1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 75 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 76 cl::desc("Enable the cost-benefit analysis for the inliner")); 77 78 static cl::opt<int> InlineSavingsMultiplier( 79 "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 80 cl::desc("Multiplier to multiply cycle savings by during inlining")); 81 82 static cl::opt<int> 83 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 84 cl::ZeroOrMore, 85 cl::desc("The maximum size of a callee that get's " 86 "inlined without sufficient cycle savings")); 87 88 // We introduce this threshold to help performance of instrumentation based 89 // PGO before we actually hook up inliner with analysis passes such as BPI and 90 // BFI. 91 static cl::opt<int> ColdThreshold( 92 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 93 cl::desc("Threshold for inlining functions with cold attribute")); 94 95 static cl::opt<int> 96 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 97 cl::ZeroOrMore, 98 cl::desc("Threshold for hot callsites ")); 99 100 static cl::opt<int> LocallyHotCallSiteThreshold( 101 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 102 cl::desc("Threshold for locally hot callsites ")); 103 104 static cl::opt<int> ColdCallSiteRelFreq( 105 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 106 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a callsite to be cold in the absence of " 108 "profile information.")); 109 110 static cl::opt<int> HotCallSiteRelFreq( 111 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 112 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 113 "entry frequency, for a callsite to be hot in the absence of " 114 "profile information.")); 115 116 static cl::opt<int> CallPenalty( 117 "inline-call-penalty", cl::Hidden, cl::init(25), 118 cl::desc("Call penalty that is applied per callsite when inlining")); 119 120 static cl::opt<bool> OptComputeFullInlineCost( 121 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 122 cl::desc("Compute the full inline cost of a call site even when the cost " 123 "exceeds the threshold.")); 124 125 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 126 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 127 cl::ZeroOrMore, 128 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 129 "attributes.")); 130 131 static cl::opt<bool> DisableGEPConstOperand( 132 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 133 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 134 135 namespace { 136 class InlineCostCallAnalyzer; 137 138 /// This function behaves more like CallBase::hasFnAttr: when it looks for the 139 /// requested attribute, it check both the call instruction and the called 140 /// function (if it's available and operand bundles don't prohibit that). 141 Attribute getFnAttr(CallBase &CB, StringRef AttrKind) { 142 Attribute CallAttr = CB.getFnAttr(AttrKind); 143 if (CallAttr.isValid()) 144 return CallAttr; 145 146 // Operand bundles override attributes on the called function, but don't 147 // override attributes directly present on the call instruction. 148 if (!CB.isFnAttrDisallowedByOpBundle(AttrKind)) 149 if (const Function *F = CB.getCalledFunction()) 150 return F->getFnAttribute(AttrKind); 151 152 return {}; 153 } 154 155 Optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 156 Attribute Attr = getFnAttr(CB, AttrKind); 157 int AttrValue; 158 if (Attr.getValueAsString().getAsInteger(10, AttrValue)) 159 return None; 160 return AttrValue; 161 } 162 163 // This struct is used to store information about inline cost of a 164 // particular instruction 165 struct InstructionCostDetail { 166 int CostBefore = 0; 167 int CostAfter = 0; 168 int ThresholdBefore = 0; 169 int ThresholdAfter = 0; 170 171 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 172 173 int getCostDelta() const { return CostAfter - CostBefore; } 174 175 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 176 }; 177 178 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 179 private: 180 InlineCostCallAnalyzer *const ICCA; 181 182 public: 183 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 184 virtual void emitInstructionAnnot(const Instruction *I, 185 formatted_raw_ostream &OS) override; 186 }; 187 188 /// Carry out call site analysis, in order to evaluate inlinability. 189 /// NOTE: the type is currently used as implementation detail of functions such 190 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 191 /// expectation is that they come from the outer scope, from the wrapper 192 /// functions. If we want to support constructing CallAnalyzer objects where 193 /// lambdas are provided inline at construction, or where the object needs to 194 /// otherwise survive past the scope of the provided functions, we need to 195 /// revisit the argument types. 196 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 197 typedef InstVisitor<CallAnalyzer, bool> Base; 198 friend class InstVisitor<CallAnalyzer, bool>; 199 200 protected: 201 virtual ~CallAnalyzer() {} 202 /// The TargetTransformInfo available for this compilation. 203 const TargetTransformInfo &TTI; 204 205 /// Getter for the cache of @llvm.assume intrinsics. 206 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 207 208 /// Getter for BlockFrequencyInfo 209 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 210 211 /// Profile summary information. 212 ProfileSummaryInfo *PSI; 213 214 /// The called function. 215 Function &F; 216 217 // Cache the DataLayout since we use it a lot. 218 const DataLayout &DL; 219 220 /// The OptimizationRemarkEmitter available for this compilation. 221 OptimizationRemarkEmitter *ORE; 222 223 /// The candidate callsite being analyzed. Please do not use this to do 224 /// analysis in the caller function; we want the inline cost query to be 225 /// easily cacheable. Instead, use the cover function paramHasAttr. 226 CallBase &CandidateCall; 227 228 /// Extension points for handling callsite features. 229 // Called before a basic block was analyzed. 230 virtual void onBlockStart(const BasicBlock *BB) {} 231 232 /// Called after a basic block was analyzed. 233 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 234 235 /// Called before an instruction was analyzed 236 virtual void onInstructionAnalysisStart(const Instruction *I) {} 237 238 /// Called after an instruction was analyzed 239 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 240 241 /// Called at the end of the analysis of the callsite. Return the outcome of 242 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 243 /// the reason it can't. 244 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 245 /// Called when we're about to start processing a basic block, and every time 246 /// we are done processing an instruction. Return true if there is no point in 247 /// continuing the analysis (e.g. we've determined already the call site is 248 /// too expensive to inline) 249 virtual bool shouldStop() { return false; } 250 251 /// Called before the analysis of the callee body starts (with callsite 252 /// contexts propagated). It checks callsite-specific information. Return a 253 /// reason analysis can't continue if that's the case, or 'true' if it may 254 /// continue. 255 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 256 /// Called if the analysis engine decides SROA cannot be done for the given 257 /// alloca. 258 virtual void onDisableSROA(AllocaInst *Arg) {} 259 260 /// Called the analysis engine determines load elimination won't happen. 261 virtual void onDisableLoadElimination() {} 262 263 /// Called when we visit a CallBase, before the analysis starts. Return false 264 /// to stop further processing of the instruction. 265 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 266 267 /// Called to account for a call. 268 virtual void onCallPenalty() {} 269 270 /// Called to account for the expectation the inlining would result in a load 271 /// elimination. 272 virtual void onLoadEliminationOpportunity() {} 273 274 /// Called to account for the cost of argument setup for the Call in the 275 /// callee's body (not the callsite currently under analysis). 276 virtual void onCallArgumentSetup(const CallBase &Call) {} 277 278 /// Called to account for a load relative intrinsic. 279 virtual void onLoadRelativeIntrinsic() {} 280 281 /// Called to account for a lowered call. 282 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 283 } 284 285 /// Account for a jump table of given size. Return false to stop further 286 /// processing the switch instruction 287 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 288 289 /// Account for a case cluster of given size. Return false to stop further 290 /// processing of the instruction. 291 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 292 293 /// Called at the end of processing a switch instruction, with the given 294 /// number of case clusters. 295 virtual void onFinalizeSwitch(unsigned JumpTableSize, 296 unsigned NumCaseCluster) {} 297 298 /// Called to account for any other instruction not specifically accounted 299 /// for. 300 virtual void onMissedSimplification() {} 301 302 /// Start accounting potential benefits due to SROA for the given alloca. 303 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 304 305 /// Account SROA savings for the AllocaInst value. 306 virtual void onAggregateSROAUse(AllocaInst *V) {} 307 308 bool handleSROA(Value *V, bool DoNotDisable) { 309 // Check for SROA candidates in comparisons. 310 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 311 if (DoNotDisable) { 312 onAggregateSROAUse(SROAArg); 313 return true; 314 } 315 disableSROAForArg(SROAArg); 316 } 317 return false; 318 } 319 320 bool IsCallerRecursive = false; 321 bool IsRecursiveCall = false; 322 bool ExposesReturnsTwice = false; 323 bool HasDynamicAlloca = false; 324 bool ContainsNoDuplicateCall = false; 325 bool HasReturn = false; 326 bool HasIndirectBr = false; 327 bool HasUninlineableIntrinsic = false; 328 bool InitsVargArgs = false; 329 330 /// Number of bytes allocated statically by the callee. 331 uint64_t AllocatedSize = 0; 332 unsigned NumInstructions = 0; 333 unsigned NumVectorInstructions = 0; 334 335 /// While we walk the potentially-inlined instructions, we build up and 336 /// maintain a mapping of simplified values specific to this callsite. The 337 /// idea is to propagate any special information we have about arguments to 338 /// this call through the inlinable section of the function, and account for 339 /// likely simplifications post-inlining. The most important aspect we track 340 /// is CFG altering simplifications -- when we prove a basic block dead, that 341 /// can cause dramatic shifts in the cost of inlining a function. 342 DenseMap<Value *, Constant *> SimplifiedValues; 343 344 /// Keep track of the values which map back (through function arguments) to 345 /// allocas on the caller stack which could be simplified through SROA. 346 DenseMap<Value *, AllocaInst *> SROAArgValues; 347 348 /// Keep track of Allocas for which we believe we may get SROA optimization. 349 DenseSet<AllocaInst *> EnabledSROAAllocas; 350 351 /// Keep track of values which map to a pointer base and constant offset. 352 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 353 354 /// Keep track of dead blocks due to the constant arguments. 355 SetVector<BasicBlock *> DeadBlocks; 356 357 /// The mapping of the blocks to their known unique successors due to the 358 /// constant arguments. 359 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 360 361 /// Model the elimination of repeated loads that is expected to happen 362 /// whenever we simplify away the stores that would otherwise cause them to be 363 /// loads. 364 bool EnableLoadElimination; 365 366 /// Whether we allow inlining for recursive call. 367 bool AllowRecursiveCall; 368 369 SmallPtrSet<Value *, 16> LoadAddrSet; 370 371 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 372 auto It = SROAArgValues.find(V); 373 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 374 return nullptr; 375 return It->second; 376 } 377 378 // Custom simplification helper routines. 379 bool isAllocaDerivedArg(Value *V); 380 void disableSROAForArg(AllocaInst *SROAArg); 381 void disableSROA(Value *V); 382 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 383 void disableLoadElimination(); 384 bool isGEPFree(GetElementPtrInst &GEP); 385 bool canFoldInboundsGEP(GetElementPtrInst &I); 386 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 387 bool simplifyCallSite(Function *F, CallBase &Call); 388 template <typename Callable> 389 bool simplifyInstruction(Instruction &I, Callable Evaluate); 390 bool simplifyIntrinsicCallIsConstant(CallBase &CB); 391 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 392 393 /// Return true if the given argument to the function being considered for 394 /// inlining has the given attribute set either at the call site or the 395 /// function declaration. Primarily used to inspect call site specific 396 /// attributes since these can be more precise than the ones on the callee 397 /// itself. 398 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 399 400 /// Return true if the given value is known non null within the callee if 401 /// inlined through this particular callsite. 402 bool isKnownNonNullInCallee(Value *V); 403 404 /// Return true if size growth is allowed when inlining the callee at \p Call. 405 bool allowSizeGrowth(CallBase &Call); 406 407 // Custom analysis routines. 408 InlineResult analyzeBlock(BasicBlock *BB, 409 SmallPtrSetImpl<const Value *> &EphValues); 410 411 // Disable several entry points to the visitor so we don't accidentally use 412 // them by declaring but not defining them here. 413 void visit(Module *); 414 void visit(Module &); 415 void visit(Function *); 416 void visit(Function &); 417 void visit(BasicBlock *); 418 void visit(BasicBlock &); 419 420 // Provide base case for our instruction visit. 421 bool visitInstruction(Instruction &I); 422 423 // Our visit overrides. 424 bool visitAlloca(AllocaInst &I); 425 bool visitPHI(PHINode &I); 426 bool visitGetElementPtr(GetElementPtrInst &I); 427 bool visitBitCast(BitCastInst &I); 428 bool visitPtrToInt(PtrToIntInst &I); 429 bool visitIntToPtr(IntToPtrInst &I); 430 bool visitCastInst(CastInst &I); 431 bool visitCmpInst(CmpInst &I); 432 bool visitSub(BinaryOperator &I); 433 bool visitBinaryOperator(BinaryOperator &I); 434 bool visitFNeg(UnaryOperator &I); 435 bool visitLoad(LoadInst &I); 436 bool visitStore(StoreInst &I); 437 bool visitExtractValue(ExtractValueInst &I); 438 bool visitInsertValue(InsertValueInst &I); 439 bool visitCallBase(CallBase &Call); 440 bool visitReturnInst(ReturnInst &RI); 441 bool visitBranchInst(BranchInst &BI); 442 bool visitSelectInst(SelectInst &SI); 443 bool visitSwitchInst(SwitchInst &SI); 444 bool visitIndirectBrInst(IndirectBrInst &IBI); 445 bool visitResumeInst(ResumeInst &RI); 446 bool visitCleanupReturnInst(CleanupReturnInst &RI); 447 bool visitCatchReturnInst(CatchReturnInst &RI); 448 bool visitUnreachableInst(UnreachableInst &I); 449 450 public: 451 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 452 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 453 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 454 ProfileSummaryInfo *PSI = nullptr, 455 OptimizationRemarkEmitter *ORE = nullptr) 456 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 457 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 458 CandidateCall(Call), EnableLoadElimination(true), 459 AllowRecursiveCall(false) {} 460 461 InlineResult analyze(); 462 463 Optional<Constant *> getSimplifiedValue(Instruction *I) { 464 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 465 return SimplifiedValues[I]; 466 return None; 467 } 468 469 // Keep a bunch of stats about the cost savings found so we can print them 470 // out when debugging. 471 unsigned NumConstantArgs = 0; 472 unsigned NumConstantOffsetPtrArgs = 0; 473 unsigned NumAllocaArgs = 0; 474 unsigned NumConstantPtrCmps = 0; 475 unsigned NumConstantPtrDiffs = 0; 476 unsigned NumInstructionsSimplified = 0; 477 478 void dump(); 479 }; 480 481 // Considering forming a binary search, we should find the number of nodes 482 // which is same as the number of comparisons when lowered. For a given 483 // number of clusters, n, we can define a recursive function, f(n), to find 484 // the number of nodes in the tree. The recursion is : 485 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 486 // and f(n) = n, when n <= 3. 487 // This will lead a binary tree where the leaf should be either f(2) or f(3) 488 // when n > 3. So, the number of comparisons from leaves should be n, while 489 // the number of non-leaf should be : 490 // 2^(log2(n) - 1) - 1 491 // = 2^log2(n) * 2^-1 - 1 492 // = n / 2 - 1. 493 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 494 // number of comparisons in a simple closed form : 495 // n + n / 2 - 1 = n * 3 / 2 - 1 496 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 497 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 498 } 499 500 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 501 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 502 class InlineCostCallAnalyzer final : public CallAnalyzer { 503 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 504 const bool ComputeFullInlineCost; 505 int LoadEliminationCost = 0; 506 /// Bonus to be applied when percentage of vector instructions in callee is 507 /// high (see more details in updateThreshold). 508 int VectorBonus = 0; 509 /// Bonus to be applied when the callee has only one reachable basic block. 510 int SingleBBBonus = 0; 511 512 /// Tunable parameters that control the analysis. 513 const InlineParams &Params; 514 515 // This DenseMap stores the delta change in cost and threshold after 516 // accounting for the given instruction. The map is filled only with the 517 // flag PrintInstructionComments on. 518 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 519 520 /// Upper bound for the inlining cost. Bonuses are being applied to account 521 /// for speculative "expected profit" of the inlining decision. 522 int Threshold = 0; 523 524 /// Attempt to evaluate indirect calls to boost its inline cost. 525 const bool BoostIndirectCalls; 526 527 /// Ignore the threshold when finalizing analysis. 528 const bool IgnoreThreshold; 529 530 // True if the cost-benefit-analysis-based inliner is enabled. 531 const bool CostBenefitAnalysisEnabled; 532 533 /// Inlining cost measured in abstract units, accounts for all the 534 /// instructions expected to be executed for a given function invocation. 535 /// Instructions that are statically proven to be dead based on call-site 536 /// arguments are not counted here. 537 int Cost = 0; 538 539 // The cumulative cost at the beginning of the basic block being analyzed. At 540 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 541 // the size of that basic block. 542 int CostAtBBStart = 0; 543 544 // The static size of live but cold basic blocks. This is "static" in the 545 // sense that it's not weighted by profile counts at all. 546 int ColdSize = 0; 547 548 // Whether inlining is decided by cost-threshold analysis. 549 bool DecidedByCostThreshold = false; 550 551 // Whether inlining is decided by cost-benefit analysis. 552 bool DecidedByCostBenefit = false; 553 554 // The cost-benefit pair computed by cost-benefit analysis. 555 Optional<CostBenefitPair> CostBenefit = None; 556 557 bool SingleBB = true; 558 559 unsigned SROACostSavings = 0; 560 unsigned SROACostSavingsLost = 0; 561 562 /// The mapping of caller Alloca values to their accumulated cost savings. If 563 /// we have to disable SROA for one of the allocas, this tells us how much 564 /// cost must be added. 565 DenseMap<AllocaInst *, int> SROAArgCosts; 566 567 /// Return true if \p Call is a cold callsite. 568 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 569 570 /// Update Threshold based on callsite properties such as callee 571 /// attributes and callee hotness for PGO builds. The Callee is explicitly 572 /// passed to support analyzing indirect calls whose target is inferred by 573 /// analysis. 574 void updateThreshold(CallBase &Call, Function &Callee); 575 /// Return a higher threshold if \p Call is a hot callsite. 576 Optional<int> getHotCallSiteThreshold(CallBase &Call, 577 BlockFrequencyInfo *CallerBFI); 578 579 /// Handle a capped 'int' increment for Cost. 580 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 581 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 582 Cost = std::min<int>(UpperBound, Cost + Inc); 583 } 584 585 void onDisableSROA(AllocaInst *Arg) override { 586 auto CostIt = SROAArgCosts.find(Arg); 587 if (CostIt == SROAArgCosts.end()) 588 return; 589 addCost(CostIt->second); 590 SROACostSavings -= CostIt->second; 591 SROACostSavingsLost += CostIt->second; 592 SROAArgCosts.erase(CostIt); 593 } 594 595 void onDisableLoadElimination() override { 596 addCost(LoadEliminationCost); 597 LoadEliminationCost = 0; 598 } 599 600 bool onCallBaseVisitStart(CallBase &Call) override { 601 if (Optional<int> AttrCallThresholdBonus = 602 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 603 Threshold += *AttrCallThresholdBonus; 604 605 if (Optional<int> AttrCallCost = 606 getStringFnAttrAsInt(Call, "call-inline-cost")) { 607 addCost(*AttrCallCost); 608 // Prevent further processing of the call since we want to override its 609 // inline cost, not just add to it. 610 return false; 611 } 612 return true; 613 } 614 615 void onCallPenalty() override { addCost(CallPenalty); } 616 void onCallArgumentSetup(const CallBase &Call) override { 617 // Pay the price of the argument setup. We account for the average 1 618 // instruction per call argument setup here. 619 addCost(Call.arg_size() * InlineConstants::InstrCost); 620 } 621 void onLoadRelativeIntrinsic() override { 622 // This is normally lowered to 4 LLVM instructions. 623 addCost(3 * InlineConstants::InstrCost); 624 } 625 void onLoweredCall(Function *F, CallBase &Call, 626 bool IsIndirectCall) override { 627 // We account for the average 1 instruction per call argument setup here. 628 addCost(Call.arg_size() * InlineConstants::InstrCost); 629 630 // If we have a constant that we are calling as a function, we can peer 631 // through it and see the function target. This happens not infrequently 632 // during devirtualization and so we want to give it a hefty bonus for 633 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 634 // Pretend to inline the function, with a custom threshold. 635 if (IsIndirectCall && BoostIndirectCalls) { 636 auto IndirectCallParams = Params; 637 IndirectCallParams.DefaultThreshold = 638 InlineConstants::IndirectCallThreshold; 639 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 640 /// to instantiate the derived class. 641 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 642 GetAssumptionCache, GetBFI, PSI, ORE, false); 643 if (CA.analyze().isSuccess()) { 644 // We were able to inline the indirect call! Subtract the cost from the 645 // threshold to get the bonus we want to apply, but don't go below zero. 646 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 647 } 648 } else 649 // Otherwise simply add the cost for merely making the call. 650 addCost(CallPenalty); 651 } 652 653 void onFinalizeSwitch(unsigned JumpTableSize, 654 unsigned NumCaseCluster) override { 655 // If suitable for a jump table, consider the cost for the table size and 656 // branch to destination. 657 // Maximum valid cost increased in this function. 658 if (JumpTableSize) { 659 int64_t JTCost = 660 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 661 4 * InlineConstants::InstrCost; 662 663 addCost(JTCost, static_cast<int64_t>(CostUpperBound)); 664 return; 665 } 666 667 if (NumCaseCluster <= 3) { 668 // Suppose a comparison includes one compare and one conditional branch. 669 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 670 return; 671 } 672 673 int64_t ExpectedNumberOfCompare = 674 getExpectedNumberOfCompare(NumCaseCluster); 675 int64_t SwitchCost = 676 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 677 678 addCost(SwitchCost, static_cast<int64_t>(CostUpperBound)); 679 } 680 void onMissedSimplification() override { 681 addCost(InlineConstants::InstrCost); 682 } 683 684 void onInitializeSROAArg(AllocaInst *Arg) override { 685 assert(Arg != nullptr && 686 "Should not initialize SROA costs for null value."); 687 SROAArgCosts[Arg] = 0; 688 } 689 690 void onAggregateSROAUse(AllocaInst *SROAArg) override { 691 auto CostIt = SROAArgCosts.find(SROAArg); 692 assert(CostIt != SROAArgCosts.end() && 693 "expected this argument to have a cost"); 694 CostIt->second += InlineConstants::InstrCost; 695 SROACostSavings += InlineConstants::InstrCost; 696 } 697 698 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 699 700 void onBlockAnalyzed(const BasicBlock *BB) override { 701 if (CostBenefitAnalysisEnabled) { 702 // Keep track of the static size of live but cold basic blocks. For now, 703 // we define a cold basic block to be one that's never executed. 704 assert(GetBFI && "GetBFI must be available"); 705 BlockFrequencyInfo *BFI = &(GetBFI(F)); 706 assert(BFI && "BFI must be available"); 707 auto ProfileCount = BFI->getBlockProfileCount(BB); 708 assert(ProfileCount.hasValue()); 709 if (ProfileCount.getValue() == 0) 710 ColdSize += Cost - CostAtBBStart; 711 } 712 713 auto *TI = BB->getTerminator(); 714 // If we had any successors at this point, than post-inlining is likely to 715 // have them as well. Note that we assume any basic blocks which existed 716 // due to branches or switches which folded above will also fold after 717 // inlining. 718 if (SingleBB && TI->getNumSuccessors() > 1) { 719 // Take off the bonus we applied to the threshold. 720 Threshold -= SingleBBBonus; 721 SingleBB = false; 722 } 723 } 724 725 void onInstructionAnalysisStart(const Instruction *I) override { 726 // This function is called to store the initial cost of inlining before 727 // the given instruction was assessed. 728 if (!PrintInstructionComments) 729 return; 730 InstructionCostDetailMap[I].CostBefore = Cost; 731 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 732 } 733 734 void onInstructionAnalysisFinish(const Instruction *I) override { 735 // This function is called to find new values of cost and threshold after 736 // the instruction has been assessed. 737 if (!PrintInstructionComments) 738 return; 739 InstructionCostDetailMap[I].CostAfter = Cost; 740 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 741 } 742 743 bool isCostBenefitAnalysisEnabled() { 744 if (!PSI || !PSI->hasProfileSummary()) 745 return false; 746 747 if (!GetBFI) 748 return false; 749 750 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 751 // Honor the explicit request from the user. 752 if (!InlineEnableCostBenefitAnalysis) 753 return false; 754 } else { 755 // Otherwise, require instrumentation profile. 756 if (!PSI->hasInstrumentationProfile()) 757 return false; 758 } 759 760 auto *Caller = CandidateCall.getParent()->getParent(); 761 if (!Caller->getEntryCount()) 762 return false; 763 764 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 765 if (!CallerBFI) 766 return false; 767 768 // For now, limit to hot call site. 769 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 770 return false; 771 772 // Make sure we have a nonzero entry count. 773 auto EntryCount = F.getEntryCount(); 774 if (!EntryCount || !EntryCount->getCount()) 775 return false; 776 777 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 778 if (!CalleeBFI) 779 return false; 780 781 return true; 782 } 783 784 // Determine whether we should inline the given call site, taking into account 785 // both the size cost and the cycle savings. Return None if we don't have 786 // suficient profiling information to determine. 787 Optional<bool> costBenefitAnalysis() { 788 if (!CostBenefitAnalysisEnabled) 789 return None; 790 791 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 792 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 793 // falling back to the cost-based metric. 794 // TODO: Improve this hacky condition. 795 if (Threshold == 0) 796 return None; 797 798 assert(GetBFI); 799 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 800 assert(CalleeBFI); 801 802 // The cycle savings expressed as the sum of InlineConstants::InstrCost 803 // multiplied by the estimated dynamic count of each instruction we can 804 // avoid. Savings come from the call site cost, such as argument setup and 805 // the call instruction, as well as the instructions that are folded. 806 // 807 // We use 128-bit APInt here to avoid potential overflow. This variable 808 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 809 // assumes that we can avoid or fold a billion instructions, each with a 810 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 811 // period on a 4GHz machine. 812 APInt CycleSavings(128, 0); 813 814 for (auto &BB : F) { 815 APInt CurrentSavings(128, 0); 816 for (auto &I : BB) { 817 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 818 // Count a conditional branch as savings if it becomes unconditional. 819 if (BI->isConditional() && 820 isa_and_nonnull<ConstantInt>( 821 SimplifiedValues.lookup(BI->getCondition()))) { 822 CurrentSavings += InlineConstants::InstrCost; 823 } 824 } else if (Value *V = dyn_cast<Value>(&I)) { 825 // Count an instruction as savings if we can fold it. 826 if (SimplifiedValues.count(V)) { 827 CurrentSavings += InlineConstants::InstrCost; 828 } 829 } 830 } 831 832 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 833 assert(ProfileCount.hasValue()); 834 CurrentSavings *= ProfileCount.getValue(); 835 CycleSavings += CurrentSavings; 836 } 837 838 // Compute the cycle savings per call. 839 auto EntryProfileCount = F.getEntryCount(); 840 assert(EntryProfileCount.hasValue() && EntryProfileCount->getCount()); 841 auto EntryCount = EntryProfileCount->getCount(); 842 CycleSavings += EntryCount / 2; 843 CycleSavings = CycleSavings.udiv(EntryCount); 844 845 // Compute the total savings for the call site. 846 auto *CallerBB = CandidateCall.getParent(); 847 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 848 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 849 CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 850 851 // Remove the cost of the cold basic blocks. 852 int Size = Cost - ColdSize; 853 854 // Allow tiny callees to be inlined regardless of whether they meet the 855 // savings threshold. 856 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 857 858 CostBenefit.emplace(APInt(128, Size), CycleSavings); 859 860 // Return true if the savings justify the cost of inlining. Specifically, 861 // we evaluate the following inequality: 862 // 863 // CycleSavings PSI->getOrCompHotCountThreshold() 864 // -------------- >= ----------------------------------- 865 // Size InlineSavingsMultiplier 866 // 867 // Note that the left hand side is specific to a call site. The right hand 868 // side is a constant for the entire executable. 869 APInt LHS = CycleSavings; 870 LHS *= InlineSavingsMultiplier; 871 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 872 RHS *= Size; 873 return LHS.uge(RHS); 874 } 875 876 InlineResult finalizeAnalysis() override { 877 // Loops generally act a lot like calls in that they act like barriers to 878 // movement, require a certain amount of setup, etc. So when optimising for 879 // size, we penalise any call sites that perform loops. We do this after all 880 // other costs here, so will likely only be dealing with relatively small 881 // functions (and hence DT and LI will hopefully be cheap). 882 auto *Caller = CandidateCall.getFunction(); 883 if (Caller->hasMinSize()) { 884 DominatorTree DT(F); 885 LoopInfo LI(DT); 886 int NumLoops = 0; 887 for (Loop *L : LI) { 888 // Ignore loops that will not be executed 889 if (DeadBlocks.count(L->getHeader())) 890 continue; 891 NumLoops++; 892 } 893 addCost(NumLoops * InlineConstants::LoopPenalty); 894 } 895 896 // We applied the maximum possible vector bonus at the beginning. Now, 897 // subtract the excess bonus, if any, from the Threshold before 898 // comparing against Cost. 899 if (NumVectorInstructions <= NumInstructions / 10) 900 Threshold -= VectorBonus; 901 else if (NumVectorInstructions <= NumInstructions / 2) 902 Threshold -= VectorBonus / 2; 903 904 if (Optional<int> AttrCost = 905 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 906 Cost = *AttrCost; 907 908 if (Optional<int> AttrThreshold = 909 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 910 Threshold = *AttrThreshold; 911 912 if (auto Result = costBenefitAnalysis()) { 913 DecidedByCostBenefit = true; 914 if (Result.getValue()) 915 return InlineResult::success(); 916 else 917 return InlineResult::failure("Cost over threshold."); 918 } 919 920 if (IgnoreThreshold) 921 return InlineResult::success(); 922 923 DecidedByCostThreshold = true; 924 return Cost < std::max(1, Threshold) 925 ? InlineResult::success() 926 : InlineResult::failure("Cost over threshold."); 927 } 928 929 bool shouldStop() override { 930 if (IgnoreThreshold || ComputeFullInlineCost) 931 return false; 932 // Bail out the moment we cross the threshold. This means we'll under-count 933 // the cost, but only when undercounting doesn't matter. 934 if (Cost < Threshold) 935 return false; 936 DecidedByCostThreshold = true; 937 return true; 938 } 939 940 void onLoadEliminationOpportunity() override { 941 LoadEliminationCost += InlineConstants::InstrCost; 942 } 943 944 InlineResult onAnalysisStart() override { 945 // Perform some tweaks to the cost and threshold based on the direct 946 // callsite information. 947 948 // We want to more aggressively inline vector-dense kernels, so up the 949 // threshold, and we'll lower it if the % of vector instructions gets too 950 // low. Note that these bonuses are some what arbitrary and evolved over 951 // time by accident as much as because they are principled bonuses. 952 // 953 // FIXME: It would be nice to remove all such bonuses. At least it would be 954 // nice to base the bonus values on something more scientific. 955 assert(NumInstructions == 0); 956 assert(NumVectorInstructions == 0); 957 958 // Update the threshold based on callsite properties 959 updateThreshold(CandidateCall, F); 960 961 // While Threshold depends on commandline options that can take negative 962 // values, we want to enforce the invariant that the computed threshold and 963 // bonuses are non-negative. 964 assert(Threshold >= 0); 965 assert(SingleBBBonus >= 0); 966 assert(VectorBonus >= 0); 967 968 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 969 // this Threshold any time, and cost cannot decrease, we can stop processing 970 // the rest of the function body. 971 Threshold += (SingleBBBonus + VectorBonus); 972 973 // Give out bonuses for the callsite, as the instructions setting them up 974 // will be gone after inlining. 975 addCost(-getCallsiteCost(this->CandidateCall, DL)); 976 977 // If this function uses the coldcc calling convention, prefer not to inline 978 // it. 979 if (F.getCallingConv() == CallingConv::Cold) 980 Cost += InlineConstants::ColdccPenalty; 981 982 // Check if we're done. This can happen due to bonuses and penalties. 983 if (Cost >= Threshold && !ComputeFullInlineCost) 984 return InlineResult::failure("high cost"); 985 986 return InlineResult::success(); 987 } 988 989 public: 990 InlineCostCallAnalyzer( 991 Function &Callee, CallBase &Call, const InlineParams &Params, 992 const TargetTransformInfo &TTI, 993 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 994 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 995 ProfileSummaryInfo *PSI = nullptr, 996 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 997 bool IgnoreThreshold = false) 998 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 999 ComputeFullInlineCost(OptComputeFullInlineCost || 1000 Params.ComputeFullInlineCost || ORE || 1001 isCostBenefitAnalysisEnabled()), 1002 Params(Params), Threshold(Params.DefaultThreshold), 1003 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 1004 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 1005 Writer(this) { 1006 AllowRecursiveCall = Params.AllowRecursiveCall.getValue(); 1007 } 1008 1009 /// Annotation Writer for instruction details 1010 InlineCostAnnotationWriter Writer; 1011 1012 void dump(); 1013 1014 // Prints the same analysis as dump(), but its definition is not dependent 1015 // on the build. 1016 void print(raw_ostream &OS); 1017 1018 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1019 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 1020 return InstructionCostDetailMap[I]; 1021 return None; 1022 } 1023 1024 virtual ~InlineCostCallAnalyzer() {} 1025 int getThreshold() const { return Threshold; } 1026 int getCost() const { return Cost; } 1027 Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1028 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1029 bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; } 1030 }; 1031 1032 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1033 private: 1034 InlineCostFeatures Cost = {}; 1035 1036 // FIXME: These constants are taken from the heuristic-based cost visitor. 1037 // These should be removed entirely in a later revision to avoid reliance on 1038 // heuristics in the ML inliner. 1039 static constexpr int JTCostMultiplier = 4; 1040 static constexpr int CaseClusterCostMultiplier = 2; 1041 static constexpr int SwitchCostMultiplier = 2; 1042 1043 // FIXME: These are taken from the heuristic-based cost visitor: we should 1044 // eventually abstract these to the CallAnalyzer to avoid duplication. 1045 unsigned SROACostSavingOpportunities = 0; 1046 int VectorBonus = 0; 1047 int SingleBBBonus = 0; 1048 int Threshold = 5; 1049 1050 DenseMap<AllocaInst *, unsigned> SROACosts; 1051 1052 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1053 Cost[static_cast<size_t>(Feature)] += Delta; 1054 } 1055 1056 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1057 Cost[static_cast<size_t>(Feature)] = Value; 1058 } 1059 1060 void onDisableSROA(AllocaInst *Arg) override { 1061 auto CostIt = SROACosts.find(Arg); 1062 if (CostIt == SROACosts.end()) 1063 return; 1064 1065 increment(InlineCostFeatureIndex::SROALosses, CostIt->second); 1066 SROACostSavingOpportunities -= CostIt->second; 1067 SROACosts.erase(CostIt); 1068 } 1069 1070 void onDisableLoadElimination() override { 1071 set(InlineCostFeatureIndex::LoadElimination, 1); 1072 } 1073 1074 void onCallPenalty() override { 1075 increment(InlineCostFeatureIndex::CallPenalty, CallPenalty); 1076 } 1077 1078 void onCallArgumentSetup(const CallBase &Call) override { 1079 increment(InlineCostFeatureIndex::CallArgumentSetup, 1080 Call.arg_size() * InlineConstants::InstrCost); 1081 } 1082 1083 void onLoadRelativeIntrinsic() override { 1084 increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 1085 3 * InlineConstants::InstrCost); 1086 } 1087 1088 void onLoweredCall(Function *F, CallBase &Call, 1089 bool IsIndirectCall) override { 1090 increment(InlineCostFeatureIndex::LoweredCallArgSetup, 1091 Call.arg_size() * InlineConstants::InstrCost); 1092 1093 if (IsIndirectCall) { 1094 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1095 /*HintThreshold*/ {}, 1096 /*ColdThreshold*/ {}, 1097 /*OptSizeThreshold*/ {}, 1098 /*OptMinSizeThreshold*/ {}, 1099 /*HotCallSiteThreshold*/ {}, 1100 /*LocallyHotCallSiteThreshold*/ {}, 1101 /*ColdCallSiteThreshold*/ {}, 1102 /*ComputeFullInlineCost*/ true, 1103 /*EnableDeferral*/ true}; 1104 IndirectCallParams.DefaultThreshold = 1105 InlineConstants::IndirectCallThreshold; 1106 1107 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1108 GetAssumptionCache, GetBFI, PSI, ORE, false, 1109 true); 1110 if (CA.analyze().isSuccess()) { 1111 increment(InlineCostFeatureIndex::NestedInlineCostEstimate, 1112 CA.getCost()); 1113 increment(InlineCostFeatureIndex::NestedInlines, 1); 1114 } 1115 } else { 1116 onCallPenalty(); 1117 } 1118 } 1119 1120 void onFinalizeSwitch(unsigned JumpTableSize, 1121 unsigned NumCaseCluster) override { 1122 1123 if (JumpTableSize) { 1124 int64_t JTCost = 1125 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 1126 JTCostMultiplier * InlineConstants::InstrCost; 1127 increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost); 1128 return; 1129 } 1130 1131 if (NumCaseCluster <= 3) { 1132 increment(InlineCostFeatureIndex::CaseClusterPenalty, 1133 NumCaseCluster * CaseClusterCostMultiplier * 1134 InlineConstants::InstrCost); 1135 return; 1136 } 1137 1138 int64_t ExpectedNumberOfCompare = 1139 getExpectedNumberOfCompare(NumCaseCluster); 1140 1141 int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier * 1142 InlineConstants::InstrCost; 1143 increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost); 1144 } 1145 1146 void onMissedSimplification() override { 1147 increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions, 1148 InlineConstants::InstrCost); 1149 } 1150 1151 void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; } 1152 void onAggregateSROAUse(AllocaInst *Arg) override { 1153 SROACosts.find(Arg)->second += InlineConstants::InstrCost; 1154 SROACostSavingOpportunities += InlineConstants::InstrCost; 1155 } 1156 1157 void onBlockAnalyzed(const BasicBlock *BB) override { 1158 if (BB->getTerminator()->getNumSuccessors() > 1) 1159 set(InlineCostFeatureIndex::IsMultipleBlocks, 1); 1160 Threshold -= SingleBBBonus; 1161 } 1162 1163 InlineResult finalizeAnalysis() override { 1164 auto *Caller = CandidateCall.getFunction(); 1165 if (Caller->hasMinSize()) { 1166 DominatorTree DT(F); 1167 LoopInfo LI(DT); 1168 for (Loop *L : LI) { 1169 // Ignore loops that will not be executed 1170 if (DeadBlocks.count(L->getHeader())) 1171 continue; 1172 increment(InlineCostFeatureIndex::NumLoops, 1173 InlineConstants::LoopPenalty); 1174 } 1175 } 1176 set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size()); 1177 set(InlineCostFeatureIndex::SimplifiedInstructions, 1178 NumInstructionsSimplified); 1179 set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs); 1180 set(InlineCostFeatureIndex::ConstantOffsetPtrArgs, 1181 NumConstantOffsetPtrArgs); 1182 set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities); 1183 1184 if (NumVectorInstructions <= NumInstructions / 10) 1185 Threshold -= VectorBonus; 1186 else if (NumVectorInstructions <= NumInstructions / 2) 1187 Threshold -= VectorBonus / 2; 1188 1189 set(InlineCostFeatureIndex::Threshold, Threshold); 1190 1191 return InlineResult::success(); 1192 } 1193 1194 bool shouldStop() override { return false; } 1195 1196 void onLoadEliminationOpportunity() override { 1197 increment(InlineCostFeatureIndex::LoadElimination, 1); 1198 } 1199 1200 InlineResult onAnalysisStart() override { 1201 increment(InlineCostFeatureIndex::CallSiteCost, 1202 -1 * getCallsiteCost(this->CandidateCall, DL)); 1203 1204 set(InlineCostFeatureIndex::ColdCcPenalty, 1205 (F.getCallingConv() == CallingConv::Cold)); 1206 1207 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1208 // analyzer - instead, we should abstract it to a common method in the 1209 // CallAnalyzer 1210 int SingleBBBonusPercent = 50; 1211 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1212 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1213 Threshold *= TTI.getInliningThresholdMultiplier(); 1214 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1215 VectorBonus = Threshold * VectorBonusPercent / 100; 1216 Threshold += (SingleBBBonus + VectorBonus); 1217 1218 return InlineResult::success(); 1219 } 1220 1221 public: 1222 InlineCostFeaturesAnalyzer( 1223 const TargetTransformInfo &TTI, 1224 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1225 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1226 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1227 CallBase &Call) 1228 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1229 1230 const InlineCostFeatures &features() const { return Cost; } 1231 }; 1232 1233 } // namespace 1234 1235 /// Test whether the given value is an Alloca-derived function argument. 1236 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1237 return SROAArgValues.count(V); 1238 } 1239 1240 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1241 onDisableSROA(SROAArg); 1242 EnabledSROAAllocas.erase(SROAArg); 1243 disableLoadElimination(); 1244 } 1245 1246 void InlineCostAnnotationWriter::emitInstructionAnnot( 1247 const Instruction *I, formatted_raw_ostream &OS) { 1248 // The cost of inlining of the given instruction is printed always. 1249 // The threshold delta is printed only when it is non-zero. It happens 1250 // when we decided to give a bonus at a particular instruction. 1251 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1252 if (!Record) 1253 OS << "; No analysis for the instruction"; 1254 else { 1255 OS << "; cost before = " << Record->CostBefore 1256 << ", cost after = " << Record->CostAfter 1257 << ", threshold before = " << Record->ThresholdBefore 1258 << ", threshold after = " << Record->ThresholdAfter << ", "; 1259 OS << "cost delta = " << Record->getCostDelta(); 1260 if (Record->hasThresholdChanged()) 1261 OS << ", threshold delta = " << Record->getThresholdDelta(); 1262 } 1263 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1264 if (C) { 1265 OS << ", simplified to "; 1266 C.getValue()->print(OS, true); 1267 } 1268 OS << "\n"; 1269 } 1270 1271 /// If 'V' maps to a SROA candidate, disable SROA for it. 1272 void CallAnalyzer::disableSROA(Value *V) { 1273 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1274 disableSROAForArg(SROAArg); 1275 } 1276 } 1277 1278 void CallAnalyzer::disableLoadElimination() { 1279 if (EnableLoadElimination) { 1280 onDisableLoadElimination(); 1281 EnableLoadElimination = false; 1282 } 1283 } 1284 1285 /// Accumulate a constant GEP offset into an APInt if possible. 1286 /// 1287 /// Returns false if unable to compute the offset for any reason. Respects any 1288 /// simplified values known during the analysis of this callsite. 1289 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1290 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1291 assert(IntPtrWidth == Offset.getBitWidth()); 1292 1293 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1294 GTI != GTE; ++GTI) { 1295 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1296 if (!OpC) 1297 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1298 OpC = dyn_cast<ConstantInt>(SimpleOp); 1299 if (!OpC) 1300 return false; 1301 if (OpC->isZero()) 1302 continue; 1303 1304 // Handle a struct index, which adds its field offset to the pointer. 1305 if (StructType *STy = GTI.getStructTypeOrNull()) { 1306 unsigned ElementIdx = OpC->getZExtValue(); 1307 const StructLayout *SL = DL.getStructLayout(STy); 1308 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1309 continue; 1310 } 1311 1312 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1313 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1314 } 1315 return true; 1316 } 1317 1318 /// Use TTI to check whether a GEP is free. 1319 /// 1320 /// Respects any simplified values known during the analysis of this callsite. 1321 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1322 SmallVector<Value *, 4> Operands; 1323 Operands.push_back(GEP.getOperand(0)); 1324 for (const Use &Op : GEP.indices()) 1325 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1326 Operands.push_back(SimpleOp); 1327 else 1328 Operands.push_back(Op); 1329 return TTI.getUserCost(&GEP, Operands, 1330 TargetTransformInfo::TCK_SizeAndLatency) == 1331 TargetTransformInfo::TCC_Free; 1332 } 1333 1334 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1335 disableSROA(I.getOperand(0)); 1336 1337 // Check whether inlining will turn a dynamic alloca into a static 1338 // alloca and handle that case. 1339 if (I.isArrayAllocation()) { 1340 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1341 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1342 // Sometimes a dynamic alloca could be converted into a static alloca 1343 // after this constant prop, and become a huge static alloca on an 1344 // unconditional CFG path. Avoid inlining if this is going to happen above 1345 // a threshold. 1346 // FIXME: If the threshold is removed or lowered too much, we could end up 1347 // being too pessimistic and prevent inlining non-problematic code. This 1348 // could result in unintended perf regressions. A better overall strategy 1349 // is needed to track stack usage during inlining. 1350 Type *Ty = I.getAllocatedType(); 1351 AllocatedSize = SaturatingMultiplyAdd( 1352 AllocSize->getLimitedValue(), 1353 DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1354 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1355 HasDynamicAlloca = true; 1356 return false; 1357 } 1358 } 1359 1360 // Accumulate the allocated size. 1361 if (I.isStaticAlloca()) { 1362 Type *Ty = I.getAllocatedType(); 1363 AllocatedSize = 1364 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1365 } 1366 1367 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1368 // a variety of reasons, and so we would like to not inline them into 1369 // functions which don't currently have a dynamic alloca. This simply 1370 // disables inlining altogether in the presence of a dynamic alloca. 1371 if (!I.isStaticAlloca()) 1372 HasDynamicAlloca = true; 1373 1374 return false; 1375 } 1376 1377 bool CallAnalyzer::visitPHI(PHINode &I) { 1378 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1379 // though we don't want to propagate it's bonuses. The idea is to disable 1380 // SROA if it *might* be used in an inappropriate manner. 1381 1382 // Phi nodes are always zero-cost. 1383 // FIXME: Pointer sizes may differ between different address spaces, so do we 1384 // need to use correct address space in the call to getPointerSizeInBits here? 1385 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1386 // see the ZeroOffset is used as a dummy value, so we can probably use any 1387 // bit width for the ZeroOffset? 1388 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); 1389 bool CheckSROA = I.getType()->isPointerTy(); 1390 1391 // Track the constant or pointer with constant offset we've seen so far. 1392 Constant *FirstC = nullptr; 1393 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1394 Value *FirstV = nullptr; 1395 1396 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1397 BasicBlock *Pred = I.getIncomingBlock(i); 1398 // If the incoming block is dead, skip the incoming block. 1399 if (DeadBlocks.count(Pred)) 1400 continue; 1401 // If the parent block of phi is not the known successor of the incoming 1402 // block, skip the incoming block. 1403 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1404 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1405 continue; 1406 1407 Value *V = I.getIncomingValue(i); 1408 // If the incoming value is this phi itself, skip the incoming value. 1409 if (&I == V) 1410 continue; 1411 1412 Constant *C = dyn_cast<Constant>(V); 1413 if (!C) 1414 C = SimplifiedValues.lookup(V); 1415 1416 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1417 if (!C && CheckSROA) 1418 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1419 1420 if (!C && !BaseAndOffset.first) 1421 // The incoming value is neither a constant nor a pointer with constant 1422 // offset, exit early. 1423 return true; 1424 1425 if (FirstC) { 1426 if (FirstC == C) 1427 // If we've seen a constant incoming value before and it is the same 1428 // constant we see this time, continue checking the next incoming value. 1429 continue; 1430 // Otherwise early exit because we either see a different constant or saw 1431 // a constant before but we have a pointer with constant offset this time. 1432 return true; 1433 } 1434 1435 if (FirstV) { 1436 // The same logic as above, but check pointer with constant offset here. 1437 if (FirstBaseAndOffset == BaseAndOffset) 1438 continue; 1439 return true; 1440 } 1441 1442 if (C) { 1443 // This is the 1st time we've seen a constant, record it. 1444 FirstC = C; 1445 continue; 1446 } 1447 1448 // The remaining case is that this is the 1st time we've seen a pointer with 1449 // constant offset, record it. 1450 FirstV = V; 1451 FirstBaseAndOffset = BaseAndOffset; 1452 } 1453 1454 // Check if we can map phi to a constant. 1455 if (FirstC) { 1456 SimplifiedValues[&I] = FirstC; 1457 return true; 1458 } 1459 1460 // Check if we can map phi to a pointer with constant offset. 1461 if (FirstBaseAndOffset.first) { 1462 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1463 1464 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1465 SROAArgValues[&I] = SROAArg; 1466 } 1467 1468 return true; 1469 } 1470 1471 /// Check we can fold GEPs of constant-offset call site argument pointers. 1472 /// This requires target data and inbounds GEPs. 1473 /// 1474 /// \return true if the specified GEP can be folded. 1475 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1476 // Check if we have a base + offset for the pointer. 1477 std::pair<Value *, APInt> BaseAndOffset = 1478 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1479 if (!BaseAndOffset.first) 1480 return false; 1481 1482 // Check if the offset of this GEP is constant, and if so accumulate it 1483 // into Offset. 1484 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1485 return false; 1486 1487 // Add the result as a new mapping to Base + Offset. 1488 ConstantOffsetPtrs[&I] = BaseAndOffset; 1489 1490 return true; 1491 } 1492 1493 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1494 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1495 1496 // Lambda to check whether a GEP's indices are all constant. 1497 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1498 for (const Use &Op : GEP.indices()) 1499 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1500 return false; 1501 return true; 1502 }; 1503 1504 if (!DisableGEPConstOperand) 1505 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1506 SmallVector<Constant *, 2> Indices; 1507 for (unsigned int Index = 1; Index < COps.size(); ++Index) 1508 Indices.push_back(COps[Index]); 1509 return ConstantExpr::getGetElementPtr( 1510 I.getSourceElementType(), COps[0], Indices, I.isInBounds()); 1511 })) 1512 return true; 1513 1514 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1515 if (SROAArg) 1516 SROAArgValues[&I] = SROAArg; 1517 1518 // Constant GEPs are modeled as free. 1519 return true; 1520 } 1521 1522 // Variable GEPs will require math and will disable SROA. 1523 if (SROAArg) 1524 disableSROAForArg(SROAArg); 1525 return isGEPFree(I); 1526 } 1527 1528 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1529 /// \p Evaluate is a callable specific to instruction type that evaluates the 1530 /// instruction when all the operands are constants. 1531 template <typename Callable> 1532 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1533 SmallVector<Constant *, 2> COps; 1534 for (Value *Op : I.operands()) { 1535 Constant *COp = dyn_cast<Constant>(Op); 1536 if (!COp) 1537 COp = SimplifiedValues.lookup(Op); 1538 if (!COp) 1539 return false; 1540 COps.push_back(COp); 1541 } 1542 auto *C = Evaluate(COps); 1543 if (!C) 1544 return false; 1545 SimplifiedValues[&I] = C; 1546 return true; 1547 } 1548 1549 /// Try to simplify a call to llvm.is.constant. 1550 /// 1551 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since 1552 /// we expect calls of this specific intrinsic to be infrequent. 1553 /// 1554 /// FIXME: Given that we know CB's parent (F) caller 1555 /// (CandidateCall->getParent()->getParent()), we might be able to determine 1556 /// whether inlining F into F's caller would change how the call to 1557 /// llvm.is.constant would evaluate. 1558 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { 1559 Value *Arg = CB.getArgOperand(0); 1560 auto *C = dyn_cast<Constant>(Arg); 1561 1562 if (!C) 1563 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg)); 1564 1565 Type *RT = CB.getFunctionType()->getReturnType(); 1566 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); 1567 return true; 1568 } 1569 1570 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1571 // Propagate constants through bitcasts. 1572 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1573 return ConstantExpr::getBitCast(COps[0], I.getType()); 1574 })) 1575 return true; 1576 1577 // Track base/offsets through casts 1578 std::pair<Value *, APInt> BaseAndOffset = 1579 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1580 // Casts don't change the offset, just wrap it up. 1581 if (BaseAndOffset.first) 1582 ConstantOffsetPtrs[&I] = BaseAndOffset; 1583 1584 // Also look for SROA candidates here. 1585 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1586 SROAArgValues[&I] = SROAArg; 1587 1588 // Bitcasts are always zero cost. 1589 return true; 1590 } 1591 1592 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1593 // Propagate constants through ptrtoint. 1594 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1595 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1596 })) 1597 return true; 1598 1599 // Track base/offset pairs when converted to a plain integer provided the 1600 // integer is large enough to represent the pointer. 1601 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1602 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1603 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1604 std::pair<Value *, APInt> BaseAndOffset = 1605 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1606 if (BaseAndOffset.first) 1607 ConstantOffsetPtrs[&I] = BaseAndOffset; 1608 } 1609 1610 // This is really weird. Technically, ptrtoint will disable SROA. However, 1611 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1612 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1613 // would block SROA would also block SROA if applied directly to a pointer, 1614 // and so we can just add the integer in here. The only places where SROA is 1615 // preserved either cannot fire on an integer, or won't in-and-of themselves 1616 // disable SROA (ext) w/o some later use that we would see and disable. 1617 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1618 SROAArgValues[&I] = SROAArg; 1619 1620 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1621 TargetTransformInfo::TCC_Free; 1622 } 1623 1624 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1625 // Propagate constants through ptrtoint. 1626 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1627 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1628 })) 1629 return true; 1630 1631 // Track base/offset pairs when round-tripped through a pointer without 1632 // modifications provided the integer is not too large. 1633 Value *Op = I.getOperand(0); 1634 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1635 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1636 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1637 if (BaseAndOffset.first) 1638 ConstantOffsetPtrs[&I] = BaseAndOffset; 1639 } 1640 1641 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1642 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1643 SROAArgValues[&I] = SROAArg; 1644 1645 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1646 TargetTransformInfo::TCC_Free; 1647 } 1648 1649 bool CallAnalyzer::visitCastInst(CastInst &I) { 1650 // Propagate constants through casts. 1651 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1652 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1653 })) 1654 return true; 1655 1656 // Disable SROA in the face of arbitrary casts we don't explicitly list 1657 // elsewhere. 1658 disableSROA(I.getOperand(0)); 1659 1660 // If this is a floating-point cast, and the target says this operation 1661 // is expensive, this may eventually become a library call. Treat the cost 1662 // as such. 1663 switch (I.getOpcode()) { 1664 case Instruction::FPTrunc: 1665 case Instruction::FPExt: 1666 case Instruction::UIToFP: 1667 case Instruction::SIToFP: 1668 case Instruction::FPToUI: 1669 case Instruction::FPToSI: 1670 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1671 onCallPenalty(); 1672 break; 1673 default: 1674 break; 1675 } 1676 1677 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1678 TargetTransformInfo::TCC_Free; 1679 } 1680 1681 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1682 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1683 } 1684 1685 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1686 // Does the *call site* have the NonNull attribute set on an argument? We 1687 // use the attribute on the call site to memoize any analysis done in the 1688 // caller. This will also trip if the callee function has a non-null 1689 // parameter attribute, but that's a less interesting case because hopefully 1690 // the callee would already have been simplified based on that. 1691 if (Argument *A = dyn_cast<Argument>(V)) 1692 if (paramHasAttr(A, Attribute::NonNull)) 1693 return true; 1694 1695 // Is this an alloca in the caller? This is distinct from the attribute case 1696 // above because attributes aren't updated within the inliner itself and we 1697 // always want to catch the alloca derived case. 1698 if (isAllocaDerivedArg(V)) 1699 // We can actually predict the result of comparisons between an 1700 // alloca-derived value and null. Note that this fires regardless of 1701 // SROA firing. 1702 return true; 1703 1704 return false; 1705 } 1706 1707 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1708 // If the normal destination of the invoke or the parent block of the call 1709 // site is unreachable-terminated, there is little point in inlining this 1710 // unless there is literally zero cost. 1711 // FIXME: Note that it is possible that an unreachable-terminated block has a 1712 // hot entry. For example, in below scenario inlining hot_call_X() may be 1713 // beneficial : 1714 // main() { 1715 // hot_call_1(); 1716 // ... 1717 // hot_call_N() 1718 // exit(0); 1719 // } 1720 // For now, we are not handling this corner case here as it is rare in real 1721 // code. In future, we should elaborate this based on BPI and BFI in more 1722 // general threshold adjusting heuristics in updateThreshold(). 1723 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1724 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1725 return false; 1726 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1727 return false; 1728 1729 return true; 1730 } 1731 1732 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1733 BlockFrequencyInfo *CallerBFI) { 1734 // If global profile summary is available, then callsite's coldness is 1735 // determined based on that. 1736 if (PSI && PSI->hasProfileSummary()) 1737 return PSI->isColdCallSite(Call, CallerBFI); 1738 1739 // Otherwise we need BFI to be available. 1740 if (!CallerBFI) 1741 return false; 1742 1743 // Determine if the callsite is cold relative to caller's entry. We could 1744 // potentially cache the computation of scaled entry frequency, but the added 1745 // complexity is not worth it unless this scaling shows up high in the 1746 // profiles. 1747 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1748 auto CallSiteBB = Call.getParent(); 1749 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1750 auto CallerEntryFreq = 1751 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1752 return CallSiteFreq < CallerEntryFreq * ColdProb; 1753 } 1754 1755 Optional<int> 1756 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1757 BlockFrequencyInfo *CallerBFI) { 1758 1759 // If global profile summary is available, then callsite's hotness is 1760 // determined based on that. 1761 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1762 return Params.HotCallSiteThreshold; 1763 1764 // Otherwise we need BFI to be available and to have a locally hot callsite 1765 // threshold. 1766 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1767 return None; 1768 1769 // Determine if the callsite is hot relative to caller's entry. We could 1770 // potentially cache the computation of scaled entry frequency, but the added 1771 // complexity is not worth it unless this scaling shows up high in the 1772 // profiles. 1773 auto CallSiteBB = Call.getParent(); 1774 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1775 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1776 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1777 return Params.LocallyHotCallSiteThreshold; 1778 1779 // Otherwise treat it normally. 1780 return None; 1781 } 1782 1783 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1784 // If no size growth is allowed for this inlining, set Threshold to 0. 1785 if (!allowSizeGrowth(Call)) { 1786 Threshold = 0; 1787 return; 1788 } 1789 1790 Function *Caller = Call.getCaller(); 1791 1792 // return min(A, B) if B is valid. 1793 auto MinIfValid = [](int A, Optional<int> B) { 1794 return B ? std::min(A, B.getValue()) : A; 1795 }; 1796 1797 // return max(A, B) if B is valid. 1798 auto MaxIfValid = [](int A, Optional<int> B) { 1799 return B ? std::max(A, B.getValue()) : A; 1800 }; 1801 1802 // Various bonus percentages. These are multiplied by Threshold to get the 1803 // bonus values. 1804 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1805 // basic block at the given callsite context. This is speculatively applied 1806 // and withdrawn if more than one basic block is seen. 1807 // 1808 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1809 // of the last call to a static function as inlining such functions is 1810 // guaranteed to reduce code size. 1811 // 1812 // These bonus percentages may be set to 0 based on properties of the caller 1813 // and the callsite. 1814 int SingleBBBonusPercent = 50; 1815 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1816 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1817 1818 // Lambda to set all the above bonus and bonus percentages to 0. 1819 auto DisallowAllBonuses = [&]() { 1820 SingleBBBonusPercent = 0; 1821 VectorBonusPercent = 0; 1822 LastCallToStaticBonus = 0; 1823 }; 1824 1825 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1826 // and reduce the threshold if the caller has the necessary attribute. 1827 if (Caller->hasMinSize()) { 1828 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1829 // For minsize, we want to disable the single BB bonus and the vector 1830 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1831 // a static function will, at the minimum, eliminate the parameter setup and 1832 // call/return instructions. 1833 SingleBBBonusPercent = 0; 1834 VectorBonusPercent = 0; 1835 } else if (Caller->hasOptSize()) 1836 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1837 1838 // Adjust the threshold based on inlinehint attribute and profile based 1839 // hotness information if the caller does not have MinSize attribute. 1840 if (!Caller->hasMinSize()) { 1841 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1842 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1843 1844 // FIXME: After switching to the new passmanager, simplify the logic below 1845 // by checking only the callsite hotness/coldness as we will reliably 1846 // have local profile information. 1847 // 1848 // Callsite hotness and coldness can be determined if sample profile is 1849 // used (which adds hotness metadata to calls) or if caller's 1850 // BlockFrequencyInfo is available. 1851 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1852 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1853 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1854 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1855 // FIXME: This should update the threshold only if it exceeds the 1856 // current threshold, but AutoFDO + ThinLTO currently relies on this 1857 // behavior to prevent inlining of hot callsites during ThinLTO 1858 // compile phase. 1859 Threshold = HotCallSiteThreshold.getValue(); 1860 } else if (isColdCallSite(Call, CallerBFI)) { 1861 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1862 // Do not apply bonuses for a cold callsite including the 1863 // LastCallToStatic bonus. While this bonus might result in code size 1864 // reduction, it can cause the size of a non-cold caller to increase 1865 // preventing it from being inlined. 1866 DisallowAllBonuses(); 1867 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1868 } else if (PSI) { 1869 // Use callee's global profile information only if we have no way of 1870 // determining this via callsite information. 1871 if (PSI->isFunctionEntryHot(&Callee)) { 1872 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1873 // If callsite hotness can not be determined, we may still know 1874 // that the callee is hot and treat it as a weaker hint for threshold 1875 // increase. 1876 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1877 } else if (PSI->isFunctionEntryCold(&Callee)) { 1878 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1879 // Do not apply bonuses for a cold callee including the 1880 // LastCallToStatic bonus. While this bonus might result in code size 1881 // reduction, it can cause the size of a non-cold caller to increase 1882 // preventing it from being inlined. 1883 DisallowAllBonuses(); 1884 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1885 } 1886 } 1887 } 1888 1889 Threshold += TTI.adjustInliningThreshold(&Call); 1890 1891 // Finally, take the target-specific inlining threshold multiplier into 1892 // account. 1893 Threshold *= TTI.getInliningThresholdMultiplier(); 1894 1895 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1896 VectorBonus = Threshold * VectorBonusPercent / 100; 1897 1898 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 1899 &F == Call.getCalledFunction(); 1900 // If there is only one call of the function, and it has internal linkage, 1901 // the cost of inlining it drops dramatically. It may seem odd to update 1902 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1903 if (OnlyOneCallAndLocalLinkage) 1904 Cost -= LastCallToStaticBonus; 1905 } 1906 1907 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1908 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1909 // First try to handle simplified comparisons. 1910 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1911 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1912 })) 1913 return true; 1914 1915 if (I.getOpcode() == Instruction::FCmp) 1916 return false; 1917 1918 // Otherwise look for a comparison between constant offset pointers with 1919 // a common base. 1920 Value *LHSBase, *RHSBase; 1921 APInt LHSOffset, RHSOffset; 1922 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1923 if (LHSBase) { 1924 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1925 if (RHSBase && LHSBase == RHSBase) { 1926 // We have common bases, fold the icmp to a constant based on the 1927 // offsets. 1928 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1929 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1930 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1931 SimplifiedValues[&I] = C; 1932 ++NumConstantPtrCmps; 1933 return true; 1934 } 1935 } 1936 } 1937 1938 // If the comparison is an equality comparison with null, we can simplify it 1939 // if we know the value (argument) can't be null 1940 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1941 isKnownNonNullInCallee(I.getOperand(0))) { 1942 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1943 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1944 : ConstantInt::getFalse(I.getType()); 1945 return true; 1946 } 1947 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1948 } 1949 1950 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1951 // Try to handle a special case: we can fold computing the difference of two 1952 // constant-related pointers. 1953 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1954 Value *LHSBase, *RHSBase; 1955 APInt LHSOffset, RHSOffset; 1956 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1957 if (LHSBase) { 1958 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1959 if (RHSBase && LHSBase == RHSBase) { 1960 // We have common bases, fold the subtract to a constant based on the 1961 // offsets. 1962 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1963 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1964 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1965 SimplifiedValues[&I] = C; 1966 ++NumConstantPtrDiffs; 1967 return true; 1968 } 1969 } 1970 } 1971 1972 // Otherwise, fall back to the generic logic for simplifying and handling 1973 // instructions. 1974 return Base::visitSub(I); 1975 } 1976 1977 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1978 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1979 Constant *CLHS = dyn_cast<Constant>(LHS); 1980 if (!CLHS) 1981 CLHS = SimplifiedValues.lookup(LHS); 1982 Constant *CRHS = dyn_cast<Constant>(RHS); 1983 if (!CRHS) 1984 CRHS = SimplifiedValues.lookup(RHS); 1985 1986 Value *SimpleV = nullptr; 1987 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1988 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1989 FI->getFastMathFlags(), DL); 1990 else 1991 SimpleV = 1992 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1993 1994 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1995 SimplifiedValues[&I] = C; 1996 1997 if (SimpleV) 1998 return true; 1999 2000 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 2001 disableSROA(LHS); 2002 disableSROA(RHS); 2003 2004 // If the instruction is floating point, and the target says this operation 2005 // is expensive, this may eventually become a library call. Treat the cost 2006 // as such. Unless it's fneg which can be implemented with an xor. 2007 using namespace llvm::PatternMatch; 2008 if (I.getType()->isFloatingPointTy() && 2009 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 2010 !match(&I, m_FNeg(m_Value()))) 2011 onCallPenalty(); 2012 2013 return false; 2014 } 2015 2016 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 2017 Value *Op = I.getOperand(0); 2018 Constant *COp = dyn_cast<Constant>(Op); 2019 if (!COp) 2020 COp = SimplifiedValues.lookup(Op); 2021 2022 Value *SimpleV = SimplifyFNegInst( 2023 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 2024 2025 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2026 SimplifiedValues[&I] = C; 2027 2028 if (SimpleV) 2029 return true; 2030 2031 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 2032 disableSROA(Op); 2033 2034 return false; 2035 } 2036 2037 bool CallAnalyzer::visitLoad(LoadInst &I) { 2038 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2039 return true; 2040 2041 // If the data is already loaded from this address and hasn't been clobbered 2042 // by any stores or calls, this load is likely to be redundant and can be 2043 // eliminated. 2044 if (EnableLoadElimination && 2045 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2046 onLoadEliminationOpportunity(); 2047 return true; 2048 } 2049 2050 return false; 2051 } 2052 2053 bool CallAnalyzer::visitStore(StoreInst &I) { 2054 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2055 return true; 2056 2057 // The store can potentially clobber loads and prevent repeated loads from 2058 // being eliminated. 2059 // FIXME: 2060 // 1. We can probably keep an initial set of eliminatable loads substracted 2061 // from the cost even when we finally see a store. We just need to disable 2062 // *further* accumulation of elimination savings. 2063 // 2. We should probably at some point thread MemorySSA for the callee into 2064 // this and then use that to actually compute *really* precise savings. 2065 disableLoadElimination(); 2066 return false; 2067 } 2068 2069 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2070 // Constant folding for extract value is trivial. 2071 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2072 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 2073 })) 2074 return true; 2075 2076 // SROA can't look through these, but they may be free. 2077 return Base::visitExtractValue(I); 2078 } 2079 2080 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2081 // Constant folding for insert value is trivial. 2082 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2083 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 2084 /*InsertedValueOperand*/ COps[1], 2085 I.getIndices()); 2086 })) 2087 return true; 2088 2089 // SROA can't look through these, but they may be free. 2090 return Base::visitInsertValue(I); 2091 } 2092 2093 /// Try to simplify a call site. 2094 /// 2095 /// Takes a concrete function and callsite and tries to actually simplify it by 2096 /// analyzing the arguments and call itself with instsimplify. Returns true if 2097 /// it has simplified the callsite to some other entity (a constant), making it 2098 /// free. 2099 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2100 // FIXME: Using the instsimplify logic directly for this is inefficient 2101 // because we have to continually rebuild the argument list even when no 2102 // simplifications can be performed. Until that is fixed with remapping 2103 // inside of instsimplify, directly constant fold calls here. 2104 if (!canConstantFoldCallTo(&Call, F)) 2105 return false; 2106 2107 // Try to re-map the arguments to constants. 2108 SmallVector<Constant *, 4> ConstantArgs; 2109 ConstantArgs.reserve(Call.arg_size()); 2110 for (Value *I : Call.args()) { 2111 Constant *C = dyn_cast<Constant>(I); 2112 if (!C) 2113 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2114 if (!C) 2115 return false; // This argument doesn't map to a constant. 2116 2117 ConstantArgs.push_back(C); 2118 } 2119 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2120 SimplifiedValues[&Call] = C; 2121 return true; 2122 } 2123 2124 return false; 2125 } 2126 2127 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2128 if (!onCallBaseVisitStart(Call)) 2129 return true; 2130 2131 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2132 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2133 // This aborts the entire analysis. 2134 ExposesReturnsTwice = true; 2135 return false; 2136 } 2137 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2138 ContainsNoDuplicateCall = true; 2139 2140 Value *Callee = Call.getCalledOperand(); 2141 Function *F = dyn_cast_or_null<Function>(Callee); 2142 bool IsIndirectCall = !F; 2143 if (IsIndirectCall) { 2144 // Check if this happens to be an indirect function call to a known function 2145 // in this inline context. If not, we've done all we can. 2146 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2147 if (!F) { 2148 onCallArgumentSetup(Call); 2149 2150 if (!Call.onlyReadsMemory()) 2151 disableLoadElimination(); 2152 return Base::visitCallBase(Call); 2153 } 2154 } 2155 2156 assert(F && "Expected a call to a known function"); 2157 2158 // When we have a concrete function, first try to simplify it directly. 2159 if (simplifyCallSite(F, Call)) 2160 return true; 2161 2162 // Next check if it is an intrinsic we know about. 2163 // FIXME: Lift this into part of the InstVisitor. 2164 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2165 switch (II->getIntrinsicID()) { 2166 default: 2167 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2168 disableLoadElimination(); 2169 return Base::visitCallBase(Call); 2170 2171 case Intrinsic::load_relative: 2172 onLoadRelativeIntrinsic(); 2173 return false; 2174 2175 case Intrinsic::memset: 2176 case Intrinsic::memcpy: 2177 case Intrinsic::memmove: 2178 disableLoadElimination(); 2179 // SROA can usually chew through these intrinsics, but they aren't free. 2180 return false; 2181 case Intrinsic::icall_branch_funnel: 2182 case Intrinsic::localescape: 2183 HasUninlineableIntrinsic = true; 2184 return false; 2185 case Intrinsic::vastart: 2186 InitsVargArgs = true; 2187 return false; 2188 case Intrinsic::launder_invariant_group: 2189 case Intrinsic::strip_invariant_group: 2190 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2191 SROAArgValues[II] = SROAArg; 2192 return true; 2193 case Intrinsic::is_constant: 2194 return simplifyIntrinsicCallIsConstant(Call); 2195 } 2196 } 2197 2198 if (F == Call.getFunction()) { 2199 // This flag will fully abort the analysis, so don't bother with anything 2200 // else. 2201 IsRecursiveCall = true; 2202 if (!AllowRecursiveCall) 2203 return false; 2204 } 2205 2206 if (TTI.isLoweredToCall(F)) { 2207 onLoweredCall(F, Call, IsIndirectCall); 2208 } 2209 2210 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2211 disableLoadElimination(); 2212 return Base::visitCallBase(Call); 2213 } 2214 2215 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2216 // At least one return instruction will be free after inlining. 2217 bool Free = !HasReturn; 2218 HasReturn = true; 2219 return Free; 2220 } 2221 2222 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2223 // We model unconditional branches as essentially free -- they really 2224 // shouldn't exist at all, but handling them makes the behavior of the 2225 // inliner more regular and predictable. Interestingly, conditional branches 2226 // which will fold away are also free. 2227 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2228 isa_and_nonnull<ConstantInt>( 2229 SimplifiedValues.lookup(BI.getCondition())); 2230 } 2231 2232 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2233 bool CheckSROA = SI.getType()->isPointerTy(); 2234 Value *TrueVal = SI.getTrueValue(); 2235 Value *FalseVal = SI.getFalseValue(); 2236 2237 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2238 if (!TrueC) 2239 TrueC = SimplifiedValues.lookup(TrueVal); 2240 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2241 if (!FalseC) 2242 FalseC = SimplifiedValues.lookup(FalseVal); 2243 Constant *CondC = 2244 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2245 2246 if (!CondC) { 2247 // Select C, X, X => X 2248 if (TrueC == FalseC && TrueC) { 2249 SimplifiedValues[&SI] = TrueC; 2250 return true; 2251 } 2252 2253 if (!CheckSROA) 2254 return Base::visitSelectInst(SI); 2255 2256 std::pair<Value *, APInt> TrueBaseAndOffset = 2257 ConstantOffsetPtrs.lookup(TrueVal); 2258 std::pair<Value *, APInt> FalseBaseAndOffset = 2259 ConstantOffsetPtrs.lookup(FalseVal); 2260 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2261 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2262 2263 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2264 SROAArgValues[&SI] = SROAArg; 2265 return true; 2266 } 2267 2268 return Base::visitSelectInst(SI); 2269 } 2270 2271 // Select condition is a constant. 2272 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2273 : (CondC->isNullValue()) ? FalseVal 2274 : nullptr; 2275 if (!SelectedV) { 2276 // Condition is a vector constant that is not all 1s or all 0s. If all 2277 // operands are constants, ConstantExpr::getSelect() can handle the cases 2278 // such as select vectors. 2279 if (TrueC && FalseC) { 2280 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 2281 SimplifiedValues[&SI] = C; 2282 return true; 2283 } 2284 } 2285 return Base::visitSelectInst(SI); 2286 } 2287 2288 // Condition is either all 1s or all 0s. SI can be simplified. 2289 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2290 SimplifiedValues[&SI] = SelectedC; 2291 return true; 2292 } 2293 2294 if (!CheckSROA) 2295 return true; 2296 2297 std::pair<Value *, APInt> BaseAndOffset = 2298 ConstantOffsetPtrs.lookup(SelectedV); 2299 if (BaseAndOffset.first) { 2300 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2301 2302 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2303 SROAArgValues[&SI] = SROAArg; 2304 } 2305 2306 return true; 2307 } 2308 2309 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2310 // We model unconditional switches as free, see the comments on handling 2311 // branches. 2312 if (isa<ConstantInt>(SI.getCondition())) 2313 return true; 2314 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2315 if (isa<ConstantInt>(V)) 2316 return true; 2317 2318 // Assume the most general case where the switch is lowered into 2319 // either a jump table, bit test, or a balanced binary tree consisting of 2320 // case clusters without merging adjacent clusters with the same 2321 // destination. We do not consider the switches that are lowered with a mix 2322 // of jump table/bit test/binary search tree. The cost of the switch is 2323 // proportional to the size of the tree or the size of jump table range. 2324 // 2325 // NB: We convert large switches which are just used to initialize large phi 2326 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2327 // inlining those. It will prevent inlining in cases where the optimization 2328 // does not (yet) fire. 2329 2330 unsigned JumpTableSize = 0; 2331 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2332 unsigned NumCaseCluster = 2333 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2334 2335 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2336 return false; 2337 } 2338 2339 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2340 // We never want to inline functions that contain an indirectbr. This is 2341 // incorrect because all the blockaddress's (in static global initializers 2342 // for example) would be referring to the original function, and this 2343 // indirect jump would jump from the inlined copy of the function into the 2344 // original function which is extremely undefined behavior. 2345 // FIXME: This logic isn't really right; we can safely inline functions with 2346 // indirectbr's as long as no other function or global references the 2347 // blockaddress of a block within the current function. 2348 HasIndirectBr = true; 2349 return false; 2350 } 2351 2352 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2353 // FIXME: It's not clear that a single instruction is an accurate model for 2354 // the inline cost of a resume instruction. 2355 return false; 2356 } 2357 2358 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2359 // FIXME: It's not clear that a single instruction is an accurate model for 2360 // the inline cost of a cleanupret instruction. 2361 return false; 2362 } 2363 2364 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2365 // FIXME: It's not clear that a single instruction is an accurate model for 2366 // the inline cost of a catchret instruction. 2367 return false; 2368 } 2369 2370 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2371 // FIXME: It might be reasonably to discount the cost of instructions leading 2372 // to unreachable as they have the lowest possible impact on both runtime and 2373 // code size. 2374 return true; // No actual code is needed for unreachable. 2375 } 2376 2377 bool CallAnalyzer::visitInstruction(Instruction &I) { 2378 // Some instructions are free. All of the free intrinsics can also be 2379 // handled by SROA, etc. 2380 if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2381 TargetTransformInfo::TCC_Free) 2382 return true; 2383 2384 // We found something we don't understand or can't handle. Mark any SROA-able 2385 // values in the operand list as no longer viable. 2386 for (const Use &Op : I.operands()) 2387 disableSROA(Op); 2388 2389 return false; 2390 } 2391 2392 /// Analyze a basic block for its contribution to the inline cost. 2393 /// 2394 /// This method walks the analyzer over every instruction in the given basic 2395 /// block and accounts for their cost during inlining at this callsite. It 2396 /// aborts early if the threshold has been exceeded or an impossible to inline 2397 /// construct has been detected. It returns false if inlining is no longer 2398 /// viable, and true if inlining remains viable. 2399 InlineResult 2400 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2401 SmallPtrSetImpl<const Value *> &EphValues) { 2402 for (Instruction &I : *BB) { 2403 // FIXME: Currently, the number of instructions in a function regardless of 2404 // our ability to simplify them during inline to constants or dead code, 2405 // are actually used by the vector bonus heuristic. As long as that's true, 2406 // we have to special case debug intrinsics here to prevent differences in 2407 // inlining due to debug symbols. Eventually, the number of unsimplified 2408 // instructions shouldn't factor into the cost computation, but until then, 2409 // hack around it here. 2410 // Similarly, skip pseudo-probes. 2411 if (I.isDebugOrPseudoInst()) 2412 continue; 2413 2414 // Skip ephemeral values. 2415 if (EphValues.count(&I)) 2416 continue; 2417 2418 ++NumInstructions; 2419 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2420 ++NumVectorInstructions; 2421 2422 // If the instruction simplified to a constant, there is no cost to this 2423 // instruction. Visit the instructions using our InstVisitor to account for 2424 // all of the per-instruction logic. The visit tree returns true if we 2425 // consumed the instruction in any way, and false if the instruction's base 2426 // cost should count against inlining. 2427 onInstructionAnalysisStart(&I); 2428 2429 if (Base::visit(&I)) 2430 ++NumInstructionsSimplified; 2431 else 2432 onMissedSimplification(); 2433 2434 onInstructionAnalysisFinish(&I); 2435 using namespace ore; 2436 // If the visit this instruction detected an uninlinable pattern, abort. 2437 InlineResult IR = InlineResult::success(); 2438 if (IsRecursiveCall && !AllowRecursiveCall) 2439 IR = InlineResult::failure("recursive"); 2440 else if (ExposesReturnsTwice) 2441 IR = InlineResult::failure("exposes returns twice"); 2442 else if (HasDynamicAlloca) 2443 IR = InlineResult::failure("dynamic alloca"); 2444 else if (HasIndirectBr) 2445 IR = InlineResult::failure("indirect branch"); 2446 else if (HasUninlineableIntrinsic) 2447 IR = InlineResult::failure("uninlinable intrinsic"); 2448 else if (InitsVargArgs) 2449 IR = InlineResult::failure("varargs"); 2450 if (!IR.isSuccess()) { 2451 if (ORE) 2452 ORE->emit([&]() { 2453 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2454 &CandidateCall) 2455 << NV("Callee", &F) << " has uninlinable pattern (" 2456 << NV("InlineResult", IR.getFailureReason()) 2457 << ") and cost is not fully computed"; 2458 }); 2459 return IR; 2460 } 2461 2462 // If the caller is a recursive function then we don't want to inline 2463 // functions which allocate a lot of stack space because it would increase 2464 // the caller stack usage dramatically. 2465 if (IsCallerRecursive && 2466 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 2467 auto IR = 2468 InlineResult::failure("recursive and allocates too much stack space"); 2469 if (ORE) 2470 ORE->emit([&]() { 2471 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2472 &CandidateCall) 2473 << NV("Callee", &F) << " is " 2474 << NV("InlineResult", IR.getFailureReason()) 2475 << ". Cost is not fully computed"; 2476 }); 2477 return IR; 2478 } 2479 2480 if (shouldStop()) 2481 return InlineResult::failure( 2482 "Call site analysis is not favorable to inlining."); 2483 } 2484 2485 return InlineResult::success(); 2486 } 2487 2488 /// Compute the base pointer and cumulative constant offsets for V. 2489 /// 2490 /// This strips all constant offsets off of V, leaving it the base pointer, and 2491 /// accumulates the total constant offset applied in the returned constant. It 2492 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2493 /// no constant offsets applied. 2494 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2495 if (!V->getType()->isPointerTy()) 2496 return nullptr; 2497 2498 unsigned AS = V->getType()->getPointerAddressSpace(); 2499 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2500 APInt Offset = APInt::getZero(IntPtrWidth); 2501 2502 // Even though we don't look through PHI nodes, we could be called on an 2503 // instruction in an unreachable block, which may be on a cycle. 2504 SmallPtrSet<Value *, 4> Visited; 2505 Visited.insert(V); 2506 do { 2507 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2508 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2509 return nullptr; 2510 V = GEP->getPointerOperand(); 2511 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2512 V = cast<Operator>(V)->getOperand(0); 2513 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2514 if (GA->isInterposable()) 2515 break; 2516 V = GA->getAliasee(); 2517 } else { 2518 break; 2519 } 2520 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2521 } while (Visited.insert(V).second); 2522 2523 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2524 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2525 } 2526 2527 /// Find dead blocks due to deleted CFG edges during inlining. 2528 /// 2529 /// If we know the successor of the current block, \p CurrBB, has to be \p 2530 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2531 /// no live incoming CFG edges. If one block is found to be dead, we can 2532 /// continue growing the dead block list by checking the successors of the dead 2533 /// blocks to see if all their incoming edges are dead or not. 2534 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2535 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2536 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2537 // known successor which is not the one under exam. 2538 return (DeadBlocks.count(Pred) || 2539 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2540 }; 2541 2542 auto IsNewlyDead = [&](BasicBlock *BB) { 2543 // If all the edges to a block are dead, the block is also dead. 2544 return (!DeadBlocks.count(BB) && 2545 llvm::all_of(predecessors(BB), 2546 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2547 }; 2548 2549 for (BasicBlock *Succ : successors(CurrBB)) { 2550 if (Succ == NextBB || !IsNewlyDead(Succ)) 2551 continue; 2552 SmallVector<BasicBlock *, 4> NewDead; 2553 NewDead.push_back(Succ); 2554 while (!NewDead.empty()) { 2555 BasicBlock *Dead = NewDead.pop_back_val(); 2556 if (DeadBlocks.insert(Dead)) 2557 // Continue growing the dead block lists. 2558 for (BasicBlock *S : successors(Dead)) 2559 if (IsNewlyDead(S)) 2560 NewDead.push_back(S); 2561 } 2562 } 2563 } 2564 2565 /// Analyze a call site for potential inlining. 2566 /// 2567 /// Returns true if inlining this call is viable, and false if it is not 2568 /// viable. It computes the cost and adjusts the threshold based on numerous 2569 /// factors and heuristics. If this method returns false but the computed cost 2570 /// is below the computed threshold, then inlining was forcibly disabled by 2571 /// some artifact of the routine. 2572 InlineResult CallAnalyzer::analyze() { 2573 ++NumCallsAnalyzed; 2574 2575 auto Result = onAnalysisStart(); 2576 if (!Result.isSuccess()) 2577 return Result; 2578 2579 if (F.empty()) 2580 return InlineResult::success(); 2581 2582 Function *Caller = CandidateCall.getFunction(); 2583 // Check if the caller function is recursive itself. 2584 for (User *U : Caller->users()) { 2585 CallBase *Call = dyn_cast<CallBase>(U); 2586 if (Call && Call->getFunction() == Caller) { 2587 IsCallerRecursive = true; 2588 break; 2589 } 2590 } 2591 2592 // Populate our simplified values by mapping from function arguments to call 2593 // arguments with known important simplifications. 2594 auto CAI = CandidateCall.arg_begin(); 2595 for (Argument &FAI : F.args()) { 2596 assert(CAI != CandidateCall.arg_end()); 2597 if (Constant *C = dyn_cast<Constant>(CAI)) 2598 SimplifiedValues[&FAI] = C; 2599 2600 Value *PtrArg = *CAI; 2601 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2602 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2603 2604 // We can SROA any pointer arguments derived from alloca instructions. 2605 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2606 SROAArgValues[&FAI] = SROAArg; 2607 onInitializeSROAArg(SROAArg); 2608 EnabledSROAAllocas.insert(SROAArg); 2609 } 2610 } 2611 ++CAI; 2612 } 2613 NumConstantArgs = SimplifiedValues.size(); 2614 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2615 NumAllocaArgs = SROAArgValues.size(); 2616 2617 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2618 // the ephemeral values multiple times (and they're completely determined by 2619 // the callee, so this is purely duplicate work). 2620 SmallPtrSet<const Value *, 32> EphValues; 2621 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2622 2623 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2624 // adding basic blocks of the callee which can be proven to be dead for this 2625 // particular call site in order to get more accurate cost estimates. This 2626 // requires a somewhat heavyweight iteration pattern: we need to walk the 2627 // basic blocks in a breadth-first order as we insert live successors. To 2628 // accomplish this, prioritizing for small iterations because we exit after 2629 // crossing our threshold, we use a small-size optimized SetVector. 2630 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2631 SmallPtrSet<BasicBlock *, 16>> 2632 BBSetVector; 2633 BBSetVector BBWorklist; 2634 BBWorklist.insert(&F.getEntryBlock()); 2635 2636 // Note that we *must not* cache the size, this loop grows the worklist. 2637 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2638 if (shouldStop()) 2639 break; 2640 2641 BasicBlock *BB = BBWorklist[Idx]; 2642 if (BB->empty()) 2643 continue; 2644 2645 onBlockStart(BB); 2646 2647 // Disallow inlining a blockaddress with uses other than strictly callbr. 2648 // A blockaddress only has defined behavior for an indirect branch in the 2649 // same function, and we do not currently support inlining indirect 2650 // branches. But, the inliner may not see an indirect branch that ends up 2651 // being dead code at a particular call site. If the blockaddress escapes 2652 // the function, e.g., via a global variable, inlining may lead to an 2653 // invalid cross-function reference. 2654 // FIXME: pr/39560: continue relaxing this overt restriction. 2655 if (BB->hasAddressTaken()) 2656 for (User *U : BlockAddress::get(&*BB)->users()) 2657 if (!isa<CallBrInst>(*U)) 2658 return InlineResult::failure("blockaddress used outside of callbr"); 2659 2660 // Analyze the cost of this block. If we blow through the threshold, this 2661 // returns false, and we can bail on out. 2662 InlineResult IR = analyzeBlock(BB, EphValues); 2663 if (!IR.isSuccess()) 2664 return IR; 2665 2666 Instruction *TI = BB->getTerminator(); 2667 2668 // Add in the live successors by first checking whether we have terminator 2669 // that may be simplified based on the values simplified by this call. 2670 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2671 if (BI->isConditional()) { 2672 Value *Cond = BI->getCondition(); 2673 if (ConstantInt *SimpleCond = 2674 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2675 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2676 BBWorklist.insert(NextBB); 2677 KnownSuccessors[BB] = NextBB; 2678 findDeadBlocks(BB, NextBB); 2679 continue; 2680 } 2681 } 2682 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2683 Value *Cond = SI->getCondition(); 2684 if (ConstantInt *SimpleCond = 2685 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2686 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2687 BBWorklist.insert(NextBB); 2688 KnownSuccessors[BB] = NextBB; 2689 findDeadBlocks(BB, NextBB); 2690 continue; 2691 } 2692 } 2693 2694 // If we're unable to select a particular successor, just count all of 2695 // them. 2696 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2697 ++TIdx) 2698 BBWorklist.insert(TI->getSuccessor(TIdx)); 2699 2700 onBlockAnalyzed(BB); 2701 } 2702 2703 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 2704 &F == CandidateCall.getCalledFunction(); 2705 // If this is a noduplicate call, we can still inline as long as 2706 // inlining this would cause the removal of the caller (so the instruction 2707 // is not actually duplicated, just moved). 2708 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2709 return InlineResult::failure("noduplicate"); 2710 2711 return finalizeAnalysis(); 2712 } 2713 2714 void InlineCostCallAnalyzer::print(raw_ostream &OS) { 2715 #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n" 2716 if (PrintInstructionComments) 2717 F.print(OS, &Writer); 2718 DEBUG_PRINT_STAT(NumConstantArgs); 2719 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2720 DEBUG_PRINT_STAT(NumAllocaArgs); 2721 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2722 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2723 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2724 DEBUG_PRINT_STAT(NumInstructions); 2725 DEBUG_PRINT_STAT(SROACostSavings); 2726 DEBUG_PRINT_STAT(SROACostSavingsLost); 2727 DEBUG_PRINT_STAT(LoadEliminationCost); 2728 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2729 DEBUG_PRINT_STAT(Cost); 2730 DEBUG_PRINT_STAT(Threshold); 2731 #undef DEBUG_PRINT_STAT 2732 } 2733 2734 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2735 /// Dump stats about this call's analysis. 2736 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); } 2737 #endif 2738 2739 /// Test that there are no attribute conflicts between Caller and Callee 2740 /// that prevent inlining. 2741 static bool functionsHaveCompatibleAttributes( 2742 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2743 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2744 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2745 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2746 // object, and always returns the same object (which is overwritten on each 2747 // GetTLI call). Therefore we copy the first result. 2748 auto CalleeTLI = GetTLI(*Callee); 2749 return TTI.areInlineCompatible(Caller, Callee) && 2750 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2751 InlineCallerSupersetNoBuiltin) && 2752 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2753 } 2754 2755 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2756 int Cost = 0; 2757 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2758 if (Call.isByValArgument(I)) { 2759 // We approximate the number of loads and stores needed by dividing the 2760 // size of the byval type by the target's pointer size. 2761 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2762 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2763 unsigned AS = PTy->getAddressSpace(); 2764 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2765 // Ceiling division. 2766 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2767 2768 // If it generates more than 8 stores it is likely to be expanded as an 2769 // inline memcpy so we take that as an upper bound. Otherwise we assume 2770 // one load and one store per word copied. 2771 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2772 // here instead of a magic number of 8, but it's not available via 2773 // DataLayout. 2774 NumStores = std::min(NumStores, 8U); 2775 2776 Cost += 2 * NumStores * InlineConstants::InstrCost; 2777 } else { 2778 // For non-byval arguments subtract off one instruction per call 2779 // argument. 2780 Cost += InlineConstants::InstrCost; 2781 } 2782 } 2783 // The call instruction also disappears after inlining. 2784 Cost += InlineConstants::InstrCost + CallPenalty; 2785 return Cost; 2786 } 2787 2788 InlineCost llvm::getInlineCost( 2789 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2790 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2791 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2792 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2793 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2794 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2795 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2796 } 2797 2798 Optional<int> llvm::getInliningCostEstimate( 2799 CallBase &Call, TargetTransformInfo &CalleeTTI, 2800 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2801 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2802 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2803 const InlineParams Params = {/* DefaultThreshold*/ 0, 2804 /*HintThreshold*/ {}, 2805 /*ColdThreshold*/ {}, 2806 /*OptSizeThreshold*/ {}, 2807 /*OptMinSizeThreshold*/ {}, 2808 /*HotCallSiteThreshold*/ {}, 2809 /*LocallyHotCallSiteThreshold*/ {}, 2810 /*ColdCallSiteThreshold*/ {}, 2811 /*ComputeFullInlineCost*/ true, 2812 /*EnableDeferral*/ true}; 2813 2814 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2815 GetAssumptionCache, GetBFI, PSI, ORE, true, 2816 /*IgnoreThreshold*/ true); 2817 auto R = CA.analyze(); 2818 if (!R.isSuccess()) 2819 return None; 2820 return CA.getCost(); 2821 } 2822 2823 Optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2824 CallBase &Call, TargetTransformInfo &CalleeTTI, 2825 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2826 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2827 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2828 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2829 ORE, *Call.getCalledFunction(), Call); 2830 auto R = CFA.analyze(); 2831 if (!R.isSuccess()) 2832 return None; 2833 return CFA.features(); 2834 } 2835 2836 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2837 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2838 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2839 2840 // Cannot inline indirect calls. 2841 if (!Callee) 2842 return InlineResult::failure("indirect call"); 2843 2844 // When callee coroutine function is inlined into caller coroutine function 2845 // before coro-split pass, 2846 // coro-early pass can not handle this quiet well. 2847 // So we won't inline the coroutine function if it have not been unsplited 2848 if (Callee->isPresplitCoroutine()) 2849 return InlineResult::failure("unsplited coroutine call"); 2850 2851 // Never inline calls with byval arguments that does not have the alloca 2852 // address space. Since byval arguments can be replaced with a copy to an 2853 // alloca, the inlined code would need to be adjusted to handle that the 2854 // argument is in the alloca address space (so it is a little bit complicated 2855 // to solve). 2856 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2857 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2858 if (Call.isByValArgument(I)) { 2859 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2860 if (PTy->getAddressSpace() != AllocaAS) 2861 return InlineResult::failure("byval arguments without alloca" 2862 " address space"); 2863 } 2864 2865 // Calls to functions with always-inline attributes should be inlined 2866 // whenever possible. 2867 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2868 auto IsViable = isInlineViable(*Callee); 2869 if (IsViable.isSuccess()) 2870 return InlineResult::success(); 2871 return InlineResult::failure(IsViable.getFailureReason()); 2872 } 2873 2874 // Never inline functions with conflicting attributes (unless callee has 2875 // always-inline attribute). 2876 Function *Caller = Call.getCaller(); 2877 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2878 return InlineResult::failure("conflicting attributes"); 2879 2880 // Don't inline this call if the caller has the optnone attribute. 2881 if (Caller->hasOptNone()) 2882 return InlineResult::failure("optnone attribute"); 2883 2884 // Don't inline a function that treats null pointer as valid into a caller 2885 // that does not have this attribute. 2886 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2887 return InlineResult::failure("nullptr definitions incompatible"); 2888 2889 // Don't inline functions which can be interposed at link-time. 2890 if (Callee->isInterposable()) 2891 return InlineResult::failure("interposable"); 2892 2893 // Don't inline functions marked noinline. 2894 if (Callee->hasFnAttribute(Attribute::NoInline)) 2895 return InlineResult::failure("noinline function attribute"); 2896 2897 // Don't inline call sites marked noinline. 2898 if (Call.isNoInline()) 2899 return InlineResult::failure("noinline call site attribute"); 2900 2901 // Don't inline functions if one does not have any stack protector attribute 2902 // but the other does. 2903 if (Caller->hasStackProtectorFnAttr() && !Callee->hasStackProtectorFnAttr()) 2904 return InlineResult::failure( 2905 "stack protected caller but callee requested no stack protector"); 2906 if (Callee->hasStackProtectorFnAttr() && !Caller->hasStackProtectorFnAttr()) 2907 return InlineResult::failure( 2908 "stack protected callee but caller requested no stack protector"); 2909 2910 return None; 2911 } 2912 2913 InlineCost llvm::getInlineCost( 2914 CallBase &Call, Function *Callee, const InlineParams &Params, 2915 TargetTransformInfo &CalleeTTI, 2916 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2917 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2918 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2919 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2920 2921 auto UserDecision = 2922 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2923 2924 if (UserDecision.hasValue()) { 2925 if (UserDecision->isSuccess()) 2926 return llvm::InlineCost::getAlways("always inline attribute"); 2927 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2928 } 2929 2930 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2931 << "... (caller:" << Call.getCaller()->getName() 2932 << ")\n"); 2933 2934 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2935 GetAssumptionCache, GetBFI, PSI, ORE); 2936 InlineResult ShouldInline = CA.analyze(); 2937 2938 LLVM_DEBUG(CA.dump()); 2939 2940 // Always make cost benefit based decision explicit. 2941 // We use always/never here since threshold is not meaningful, 2942 // as it's not what drives cost-benefit analysis. 2943 if (CA.wasDecidedByCostBenefit()) { 2944 if (ShouldInline.isSuccess()) 2945 return InlineCost::getAlways("benefit over cost", 2946 CA.getCostBenefitPair()); 2947 else 2948 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 2949 } 2950 2951 if (CA.wasDecidedByCostThreshold()) 2952 return InlineCost::get(CA.getCost(), CA.getThreshold()); 2953 2954 // No details on how the decision was made, simply return always or never. 2955 return ShouldInline.isSuccess() 2956 ? InlineCost::getAlways("empty function") 2957 : InlineCost::getNever(ShouldInline.getFailureReason()); 2958 } 2959 2960 InlineResult llvm::isInlineViable(Function &F) { 2961 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2962 for (BasicBlock &BB : F) { 2963 // Disallow inlining of functions which contain indirect branches. 2964 if (isa<IndirectBrInst>(BB.getTerminator())) 2965 return InlineResult::failure("contains indirect branches"); 2966 2967 // Disallow inlining of blockaddresses which are used by non-callbr 2968 // instructions. 2969 if (BB.hasAddressTaken()) 2970 for (User *U : BlockAddress::get(&BB)->users()) 2971 if (!isa<CallBrInst>(*U)) 2972 return InlineResult::failure("blockaddress used outside of callbr"); 2973 2974 for (auto &II : BB) { 2975 CallBase *Call = dyn_cast<CallBase>(&II); 2976 if (!Call) 2977 continue; 2978 2979 // Disallow recursive calls. 2980 Function *Callee = Call->getCalledFunction(); 2981 if (&F == Callee) 2982 return InlineResult::failure("recursive call"); 2983 2984 // Disallow calls which expose returns-twice to a function not previously 2985 // attributed as such. 2986 if (!ReturnsTwice && isa<CallInst>(Call) && 2987 cast<CallInst>(Call)->canReturnTwice()) 2988 return InlineResult::failure("exposes returns-twice attribute"); 2989 2990 if (Callee) 2991 switch (Callee->getIntrinsicID()) { 2992 default: 2993 break; 2994 case llvm::Intrinsic::icall_branch_funnel: 2995 // Disallow inlining of @llvm.icall.branch.funnel because current 2996 // backend can't separate call targets from call arguments. 2997 return InlineResult::failure( 2998 "disallowed inlining of @llvm.icall.branch.funnel"); 2999 case llvm::Intrinsic::localescape: 3000 // Disallow inlining functions that call @llvm.localescape. Doing this 3001 // correctly would require major changes to the inliner. 3002 return InlineResult::failure( 3003 "disallowed inlining of @llvm.localescape"); 3004 case llvm::Intrinsic::vastart: 3005 // Disallow inlining of functions that initialize VarArgs with 3006 // va_start. 3007 return InlineResult::failure( 3008 "contains VarArgs initialized with va_start"); 3009 } 3010 } 3011 } 3012 3013 return InlineResult::success(); 3014 } 3015 3016 // APIs to create InlineParams based on command line flags and/or other 3017 // parameters. 3018 3019 InlineParams llvm::getInlineParams(int Threshold) { 3020 InlineParams Params; 3021 3022 // This field is the threshold to use for a callee by default. This is 3023 // derived from one or more of: 3024 // * optimization or size-optimization levels, 3025 // * a value passed to createFunctionInliningPass function, or 3026 // * the -inline-threshold flag. 3027 // If the -inline-threshold flag is explicitly specified, that is used 3028 // irrespective of anything else. 3029 if (InlineThreshold.getNumOccurrences() > 0) 3030 Params.DefaultThreshold = InlineThreshold; 3031 else 3032 Params.DefaultThreshold = Threshold; 3033 3034 // Set the HintThreshold knob from the -inlinehint-threshold. 3035 Params.HintThreshold = HintThreshold; 3036 3037 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3038 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3039 3040 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3041 // populate LocallyHotCallSiteThreshold. Later, we populate 3042 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3043 // we know that optimization level is O3 (in the getInlineParams variant that 3044 // takes the opt and size levels). 3045 // FIXME: Remove this check (and make the assignment unconditional) after 3046 // addressing size regression issues at O2. 3047 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3048 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3049 3050 // Set the ColdCallSiteThreshold knob from the 3051 // -inline-cold-callsite-threshold. 3052 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3053 3054 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3055 // -inlinehint-threshold commandline option is not explicitly given. If that 3056 // option is present, then its value applies even for callees with size and 3057 // minsize attributes. 3058 // If the -inline-threshold is not specified, set the ColdThreshold from the 3059 // -inlinecold-threshold even if it is not explicitly passed. If 3060 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3061 // explicitly specified to set the ColdThreshold knob 3062 if (InlineThreshold.getNumOccurrences() == 0) { 3063 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3064 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3065 Params.ColdThreshold = ColdThreshold; 3066 } else if (ColdThreshold.getNumOccurrences() > 0) { 3067 Params.ColdThreshold = ColdThreshold; 3068 } 3069 return Params; 3070 } 3071 3072 InlineParams llvm::getInlineParams() { 3073 return getInlineParams(DefaultThreshold); 3074 } 3075 3076 // Compute the default threshold for inlining based on the opt level and the 3077 // size opt level. 3078 static int computeThresholdFromOptLevels(unsigned OptLevel, 3079 unsigned SizeOptLevel) { 3080 if (OptLevel > 2) 3081 return InlineConstants::OptAggressiveThreshold; 3082 if (SizeOptLevel == 1) // -Os 3083 return InlineConstants::OptSizeThreshold; 3084 if (SizeOptLevel == 2) // -Oz 3085 return InlineConstants::OptMinSizeThreshold; 3086 return DefaultThreshold; 3087 } 3088 3089 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3090 auto Params = 3091 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3092 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3093 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3094 // when it is specified explicitly. 3095 if (OptLevel > 2) 3096 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3097 return Params; 3098 } 3099 3100 PreservedAnalyses 3101 InlineCostAnnotationPrinterPass::run(Function &F, 3102 FunctionAnalysisManager &FAM) { 3103 PrintInstructionComments = true; 3104 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3105 [&](Function &F) -> AssumptionCache & { 3106 return FAM.getResult<AssumptionAnalysis>(F); 3107 }; 3108 Module *M = F.getParent(); 3109 ProfileSummaryInfo PSI(*M); 3110 DataLayout DL(M); 3111 TargetTransformInfo TTI(DL); 3112 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3113 // In the current implementation, the type of InlineParams doesn't matter as 3114 // the pass serves only for verification of inliner's decisions. 3115 // We can add a flag which determines InlineParams for this run. Right now, 3116 // the default InlineParams are used. 3117 const InlineParams Params = llvm::getInlineParams(); 3118 for (BasicBlock &BB : F) { 3119 for (Instruction &I : BB) { 3120 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3121 Function *CalledFunction = CI->getCalledFunction(); 3122 if (!CalledFunction || CalledFunction->isDeclaration()) 3123 continue; 3124 OptimizationRemarkEmitter ORE(CalledFunction); 3125 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3126 GetAssumptionCache, nullptr, &PSI, &ORE); 3127 ICCA.analyze(); 3128 OS << " Analyzing call of " << CalledFunction->getName() 3129 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3130 ICCA.print(OS); 3131 OS << "\n"; 3132 } 3133 } 3134 } 3135 return PreservedAnalyses::all(); 3136 } 3137