the caller has the optnone attribute.
3028   if (Caller->hasOptNone())
3029     return InlineResult::failure("optnone attribute");
3030 
3031   // Don't inline a function that treats null pointer as valid into a caller
3032   // that does not have this attribute.
3033   if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
3034     return InlineResult::failure("nullptr definitions incompatible");
3035 
3036   // Don't inline functions which can be interposed at link-time.
3037   if (Callee->isInterposable())
3038     return InlineResult::failure("interposable");
3039 
3040   // Don't inline functions marked noinline.
3041   if (Callee->hasFnAttribute(Attribute::NoInline))
3042     return InlineResult::failure("noinline function attribute");
3043 
3044   // Don't inline call sites marked noinline.
3045   if (Call.isNoInline())
3046     return InlineResult::failure("noinline call site attribute");
3047 
3048   return std::nullopt;
3049 }
3050 
3051 InlineCost llvm::getInlineCost(
3052     CallBase &Call, Function *Callee, const InlineParams &Params,
3053     TargetTransformInfo &CalleeTTI,
3054     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
3055     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
3056     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
3057     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
3058 
3059   auto UserDecision =
3060       llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);
3061 
3062   if (UserDecision) {
3063     if (UserDecision->isSuccess())
3064       return llvm::InlineCost::getAlways("always inline attribute");
3065     return llvm::InlineCost::getNever(UserDecision->getFailureReason());
3066   }
3067 
3068   LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
3069                           << "... (caller:" << Call.getCaller()->getName()
3070                           << ")\n");
3071 
3072   InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
3073                             GetAssumptionCache, GetBFI, PSI, ORE);
3074   InlineResult ShouldInline = CA.analyze();
3075 
3076   LLVM_DEBUG(CA.dump());
3077 
3078   // Always make cost benefit based decision explicit.
3079   // We use always/never here since threshold is not meaningful,
3080   // as it's not what drives cost-benefit analysis.
3081   if (CA.wasDecidedByCostBenefit()) {
3082     if (ShouldInline.isSuccess())
3083       return InlineCost::getAlways("benefit over cost",
3084                                    CA.getCostBenefitPair());
3085     else
3086       return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair());
3087   }
3088 
3089   if (CA.wasDecidedByCostThreshold())
3090     return InlineCost::get(CA.getCost(), CA.getThreshold(),
3091                            CA.getStaticBonusApplied());
3092 
3093   // No details on how the decision was made, simply return always or never.
3094   return ShouldInline.isSuccess()
3095              ? InlineCost::getAlways("empty function")
3096              : InlineCost::getNever(ShouldInline.getFailureReason());
3097 }
3098 
3099 InlineResult llvm::isInlineViable(Function &F) {
3100   bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
3101   for (BasicBlock &BB : F) {
3102     // Disallow inlining of functions which contain indirect branches.
3103     if (isa<IndirectBrInst>(BB.getTerminator()))
3104       return InlineResult::failure("contains indirect branches");
3105 
3106     // Disallow inlining of blockaddresses which are used by non-callbr
3107     // instructions.
3108     if (BB.hasAddressTaken())
3109       for (User *U : BlockAddress::get(&BB)->users())
3110         if (!isa<CallBrInst>(*U))
3111           return InlineResult::failure("blockaddress used outside of callbr");
3112 
3113     for (auto &II : BB) {
3114       CallBase *Call = dyn_cast<CallBase>(&II);
3115       if (!Call)
3116         continue;
3117 
3118       // Disallow recursive calls.
3119       Function *Callee = Call->getCalledFunction();
3120       if (&F == Callee)
3121         return InlineResult::failure("recursive call");
3122 
3123       // Disallow calls which expose returns-twice to a function not previously
3124       // attributed as such.
3125       if (!ReturnsTwice && isa<CallInst>(Call) &&
3126           cast<CallInst>(Call)->canReturnTwice())
3127         return InlineResult::failure("exposes returns-twice attribute");
3128 
3129       if (Callee)
3130         switch (Callee->getIntrinsicID()) {
3131         default:
3132           break;
3133         case llvm::Intrinsic::icall_branch_funnel:
3134           // Disallow inlining of @llvm.icall.branch.funnel because current
3135           // backend can't separate call targets from call arguments.
3136           return InlineResult::failure(
3137               "disallowed inlining of @llvm.icall.branch.funnel");
3138         case llvm::Intrinsic::localescape:
3139           // Disallow inlining functions that call @llvm.localescape. Doing this
3140           // correctly would require major changes to the inliner.
3141           return InlineResult::failure(
3142               "disallowed inlining of @llvm.localescape");
3143         case llvm::Intrinsic::vastart:
3144           // Disallow inlining of functions that initialize VarArgs with
3145           // va_start.
3146           return InlineResult::failure(
3147               "contains VarArgs initialized with va_start");
3148         }
3149     }
3150   }
3151 
3152   return InlineResult::success();
3153 }
3154 
3155 // APIs to create InlineParams based on command line flags and/or other
3156 // parameters.
3157 
3158 InlineParams llvm::getInlineParams(int Threshold) {
3159   InlineParams Params;
3160 
3161   // This field is the threshold to use for a callee by default. This is
3162   // derived from one or more of:
3163   //  * optimization or size-optimization levels,
3164   //  * a value passed to createFunctionInliningPass function, or
3165   //  * the -inline-threshold flag.
3166   //  If the -inline-threshold flag is explicitly specified, that is used
3167   //  irrespective of anything else.
3168   if (InlineThreshold.getNumOccurrences() > 0)
3169     Params.DefaultThreshold = InlineThreshold;
3170   else
3171     Params.DefaultThreshold = Threshold;
3172 
3173   // Set the HintThreshold knob from the -inlinehint-threshold.
3174   Params.HintThreshold = HintThreshold;
3175 
3176   // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
3177   Params.HotCallSiteThreshold = HotCallSiteThreshold;
3178 
3179   // If the -locally-hot-callsite-threshold is explicitly specified, use it to
3180   // populate LocallyHotCallSiteThreshold. Later, we populate
3181   // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
3182   // we know that optimization level is O3 (in the getInlineParams variant that
3183   // takes the opt and size levels).
3184   // FIXME: Remove this check (and make the assignment unconditional) after
3185   // addressing size regression issues at O2.
3186   if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
3187     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
3188 
3189   // Set the ColdCallSiteThreshold knob from the
3190   // -inline-cold-callsite-threshold.
3191   Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
3192 
3193   // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
3194   // -inlinehint-threshold commandline option is not explicitly given. If that
3195   // option is present, then its value applies even for callees with size and
3196   // minsize attributes.
3197   // If the -inline-threshold is not specified, set the ColdThreshold from the
3198   // -inlinecold-threshold even if it is not explicitly passed. If
3199   // -inline-threshold is specified, then -inlinecold-threshold needs to be
3200   // explicitly specified to set the ColdThreshold knob
3201   if (InlineThreshold.getNumOccurrences() == 0) {
3202     Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
3203     Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
3204     Params.ColdThreshold = ColdThreshold;
3205   } else if (ColdThreshold.getNumOccurrences() > 0) {
3206     Params.ColdThreshold = ColdThreshold;
3207   }
3208   return Params;
3209 }
3210 
3211 InlineParams llvm::getInlineParams() {
3212   return getInlineParams(DefaultThreshold);
3213 }
3214 
3215 // Compute the default threshold for inlining based on the opt level and the
3216 // size opt level.
3217 static int computeThresholdFromOptLevels(unsigned OptLevel,
3218                                          unsigned SizeOptLevel) {
3219   if (OptLevel > 2)
3220     return InlineConstants::OptAggressiveThreshold;
3221   if (SizeOptLevel == 1) // -Os
3222     return InlineConstants::OptSizeThreshold;
3223   if (SizeOptLevel == 2) // -Oz
3224     return InlineConstants::OptMinSizeThreshold;
3225   return DefaultThreshold;
3226 }
3227 
3228 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
3229   auto Params =
3230       getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
3231   // At O3, use the value of -locally-hot-callsite-threshold option to populate
3232   // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
3233   // when it is specified explicitly.
3234   if (OptLevel > 2)
3235     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
3236   return Params;
3237 }
3238 
3239 PreservedAnalyses
3240 InlineCostAnnotationPrinterPass::run(Function &F,
3241                                      FunctionAnalysisManager &FAM) {
3242   PrintInstructionComments = true;
3243   std::function<AssumptionCache &(Function &)> GetAssumptionCache =
3244       [&](Function &F) -> AssumptionCache & {
3245     return FAM.getResult<AssumptionAnalysis>(F);
3246   };
3247   Module *M = F.getParent();
3248   ProfileSummaryInfo PSI(*M);
3249   DataLayout DL(M);
3250   TargetTransformInfo TTI(DL);
3251   // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
3252   // In the current implementation, the type of InlineParams doesn't matter as
3253   // the pass serves only for verification of inliner's decisions.
3254   // We can add a flag which determines InlineParams for this run. Right now,
3255   // the default InlineParams are used.
3256   const InlineParams Params = llvm::getInlineParams();
3257   for (BasicBlock &BB : F) {
3258     for (Instruction &I : BB) {
3259       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3260         Function *CalledFunction = CI->getCalledFunction();
3261         if (!CalledFunction || CalledFunction->isDeclaration())
3262           continue;
3263         OptimizationRemarkEmitter ORE(CalledFunction);
3264         InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
3265                                     GetAssumptionCache, nullptr, &PSI, &ORE);
3266         ICCA.analyze();
3267         OS << "      Analyzing call of " << CalledFunction->getName()
3268            << "... (caller:" << CI->getCaller()->getName() << ")\n";
3269         ICCA.print(OS);
3270         OS << "\n";
3271       }
3272     }
3273   }
3274   return PreservedAnalyses::all();
3275 }
3276