1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/InstVisitor.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "inline-cost" 46 47 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 48 49 static cl::opt<int> InlineThreshold( 50 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 51 cl::desc("Control the amount of inlining to perform (default = 225)")); 52 53 static cl::opt<int> HintThreshold( 54 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 55 cl::desc("Threshold for inlining functions with inline hint")); 56 57 static cl::opt<int> 58 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 59 cl::init(45), cl::ZeroOrMore, 60 cl::desc("Threshold for inlining cold callsites")); 61 62 // We introduce this threshold to help performance of instrumentation based 63 // PGO before we actually hook up inliner with analysis passes such as BPI and 64 // BFI. 65 static cl::opt<int> ColdThreshold( 66 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with cold attribute")); 68 69 static cl::opt<int> 70 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 71 cl::ZeroOrMore, 72 cl::desc("Threshold for hot callsites ")); 73 74 static cl::opt<int> LocallyHotCallSiteThreshold( 75 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 76 cl::desc("Threshold for locally hot callsites ")); 77 78 static cl::opt<int> ColdCallSiteRelFreq( 79 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 80 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 81 "entry frequency, for a callsite to be cold in the absence of " 82 "profile information.")); 83 84 static cl::opt<int> HotCallSiteRelFreq( 85 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 86 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 87 "entry frequency, for a callsite to be hot in the absence of " 88 "profile information.")); 89 90 static cl::opt<bool> OptComputeFullInlineCost( 91 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 92 cl::desc("Compute the full inline cost of a call site even when the cost " 93 "exceeds the threshold.")); 94 95 namespace { 96 class InlineCostCallAnalyzer; 97 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 98 typedef InstVisitor<CallAnalyzer, bool> Base; 99 friend class InstVisitor<CallAnalyzer, bool>; 100 101 protected: 102 virtual ~CallAnalyzer() {} 103 /// The TargetTransformInfo available for this compilation. 104 const TargetTransformInfo &TTI; 105 106 /// Getter for the cache of @llvm.assume intrinsics. 107 std::function<AssumptionCache &(Function &)> &GetAssumptionCache; 108 109 /// Getter for BlockFrequencyInfo 110 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI; 111 112 /// Profile summary information. 113 ProfileSummaryInfo *PSI; 114 115 /// The called function. 116 Function &F; 117 118 // Cache the DataLayout since we use it a lot. 119 const DataLayout &DL; 120 121 /// The OptimizationRemarkEmitter available for this compilation. 122 OptimizationRemarkEmitter *ORE; 123 124 /// The candidate callsite being analyzed. Please do not use this to do 125 /// analysis in the caller function; we want the inline cost query to be 126 /// easily cacheable. Instead, use the cover function paramHasAttr. 127 CallBase &CandidateCall; 128 129 /// Extension points for handling callsite features. 130 /// Called after a basic block was analyzed. 131 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 132 133 /// Called at the end of the analysis of the callsite. Return the outcome of 134 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 135 /// the reason it can't. 136 virtual InlineResult finalizeAnalysis() { return true; } 137 138 /// Called when we're about to start processing a basic block, and every time 139 /// we are done processing an instruction. Return true if there is no point in 140 /// continuing the analysis (e.g. we've determined already the call site is 141 /// too expensive to inline) 142 virtual bool shouldStop() { return false; } 143 144 /// Called before the analysis of the callee body starts (with callsite 145 /// contexts propagated). It checks callsite-specific information. Return a 146 /// reason analysis can't continue if that's the case, or 'true' if it may 147 /// continue. 148 virtual InlineResult onAnalysisStart() { return true; } 149 150 /// Called if the analysis engine decides SROA cannot be done for the given 151 /// alloca. 152 virtual void onDisableSROA(AllocaInst *Arg) {} 153 154 /// Called the analysis engine determines load elimination won't happen. 155 virtual void onDisableLoadElimination() {} 156 157 /// Called to account for a call. 158 virtual void onCallPenalty() {} 159 160 /// Called to account for the expectation the inlining would result in a load 161 /// elimination. 162 virtual void onLoadEliminationOpportunity() {} 163 164 /// Called to account for the cost of argument setup for the Call in the 165 /// callee's body (not the callsite currently under analysis). 166 virtual void onCallArgumentSetup(const CallBase &Call) {} 167 168 /// Called to account for a load relative intrinsic. 169 virtual void onLoadRelativeIntrinsic() {} 170 171 /// Called to account for a lowered call. 172 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 173 } 174 175 /// Account for a jump table of given size. Return false to stop further 176 /// processing the switch instruction 177 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 178 179 /// Account for a case cluster of given size. Return false to stop further 180 /// processing of the instruction. 181 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 182 183 /// Called at the end of processing a switch instruction, with the given 184 /// number of case clusters. 185 virtual void onFinalizeSwitch(unsigned JumpTableSize, 186 unsigned NumCaseCluster) {} 187 188 /// Called to account for any other instruction not specifically accounted 189 /// for. 190 virtual void onCommonInstructionSimplification() {} 191 192 /// Start accounting potential benefits due to SROA for the given alloca. 193 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 194 195 /// Account SROA savings for the AllocaInst value. 196 virtual void onAggregateSROAUse(AllocaInst *V) {} 197 198 bool handleSROA(Value *V, bool DoNotDisable) { 199 // Check for SROA candidates in comparisons. 200 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 201 if (DoNotDisable) { 202 onAggregateSROAUse(SROAArg); 203 return true; 204 } 205 disableSROAForArg(SROAArg); 206 } 207 return false; 208 } 209 210 bool IsCallerRecursive = false; 211 bool IsRecursiveCall = false; 212 bool ExposesReturnsTwice = false; 213 bool HasDynamicAlloca = false; 214 bool ContainsNoDuplicateCall = false; 215 bool HasReturn = false; 216 bool HasIndirectBr = false; 217 bool HasUninlineableIntrinsic = false; 218 bool InitsVargArgs = false; 219 220 /// Number of bytes allocated statically by the callee. 221 uint64_t AllocatedSize = 0; 222 unsigned NumInstructions = 0; 223 unsigned NumVectorInstructions = 0; 224 225 /// While we walk the potentially-inlined instructions, we build up and 226 /// maintain a mapping of simplified values specific to this callsite. The 227 /// idea is to propagate any special information we have about arguments to 228 /// this call through the inlinable section of the function, and account for 229 /// likely simplifications post-inlining. The most important aspect we track 230 /// is CFG altering simplifications -- when we prove a basic block dead, that 231 /// can cause dramatic shifts in the cost of inlining a function. 232 DenseMap<Value *, Constant *> SimplifiedValues; 233 234 /// Keep track of the values which map back (through function arguments) to 235 /// allocas on the caller stack which could be simplified through SROA. 236 DenseMap<Value *, AllocaInst *> SROAArgValues; 237 238 /// Keep track of Allocas for which we believe we may get SROA optimization. 239 /// We don't delete entries in SROAArgValue because we still want 240 /// isAllocaDerivedArg to function correctly. 241 DenseSet<AllocaInst *> EnabledSROAArgValues; 242 243 /// Keep track of values which map to a pointer base and constant offset. 244 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 245 246 /// Keep track of dead blocks due to the constant arguments. 247 SetVector<BasicBlock *> DeadBlocks; 248 249 /// The mapping of the blocks to their known unique successors due to the 250 /// constant arguments. 251 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 252 253 /// Model the elimination of repeated loads that is expected to happen 254 /// whenever we simplify away the stores that would otherwise cause them to be 255 /// loads. 256 bool EnableLoadElimination; 257 SmallPtrSet<Value *, 16> LoadAddrSet; 258 259 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 260 auto It = SROAArgValues.find(V); 261 if (It == SROAArgValues.end() || 262 EnabledSROAArgValues.count(It->second) == 0) 263 return nullptr; 264 return It->second; 265 } 266 267 // Custom simplification helper routines. 268 bool isAllocaDerivedArg(Value *V); 269 void disableSROAForArg(AllocaInst *SROAArg); 270 void disableSROA(Value *V); 271 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 272 void disableLoadElimination(); 273 bool isGEPFree(GetElementPtrInst &GEP); 274 bool canFoldInboundsGEP(GetElementPtrInst &I); 275 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 276 bool simplifyCallSite(Function *F, CallBase &Call); 277 template <typename Callable> 278 bool simplifyInstruction(Instruction &I, Callable Evaluate); 279 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 280 281 /// Return true if the given argument to the function being considered for 282 /// inlining has the given attribute set either at the call site or the 283 /// function declaration. Primarily used to inspect call site specific 284 /// attributes since these can be more precise than the ones on the callee 285 /// itself. 286 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 287 288 /// Return true if the given value is known non null within the callee if 289 /// inlined through this particular callsite. 290 bool isKnownNonNullInCallee(Value *V); 291 292 /// Return true if size growth is allowed when inlining the callee at \p Call. 293 bool allowSizeGrowth(CallBase &Call); 294 295 // Custom analysis routines. 296 InlineResult analyzeBlock(BasicBlock *BB, 297 SmallPtrSetImpl<const Value *> &EphValues); 298 299 // Disable several entry points to the visitor so we don't accidentally use 300 // them by declaring but not defining them here. 301 void visit(Module *); 302 void visit(Module &); 303 void visit(Function *); 304 void visit(Function &); 305 void visit(BasicBlock *); 306 void visit(BasicBlock &); 307 308 // Provide base case for our instruction visit. 309 bool visitInstruction(Instruction &I); 310 311 // Our visit overrides. 312 bool visitAlloca(AllocaInst &I); 313 bool visitPHI(PHINode &I); 314 bool visitGetElementPtr(GetElementPtrInst &I); 315 bool visitBitCast(BitCastInst &I); 316 bool visitPtrToInt(PtrToIntInst &I); 317 bool visitIntToPtr(IntToPtrInst &I); 318 bool visitCastInst(CastInst &I); 319 bool visitUnaryInstruction(UnaryInstruction &I); 320 bool visitCmpInst(CmpInst &I); 321 bool visitSub(BinaryOperator &I); 322 bool visitBinaryOperator(BinaryOperator &I); 323 bool visitFNeg(UnaryOperator &I); 324 bool visitLoad(LoadInst &I); 325 bool visitStore(StoreInst &I); 326 bool visitExtractValue(ExtractValueInst &I); 327 bool visitInsertValue(InsertValueInst &I); 328 bool visitCallBase(CallBase &Call); 329 bool visitReturnInst(ReturnInst &RI); 330 bool visitBranchInst(BranchInst &BI); 331 bool visitSelectInst(SelectInst &SI); 332 bool visitSwitchInst(SwitchInst &SI); 333 bool visitIndirectBrInst(IndirectBrInst &IBI); 334 bool visitResumeInst(ResumeInst &RI); 335 bool visitCleanupReturnInst(CleanupReturnInst &RI); 336 bool visitCatchReturnInst(CatchReturnInst &RI); 337 bool visitUnreachableInst(UnreachableInst &I); 338 339 public: 340 CallAnalyzer(const TargetTransformInfo &TTI, 341 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 342 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI, 343 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, 344 Function &Callee, CallBase &Call) 345 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 346 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 347 CandidateCall(Call), EnableLoadElimination(true) {} 348 349 InlineResult analyze(); 350 351 // Keep a bunch of stats about the cost savings found so we can print them 352 // out when debugging. 353 unsigned NumConstantArgs = 0; 354 unsigned NumConstantOffsetPtrArgs = 0; 355 unsigned NumAllocaArgs = 0; 356 unsigned NumConstantPtrCmps = 0; 357 unsigned NumConstantPtrDiffs = 0; 358 unsigned NumInstructionsSimplified = 0; 359 360 void dump(); 361 }; 362 363 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 364 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 365 class InlineCostCallAnalyzer final : public CallAnalyzer { 366 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 367 const bool ComputeFullInlineCost; 368 int LoadEliminationCost = 0; 369 /// Bonus to be applied when percentage of vector instructions in callee is 370 /// high (see more details in updateThreshold). 371 int VectorBonus = 0; 372 /// Bonus to be applied when the callee has only one reachable basic block. 373 int SingleBBBonus = 0; 374 375 /// Tunable parameters that control the analysis. 376 const InlineParams &Params; 377 378 /// Upper bound for the inlining cost. Bonuses are being applied to account 379 /// for speculative "expected profit" of the inlining decision. 380 int Threshold = 0; 381 382 /// Attempt to evaluate indirect calls to boost its inline cost. 383 const bool BoostIndirectCalls; 384 385 /// Inlining cost measured in abstract units, accounts for all the 386 /// instructions expected to be executed for a given function invocation. 387 /// Instructions that are statically proven to be dead based on call-site 388 /// arguments are not counted here. 389 int Cost = 0; 390 391 bool SingleBB = true; 392 393 unsigned SROACostSavings = 0; 394 unsigned SROACostSavingsLost = 0; 395 396 /// The mapping of caller Alloca values to their accumulated cost savings. If 397 /// we have to disable SROA for one of the allocas, this tells us how much 398 /// cost must be added. 399 DenseMap<AllocaInst *, int> SROAArgCosts; 400 401 /// Return true if \p Call is a cold callsite. 402 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 403 404 /// Update Threshold based on callsite properties such as callee 405 /// attributes and callee hotness for PGO builds. The Callee is explicitly 406 /// passed to support analyzing indirect calls whose target is inferred by 407 /// analysis. 408 void updateThreshold(CallBase &Call, Function &Callee); 409 /// Return a higher threshold if \p Call is a hot callsite. 410 Optional<int> getHotCallSiteThreshold(CallBase &Call, 411 BlockFrequencyInfo *CallerBFI); 412 413 /// Handle a capped 'int' increment for Cost. 414 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 415 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 416 Cost = (int)std::min(UpperBound, Cost + Inc); 417 } 418 419 void onDisableSROA(AllocaInst *Arg) override { 420 auto CostIt = SROAArgCosts.find(Arg); 421 if (CostIt == SROAArgCosts.end()) 422 return; 423 addCost(CostIt->second); 424 SROACostSavings -= CostIt->second; 425 SROACostSavingsLost += CostIt->second; 426 SROAArgCosts.erase(CostIt); 427 } 428 429 void onDisableLoadElimination() override { 430 addCost(LoadEliminationCost); 431 LoadEliminationCost = 0; 432 } 433 void onCallPenalty() override { addCost(InlineConstants::CallPenalty); } 434 void onCallArgumentSetup(const CallBase &Call) override { 435 // Pay the price of the argument setup. We account for the average 1 436 // instruction per call argument setup here. 437 addCost(Call.arg_size() * InlineConstants::InstrCost); 438 } 439 void onLoadRelativeIntrinsic() override { 440 // This is normally lowered to 4 LLVM instructions. 441 addCost(3 * InlineConstants::InstrCost); 442 } 443 void onLoweredCall(Function *F, CallBase &Call, 444 bool IsIndirectCall) override { 445 // We account for the average 1 instruction per call argument setup here. 446 addCost(Call.arg_size() * InlineConstants::InstrCost); 447 448 // If we have a constant that we are calling as a function, we can peer 449 // through it and see the function target. This happens not infrequently 450 // during devirtualization and so we want to give it a hefty bonus for 451 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 452 // Pretend to inline the function, with a custom threshold. 453 if (IsIndirectCall && BoostIndirectCalls) { 454 auto IndirectCallParams = Params; 455 IndirectCallParams.DefaultThreshold = 456 InlineConstants::IndirectCallThreshold; 457 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 458 /// to instantiate the derived class. 459 InlineCostCallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, 460 Call, IndirectCallParams, false); 461 if (CA.analyze()) { 462 // We were able to inline the indirect call! Subtract the cost from the 463 // threshold to get the bonus we want to apply, but don't go below zero. 464 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 465 } 466 } else 467 // Otherwise simply add the cost for merely making the call. 468 addCost(InlineConstants::CallPenalty); 469 } 470 471 void onFinalizeSwitch(unsigned JumpTableSize, 472 unsigned NumCaseCluster) override { 473 // If suitable for a jump table, consider the cost for the table size and 474 // branch to destination. 475 // Maximum valid cost increased in this function. 476 if (JumpTableSize) { 477 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 478 4 * InlineConstants::InstrCost; 479 480 addCost(JTCost, (int64_t)CostUpperBound); 481 return; 482 } 483 // Considering forming a binary search, we should find the number of nodes 484 // which is same as the number of comparisons when lowered. For a given 485 // number of clusters, n, we can define a recursive function, f(n), to find 486 // the number of nodes in the tree. The recursion is : 487 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 488 // and f(n) = n, when n <= 3. 489 // This will lead a binary tree where the leaf should be either f(2) or f(3) 490 // when n > 3. So, the number of comparisons from leaves should be n, while 491 // the number of non-leaf should be : 492 // 2^(log2(n) - 1) - 1 493 // = 2^log2(n) * 2^-1 - 1 494 // = n / 2 - 1. 495 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 496 // number of comparisons in a simple closed form : 497 // n + n / 2 - 1 = n * 3 / 2 - 1 498 if (NumCaseCluster <= 3) { 499 // Suppose a comparison includes one compare and one conditional branch. 500 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 501 return; 502 } 503 504 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; 505 int64_t SwitchCost = 506 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 507 508 addCost(SwitchCost, (int64_t)CostUpperBound); 509 } 510 void onCommonInstructionSimplification() override { 511 addCost(InlineConstants::InstrCost); 512 } 513 514 void onInitializeSROAArg(AllocaInst *Arg) override { 515 assert(Arg != nullptr && 516 "Should not initialize SROA costs for null value."); 517 SROAArgCosts[Arg] = 0; 518 EnabledSROAArgValues.insert(Arg); 519 } 520 521 void onAggregateSROAUse(AllocaInst *SROAArg) override { 522 auto CostIt = SROAArgCosts.find(SROAArg); 523 assert(CostIt != SROAArgCosts.end() && 524 "expected this argument to have a cost"); 525 CostIt->second += InlineConstants::InstrCost; 526 SROACostSavings += InlineConstants::InstrCost; 527 } 528 529 void onBlockAnalyzed(const BasicBlock *BB) override { 530 auto *TI = BB->getTerminator(); 531 // If we had any successors at this point, than post-inlining is likely to 532 // have them as well. Note that we assume any basic blocks which existed 533 // due to branches or switches which folded above will also fold after 534 // inlining. 535 if (SingleBB && TI->getNumSuccessors() > 1) { 536 // Take off the bonus we applied to the threshold. 537 Threshold -= SingleBBBonus; 538 SingleBB = false; 539 } 540 } 541 InlineResult finalizeAnalysis() override { 542 // Loops generally act a lot like calls in that they act like barriers to 543 // movement, require a certain amount of setup, etc. So when optimising for 544 // size, we penalise any call sites that perform loops. We do this after all 545 // other costs here, so will likely only be dealing with relatively small 546 // functions (and hence DT and LI will hopefully be cheap). 547 auto *Caller = CandidateCall.getFunction(); 548 if (Caller->hasMinSize()) { 549 DominatorTree DT(F); 550 LoopInfo LI(DT); 551 int NumLoops = 0; 552 for (Loop *L : LI) { 553 // Ignore loops that will not be executed 554 if (DeadBlocks.count(L->getHeader())) 555 continue; 556 NumLoops++; 557 } 558 addCost(NumLoops * InlineConstants::CallPenalty); 559 } 560 561 // We applied the maximum possible vector bonus at the beginning. Now, 562 // subtract the excess bonus, if any, from the Threshold before 563 // comparing against Cost. 564 if (NumVectorInstructions <= NumInstructions / 10) 565 Threshold -= VectorBonus; 566 else if (NumVectorInstructions <= NumInstructions / 2) 567 Threshold -= VectorBonus / 2; 568 569 return Cost < std::max(1, Threshold); 570 } 571 bool shouldStop() override { 572 // Bail out the moment we cross the threshold. This means we'll under-count 573 // the cost, but only when undercounting doesn't matter. 574 return Cost >= Threshold && !ComputeFullInlineCost; 575 } 576 577 void onLoadEliminationOpportunity() override { 578 LoadEliminationCost += InlineConstants::InstrCost; 579 } 580 581 InlineResult onAnalysisStart() override { 582 // Perform some tweaks to the cost and threshold based on the direct 583 // callsite information. 584 585 // We want to more aggressively inline vector-dense kernels, so up the 586 // threshold, and we'll lower it if the % of vector instructions gets too 587 // low. Note that these bonuses are some what arbitrary and evolved over 588 // time by accident as much as because they are principled bonuses. 589 // 590 // FIXME: It would be nice to remove all such bonuses. At least it would be 591 // nice to base the bonus values on something more scientific. 592 assert(NumInstructions == 0); 593 assert(NumVectorInstructions == 0); 594 595 // Update the threshold based on callsite properties 596 updateThreshold(CandidateCall, F); 597 598 // While Threshold depends on commandline options that can take negative 599 // values, we want to enforce the invariant that the computed threshold and 600 // bonuses are non-negative. 601 assert(Threshold >= 0); 602 assert(SingleBBBonus >= 0); 603 assert(VectorBonus >= 0); 604 605 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 606 // this Threshold any time, and cost cannot decrease, we can stop processing 607 // the rest of the function body. 608 Threshold += (SingleBBBonus + VectorBonus); 609 610 // Give out bonuses for the callsite, as the instructions setting them up 611 // will be gone after inlining. 612 addCost(-getCallsiteCost(this->CandidateCall, DL)); 613 614 // If this function uses the coldcc calling convention, prefer not to inline 615 // it. 616 if (F.getCallingConv() == CallingConv::Cold) 617 Cost += InlineConstants::ColdccPenalty; 618 619 // Check if we're done. This can happen due to bonuses and penalties. 620 if (Cost >= Threshold && !ComputeFullInlineCost) 621 return "high cost"; 622 623 return true; 624 } 625 626 public: 627 InlineCostCallAnalyzer( 628 const TargetTransformInfo &TTI, 629 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 630 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI, 631 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 632 CallBase &Call, const InlineParams &Params, bool BoostIndirect = true) 633 : CallAnalyzer(TTI, GetAssumptionCache, GetBFI, PSI, ORE, Callee, Call), 634 ComputeFullInlineCost(OptComputeFullInlineCost || 635 Params.ComputeFullInlineCost || ORE), 636 Params(Params), Threshold(Params.DefaultThreshold), 637 BoostIndirectCalls(BoostIndirect) {} 638 void dump(); 639 640 virtual ~InlineCostCallAnalyzer() {} 641 int getThreshold() { return Threshold; } 642 int getCost() { return Cost; } 643 }; 644 } // namespace 645 646 /// Test whether the given value is an Alloca-derived function argument. 647 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 648 return SROAArgValues.count(V); 649 } 650 651 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 652 onDisableSROA(SROAArg); 653 EnabledSROAArgValues.erase(SROAArg); 654 disableLoadElimination(); 655 } 656 /// If 'V' maps to a SROA candidate, disable SROA for it. 657 void CallAnalyzer::disableSROA(Value *V) { 658 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 659 disableSROAForArg(SROAArg); 660 } 661 } 662 663 void CallAnalyzer::disableLoadElimination() { 664 if (EnableLoadElimination) { 665 onDisableLoadElimination(); 666 EnableLoadElimination = false; 667 } 668 } 669 670 /// Accumulate a constant GEP offset into an APInt if possible. 671 /// 672 /// Returns false if unable to compute the offset for any reason. Respects any 673 /// simplified values known during the analysis of this callsite. 674 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 675 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 676 assert(IntPtrWidth == Offset.getBitWidth()); 677 678 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 679 GTI != GTE; ++GTI) { 680 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 681 if (!OpC) 682 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 683 OpC = dyn_cast<ConstantInt>(SimpleOp); 684 if (!OpC) 685 return false; 686 if (OpC->isZero()) 687 continue; 688 689 // Handle a struct index, which adds its field offset to the pointer. 690 if (StructType *STy = GTI.getStructTypeOrNull()) { 691 unsigned ElementIdx = OpC->getZExtValue(); 692 const StructLayout *SL = DL.getStructLayout(STy); 693 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 694 continue; 695 } 696 697 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 698 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 699 } 700 return true; 701 } 702 703 /// Use TTI to check whether a GEP is free. 704 /// 705 /// Respects any simplified values known during the analysis of this callsite. 706 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 707 SmallVector<Value *, 4> Operands; 708 Operands.push_back(GEP.getOperand(0)); 709 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 710 if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) 711 Operands.push_back(SimpleOp); 712 else 713 Operands.push_back(*I); 714 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands); 715 } 716 717 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 718 // Check whether inlining will turn a dynamic alloca into a static 719 // alloca and handle that case. 720 if (I.isArrayAllocation()) { 721 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 722 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 723 Type *Ty = I.getAllocatedType(); 724 AllocatedSize = SaturatingMultiplyAdd( 725 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(), 726 AllocatedSize); 727 return Base::visitAlloca(I); 728 } 729 } 730 731 // Accumulate the allocated size. 732 if (I.isStaticAlloca()) { 733 Type *Ty = I.getAllocatedType(); 734 AllocatedSize = 735 SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize); 736 } 737 738 // We will happily inline static alloca instructions. 739 if (I.isStaticAlloca()) 740 return Base::visitAlloca(I); 741 742 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 743 // a variety of reasons, and so we would like to not inline them into 744 // functions which don't currently have a dynamic alloca. This simply 745 // disables inlining altogether in the presence of a dynamic alloca. 746 HasDynamicAlloca = true; 747 return false; 748 } 749 750 bool CallAnalyzer::visitPHI(PHINode &I) { 751 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 752 // though we don't want to propagate it's bonuses. The idea is to disable 753 // SROA if it *might* be used in an inappropriate manner. 754 755 // Phi nodes are always zero-cost. 756 // FIXME: Pointer sizes may differ between different address spaces, so do we 757 // need to use correct address space in the call to getPointerSizeInBits here? 758 // Or could we skip the getPointerSizeInBits call completely? As far as I can 759 // see the ZeroOffset is used as a dummy value, so we can probably use any 760 // bit width for the ZeroOffset? 761 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 762 bool CheckSROA = I.getType()->isPointerTy(); 763 764 // Track the constant or pointer with constant offset we've seen so far. 765 Constant *FirstC = nullptr; 766 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 767 Value *FirstV = nullptr; 768 769 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 770 BasicBlock *Pred = I.getIncomingBlock(i); 771 // If the incoming block is dead, skip the incoming block. 772 if (DeadBlocks.count(Pred)) 773 continue; 774 // If the parent block of phi is not the known successor of the incoming 775 // block, skip the incoming block. 776 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 777 if (KnownSuccessor && KnownSuccessor != I.getParent()) 778 continue; 779 780 Value *V = I.getIncomingValue(i); 781 // If the incoming value is this phi itself, skip the incoming value. 782 if (&I == V) 783 continue; 784 785 Constant *C = dyn_cast<Constant>(V); 786 if (!C) 787 C = SimplifiedValues.lookup(V); 788 789 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 790 if (!C && CheckSROA) 791 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 792 793 if (!C && !BaseAndOffset.first) 794 // The incoming value is neither a constant nor a pointer with constant 795 // offset, exit early. 796 return true; 797 798 if (FirstC) { 799 if (FirstC == C) 800 // If we've seen a constant incoming value before and it is the same 801 // constant we see this time, continue checking the next incoming value. 802 continue; 803 // Otherwise early exit because we either see a different constant or saw 804 // a constant before but we have a pointer with constant offset this time. 805 return true; 806 } 807 808 if (FirstV) { 809 // The same logic as above, but check pointer with constant offset here. 810 if (FirstBaseAndOffset == BaseAndOffset) 811 continue; 812 return true; 813 } 814 815 if (C) { 816 // This is the 1st time we've seen a constant, record it. 817 FirstC = C; 818 continue; 819 } 820 821 // The remaining case is that this is the 1st time we've seen a pointer with 822 // constant offset, record it. 823 FirstV = V; 824 FirstBaseAndOffset = BaseAndOffset; 825 } 826 827 // Check if we can map phi to a constant. 828 if (FirstC) { 829 SimplifiedValues[&I] = FirstC; 830 return true; 831 } 832 833 // Check if we can map phi to a pointer with constant offset. 834 if (FirstBaseAndOffset.first) { 835 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 836 837 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 838 SROAArgValues[&I] = SROAArg; 839 } 840 841 return true; 842 } 843 844 /// Check we can fold GEPs of constant-offset call site argument pointers. 845 /// This requires target data and inbounds GEPs. 846 /// 847 /// \return true if the specified GEP can be folded. 848 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 849 // Check if we have a base + offset for the pointer. 850 std::pair<Value *, APInt> BaseAndOffset = 851 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 852 if (!BaseAndOffset.first) 853 return false; 854 855 // Check if the offset of this GEP is constant, and if so accumulate it 856 // into Offset. 857 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 858 return false; 859 860 // Add the result as a new mapping to Base + Offset. 861 ConstantOffsetPtrs[&I] = BaseAndOffset; 862 863 return true; 864 } 865 866 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 867 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 868 869 // Lambda to check whether a GEP's indices are all constant. 870 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 871 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 872 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) 873 return false; 874 return true; 875 }; 876 877 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 878 if (SROAArg) 879 SROAArgValues[&I] = SROAArg; 880 881 // Constant GEPs are modeled as free. 882 return true; 883 } 884 885 // Variable GEPs will require math and will disable SROA. 886 if (SROAArg) 887 disableSROAForArg(SROAArg); 888 return isGEPFree(I); 889 } 890 891 /// Simplify \p I if its operands are constants and update SimplifiedValues. 892 /// \p Evaluate is a callable specific to instruction type that evaluates the 893 /// instruction when all the operands are constants. 894 template <typename Callable> 895 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 896 SmallVector<Constant *, 2> COps; 897 for (Value *Op : I.operands()) { 898 Constant *COp = dyn_cast<Constant>(Op); 899 if (!COp) 900 COp = SimplifiedValues.lookup(Op); 901 if (!COp) 902 return false; 903 COps.push_back(COp); 904 } 905 auto *C = Evaluate(COps); 906 if (!C) 907 return false; 908 SimplifiedValues[&I] = C; 909 return true; 910 } 911 912 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 913 // Propagate constants through bitcasts. 914 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 915 return ConstantExpr::getBitCast(COps[0], I.getType()); 916 })) 917 return true; 918 919 // Track base/offsets through casts 920 std::pair<Value *, APInt> BaseAndOffset = 921 ConstantOffsetPtrs.lookup(I.getOperand(0)); 922 // Casts don't change the offset, just wrap it up. 923 if (BaseAndOffset.first) 924 ConstantOffsetPtrs[&I] = BaseAndOffset; 925 926 // Also look for SROA candidates here. 927 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 928 SROAArgValues[&I] = SROAArg; 929 930 // Bitcasts are always zero cost. 931 return true; 932 } 933 934 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 935 // Propagate constants through ptrtoint. 936 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 937 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 938 })) 939 return true; 940 941 // Track base/offset pairs when converted to a plain integer provided the 942 // integer is large enough to represent the pointer. 943 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 944 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 945 if (IntegerSize >= DL.getPointerSizeInBits(AS)) { 946 std::pair<Value *, APInt> BaseAndOffset = 947 ConstantOffsetPtrs.lookup(I.getOperand(0)); 948 if (BaseAndOffset.first) 949 ConstantOffsetPtrs[&I] = BaseAndOffset; 950 } 951 952 // This is really weird. Technically, ptrtoint will disable SROA. However, 953 // unless that ptrtoint is *used* somewhere in the live basic blocks after 954 // inlining, it will be nuked, and SROA should proceed. All of the uses which 955 // would block SROA would also block SROA if applied directly to a pointer, 956 // and so we can just add the integer in here. The only places where SROA is 957 // preserved either cannot fire on an integer, or won't in-and-of themselves 958 // disable SROA (ext) w/o some later use that we would see and disable. 959 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 960 SROAArgValues[&I] = SROAArg; 961 962 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); 963 } 964 965 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 966 // Propagate constants through ptrtoint. 967 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 968 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 969 })) 970 return true; 971 972 // Track base/offset pairs when round-tripped through a pointer without 973 // modifications provided the integer is not too large. 974 Value *Op = I.getOperand(0); 975 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 976 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 977 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 978 if (BaseAndOffset.first) 979 ConstantOffsetPtrs[&I] = BaseAndOffset; 980 } 981 982 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 983 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 984 SROAArgValues[&I] = SROAArg; 985 986 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); 987 } 988 989 bool CallAnalyzer::visitCastInst(CastInst &I) { 990 // Propagate constants through casts. 991 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 992 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 993 })) 994 return true; 995 996 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. 997 disableSROA(I.getOperand(0)); 998 999 // If this is a floating-point cast, and the target says this operation 1000 // is expensive, this may eventually become a library call. Treat the cost 1001 // as such. 1002 switch (I.getOpcode()) { 1003 case Instruction::FPTrunc: 1004 case Instruction::FPExt: 1005 case Instruction::UIToFP: 1006 case Instruction::SIToFP: 1007 case Instruction::FPToUI: 1008 case Instruction::FPToSI: 1009 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1010 onCallPenalty(); 1011 break; 1012 default: 1013 break; 1014 } 1015 1016 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); 1017 } 1018 1019 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 1020 Value *Operand = I.getOperand(0); 1021 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1022 return ConstantFoldInstOperands(&I, COps[0], DL); 1023 })) 1024 return true; 1025 1026 // Disable any SROA on the argument to arbitrary unary instructions. 1027 disableSROA(Operand); 1028 1029 return false; 1030 } 1031 1032 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1033 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1034 } 1035 1036 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1037 // Does the *call site* have the NonNull attribute set on an argument? We 1038 // use the attribute on the call site to memoize any analysis done in the 1039 // caller. This will also trip if the callee function has a non-null 1040 // parameter attribute, but that's a less interesting case because hopefully 1041 // the callee would already have been simplified based on that. 1042 if (Argument *A = dyn_cast<Argument>(V)) 1043 if (paramHasAttr(A, Attribute::NonNull)) 1044 return true; 1045 1046 // Is this an alloca in the caller? This is distinct from the attribute case 1047 // above because attributes aren't updated within the inliner itself and we 1048 // always want to catch the alloca derived case. 1049 if (isAllocaDerivedArg(V)) 1050 // We can actually predict the result of comparisons between an 1051 // alloca-derived value and null. Note that this fires regardless of 1052 // SROA firing. 1053 return true; 1054 1055 return false; 1056 } 1057 1058 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1059 // If the normal destination of the invoke or the parent block of the call 1060 // site is unreachable-terminated, there is little point in inlining this 1061 // unless there is literally zero cost. 1062 // FIXME: Note that it is possible that an unreachable-terminated block has a 1063 // hot entry. For example, in below scenario inlining hot_call_X() may be 1064 // beneficial : 1065 // main() { 1066 // hot_call_1(); 1067 // ... 1068 // hot_call_N() 1069 // exit(0); 1070 // } 1071 // For now, we are not handling this corner case here as it is rare in real 1072 // code. In future, we should elaborate this based on BPI and BFI in more 1073 // general threshold adjusting heuristics in updateThreshold(). 1074 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1075 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1076 return false; 1077 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1078 return false; 1079 1080 return true; 1081 } 1082 1083 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1084 BlockFrequencyInfo *CallerBFI) { 1085 // If global profile summary is available, then callsite's coldness is 1086 // determined based on that. 1087 if (PSI && PSI->hasProfileSummary()) 1088 return PSI->isColdCallSite(CallSite(&Call), CallerBFI); 1089 1090 // Otherwise we need BFI to be available. 1091 if (!CallerBFI) 1092 return false; 1093 1094 // Determine if the callsite is cold relative to caller's entry. We could 1095 // potentially cache the computation of scaled entry frequency, but the added 1096 // complexity is not worth it unless this scaling shows up high in the 1097 // profiles. 1098 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1099 auto CallSiteBB = Call.getParent(); 1100 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1101 auto CallerEntryFreq = 1102 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1103 return CallSiteFreq < CallerEntryFreq * ColdProb; 1104 } 1105 1106 Optional<int> 1107 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1108 BlockFrequencyInfo *CallerBFI) { 1109 1110 // If global profile summary is available, then callsite's hotness is 1111 // determined based on that. 1112 if (PSI && PSI->hasProfileSummary() && 1113 PSI->isHotCallSite(CallSite(&Call), CallerBFI)) 1114 return Params.HotCallSiteThreshold; 1115 1116 // Otherwise we need BFI to be available and to have a locally hot callsite 1117 // threshold. 1118 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1119 return None; 1120 1121 // Determine if the callsite is hot relative to caller's entry. We could 1122 // potentially cache the computation of scaled entry frequency, but the added 1123 // complexity is not worth it unless this scaling shows up high in the 1124 // profiles. 1125 auto CallSiteBB = Call.getParent(); 1126 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1127 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1128 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1129 return Params.LocallyHotCallSiteThreshold; 1130 1131 // Otherwise treat it normally. 1132 return None; 1133 } 1134 1135 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1136 // If no size growth is allowed for this inlining, set Threshold to 0. 1137 if (!allowSizeGrowth(Call)) { 1138 Threshold = 0; 1139 return; 1140 } 1141 1142 Function *Caller = Call.getCaller(); 1143 1144 // return min(A, B) if B is valid. 1145 auto MinIfValid = [](int A, Optional<int> B) { 1146 return B ? std::min(A, B.getValue()) : A; 1147 }; 1148 1149 // return max(A, B) if B is valid. 1150 auto MaxIfValid = [](int A, Optional<int> B) { 1151 return B ? std::max(A, B.getValue()) : A; 1152 }; 1153 1154 // Various bonus percentages. These are multiplied by Threshold to get the 1155 // bonus values. 1156 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1157 // basic block at the given callsite context. This is speculatively applied 1158 // and withdrawn if more than one basic block is seen. 1159 // 1160 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1161 // of the last call to a static function as inlining such functions is 1162 // guaranteed to reduce code size. 1163 // 1164 // These bonus percentages may be set to 0 based on properties of the caller 1165 // and the callsite. 1166 int SingleBBBonusPercent = 50; 1167 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1168 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1169 1170 // Lambda to set all the above bonus and bonus percentages to 0. 1171 auto DisallowAllBonuses = [&]() { 1172 SingleBBBonusPercent = 0; 1173 VectorBonusPercent = 0; 1174 LastCallToStaticBonus = 0; 1175 }; 1176 1177 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1178 // and reduce the threshold if the caller has the necessary attribute. 1179 if (Caller->hasMinSize()) { 1180 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1181 // For minsize, we want to disable the single BB bonus and the vector 1182 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1183 // a static function will, at the minimum, eliminate the parameter setup and 1184 // call/return instructions. 1185 SingleBBBonusPercent = 0; 1186 VectorBonusPercent = 0; 1187 } else if (Caller->hasOptSize()) 1188 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1189 1190 // Adjust the threshold based on inlinehint attribute and profile based 1191 // hotness information if the caller does not have MinSize attribute. 1192 if (!Caller->hasMinSize()) { 1193 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1194 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1195 1196 // FIXME: After switching to the new passmanager, simplify the logic below 1197 // by checking only the callsite hotness/coldness as we will reliably 1198 // have local profile information. 1199 // 1200 // Callsite hotness and coldness can be determined if sample profile is 1201 // used (which adds hotness metadata to calls) or if caller's 1202 // BlockFrequencyInfo is available. 1203 BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr; 1204 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1205 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1206 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1207 // FIXME: This should update the threshold only if it exceeds the 1208 // current threshold, but AutoFDO + ThinLTO currently relies on this 1209 // behavior to prevent inlining of hot callsites during ThinLTO 1210 // compile phase. 1211 Threshold = HotCallSiteThreshold.getValue(); 1212 } else if (isColdCallSite(Call, CallerBFI)) { 1213 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1214 // Do not apply bonuses for a cold callsite including the 1215 // LastCallToStatic bonus. While this bonus might result in code size 1216 // reduction, it can cause the size of a non-cold caller to increase 1217 // preventing it from being inlined. 1218 DisallowAllBonuses(); 1219 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1220 } else if (PSI) { 1221 // Use callee's global profile information only if we have no way of 1222 // determining this via callsite information. 1223 if (PSI->isFunctionEntryHot(&Callee)) { 1224 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1225 // If callsite hotness can not be determined, we may still know 1226 // that the callee is hot and treat it as a weaker hint for threshold 1227 // increase. 1228 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1229 } else if (PSI->isFunctionEntryCold(&Callee)) { 1230 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1231 // Do not apply bonuses for a cold callee including the 1232 // LastCallToStatic bonus. While this bonus might result in code size 1233 // reduction, it can cause the size of a non-cold caller to increase 1234 // preventing it from being inlined. 1235 DisallowAllBonuses(); 1236 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1237 } 1238 } 1239 } 1240 1241 // Finally, take the target-specific inlining threshold multiplier into 1242 // account. 1243 Threshold *= TTI.getInliningThresholdMultiplier(); 1244 1245 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1246 VectorBonus = Threshold * VectorBonusPercent / 100; 1247 1248 bool OnlyOneCallAndLocalLinkage = 1249 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1250 // If there is only one call of the function, and it has internal linkage, 1251 // the cost of inlining it drops dramatically. It may seem odd to update 1252 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1253 if (OnlyOneCallAndLocalLinkage) 1254 Cost -= LastCallToStaticBonus; 1255 } 1256 1257 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1258 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1259 // First try to handle simplified comparisons. 1260 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1261 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1262 })) 1263 return true; 1264 1265 if (I.getOpcode() == Instruction::FCmp) 1266 return false; 1267 1268 // Otherwise look for a comparison between constant offset pointers with 1269 // a common base. 1270 Value *LHSBase, *RHSBase; 1271 APInt LHSOffset, RHSOffset; 1272 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1273 if (LHSBase) { 1274 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1275 if (RHSBase && LHSBase == RHSBase) { 1276 // We have common bases, fold the icmp to a constant based on the 1277 // offsets. 1278 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1279 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1280 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1281 SimplifiedValues[&I] = C; 1282 ++NumConstantPtrCmps; 1283 return true; 1284 } 1285 } 1286 } 1287 1288 // If the comparison is an equality comparison with null, we can simplify it 1289 // if we know the value (argument) can't be null 1290 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1291 isKnownNonNullInCallee(I.getOperand(0))) { 1292 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1293 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1294 : ConstantInt::getFalse(I.getType()); 1295 return true; 1296 } 1297 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1298 } 1299 1300 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1301 // Try to handle a special case: we can fold computing the difference of two 1302 // constant-related pointers. 1303 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1304 Value *LHSBase, *RHSBase; 1305 APInt LHSOffset, RHSOffset; 1306 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1307 if (LHSBase) { 1308 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1309 if (RHSBase && LHSBase == RHSBase) { 1310 // We have common bases, fold the subtract to a constant based on the 1311 // offsets. 1312 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1313 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1314 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1315 SimplifiedValues[&I] = C; 1316 ++NumConstantPtrDiffs; 1317 return true; 1318 } 1319 } 1320 } 1321 1322 // Otherwise, fall back to the generic logic for simplifying and handling 1323 // instructions. 1324 return Base::visitSub(I); 1325 } 1326 1327 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1328 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1329 Constant *CLHS = dyn_cast<Constant>(LHS); 1330 if (!CLHS) 1331 CLHS = SimplifiedValues.lookup(LHS); 1332 Constant *CRHS = dyn_cast<Constant>(RHS); 1333 if (!CRHS) 1334 CRHS = SimplifiedValues.lookup(RHS); 1335 1336 Value *SimpleV = nullptr; 1337 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1338 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1339 FI->getFastMathFlags(), DL); 1340 else 1341 SimpleV = 1342 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1343 1344 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1345 SimplifiedValues[&I] = C; 1346 1347 if (SimpleV) 1348 return true; 1349 1350 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1351 disableSROA(LHS); 1352 disableSROA(RHS); 1353 1354 // If the instruction is floating point, and the target says this operation 1355 // is expensive, this may eventually become a library call. Treat the cost 1356 // as such. Unless it's fneg which can be implemented with an xor. 1357 using namespace llvm::PatternMatch; 1358 if (I.getType()->isFloatingPointTy() && 1359 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1360 !match(&I, m_FNeg(m_Value()))) 1361 onCallPenalty(); 1362 1363 return false; 1364 } 1365 1366 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1367 Value *Op = I.getOperand(0); 1368 Constant *COp = dyn_cast<Constant>(Op); 1369 if (!COp) 1370 COp = SimplifiedValues.lookup(Op); 1371 1372 Value *SimpleV = SimplifyFNegInst( 1373 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1374 1375 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1376 SimplifiedValues[&I] = C; 1377 1378 if (SimpleV) 1379 return true; 1380 1381 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1382 disableSROA(Op); 1383 1384 return false; 1385 } 1386 1387 bool CallAnalyzer::visitLoad(LoadInst &I) { 1388 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1389 return true; 1390 1391 // If the data is already loaded from this address and hasn't been clobbered 1392 // by any stores or calls, this load is likely to be redundant and can be 1393 // eliminated. 1394 if (EnableLoadElimination && 1395 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1396 onLoadEliminationOpportunity(); 1397 return true; 1398 } 1399 1400 return false; 1401 } 1402 1403 bool CallAnalyzer::visitStore(StoreInst &I) { 1404 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1405 return true; 1406 1407 // The store can potentially clobber loads and prevent repeated loads from 1408 // being eliminated. 1409 // FIXME: 1410 // 1. We can probably keep an initial set of eliminatable loads substracted 1411 // from the cost even when we finally see a store. We just need to disable 1412 // *further* accumulation of elimination savings. 1413 // 2. We should probably at some point thread MemorySSA for the callee into 1414 // this and then use that to actually compute *really* precise savings. 1415 disableLoadElimination(); 1416 return false; 1417 } 1418 1419 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1420 // Constant folding for extract value is trivial. 1421 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1422 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1423 })) 1424 return true; 1425 1426 // SROA can look through these but give them a cost. 1427 return false; 1428 } 1429 1430 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1431 // Constant folding for insert value is trivial. 1432 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1433 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1434 /*InsertedValueOperand*/ COps[1], 1435 I.getIndices()); 1436 })) 1437 return true; 1438 1439 // SROA can look through these but give them a cost. 1440 return false; 1441 } 1442 1443 /// Try to simplify a call site. 1444 /// 1445 /// Takes a concrete function and callsite and tries to actually simplify it by 1446 /// analyzing the arguments and call itself with instsimplify. Returns true if 1447 /// it has simplified the callsite to some other entity (a constant), making it 1448 /// free. 1449 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 1450 // FIXME: Using the instsimplify logic directly for this is inefficient 1451 // because we have to continually rebuild the argument list even when no 1452 // simplifications can be performed. Until that is fixed with remapping 1453 // inside of instsimplify, directly constant fold calls here. 1454 if (!canConstantFoldCallTo(&Call, F)) 1455 return false; 1456 1457 // Try to re-map the arguments to constants. 1458 SmallVector<Constant *, 4> ConstantArgs; 1459 ConstantArgs.reserve(Call.arg_size()); 1460 for (Value *I : Call.args()) { 1461 Constant *C = dyn_cast<Constant>(I); 1462 if (!C) 1463 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 1464 if (!C) 1465 return false; // This argument doesn't map to a constant. 1466 1467 ConstantArgs.push_back(C); 1468 } 1469 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 1470 SimplifiedValues[&Call] = C; 1471 return true; 1472 } 1473 1474 return false; 1475 } 1476 1477 bool CallAnalyzer::visitCallBase(CallBase &Call) { 1478 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 1479 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 1480 // This aborts the entire analysis. 1481 ExposesReturnsTwice = true; 1482 return false; 1483 } 1484 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 1485 ContainsNoDuplicateCall = true; 1486 1487 Value *Callee = Call.getCalledOperand(); 1488 Function *F = dyn_cast_or_null<Function>(Callee); 1489 bool IsIndirectCall = !F; 1490 if (IsIndirectCall) { 1491 // Check if this happens to be an indirect function call to a known function 1492 // in this inline context. If not, we've done all we can. 1493 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 1494 if (!F) { 1495 onCallArgumentSetup(Call); 1496 1497 if (!Call.onlyReadsMemory()) 1498 disableLoadElimination(); 1499 return Base::visitCallBase(Call); 1500 } 1501 } 1502 1503 assert(F && "Expected a call to a known function"); 1504 1505 // When we have a concrete function, first try to simplify it directly. 1506 if (simplifyCallSite(F, Call)) 1507 return true; 1508 1509 // Next check if it is an intrinsic we know about. 1510 // FIXME: Lift this into part of the InstVisitor. 1511 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 1512 switch (II->getIntrinsicID()) { 1513 default: 1514 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 1515 disableLoadElimination(); 1516 return Base::visitCallBase(Call); 1517 1518 case Intrinsic::load_relative: 1519 onLoadRelativeIntrinsic(); 1520 return false; 1521 1522 case Intrinsic::memset: 1523 case Intrinsic::memcpy: 1524 case Intrinsic::memmove: 1525 disableLoadElimination(); 1526 // SROA can usually chew through these intrinsics, but they aren't free. 1527 return false; 1528 case Intrinsic::icall_branch_funnel: 1529 case Intrinsic::localescape: 1530 HasUninlineableIntrinsic = true; 1531 return false; 1532 case Intrinsic::vastart: 1533 InitsVargArgs = true; 1534 return false; 1535 } 1536 } 1537 1538 if (F == Call.getFunction()) { 1539 // This flag will fully abort the analysis, so don't bother with anything 1540 // else. 1541 IsRecursiveCall = true; 1542 return false; 1543 } 1544 1545 if (TTI.isLoweredToCall(F)) { 1546 onLoweredCall(F, Call, IsIndirectCall); 1547 } 1548 1549 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 1550 disableLoadElimination(); 1551 return Base::visitCallBase(Call); 1552 } 1553 1554 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 1555 // At least one return instruction will be free after inlining. 1556 bool Free = !HasReturn; 1557 HasReturn = true; 1558 return Free; 1559 } 1560 1561 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 1562 // We model unconditional branches as essentially free -- they really 1563 // shouldn't exist at all, but handling them makes the behavior of the 1564 // inliner more regular and predictable. Interestingly, conditional branches 1565 // which will fold away are also free. 1566 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 1567 dyn_cast_or_null<ConstantInt>( 1568 SimplifiedValues.lookup(BI.getCondition())); 1569 } 1570 1571 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 1572 bool CheckSROA = SI.getType()->isPointerTy(); 1573 Value *TrueVal = SI.getTrueValue(); 1574 Value *FalseVal = SI.getFalseValue(); 1575 1576 Constant *TrueC = dyn_cast<Constant>(TrueVal); 1577 if (!TrueC) 1578 TrueC = SimplifiedValues.lookup(TrueVal); 1579 Constant *FalseC = dyn_cast<Constant>(FalseVal); 1580 if (!FalseC) 1581 FalseC = SimplifiedValues.lookup(FalseVal); 1582 Constant *CondC = 1583 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 1584 1585 if (!CondC) { 1586 // Select C, X, X => X 1587 if (TrueC == FalseC && TrueC) { 1588 SimplifiedValues[&SI] = TrueC; 1589 return true; 1590 } 1591 1592 if (!CheckSROA) 1593 return Base::visitSelectInst(SI); 1594 1595 std::pair<Value *, APInt> TrueBaseAndOffset = 1596 ConstantOffsetPtrs.lookup(TrueVal); 1597 std::pair<Value *, APInt> FalseBaseAndOffset = 1598 ConstantOffsetPtrs.lookup(FalseVal); 1599 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 1600 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 1601 1602 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 1603 SROAArgValues[&SI] = SROAArg; 1604 return true; 1605 } 1606 1607 return Base::visitSelectInst(SI); 1608 } 1609 1610 // Select condition is a constant. 1611 Value *SelectedV = CondC->isAllOnesValue() 1612 ? TrueVal 1613 : (CondC->isNullValue()) ? FalseVal : nullptr; 1614 if (!SelectedV) { 1615 // Condition is a vector constant that is not all 1s or all 0s. If all 1616 // operands are constants, ConstantExpr::getSelect() can handle the cases 1617 // such as select vectors. 1618 if (TrueC && FalseC) { 1619 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 1620 SimplifiedValues[&SI] = C; 1621 return true; 1622 } 1623 } 1624 return Base::visitSelectInst(SI); 1625 } 1626 1627 // Condition is either all 1s or all 0s. SI can be simplified. 1628 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 1629 SimplifiedValues[&SI] = SelectedC; 1630 return true; 1631 } 1632 1633 if (!CheckSROA) 1634 return true; 1635 1636 std::pair<Value *, APInt> BaseAndOffset = 1637 ConstantOffsetPtrs.lookup(SelectedV); 1638 if (BaseAndOffset.first) { 1639 ConstantOffsetPtrs[&SI] = BaseAndOffset; 1640 1641 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 1642 SROAArgValues[&SI] = SROAArg; 1643 } 1644 1645 return true; 1646 } 1647 1648 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 1649 // We model unconditional switches as free, see the comments on handling 1650 // branches. 1651 if (isa<ConstantInt>(SI.getCondition())) 1652 return true; 1653 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 1654 if (isa<ConstantInt>(V)) 1655 return true; 1656 1657 // Assume the most general case where the switch is lowered into 1658 // either a jump table, bit test, or a balanced binary tree consisting of 1659 // case clusters without merging adjacent clusters with the same 1660 // destination. We do not consider the switches that are lowered with a mix 1661 // of jump table/bit test/binary search tree. The cost of the switch is 1662 // proportional to the size of the tree or the size of jump table range. 1663 // 1664 // NB: We convert large switches which are just used to initialize large phi 1665 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 1666 // inlining those. It will prevent inlining in cases where the optimization 1667 // does not (yet) fire. 1668 1669 unsigned JumpTableSize = 0; 1670 BlockFrequencyInfo *BFI = GetBFI ? &((*GetBFI)(F)) : nullptr; 1671 unsigned NumCaseCluster = 1672 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 1673 1674 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 1675 return false; 1676 } 1677 1678 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 1679 // We never want to inline functions that contain an indirectbr. This is 1680 // incorrect because all the blockaddress's (in static global initializers 1681 // for example) would be referring to the original function, and this 1682 // indirect jump would jump from the inlined copy of the function into the 1683 // original function which is extremely undefined behavior. 1684 // FIXME: This logic isn't really right; we can safely inline functions with 1685 // indirectbr's as long as no other function or global references the 1686 // blockaddress of a block within the current function. 1687 HasIndirectBr = true; 1688 return false; 1689 } 1690 1691 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 1692 // FIXME: It's not clear that a single instruction is an accurate model for 1693 // the inline cost of a resume instruction. 1694 return false; 1695 } 1696 1697 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 1698 // FIXME: It's not clear that a single instruction is an accurate model for 1699 // the inline cost of a cleanupret instruction. 1700 return false; 1701 } 1702 1703 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 1704 // FIXME: It's not clear that a single instruction is an accurate model for 1705 // the inline cost of a catchret instruction. 1706 return false; 1707 } 1708 1709 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 1710 // FIXME: It might be reasonably to discount the cost of instructions leading 1711 // to unreachable as they have the lowest possible impact on both runtime and 1712 // code size. 1713 return true; // No actual code is needed for unreachable. 1714 } 1715 1716 bool CallAnalyzer::visitInstruction(Instruction &I) { 1717 // Some instructions are free. All of the free intrinsics can also be 1718 // handled by SROA, etc. 1719 if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) 1720 return true; 1721 1722 // We found something we don't understand or can't handle. Mark any SROA-able 1723 // values in the operand list as no longer viable. 1724 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) 1725 disableSROA(*OI); 1726 1727 return false; 1728 } 1729 1730 /// Analyze a basic block for its contribution to the inline cost. 1731 /// 1732 /// This method walks the analyzer over every instruction in the given basic 1733 /// block and accounts for their cost during inlining at this callsite. It 1734 /// aborts early if the threshold has been exceeded or an impossible to inline 1735 /// construct has been detected. It returns false if inlining is no longer 1736 /// viable, and true if inlining remains viable. 1737 InlineResult 1738 CallAnalyzer::analyzeBlock(BasicBlock *BB, 1739 SmallPtrSetImpl<const Value *> &EphValues) { 1740 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1741 // FIXME: Currently, the number of instructions in a function regardless of 1742 // our ability to simplify them during inline to constants or dead code, 1743 // are actually used by the vector bonus heuristic. As long as that's true, 1744 // we have to special case debug intrinsics here to prevent differences in 1745 // inlining due to debug symbols. Eventually, the number of unsimplified 1746 // instructions shouldn't factor into the cost computation, but until then, 1747 // hack around it here. 1748 if (isa<DbgInfoIntrinsic>(I)) 1749 continue; 1750 1751 // Skip ephemeral values. 1752 if (EphValues.count(&*I)) 1753 continue; 1754 1755 ++NumInstructions; 1756 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) 1757 ++NumVectorInstructions; 1758 1759 // If the instruction simplified to a constant, there is no cost to this 1760 // instruction. Visit the instructions using our InstVisitor to account for 1761 // all of the per-instruction logic. The visit tree returns true if we 1762 // consumed the instruction in any way, and false if the instruction's base 1763 // cost should count against inlining. 1764 if (Base::visit(&*I)) 1765 ++NumInstructionsSimplified; 1766 else 1767 onCommonInstructionSimplification(); 1768 1769 using namespace ore; 1770 // If the visit this instruction detected an uninlinable pattern, abort. 1771 InlineResult IR; 1772 if (IsRecursiveCall) 1773 IR = "recursive"; 1774 else if (ExposesReturnsTwice) 1775 IR = "exposes returns twice"; 1776 else if (HasDynamicAlloca) 1777 IR = "dynamic alloca"; 1778 else if (HasIndirectBr) 1779 IR = "indirect branch"; 1780 else if (HasUninlineableIntrinsic) 1781 IR = "uninlinable intrinsic"; 1782 else if (InitsVargArgs) 1783 IR = "varargs"; 1784 if (!IR) { 1785 if (ORE) 1786 ORE->emit([&]() { 1787 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1788 &CandidateCall) 1789 << NV("Callee", &F) << " has uninlinable pattern (" 1790 << NV("InlineResult", IR.message) 1791 << ") and cost is not fully computed"; 1792 }); 1793 return IR; 1794 } 1795 1796 // If the caller is a recursive function then we don't want to inline 1797 // functions which allocate a lot of stack space because it would increase 1798 // the caller stack usage dramatically. 1799 if (IsCallerRecursive && 1800 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 1801 InlineResult IR = "recursive and allocates too much stack space"; 1802 if (ORE) 1803 ORE->emit([&]() { 1804 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1805 &CandidateCall) 1806 << NV("Callee", &F) << " is " << NV("InlineResult", IR.message) 1807 << ". Cost is not fully computed"; 1808 }); 1809 return IR; 1810 } 1811 1812 if (shouldStop()) 1813 return false; 1814 } 1815 1816 return true; 1817 } 1818 1819 /// Compute the base pointer and cumulative constant offsets for V. 1820 /// 1821 /// This strips all constant offsets off of V, leaving it the base pointer, and 1822 /// accumulates the total constant offset applied in the returned constant. It 1823 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 1824 /// no constant offsets applied. 1825 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 1826 if (!V->getType()->isPointerTy()) 1827 return nullptr; 1828 1829 unsigned AS = V->getType()->getPointerAddressSpace(); 1830 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 1831 APInt Offset = APInt::getNullValue(IntPtrWidth); 1832 1833 // Even though we don't look through PHI nodes, we could be called on an 1834 // instruction in an unreachable block, which may be on a cycle. 1835 SmallPtrSet<Value *, 4> Visited; 1836 Visited.insert(V); 1837 do { 1838 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1839 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 1840 return nullptr; 1841 V = GEP->getPointerOperand(); 1842 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1843 V = cast<Operator>(V)->getOperand(0); 1844 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1845 if (GA->isInterposable()) 1846 break; 1847 V = GA->getAliasee(); 1848 } else { 1849 break; 1850 } 1851 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1852 } while (Visited.insert(V).second); 1853 1854 Type *IdxPtrTy = DL.getIndexType(V->getType()); 1855 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 1856 } 1857 1858 /// Find dead blocks due to deleted CFG edges during inlining. 1859 /// 1860 /// If we know the successor of the current block, \p CurrBB, has to be \p 1861 /// NextBB, the other successors of \p CurrBB are dead if these successors have 1862 /// no live incoming CFG edges. If one block is found to be dead, we can 1863 /// continue growing the dead block list by checking the successors of the dead 1864 /// blocks to see if all their incoming edges are dead or not. 1865 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 1866 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 1867 // A CFG edge is dead if the predecessor is dead or the predecessor has a 1868 // known successor which is not the one under exam. 1869 return (DeadBlocks.count(Pred) || 1870 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 1871 }; 1872 1873 auto IsNewlyDead = [&](BasicBlock *BB) { 1874 // If all the edges to a block are dead, the block is also dead. 1875 return (!DeadBlocks.count(BB) && 1876 llvm::all_of(predecessors(BB), 1877 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 1878 }; 1879 1880 for (BasicBlock *Succ : successors(CurrBB)) { 1881 if (Succ == NextBB || !IsNewlyDead(Succ)) 1882 continue; 1883 SmallVector<BasicBlock *, 4> NewDead; 1884 NewDead.push_back(Succ); 1885 while (!NewDead.empty()) { 1886 BasicBlock *Dead = NewDead.pop_back_val(); 1887 if (DeadBlocks.insert(Dead)) 1888 // Continue growing the dead block lists. 1889 for (BasicBlock *S : successors(Dead)) 1890 if (IsNewlyDead(S)) 1891 NewDead.push_back(S); 1892 } 1893 } 1894 } 1895 1896 /// Analyze a call site for potential inlining. 1897 /// 1898 /// Returns true if inlining this call is viable, and false if it is not 1899 /// viable. It computes the cost and adjusts the threshold based on numerous 1900 /// factors and heuristics. If this method returns false but the computed cost 1901 /// is below the computed threshold, then inlining was forcibly disabled by 1902 /// some artifact of the routine. 1903 InlineResult CallAnalyzer::analyze() { 1904 ++NumCallsAnalyzed; 1905 1906 auto Result = onAnalysisStart(); 1907 if (!Result) 1908 return Result; 1909 1910 if (F.empty()) 1911 return true; 1912 1913 Function *Caller = CandidateCall.getFunction(); 1914 // Check if the caller function is recursive itself. 1915 for (User *U : Caller->users()) { 1916 CallBase *Call = dyn_cast<CallBase>(U); 1917 if (Call && Call->getFunction() == Caller) { 1918 IsCallerRecursive = true; 1919 break; 1920 } 1921 } 1922 1923 // Populate our simplified values by mapping from function arguments to call 1924 // arguments with known important simplifications. 1925 auto CAI = CandidateCall.arg_begin(); 1926 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); 1927 FAI != FAE; ++FAI, ++CAI) { 1928 assert(CAI != CandidateCall.arg_end()); 1929 if (Constant *C = dyn_cast<Constant>(CAI)) 1930 SimplifiedValues[&*FAI] = C; 1931 1932 Value *PtrArg = *CAI; 1933 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 1934 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); 1935 1936 // We can SROA any pointer arguments derived from alloca instructions. 1937 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 1938 SROAArgValues[&*FAI] = SROAArg; 1939 onInitializeSROAArg(SROAArg); 1940 } 1941 } 1942 } 1943 NumConstantArgs = SimplifiedValues.size(); 1944 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 1945 NumAllocaArgs = SROAArgValues.size(); 1946 1947 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 1948 // the ephemeral values multiple times (and they're completely determined by 1949 // the callee, so this is purely duplicate work). 1950 SmallPtrSet<const Value *, 32> EphValues; 1951 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 1952 1953 // The worklist of live basic blocks in the callee *after* inlining. We avoid 1954 // adding basic blocks of the callee which can be proven to be dead for this 1955 // particular call site in order to get more accurate cost estimates. This 1956 // requires a somewhat heavyweight iteration pattern: we need to walk the 1957 // basic blocks in a breadth-first order as we insert live successors. To 1958 // accomplish this, prioritizing for small iterations because we exit after 1959 // crossing our threshold, we use a small-size optimized SetVector. 1960 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 1961 SmallPtrSet<BasicBlock *, 16>> 1962 BBSetVector; 1963 BBSetVector BBWorklist; 1964 BBWorklist.insert(&F.getEntryBlock()); 1965 1966 // Note that we *must not* cache the size, this loop grows the worklist. 1967 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 1968 if (shouldStop()) 1969 break; 1970 1971 BasicBlock *BB = BBWorklist[Idx]; 1972 if (BB->empty()) 1973 continue; 1974 1975 // Disallow inlining a blockaddress with uses other than strictly callbr. 1976 // A blockaddress only has defined behavior for an indirect branch in the 1977 // same function, and we do not currently support inlining indirect 1978 // branches. But, the inliner may not see an indirect branch that ends up 1979 // being dead code at a particular call site. If the blockaddress escapes 1980 // the function, e.g., via a global variable, inlining may lead to an 1981 // invalid cross-function reference. 1982 // FIXME: pr/39560: continue relaxing this overt restriction. 1983 if (BB->hasAddressTaken()) 1984 for (User *U : BlockAddress::get(&*BB)->users()) 1985 if (!isa<CallBrInst>(*U)) 1986 return "blockaddress used outside of callbr"; 1987 1988 // Analyze the cost of this block. If we blow through the threshold, this 1989 // returns false, and we can bail on out. 1990 InlineResult IR = analyzeBlock(BB, EphValues); 1991 if (!IR) 1992 return IR; 1993 1994 Instruction *TI = BB->getTerminator(); 1995 1996 // Add in the live successors by first checking whether we have terminator 1997 // that may be simplified based on the values simplified by this call. 1998 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1999 if (BI->isConditional()) { 2000 Value *Cond = BI->getCondition(); 2001 if (ConstantInt *SimpleCond = 2002 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2003 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2004 BBWorklist.insert(NextBB); 2005 KnownSuccessors[BB] = NextBB; 2006 findDeadBlocks(BB, NextBB); 2007 continue; 2008 } 2009 } 2010 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2011 Value *Cond = SI->getCondition(); 2012 if (ConstantInt *SimpleCond = 2013 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2014 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2015 BBWorklist.insert(NextBB); 2016 KnownSuccessors[BB] = NextBB; 2017 findDeadBlocks(BB, NextBB); 2018 continue; 2019 } 2020 } 2021 2022 // If we're unable to select a particular successor, just count all of 2023 // them. 2024 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2025 ++TIdx) 2026 BBWorklist.insert(TI->getSuccessor(TIdx)); 2027 2028 onBlockAnalyzed(BB); 2029 } 2030 2031 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2032 &F == CandidateCall.getCalledFunction(); 2033 // If this is a noduplicate call, we can still inline as long as 2034 // inlining this would cause the removal of the caller (so the instruction 2035 // is not actually duplicated, just moved). 2036 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2037 return "noduplicate"; 2038 2039 return finalizeAnalysis(); 2040 } 2041 2042 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2043 /// Dump stats about this call's analysis. 2044 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { 2045 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2046 DEBUG_PRINT_STAT(NumConstantArgs); 2047 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2048 DEBUG_PRINT_STAT(NumAllocaArgs); 2049 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2050 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2051 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2052 DEBUG_PRINT_STAT(NumInstructions); 2053 DEBUG_PRINT_STAT(SROACostSavings); 2054 DEBUG_PRINT_STAT(SROACostSavingsLost); 2055 DEBUG_PRINT_STAT(LoadEliminationCost); 2056 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2057 DEBUG_PRINT_STAT(Cost); 2058 DEBUG_PRINT_STAT(Threshold); 2059 #undef DEBUG_PRINT_STAT 2060 } 2061 #endif 2062 2063 /// Test that there are no attribute conflicts between Caller and Callee 2064 /// that prevent inlining. 2065 static bool functionsHaveCompatibleAttributes(Function *Caller, 2066 Function *Callee, 2067 TargetTransformInfo &TTI) { 2068 return TTI.areInlineCompatible(Caller, Callee) && 2069 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2070 } 2071 2072 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2073 int Cost = 0; 2074 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2075 if (Call.isByValArgument(I)) { 2076 // We approximate the number of loads and stores needed by dividing the 2077 // size of the byval type by the target's pointer size. 2078 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2079 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); 2080 unsigned AS = PTy->getAddressSpace(); 2081 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2082 // Ceiling division. 2083 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2084 2085 // If it generates more than 8 stores it is likely to be expanded as an 2086 // inline memcpy so we take that as an upper bound. Otherwise we assume 2087 // one load and one store per word copied. 2088 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2089 // here instead of a magic number of 8, but it's not available via 2090 // DataLayout. 2091 NumStores = std::min(NumStores, 8U); 2092 2093 Cost += 2 * NumStores * InlineConstants::InstrCost; 2094 } else { 2095 // For non-byval arguments subtract off one instruction per call 2096 // argument. 2097 Cost += InlineConstants::InstrCost; 2098 } 2099 } 2100 // The call instruction also disappears after inlining. 2101 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; 2102 return Cost; 2103 } 2104 2105 InlineCost llvm::getInlineCost( 2106 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2107 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 2108 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, 2109 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2110 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2111 GetAssumptionCache, GetBFI, PSI, ORE); 2112 } 2113 2114 InlineCost llvm::getInlineCost( 2115 CallBase &Call, Function *Callee, const InlineParams &Params, 2116 TargetTransformInfo &CalleeTTI, 2117 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 2118 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, 2119 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2120 2121 // Cannot inline indirect calls. 2122 if (!Callee) 2123 return llvm::InlineCost::getNever("indirect call"); 2124 2125 // Never inline calls with byval arguments that does not have the alloca 2126 // address space. Since byval arguments can be replaced with a copy to an 2127 // alloca, the inlined code would need to be adjusted to handle that the 2128 // argument is in the alloca address space (so it is a little bit complicated 2129 // to solve). 2130 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2131 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2132 if (Call.isByValArgument(I)) { 2133 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2134 if (PTy->getAddressSpace() != AllocaAS) 2135 return llvm::InlineCost::getNever("byval arguments without alloca" 2136 " address space"); 2137 } 2138 2139 // Calls to functions with always-inline attributes should be inlined 2140 // whenever possible. 2141 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2142 auto IsViable = isInlineViable(*Callee); 2143 if (IsViable) 2144 return llvm::InlineCost::getAlways("always inline attribute"); 2145 return llvm::InlineCost::getNever(IsViable.message); 2146 } 2147 2148 // Never inline functions with conflicting attributes (unless callee has 2149 // always-inline attribute). 2150 Function *Caller = Call.getCaller(); 2151 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI)) 2152 return llvm::InlineCost::getNever("conflicting attributes"); 2153 2154 // Don't inline this call if the caller has the optnone attribute. 2155 if (Caller->hasOptNone()) 2156 return llvm::InlineCost::getNever("optnone attribute"); 2157 2158 // Don't inline a function that treats null pointer as valid into a caller 2159 // that does not have this attribute. 2160 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2161 return llvm::InlineCost::getNever("nullptr definitions incompatible"); 2162 2163 // Don't inline functions which can be interposed at link-time. 2164 if (Callee->isInterposable()) 2165 return llvm::InlineCost::getNever("interposable"); 2166 2167 // Don't inline functions marked noinline. 2168 if (Callee->hasFnAttribute(Attribute::NoInline)) 2169 return llvm::InlineCost::getNever("noinline function attribute"); 2170 2171 // Don't inline call sites marked noinline. 2172 if (Call.isNoInline()) 2173 return llvm::InlineCost::getNever("noinline call site attribute"); 2174 2175 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2176 << "... (caller:" << Caller->getName() << ")\n"); 2177 2178 InlineCostCallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, 2179 *Callee, Call, Params); 2180 InlineResult ShouldInline = CA.analyze(); 2181 2182 LLVM_DEBUG(CA.dump()); 2183 2184 // Check if there was a reason to force inlining or no inlining. 2185 if (!ShouldInline && CA.getCost() < CA.getThreshold()) 2186 return InlineCost::getNever(ShouldInline.message); 2187 if (ShouldInline && CA.getCost() >= CA.getThreshold()) 2188 return InlineCost::getAlways("empty function"); 2189 2190 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2191 } 2192 2193 InlineResult llvm::isInlineViable(Function &F) { 2194 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2195 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2196 // Disallow inlining of functions which contain indirect branches. 2197 if (isa<IndirectBrInst>(BI->getTerminator())) 2198 return "contains indirect branches"; 2199 2200 // Disallow inlining of blockaddresses which are used by non-callbr 2201 // instructions. 2202 if (BI->hasAddressTaken()) 2203 for (User *U : BlockAddress::get(&*BI)->users()) 2204 if (!isa<CallBrInst>(*U)) 2205 return "blockaddress used outside of callbr"; 2206 2207 for (auto &II : *BI) { 2208 CallBase *Call = dyn_cast<CallBase>(&II); 2209 if (!Call) 2210 continue; 2211 2212 // Disallow recursive calls. 2213 if (&F == Call->getCalledFunction()) 2214 return "recursive call"; 2215 2216 // Disallow calls which expose returns-twice to a function not previously 2217 // attributed as such. 2218 if (!ReturnsTwice && isa<CallInst>(Call) && 2219 cast<CallInst>(Call)->canReturnTwice()) 2220 return "exposes returns-twice attribute"; 2221 2222 if (Call->getCalledFunction()) 2223 switch (Call->getCalledFunction()->getIntrinsicID()) { 2224 default: 2225 break; 2226 case llvm::Intrinsic::icall_branch_funnel: 2227 // Disallow inlining of @llvm.icall.branch.funnel because current 2228 // backend can't separate call targets from call arguments. 2229 return "disallowed inlining of @llvm.icall.branch.funnel"; 2230 case llvm::Intrinsic::localescape: 2231 // Disallow inlining functions that call @llvm.localescape. Doing this 2232 // correctly would require major changes to the inliner. 2233 return "disallowed inlining of @llvm.localescape"; 2234 case llvm::Intrinsic::vastart: 2235 // Disallow inlining of functions that initialize VarArgs with 2236 // va_start. 2237 return "contains VarArgs initialized with va_start"; 2238 } 2239 } 2240 } 2241 2242 return true; 2243 } 2244 2245 // APIs to create InlineParams based on command line flags and/or other 2246 // parameters. 2247 2248 InlineParams llvm::getInlineParams(int Threshold) { 2249 InlineParams Params; 2250 2251 // This field is the threshold to use for a callee by default. This is 2252 // derived from one or more of: 2253 // * optimization or size-optimization levels, 2254 // * a value passed to createFunctionInliningPass function, or 2255 // * the -inline-threshold flag. 2256 // If the -inline-threshold flag is explicitly specified, that is used 2257 // irrespective of anything else. 2258 if (InlineThreshold.getNumOccurrences() > 0) 2259 Params.DefaultThreshold = InlineThreshold; 2260 else 2261 Params.DefaultThreshold = Threshold; 2262 2263 // Set the HintThreshold knob from the -inlinehint-threshold. 2264 Params.HintThreshold = HintThreshold; 2265 2266 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2267 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2268 2269 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2270 // populate LocallyHotCallSiteThreshold. Later, we populate 2271 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2272 // we know that optimization level is O3 (in the getInlineParams variant that 2273 // takes the opt and size levels). 2274 // FIXME: Remove this check (and make the assignment unconditional) after 2275 // addressing size regression issues at O2. 2276 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2277 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2278 2279 // Set the ColdCallSiteThreshold knob from the 2280 // -inline-cold-callsite-threshold. 2281 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2282 2283 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2284 // -inlinehint-threshold commandline option is not explicitly given. If that 2285 // option is present, then its value applies even for callees with size and 2286 // minsize attributes. 2287 // If the -inline-threshold is not specified, set the ColdThreshold from the 2288 // -inlinecold-threshold even if it is not explicitly passed. If 2289 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2290 // explicitly specified to set the ColdThreshold knob 2291 if (InlineThreshold.getNumOccurrences() == 0) { 2292 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2293 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2294 Params.ColdThreshold = ColdThreshold; 2295 } else if (ColdThreshold.getNumOccurrences() > 0) { 2296 Params.ColdThreshold = ColdThreshold; 2297 } 2298 return Params; 2299 } 2300 2301 InlineParams llvm::getInlineParams() { 2302 return getInlineParams(InlineThreshold); 2303 } 2304 2305 // Compute the default threshold for inlining based on the opt level and the 2306 // size opt level. 2307 static int computeThresholdFromOptLevels(unsigned OptLevel, 2308 unsigned SizeOptLevel) { 2309 if (OptLevel > 2) 2310 return InlineConstants::OptAggressiveThreshold; 2311 if (SizeOptLevel == 1) // -Os 2312 return InlineConstants::OptSizeThreshold; 2313 if (SizeOptLevel == 2) // -Oz 2314 return InlineConstants::OptMinSizeThreshold; 2315 return InlineThreshold; 2316 } 2317 2318 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2319 auto Params = 2320 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2321 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2322 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2323 // when it is specified explicitly. 2324 if (OptLevel > 2) 2325 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2326 return Params; 2327 } 2328