1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 75 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 76 cl::desc("Enable the cost-benefit analysis for the inliner")); 77 78 static cl::opt<int> InlineSavingsMultiplier( 79 "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 80 cl::desc("Multiplier to multiply cycle savings by during inlining")); 81 82 static cl::opt<int> 83 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 84 cl::ZeroOrMore, 85 cl::desc("The maximum size of a callee that get's " 86 "inlined without sufficient cycle savings")); 87 88 // We introduce this threshold to help performance of instrumentation based 89 // PGO before we actually hook up inliner with analysis passes such as BPI and 90 // BFI. 91 static cl::opt<int> ColdThreshold( 92 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 93 cl::desc("Threshold for inlining functions with cold attribute")); 94 95 static cl::opt<int> 96 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 97 cl::ZeroOrMore, 98 cl::desc("Threshold for hot callsites ")); 99 100 static cl::opt<int> LocallyHotCallSiteThreshold( 101 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 102 cl::desc("Threshold for locally hot callsites ")); 103 104 static cl::opt<int> ColdCallSiteRelFreq( 105 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 106 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a callsite to be cold in the absence of " 108 "profile information.")); 109 110 static cl::opt<int> HotCallSiteRelFreq( 111 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 112 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 113 "entry frequency, for a callsite to be hot in the absence of " 114 "profile information.")); 115 116 static cl::opt<int> CallPenalty( 117 "inline-call-penalty", cl::Hidden, cl::init(25), 118 cl::desc("Call penalty that is applied per callsite when inlining")); 119 120 static cl::opt<bool> OptComputeFullInlineCost( 121 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 122 cl::desc("Compute the full inline cost of a call site even when the cost " 123 "exceeds the threshold.")); 124 125 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 126 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 127 cl::ZeroOrMore, 128 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 129 "attributes.")); 130 131 static cl::opt<bool> DisableGEPConstOperand( 132 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 133 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 134 135 namespace { 136 class InlineCostCallAnalyzer; 137 138 // This struct is used to store information about inline cost of a 139 // particular instruction 140 struct InstructionCostDetail { 141 int CostBefore = 0; 142 int CostAfter = 0; 143 int ThresholdBefore = 0; 144 int ThresholdAfter = 0; 145 146 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 147 148 int getCostDelta() const { return CostAfter - CostBefore; } 149 150 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 151 }; 152 153 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 154 private: 155 InlineCostCallAnalyzer *const ICCA; 156 157 public: 158 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 159 virtual void emitInstructionAnnot(const Instruction *I, 160 formatted_raw_ostream &OS) override; 161 }; 162 163 /// Carry out call site analysis, in order to evaluate inlinability. 164 /// NOTE: the type is currently used as implementation detail of functions such 165 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 166 /// expectation is that they come from the outer scope, from the wrapper 167 /// functions. If we want to support constructing CallAnalyzer objects where 168 /// lambdas are provided inline at construction, or where the object needs to 169 /// otherwise survive past the scope of the provided functions, we need to 170 /// revisit the argument types. 171 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 172 typedef InstVisitor<CallAnalyzer, bool> Base; 173 friend class InstVisitor<CallAnalyzer, bool>; 174 175 protected: 176 virtual ~CallAnalyzer() {} 177 /// The TargetTransformInfo available for this compilation. 178 const TargetTransformInfo &TTI; 179 180 /// Getter for the cache of @llvm.assume intrinsics. 181 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 182 183 /// Getter for BlockFrequencyInfo 184 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 185 186 /// Profile summary information. 187 ProfileSummaryInfo *PSI; 188 189 /// The called function. 190 Function &F; 191 192 // Cache the DataLayout since we use it a lot. 193 const DataLayout &DL; 194 195 /// The OptimizationRemarkEmitter available for this compilation. 196 OptimizationRemarkEmitter *ORE; 197 198 /// The candidate callsite being analyzed. Please do not use this to do 199 /// analysis in the caller function; we want the inline cost query to be 200 /// easily cacheable. Instead, use the cover function paramHasAttr. 201 CallBase &CandidateCall; 202 203 /// Extension points for handling callsite features. 204 // Called before a basic block was analyzed. 205 virtual void onBlockStart(const BasicBlock *BB) {} 206 207 /// Called after a basic block was analyzed. 208 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 209 210 /// Called before an instruction was analyzed 211 virtual void onInstructionAnalysisStart(const Instruction *I) {} 212 213 /// Called after an instruction was analyzed 214 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 215 216 /// Called at the end of the analysis of the callsite. Return the outcome of 217 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 218 /// the reason it can't. 219 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 220 /// Called when we're about to start processing a basic block, and every time 221 /// we are done processing an instruction. Return true if there is no point in 222 /// continuing the analysis (e.g. we've determined already the call site is 223 /// too expensive to inline) 224 virtual bool shouldStop() { return false; } 225 226 /// Called before the analysis of the callee body starts (with callsite 227 /// contexts propagated). It checks callsite-specific information. Return a 228 /// reason analysis can't continue if that's the case, or 'true' if it may 229 /// continue. 230 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 231 /// Called if the analysis engine decides SROA cannot be done for the given 232 /// alloca. 233 virtual void onDisableSROA(AllocaInst *Arg) {} 234 235 /// Called the analysis engine determines load elimination won't happen. 236 virtual void onDisableLoadElimination() {} 237 238 /// Called to account for a call. 239 virtual void onCallPenalty() {} 240 241 /// Called to account for the expectation the inlining would result in a load 242 /// elimination. 243 virtual void onLoadEliminationOpportunity() {} 244 245 /// Called to account for the cost of argument setup for the Call in the 246 /// callee's body (not the callsite currently under analysis). 247 virtual void onCallArgumentSetup(const CallBase &Call) {} 248 249 /// Called to account for a load relative intrinsic. 250 virtual void onLoadRelativeIntrinsic() {} 251 252 /// Called to account for a lowered call. 253 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 254 } 255 256 /// Account for a jump table of given size. Return false to stop further 257 /// processing the switch instruction 258 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 259 260 /// Account for a case cluster of given size. Return false to stop further 261 /// processing of the instruction. 262 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 263 264 /// Called at the end of processing a switch instruction, with the given 265 /// number of case clusters. 266 virtual void onFinalizeSwitch(unsigned JumpTableSize, 267 unsigned NumCaseCluster) {} 268 269 /// Called to account for any other instruction not specifically accounted 270 /// for. 271 virtual void onMissedSimplification() {} 272 273 /// Start accounting potential benefits due to SROA for the given alloca. 274 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 275 276 /// Account SROA savings for the AllocaInst value. 277 virtual void onAggregateSROAUse(AllocaInst *V) {} 278 279 bool handleSROA(Value *V, bool DoNotDisable) { 280 // Check for SROA candidates in comparisons. 281 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 282 if (DoNotDisable) { 283 onAggregateSROAUse(SROAArg); 284 return true; 285 } 286 disableSROAForArg(SROAArg); 287 } 288 return false; 289 } 290 291 bool IsCallerRecursive = false; 292 bool IsRecursiveCall = false; 293 bool ExposesReturnsTwice = false; 294 bool HasDynamicAlloca = false; 295 bool ContainsNoDuplicateCall = false; 296 bool HasReturn = false; 297 bool HasIndirectBr = false; 298 bool HasUninlineableIntrinsic = false; 299 bool InitsVargArgs = false; 300 301 /// Number of bytes allocated statically by the callee. 302 uint64_t AllocatedSize = 0; 303 unsigned NumInstructions = 0; 304 unsigned NumVectorInstructions = 0; 305 306 /// While we walk the potentially-inlined instructions, we build up and 307 /// maintain a mapping of simplified values specific to this callsite. The 308 /// idea is to propagate any special information we have about arguments to 309 /// this call through the inlinable section of the function, and account for 310 /// likely simplifications post-inlining. The most important aspect we track 311 /// is CFG altering simplifications -- when we prove a basic block dead, that 312 /// can cause dramatic shifts in the cost of inlining a function. 313 DenseMap<Value *, Constant *> SimplifiedValues; 314 315 /// Keep track of the values which map back (through function arguments) to 316 /// allocas on the caller stack which could be simplified through SROA. 317 DenseMap<Value *, AllocaInst *> SROAArgValues; 318 319 /// Keep track of Allocas for which we believe we may get SROA optimization. 320 DenseSet<AllocaInst *> EnabledSROAAllocas; 321 322 /// Keep track of values which map to a pointer base and constant offset. 323 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 324 325 /// Keep track of dead blocks due to the constant arguments. 326 SetVector<BasicBlock *> DeadBlocks; 327 328 /// The mapping of the blocks to their known unique successors due to the 329 /// constant arguments. 330 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 331 332 /// Model the elimination of repeated loads that is expected to happen 333 /// whenever we simplify away the stores that would otherwise cause them to be 334 /// loads. 335 bool EnableLoadElimination; 336 SmallPtrSet<Value *, 16> LoadAddrSet; 337 338 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 339 auto It = SROAArgValues.find(V); 340 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 341 return nullptr; 342 return It->second; 343 } 344 345 // Custom simplification helper routines. 346 bool isAllocaDerivedArg(Value *V); 347 void disableSROAForArg(AllocaInst *SROAArg); 348 void disableSROA(Value *V); 349 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 350 void disableLoadElimination(); 351 bool isGEPFree(GetElementPtrInst &GEP); 352 bool canFoldInboundsGEP(GetElementPtrInst &I); 353 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 354 bool simplifyCallSite(Function *F, CallBase &Call); 355 template <typename Callable> 356 bool simplifyInstruction(Instruction &I, Callable Evaluate); 357 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 358 359 /// Return true if the given argument to the function being considered for 360 /// inlining has the given attribute set either at the call site or the 361 /// function declaration. Primarily used to inspect call site specific 362 /// attributes since these can be more precise than the ones on the callee 363 /// itself. 364 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 365 366 /// Return true if the given value is known non null within the callee if 367 /// inlined through this particular callsite. 368 bool isKnownNonNullInCallee(Value *V); 369 370 /// Return true if size growth is allowed when inlining the callee at \p Call. 371 bool allowSizeGrowth(CallBase &Call); 372 373 // Custom analysis routines. 374 InlineResult analyzeBlock(BasicBlock *BB, 375 SmallPtrSetImpl<const Value *> &EphValues); 376 377 // Disable several entry points to the visitor so we don't accidentally use 378 // them by declaring but not defining them here. 379 void visit(Module *); 380 void visit(Module &); 381 void visit(Function *); 382 void visit(Function &); 383 void visit(BasicBlock *); 384 void visit(BasicBlock &); 385 386 // Provide base case for our instruction visit. 387 bool visitInstruction(Instruction &I); 388 389 // Our visit overrides. 390 bool visitAlloca(AllocaInst &I); 391 bool visitPHI(PHINode &I); 392 bool visitGetElementPtr(GetElementPtrInst &I); 393 bool visitBitCast(BitCastInst &I); 394 bool visitPtrToInt(PtrToIntInst &I); 395 bool visitIntToPtr(IntToPtrInst &I); 396 bool visitCastInst(CastInst &I); 397 bool visitCmpInst(CmpInst &I); 398 bool visitSub(BinaryOperator &I); 399 bool visitBinaryOperator(BinaryOperator &I); 400 bool visitFNeg(UnaryOperator &I); 401 bool visitLoad(LoadInst &I); 402 bool visitStore(StoreInst &I); 403 bool visitExtractValue(ExtractValueInst &I); 404 bool visitInsertValue(InsertValueInst &I); 405 bool visitCallBase(CallBase &Call); 406 bool visitReturnInst(ReturnInst &RI); 407 bool visitBranchInst(BranchInst &BI); 408 bool visitSelectInst(SelectInst &SI); 409 bool visitSwitchInst(SwitchInst &SI); 410 bool visitIndirectBrInst(IndirectBrInst &IBI); 411 bool visitResumeInst(ResumeInst &RI); 412 bool visitCleanupReturnInst(CleanupReturnInst &RI); 413 bool visitCatchReturnInst(CatchReturnInst &RI); 414 bool visitUnreachableInst(UnreachableInst &I); 415 416 public: 417 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 418 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 419 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 420 ProfileSummaryInfo *PSI = nullptr, 421 OptimizationRemarkEmitter *ORE = nullptr) 422 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 423 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 424 CandidateCall(Call), EnableLoadElimination(true) {} 425 426 InlineResult analyze(); 427 428 Optional<Constant *> getSimplifiedValue(Instruction *I) { 429 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 430 return SimplifiedValues[I]; 431 return None; 432 } 433 434 // Keep a bunch of stats about the cost savings found so we can print them 435 // out when debugging. 436 unsigned NumConstantArgs = 0; 437 unsigned NumConstantOffsetPtrArgs = 0; 438 unsigned NumAllocaArgs = 0; 439 unsigned NumConstantPtrCmps = 0; 440 unsigned NumConstantPtrDiffs = 0; 441 unsigned NumInstructionsSimplified = 0; 442 443 void dump(); 444 }; 445 446 // Considering forming a binary search, we should find the number of nodes 447 // which is same as the number of comparisons when lowered. For a given 448 // number of clusters, n, we can define a recursive function, f(n), to find 449 // the number of nodes in the tree. The recursion is : 450 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 451 // and f(n) = n, when n <= 3. 452 // This will lead a binary tree where the leaf should be either f(2) or f(3) 453 // when n > 3. So, the number of comparisons from leaves should be n, while 454 // the number of non-leaf should be : 455 // 2^(log2(n) - 1) - 1 456 // = 2^log2(n) * 2^-1 - 1 457 // = n / 2 - 1. 458 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 459 // number of comparisons in a simple closed form : 460 // n + n / 2 - 1 = n * 3 / 2 - 1 461 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 462 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 463 } 464 465 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 466 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 467 class InlineCostCallAnalyzer final : public CallAnalyzer { 468 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 469 const bool ComputeFullInlineCost; 470 int LoadEliminationCost = 0; 471 /// Bonus to be applied when percentage of vector instructions in callee is 472 /// high (see more details in updateThreshold). 473 int VectorBonus = 0; 474 /// Bonus to be applied when the callee has only one reachable basic block. 475 int SingleBBBonus = 0; 476 477 /// Tunable parameters that control the analysis. 478 const InlineParams &Params; 479 480 // This DenseMap stores the delta change in cost and threshold after 481 // accounting for the given instruction. The map is filled only with the 482 // flag PrintInstructionComments on. 483 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 484 485 /// Upper bound for the inlining cost. Bonuses are being applied to account 486 /// for speculative "expected profit" of the inlining decision. 487 int Threshold = 0; 488 489 /// Attempt to evaluate indirect calls to boost its inline cost. 490 const bool BoostIndirectCalls; 491 492 /// Ignore the threshold when finalizing analysis. 493 const bool IgnoreThreshold; 494 495 // True if the cost-benefit-analysis-based inliner is enabled. 496 const bool CostBenefitAnalysisEnabled; 497 498 /// Inlining cost measured in abstract units, accounts for all the 499 /// instructions expected to be executed for a given function invocation. 500 /// Instructions that are statically proven to be dead based on call-site 501 /// arguments are not counted here. 502 int Cost = 0; 503 504 // The cumulative cost at the beginning of the basic block being analyzed. At 505 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 506 // the size of that basic block. 507 int CostAtBBStart = 0; 508 509 // The static size of live but cold basic blocks. This is "static" in the 510 // sense that it's not weighted by profile counts at all. 511 int ColdSize = 0; 512 513 // Whether inlining is decided by cost-benefit analysis. 514 bool DecidedByCostBenefit = false; 515 516 // The cost-benefit pair computed by cost-benefit analysis. 517 Optional<CostBenefitPair> CostBenefit = None; 518 519 bool SingleBB = true; 520 521 unsigned SROACostSavings = 0; 522 unsigned SROACostSavingsLost = 0; 523 524 /// The mapping of caller Alloca values to their accumulated cost savings. If 525 /// we have to disable SROA for one of the allocas, this tells us how much 526 /// cost must be added. 527 DenseMap<AllocaInst *, int> SROAArgCosts; 528 529 /// Return true if \p Call is a cold callsite. 530 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 531 532 /// Update Threshold based on callsite properties such as callee 533 /// attributes and callee hotness for PGO builds. The Callee is explicitly 534 /// passed to support analyzing indirect calls whose target is inferred by 535 /// analysis. 536 void updateThreshold(CallBase &Call, Function &Callee); 537 /// Return a higher threshold if \p Call is a hot callsite. 538 Optional<int> getHotCallSiteThreshold(CallBase &Call, 539 BlockFrequencyInfo *CallerBFI); 540 541 /// Handle a capped 'int' increment for Cost. 542 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 543 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 544 Cost = std::min<int>(UpperBound, Cost + Inc); 545 } 546 547 void onDisableSROA(AllocaInst *Arg) override { 548 auto CostIt = SROAArgCosts.find(Arg); 549 if (CostIt == SROAArgCosts.end()) 550 return; 551 addCost(CostIt->second); 552 SROACostSavings -= CostIt->second; 553 SROACostSavingsLost += CostIt->second; 554 SROAArgCosts.erase(CostIt); 555 } 556 557 void onDisableLoadElimination() override { 558 addCost(LoadEliminationCost); 559 LoadEliminationCost = 0; 560 } 561 void onCallPenalty() override { addCost(CallPenalty); } 562 void onCallArgumentSetup(const CallBase &Call) override { 563 // Pay the price of the argument setup. We account for the average 1 564 // instruction per call argument setup here. 565 addCost(Call.arg_size() * InlineConstants::InstrCost); 566 } 567 void onLoadRelativeIntrinsic() override { 568 // This is normally lowered to 4 LLVM instructions. 569 addCost(3 * InlineConstants::InstrCost); 570 } 571 void onLoweredCall(Function *F, CallBase &Call, 572 bool IsIndirectCall) override { 573 // We account for the average 1 instruction per call argument setup here. 574 addCost(Call.arg_size() * InlineConstants::InstrCost); 575 576 // If we have a constant that we are calling as a function, we can peer 577 // through it and see the function target. This happens not infrequently 578 // during devirtualization and so we want to give it a hefty bonus for 579 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 580 // Pretend to inline the function, with a custom threshold. 581 if (IsIndirectCall && BoostIndirectCalls) { 582 auto IndirectCallParams = Params; 583 IndirectCallParams.DefaultThreshold = 584 InlineConstants::IndirectCallThreshold; 585 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 586 /// to instantiate the derived class. 587 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 588 GetAssumptionCache, GetBFI, PSI, ORE, false); 589 if (CA.analyze().isSuccess()) { 590 // We were able to inline the indirect call! Subtract the cost from the 591 // threshold to get the bonus we want to apply, but don't go below zero. 592 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 593 } 594 } else 595 // Otherwise simply add the cost for merely making the call. 596 addCost(CallPenalty); 597 } 598 599 void onFinalizeSwitch(unsigned JumpTableSize, 600 unsigned NumCaseCluster) override { 601 // If suitable for a jump table, consider the cost for the table size and 602 // branch to destination. 603 // Maximum valid cost increased in this function. 604 if (JumpTableSize) { 605 int64_t JTCost = 606 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 607 4 * InlineConstants::InstrCost; 608 609 addCost(JTCost, static_cast<int64_t>(CostUpperBound)); 610 return; 611 } 612 613 if (NumCaseCluster <= 3) { 614 // Suppose a comparison includes one compare and one conditional branch. 615 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 616 return; 617 } 618 619 int64_t ExpectedNumberOfCompare = 620 getExpectedNumberOfCompare(NumCaseCluster); 621 int64_t SwitchCost = 622 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 623 624 addCost(SwitchCost, static_cast<int64_t>(CostUpperBound)); 625 } 626 void onMissedSimplification() override { 627 addCost(InlineConstants::InstrCost); 628 } 629 630 void onInitializeSROAArg(AllocaInst *Arg) override { 631 assert(Arg != nullptr && 632 "Should not initialize SROA costs for null value."); 633 SROAArgCosts[Arg] = 0; 634 } 635 636 void onAggregateSROAUse(AllocaInst *SROAArg) override { 637 auto CostIt = SROAArgCosts.find(SROAArg); 638 assert(CostIt != SROAArgCosts.end() && 639 "expected this argument to have a cost"); 640 CostIt->second += InlineConstants::InstrCost; 641 SROACostSavings += InlineConstants::InstrCost; 642 } 643 644 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 645 646 void onBlockAnalyzed(const BasicBlock *BB) override { 647 if (CostBenefitAnalysisEnabled) { 648 // Keep track of the static size of live but cold basic blocks. For now, 649 // we define a cold basic block to be one that's never executed. 650 assert(GetBFI && "GetBFI must be available"); 651 BlockFrequencyInfo *BFI = &(GetBFI(F)); 652 assert(BFI && "BFI must be available"); 653 auto ProfileCount = BFI->getBlockProfileCount(BB); 654 assert(ProfileCount.hasValue()); 655 if (ProfileCount.getValue() == 0) 656 ColdSize += Cost - CostAtBBStart; 657 } 658 659 auto *TI = BB->getTerminator(); 660 // If we had any successors at this point, than post-inlining is likely to 661 // have them as well. Note that we assume any basic blocks which existed 662 // due to branches or switches which folded above will also fold after 663 // inlining. 664 if (SingleBB && TI->getNumSuccessors() > 1) { 665 // Take off the bonus we applied to the threshold. 666 Threshold -= SingleBBBonus; 667 SingleBB = false; 668 } 669 } 670 671 void onInstructionAnalysisStart(const Instruction *I) override { 672 // This function is called to store the initial cost of inlining before 673 // the given instruction was assessed. 674 if (!PrintInstructionComments) 675 return; 676 InstructionCostDetailMap[I].CostBefore = Cost; 677 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 678 } 679 680 void onInstructionAnalysisFinish(const Instruction *I) override { 681 // This function is called to find new values of cost and threshold after 682 // the instruction has been assessed. 683 if (!PrintInstructionComments) 684 return; 685 InstructionCostDetailMap[I].CostAfter = Cost; 686 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 687 } 688 689 bool isCostBenefitAnalysisEnabled() { 690 if (!PSI || !PSI->hasProfileSummary()) 691 return false; 692 693 if (!GetBFI) 694 return false; 695 696 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 697 // Honor the explicit request from the user. 698 if (!InlineEnableCostBenefitAnalysis) 699 return false; 700 } else { 701 // Otherwise, require instrumentation profile. 702 if (!PSI->hasInstrumentationProfile()) 703 return false; 704 } 705 706 auto *Caller = CandidateCall.getParent()->getParent(); 707 if (!Caller->getEntryCount()) 708 return false; 709 710 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 711 if (!CallerBFI) 712 return false; 713 714 // For now, limit to hot call site. 715 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 716 return false; 717 718 // Make sure we have a nonzero entry count. 719 auto EntryCount = F.getEntryCount(); 720 if (!EntryCount || !EntryCount.getCount()) 721 return false; 722 723 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 724 if (!CalleeBFI) 725 return false; 726 727 return true; 728 } 729 730 // Determine whether we should inline the given call site, taking into account 731 // both the size cost and the cycle savings. Return None if we don't have 732 // suficient profiling information to determine. 733 Optional<bool> costBenefitAnalysis() { 734 if (!CostBenefitAnalysisEnabled) 735 return None; 736 737 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 738 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 739 // falling back to the cost-based metric. 740 // TODO: Improve this hacky condition. 741 if (Threshold == 0) 742 return None; 743 744 assert(GetBFI); 745 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 746 assert(CalleeBFI); 747 748 // The cycle savings expressed as the sum of InlineConstants::InstrCost 749 // multiplied by the estimated dynamic count of each instruction we can 750 // avoid. Savings come from the call site cost, such as argument setup and 751 // the call instruction, as well as the instructions that are folded. 752 // 753 // We use 128-bit APInt here to avoid potential overflow. This variable 754 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 755 // assumes that we can avoid or fold a billion instructions, each with a 756 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 757 // period on a 4GHz machine. 758 APInt CycleSavings(128, 0); 759 760 for (auto &BB : F) { 761 APInt CurrentSavings(128, 0); 762 for (auto &I : BB) { 763 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 764 // Count a conditional branch as savings if it becomes unconditional. 765 if (BI->isConditional() && 766 dyn_cast_or_null<ConstantInt>( 767 SimplifiedValues.lookup(BI->getCondition()))) { 768 CurrentSavings += InlineConstants::InstrCost; 769 } 770 } else if (Value *V = dyn_cast<Value>(&I)) { 771 // Count an instruction as savings if we can fold it. 772 if (SimplifiedValues.count(V)) { 773 CurrentSavings += InlineConstants::InstrCost; 774 } 775 } 776 } 777 778 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 779 assert(ProfileCount.hasValue()); 780 CurrentSavings *= ProfileCount.getValue(); 781 CycleSavings += CurrentSavings; 782 } 783 784 // Compute the cycle savings per call. 785 auto EntryProfileCount = F.getEntryCount(); 786 assert(EntryProfileCount.hasValue() && EntryProfileCount.getCount()); 787 auto EntryCount = EntryProfileCount.getCount(); 788 CycleSavings += EntryCount / 2; 789 CycleSavings = CycleSavings.udiv(EntryCount); 790 791 // Compute the total savings for the call site. 792 auto *CallerBB = CandidateCall.getParent(); 793 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 794 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 795 CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 796 797 // Remove the cost of the cold basic blocks. 798 int Size = Cost - ColdSize; 799 800 // Allow tiny callees to be inlined regardless of whether they meet the 801 // savings threshold. 802 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 803 804 CostBenefit.emplace(APInt(128, Size), CycleSavings); 805 806 // Return true if the savings justify the cost of inlining. Specifically, 807 // we evaluate the following inequality: 808 // 809 // CycleSavings PSI->getOrCompHotCountThreshold() 810 // -------------- >= ----------------------------------- 811 // Size InlineSavingsMultiplier 812 // 813 // Note that the left hand side is specific to a call site. The right hand 814 // side is a constant for the entire executable. 815 APInt LHS = CycleSavings; 816 LHS *= InlineSavingsMultiplier; 817 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 818 RHS *= Size; 819 return LHS.uge(RHS); 820 } 821 822 InlineResult finalizeAnalysis() override { 823 // Loops generally act a lot like calls in that they act like barriers to 824 // movement, require a certain amount of setup, etc. So when optimising for 825 // size, we penalise any call sites that perform loops. We do this after all 826 // other costs here, so will likely only be dealing with relatively small 827 // functions (and hence DT and LI will hopefully be cheap). 828 auto *Caller = CandidateCall.getFunction(); 829 if (Caller->hasMinSize()) { 830 DominatorTree DT(F); 831 LoopInfo LI(DT); 832 int NumLoops = 0; 833 for (Loop *L : LI) { 834 // Ignore loops that will not be executed 835 if (DeadBlocks.count(L->getHeader())) 836 continue; 837 NumLoops++; 838 } 839 addCost(NumLoops * InlineConstants::LoopPenalty); 840 } 841 842 // We applied the maximum possible vector bonus at the beginning. Now, 843 // subtract the excess bonus, if any, from the Threshold before 844 // comparing against Cost. 845 if (NumVectorInstructions <= NumInstructions / 10) 846 Threshold -= VectorBonus; 847 else if (NumVectorInstructions <= NumInstructions / 2) 848 Threshold -= VectorBonus / 2; 849 850 if (auto Result = costBenefitAnalysis()) { 851 DecidedByCostBenefit = true; 852 if (Result.getValue()) 853 return InlineResult::success(); 854 else 855 return InlineResult::failure("Cost over threshold."); 856 } 857 858 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 859 return InlineResult::success(); 860 return InlineResult::failure("Cost over threshold."); 861 } 862 bool shouldStop() override { 863 // Bail out the moment we cross the threshold. This means we'll under-count 864 // the cost, but only when undercounting doesn't matter. 865 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 866 } 867 868 void onLoadEliminationOpportunity() override { 869 LoadEliminationCost += InlineConstants::InstrCost; 870 } 871 872 InlineResult onAnalysisStart() override { 873 // Perform some tweaks to the cost and threshold based on the direct 874 // callsite information. 875 876 // We want to more aggressively inline vector-dense kernels, so up the 877 // threshold, and we'll lower it if the % of vector instructions gets too 878 // low. Note that these bonuses are some what arbitrary and evolved over 879 // time by accident as much as because they are principled bonuses. 880 // 881 // FIXME: It would be nice to remove all such bonuses. At least it would be 882 // nice to base the bonus values on something more scientific. 883 assert(NumInstructions == 0); 884 assert(NumVectorInstructions == 0); 885 886 // Update the threshold based on callsite properties 887 updateThreshold(CandidateCall, F); 888 889 // While Threshold depends on commandline options that can take negative 890 // values, we want to enforce the invariant that the computed threshold and 891 // bonuses are non-negative. 892 assert(Threshold >= 0); 893 assert(SingleBBBonus >= 0); 894 assert(VectorBonus >= 0); 895 896 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 897 // this Threshold any time, and cost cannot decrease, we can stop processing 898 // the rest of the function body. 899 Threshold += (SingleBBBonus + VectorBonus); 900 901 // Give out bonuses for the callsite, as the instructions setting them up 902 // will be gone after inlining. 903 addCost(-getCallsiteCost(this->CandidateCall, DL)); 904 905 // If this function uses the coldcc calling convention, prefer not to inline 906 // it. 907 if (F.getCallingConv() == CallingConv::Cold) 908 Cost += InlineConstants::ColdccPenalty; 909 910 // Check if we're done. This can happen due to bonuses and penalties. 911 if (Cost >= Threshold && !ComputeFullInlineCost) 912 return InlineResult::failure("high cost"); 913 914 return InlineResult::success(); 915 } 916 917 public: 918 InlineCostCallAnalyzer( 919 Function &Callee, CallBase &Call, const InlineParams &Params, 920 const TargetTransformInfo &TTI, 921 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 922 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 923 ProfileSummaryInfo *PSI = nullptr, 924 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 925 bool IgnoreThreshold = false) 926 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 927 ComputeFullInlineCost(OptComputeFullInlineCost || 928 Params.ComputeFullInlineCost || ORE || 929 isCostBenefitAnalysisEnabled()), 930 Params(Params), Threshold(Params.DefaultThreshold), 931 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 932 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 933 Writer(this) {} 934 935 /// Annotation Writer for instruction details 936 InlineCostAnnotationWriter Writer; 937 938 void dump(); 939 940 // Prints the same analysis as dump(), but its definition is not dependent 941 // on the build. 942 void print(); 943 944 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 945 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 946 return InstructionCostDetailMap[I]; 947 return None; 948 } 949 950 virtual ~InlineCostCallAnalyzer() {} 951 int getThreshold() const { return Threshold; } 952 int getCost() const { return Cost; } 953 Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 954 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 955 }; 956 957 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 958 private: 959 InlineCostFeatures Cost = {}; 960 961 // FIXME: These constants are taken from the heuristic-based cost visitor. 962 // These should be removed entirely in a later revision to avoid reliance on 963 // heuristics in the ML inliner. 964 static constexpr int JTCostMultiplier = 4; 965 static constexpr int CaseClusterCostMultiplier = 2; 966 static constexpr int SwitchCostMultiplier = 2; 967 968 // FIXME: These are taken from the heuristic-based cost visitor: we should 969 // eventually abstract these to the CallAnalyzer to avoid duplication. 970 unsigned SROACostSavingOpportunities = 0; 971 int VectorBonus = 0; 972 int SingleBBBonus = 0; 973 int Threshold = 5; 974 975 DenseMap<AllocaInst *, unsigned> SROACosts; 976 977 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 978 Cost[static_cast<size_t>(Feature)] += Delta; 979 } 980 981 void set(InlineCostFeatureIndex Feature, int64_t Value) { 982 Cost[static_cast<size_t>(Feature)] = Value; 983 } 984 985 void onDisableSROA(AllocaInst *Arg) override { 986 auto CostIt = SROACosts.find(Arg); 987 if (CostIt == SROACosts.end()) 988 return; 989 990 increment(InlineCostFeatureIndex::SROALosses, CostIt->second); 991 SROACostSavingOpportunities -= CostIt->second; 992 SROACosts.erase(CostIt); 993 } 994 995 void onDisableLoadElimination() override { 996 set(InlineCostFeatureIndex::LoadElimination, 1); 997 } 998 999 void onCallPenalty() override { 1000 increment(InlineCostFeatureIndex::CallPenalty, CallPenalty); 1001 } 1002 1003 void onCallArgumentSetup(const CallBase &Call) override { 1004 increment(InlineCostFeatureIndex::CallArgumentSetup, 1005 Call.arg_size() * InlineConstants::InstrCost); 1006 } 1007 1008 void onLoadRelativeIntrinsic() override { 1009 increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 1010 3 * InlineConstants::InstrCost); 1011 } 1012 1013 void onLoweredCall(Function *F, CallBase &Call, 1014 bool IsIndirectCall) override { 1015 increment(InlineCostFeatureIndex::LoweredCallArgSetup, 1016 Call.arg_size() * InlineConstants::InstrCost); 1017 1018 if (IsIndirectCall) { 1019 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1020 /*HintThreshold*/ {}, 1021 /*ColdThreshold*/ {}, 1022 /*OptSizeThreshold*/ {}, 1023 /*OptMinSizeThreshold*/ {}, 1024 /*HotCallSiteThreshold*/ {}, 1025 /*LocallyHotCallSiteThreshold*/ {}, 1026 /*ColdCallSiteThreshold*/ {}, 1027 /*ComputeFullInlineCost*/ true, 1028 /*EnableDeferral*/ true}; 1029 IndirectCallParams.DefaultThreshold = 1030 InlineConstants::IndirectCallThreshold; 1031 1032 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1033 GetAssumptionCache, GetBFI, PSI, ORE, false, 1034 true); 1035 if (CA.analyze().isSuccess()) { 1036 increment(InlineCostFeatureIndex::NestedInlineCostEstimate, 1037 CA.getCost()); 1038 increment(InlineCostFeatureIndex::NestedInlines, 1); 1039 } 1040 } else { 1041 onCallPenalty(); 1042 } 1043 } 1044 1045 void onFinalizeSwitch(unsigned JumpTableSize, 1046 unsigned NumCaseCluster) override { 1047 1048 if (JumpTableSize) { 1049 int64_t JTCost = 1050 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 1051 JTCostMultiplier * InlineConstants::InstrCost; 1052 increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost); 1053 return; 1054 } 1055 1056 if (NumCaseCluster <= 3) { 1057 increment(InlineCostFeatureIndex::CaseClusterPenalty, 1058 NumCaseCluster * CaseClusterCostMultiplier * 1059 InlineConstants::InstrCost); 1060 return; 1061 } 1062 1063 int64_t ExpectedNumberOfCompare = 1064 getExpectedNumberOfCompare(NumCaseCluster); 1065 1066 int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier * 1067 InlineConstants::InstrCost; 1068 increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost); 1069 } 1070 1071 void onMissedSimplification() override { 1072 increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions, 1073 InlineConstants::InstrCost); 1074 } 1075 1076 void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; } 1077 void onAggregateSROAUse(AllocaInst *Arg) override { 1078 SROACosts.find(Arg)->second += InlineConstants::InstrCost; 1079 SROACostSavingOpportunities += InlineConstants::InstrCost; 1080 } 1081 1082 void onBlockAnalyzed(const BasicBlock *BB) override { 1083 if (BB->getTerminator()->getNumSuccessors() > 1) 1084 set(InlineCostFeatureIndex::IsMultipleBlocks, 1); 1085 Threshold -= SingleBBBonus; 1086 } 1087 1088 InlineResult finalizeAnalysis() override { 1089 auto *Caller = CandidateCall.getFunction(); 1090 if (Caller->hasMinSize()) { 1091 DominatorTree DT(F); 1092 LoopInfo LI(DT); 1093 for (Loop *L : LI) { 1094 // Ignore loops that will not be executed 1095 if (DeadBlocks.count(L->getHeader())) 1096 continue; 1097 increment(InlineCostFeatureIndex::NumLoops, 1098 InlineConstants::LoopPenalty); 1099 } 1100 } 1101 set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size()); 1102 set(InlineCostFeatureIndex::SimplifiedInstructions, 1103 NumInstructionsSimplified); 1104 set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs); 1105 set(InlineCostFeatureIndex::ConstantOffsetPtrArgs, 1106 NumConstantOffsetPtrArgs); 1107 set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities); 1108 1109 if (NumVectorInstructions <= NumInstructions / 10) 1110 Threshold -= VectorBonus; 1111 else if (NumVectorInstructions <= NumInstructions / 2) 1112 Threshold -= VectorBonus / 2; 1113 1114 set(InlineCostFeatureIndex::Threshold, Threshold); 1115 1116 return InlineResult::success(); 1117 } 1118 1119 bool shouldStop() override { return false; } 1120 1121 void onLoadEliminationOpportunity() override { 1122 increment(InlineCostFeatureIndex::LoadElimination, 1); 1123 } 1124 1125 InlineResult onAnalysisStart() override { 1126 increment(InlineCostFeatureIndex::CallSiteCost, 1127 -1 * getCallsiteCost(this->CandidateCall, DL)); 1128 1129 set(InlineCostFeatureIndex::ColdCcPenalty, 1130 (F.getCallingConv() == CallingConv::Cold)); 1131 1132 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1133 // analyzer - instead, we should abstract it to a common method in the 1134 // CallAnalyzer 1135 int SingleBBBonusPercent = 50; 1136 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1137 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1138 Threshold *= TTI.getInliningThresholdMultiplier(); 1139 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1140 VectorBonus = Threshold * VectorBonusPercent / 100; 1141 Threshold += (SingleBBBonus + VectorBonus); 1142 1143 return InlineResult::success(); 1144 } 1145 1146 public: 1147 InlineCostFeaturesAnalyzer( 1148 const TargetTransformInfo &TTI, 1149 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1150 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1151 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1152 CallBase &Call) 1153 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1154 1155 const InlineCostFeatures &features() const { return Cost; } 1156 }; 1157 1158 } // namespace 1159 1160 /// Test whether the given value is an Alloca-derived function argument. 1161 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1162 return SROAArgValues.count(V); 1163 } 1164 1165 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1166 onDisableSROA(SROAArg); 1167 EnabledSROAAllocas.erase(SROAArg); 1168 disableLoadElimination(); 1169 } 1170 1171 void InlineCostAnnotationWriter::emitInstructionAnnot( 1172 const Instruction *I, formatted_raw_ostream &OS) { 1173 // The cost of inlining of the given instruction is printed always. 1174 // The threshold delta is printed only when it is non-zero. It happens 1175 // when we decided to give a bonus at a particular instruction. 1176 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1177 if (!Record) 1178 OS << "; No analysis for the instruction"; 1179 else { 1180 OS << "; cost before = " << Record->CostBefore 1181 << ", cost after = " << Record->CostAfter 1182 << ", threshold before = " << Record->ThresholdBefore 1183 << ", threshold after = " << Record->ThresholdAfter << ", "; 1184 OS << "cost delta = " << Record->getCostDelta(); 1185 if (Record->hasThresholdChanged()) 1186 OS << ", threshold delta = " << Record->getThresholdDelta(); 1187 } 1188 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1189 if (C) { 1190 OS << ", simplified to "; 1191 C.getValue()->print(OS, true); 1192 } 1193 OS << "\n"; 1194 } 1195 1196 /// If 'V' maps to a SROA candidate, disable SROA for it. 1197 void CallAnalyzer::disableSROA(Value *V) { 1198 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1199 disableSROAForArg(SROAArg); 1200 } 1201 } 1202 1203 void CallAnalyzer::disableLoadElimination() { 1204 if (EnableLoadElimination) { 1205 onDisableLoadElimination(); 1206 EnableLoadElimination = false; 1207 } 1208 } 1209 1210 /// Accumulate a constant GEP offset into an APInt if possible. 1211 /// 1212 /// Returns false if unable to compute the offset for any reason. Respects any 1213 /// simplified values known during the analysis of this callsite. 1214 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1215 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1216 assert(IntPtrWidth == Offset.getBitWidth()); 1217 1218 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1219 GTI != GTE; ++GTI) { 1220 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1221 if (!OpC) 1222 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1223 OpC = dyn_cast<ConstantInt>(SimpleOp); 1224 if (!OpC) 1225 return false; 1226 if (OpC->isZero()) 1227 continue; 1228 1229 // Handle a struct index, which adds its field offset to the pointer. 1230 if (StructType *STy = GTI.getStructTypeOrNull()) { 1231 unsigned ElementIdx = OpC->getZExtValue(); 1232 const StructLayout *SL = DL.getStructLayout(STy); 1233 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1234 continue; 1235 } 1236 1237 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1238 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1239 } 1240 return true; 1241 } 1242 1243 /// Use TTI to check whether a GEP is free. 1244 /// 1245 /// Respects any simplified values known during the analysis of this callsite. 1246 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1247 SmallVector<Value *, 4> Operands; 1248 Operands.push_back(GEP.getOperand(0)); 1249 for (const Use &Op : GEP.indices()) 1250 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1251 Operands.push_back(SimpleOp); 1252 else 1253 Operands.push_back(Op); 1254 return TTI.getUserCost(&GEP, Operands, 1255 TargetTransformInfo::TCK_SizeAndLatency) == 1256 TargetTransformInfo::TCC_Free; 1257 } 1258 1259 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1260 disableSROA(I.getOperand(0)); 1261 1262 // Check whether inlining will turn a dynamic alloca into a static 1263 // alloca and handle that case. 1264 if (I.isArrayAllocation()) { 1265 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1266 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1267 // Sometimes a dynamic alloca could be converted into a static alloca 1268 // after this constant prop, and become a huge static alloca on an 1269 // unconditional CFG path. Avoid inlining if this is going to happen above 1270 // a threshold. 1271 // FIXME: If the threshold is removed or lowered too much, we could end up 1272 // being too pessimistic and prevent inlining non-problematic code. This 1273 // could result in unintended perf regressions. A better overall strategy 1274 // is needed to track stack usage during inlining. 1275 Type *Ty = I.getAllocatedType(); 1276 AllocatedSize = SaturatingMultiplyAdd( 1277 AllocSize->getLimitedValue(), 1278 DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1279 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1280 HasDynamicAlloca = true; 1281 return false; 1282 } 1283 } 1284 1285 // Accumulate the allocated size. 1286 if (I.isStaticAlloca()) { 1287 Type *Ty = I.getAllocatedType(); 1288 AllocatedSize = 1289 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1290 } 1291 1292 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1293 // a variety of reasons, and so we would like to not inline them into 1294 // functions which don't currently have a dynamic alloca. This simply 1295 // disables inlining altogether in the presence of a dynamic alloca. 1296 if (!I.isStaticAlloca()) 1297 HasDynamicAlloca = true; 1298 1299 return false; 1300 } 1301 1302 bool CallAnalyzer::visitPHI(PHINode &I) { 1303 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1304 // though we don't want to propagate it's bonuses. The idea is to disable 1305 // SROA if it *might* be used in an inappropriate manner. 1306 1307 // Phi nodes are always zero-cost. 1308 // FIXME: Pointer sizes may differ between different address spaces, so do we 1309 // need to use correct address space in the call to getPointerSizeInBits here? 1310 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1311 // see the ZeroOffset is used as a dummy value, so we can probably use any 1312 // bit width for the ZeroOffset? 1313 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 1314 bool CheckSROA = I.getType()->isPointerTy(); 1315 1316 // Track the constant or pointer with constant offset we've seen so far. 1317 Constant *FirstC = nullptr; 1318 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1319 Value *FirstV = nullptr; 1320 1321 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1322 BasicBlock *Pred = I.getIncomingBlock(i); 1323 // If the incoming block is dead, skip the incoming block. 1324 if (DeadBlocks.count(Pred)) 1325 continue; 1326 // If the parent block of phi is not the known successor of the incoming 1327 // block, skip the incoming block. 1328 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1329 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1330 continue; 1331 1332 Value *V = I.getIncomingValue(i); 1333 // If the incoming value is this phi itself, skip the incoming value. 1334 if (&I == V) 1335 continue; 1336 1337 Constant *C = dyn_cast<Constant>(V); 1338 if (!C) 1339 C = SimplifiedValues.lookup(V); 1340 1341 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1342 if (!C && CheckSROA) 1343 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1344 1345 if (!C && !BaseAndOffset.first) 1346 // The incoming value is neither a constant nor a pointer with constant 1347 // offset, exit early. 1348 return true; 1349 1350 if (FirstC) { 1351 if (FirstC == C) 1352 // If we've seen a constant incoming value before and it is the same 1353 // constant we see this time, continue checking the next incoming value. 1354 continue; 1355 // Otherwise early exit because we either see a different constant or saw 1356 // a constant before but we have a pointer with constant offset this time. 1357 return true; 1358 } 1359 1360 if (FirstV) { 1361 // The same logic as above, but check pointer with constant offset here. 1362 if (FirstBaseAndOffset == BaseAndOffset) 1363 continue; 1364 return true; 1365 } 1366 1367 if (C) { 1368 // This is the 1st time we've seen a constant, record it. 1369 FirstC = C; 1370 continue; 1371 } 1372 1373 // The remaining case is that this is the 1st time we've seen a pointer with 1374 // constant offset, record it. 1375 FirstV = V; 1376 FirstBaseAndOffset = BaseAndOffset; 1377 } 1378 1379 // Check if we can map phi to a constant. 1380 if (FirstC) { 1381 SimplifiedValues[&I] = FirstC; 1382 return true; 1383 } 1384 1385 // Check if we can map phi to a pointer with constant offset. 1386 if (FirstBaseAndOffset.first) { 1387 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1388 1389 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1390 SROAArgValues[&I] = SROAArg; 1391 } 1392 1393 return true; 1394 } 1395 1396 /// Check we can fold GEPs of constant-offset call site argument pointers. 1397 /// This requires target data and inbounds GEPs. 1398 /// 1399 /// \return true if the specified GEP can be folded. 1400 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1401 // Check if we have a base + offset for the pointer. 1402 std::pair<Value *, APInt> BaseAndOffset = 1403 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1404 if (!BaseAndOffset.first) 1405 return false; 1406 1407 // Check if the offset of this GEP is constant, and if so accumulate it 1408 // into Offset. 1409 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1410 return false; 1411 1412 // Add the result as a new mapping to Base + Offset. 1413 ConstantOffsetPtrs[&I] = BaseAndOffset; 1414 1415 return true; 1416 } 1417 1418 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1419 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1420 1421 // Lambda to check whether a GEP's indices are all constant. 1422 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1423 for (const Use &Op : GEP.indices()) 1424 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1425 return false; 1426 return true; 1427 }; 1428 1429 if (!DisableGEPConstOperand) 1430 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1431 SmallVector<Constant *, 2> Indices; 1432 for (unsigned int Index = 1; Index < COps.size(); ++Index) 1433 Indices.push_back(COps[Index]); 1434 return ConstantExpr::getGetElementPtr( 1435 I.getSourceElementType(), COps[0], Indices, I.isInBounds()); 1436 })) 1437 return true; 1438 1439 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1440 if (SROAArg) 1441 SROAArgValues[&I] = SROAArg; 1442 1443 // Constant GEPs are modeled as free. 1444 return true; 1445 } 1446 1447 // Variable GEPs will require math and will disable SROA. 1448 if (SROAArg) 1449 disableSROAForArg(SROAArg); 1450 return isGEPFree(I); 1451 } 1452 1453 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1454 /// \p Evaluate is a callable specific to instruction type that evaluates the 1455 /// instruction when all the operands are constants. 1456 template <typename Callable> 1457 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1458 SmallVector<Constant *, 2> COps; 1459 for (Value *Op : I.operands()) { 1460 Constant *COp = dyn_cast<Constant>(Op); 1461 if (!COp) 1462 COp = SimplifiedValues.lookup(Op); 1463 if (!COp) 1464 return false; 1465 COps.push_back(COp); 1466 } 1467 auto *C = Evaluate(COps); 1468 if (!C) 1469 return false; 1470 SimplifiedValues[&I] = C; 1471 return true; 1472 } 1473 1474 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1475 // Propagate constants through bitcasts. 1476 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1477 return ConstantExpr::getBitCast(COps[0], I.getType()); 1478 })) 1479 return true; 1480 1481 // Track base/offsets through casts 1482 std::pair<Value *, APInt> BaseAndOffset = 1483 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1484 // Casts don't change the offset, just wrap it up. 1485 if (BaseAndOffset.first) 1486 ConstantOffsetPtrs[&I] = BaseAndOffset; 1487 1488 // Also look for SROA candidates here. 1489 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1490 SROAArgValues[&I] = SROAArg; 1491 1492 // Bitcasts are always zero cost. 1493 return true; 1494 } 1495 1496 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1497 // Propagate constants through ptrtoint. 1498 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1499 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1500 })) 1501 return true; 1502 1503 // Track base/offset pairs when converted to a plain integer provided the 1504 // integer is large enough to represent the pointer. 1505 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1506 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1507 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1508 std::pair<Value *, APInt> BaseAndOffset = 1509 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1510 if (BaseAndOffset.first) 1511 ConstantOffsetPtrs[&I] = BaseAndOffset; 1512 } 1513 1514 // This is really weird. Technically, ptrtoint will disable SROA. However, 1515 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1516 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1517 // would block SROA would also block SROA if applied directly to a pointer, 1518 // and so we can just add the integer in here. The only places where SROA is 1519 // preserved either cannot fire on an integer, or won't in-and-of themselves 1520 // disable SROA (ext) w/o some later use that we would see and disable. 1521 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1522 SROAArgValues[&I] = SROAArg; 1523 1524 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1525 TargetTransformInfo::TCC_Free; 1526 } 1527 1528 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1529 // Propagate constants through ptrtoint. 1530 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1531 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1532 })) 1533 return true; 1534 1535 // Track base/offset pairs when round-tripped through a pointer without 1536 // modifications provided the integer is not too large. 1537 Value *Op = I.getOperand(0); 1538 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1539 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1540 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1541 if (BaseAndOffset.first) 1542 ConstantOffsetPtrs[&I] = BaseAndOffset; 1543 } 1544 1545 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1546 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1547 SROAArgValues[&I] = SROAArg; 1548 1549 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1550 TargetTransformInfo::TCC_Free; 1551 } 1552 1553 bool CallAnalyzer::visitCastInst(CastInst &I) { 1554 // Propagate constants through casts. 1555 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1556 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1557 })) 1558 return true; 1559 1560 // Disable SROA in the face of arbitrary casts we don't explicitly list 1561 // elsewhere. 1562 disableSROA(I.getOperand(0)); 1563 1564 // If this is a floating-point cast, and the target says this operation 1565 // is expensive, this may eventually become a library call. Treat the cost 1566 // as such. 1567 switch (I.getOpcode()) { 1568 case Instruction::FPTrunc: 1569 case Instruction::FPExt: 1570 case Instruction::UIToFP: 1571 case Instruction::SIToFP: 1572 case Instruction::FPToUI: 1573 case Instruction::FPToSI: 1574 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1575 onCallPenalty(); 1576 break; 1577 default: 1578 break; 1579 } 1580 1581 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1582 TargetTransformInfo::TCC_Free; 1583 } 1584 1585 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1586 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1587 } 1588 1589 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1590 // Does the *call site* have the NonNull attribute set on an argument? We 1591 // use the attribute on the call site to memoize any analysis done in the 1592 // caller. This will also trip if the callee function has a non-null 1593 // parameter attribute, but that's a less interesting case because hopefully 1594 // the callee would already have been simplified based on that. 1595 if (Argument *A = dyn_cast<Argument>(V)) 1596 if (paramHasAttr(A, Attribute::NonNull)) 1597 return true; 1598 1599 // Is this an alloca in the caller? This is distinct from the attribute case 1600 // above because attributes aren't updated within the inliner itself and we 1601 // always want to catch the alloca derived case. 1602 if (isAllocaDerivedArg(V)) 1603 // We can actually predict the result of comparisons between an 1604 // alloca-derived value and null. Note that this fires regardless of 1605 // SROA firing. 1606 return true; 1607 1608 return false; 1609 } 1610 1611 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1612 // If the normal destination of the invoke or the parent block of the call 1613 // site is unreachable-terminated, there is little point in inlining this 1614 // unless there is literally zero cost. 1615 // FIXME: Note that it is possible that an unreachable-terminated block has a 1616 // hot entry. For example, in below scenario inlining hot_call_X() may be 1617 // beneficial : 1618 // main() { 1619 // hot_call_1(); 1620 // ... 1621 // hot_call_N() 1622 // exit(0); 1623 // } 1624 // For now, we are not handling this corner case here as it is rare in real 1625 // code. In future, we should elaborate this based on BPI and BFI in more 1626 // general threshold adjusting heuristics in updateThreshold(). 1627 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1628 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1629 return false; 1630 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1631 return false; 1632 1633 return true; 1634 } 1635 1636 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1637 BlockFrequencyInfo *CallerBFI) { 1638 // If global profile summary is available, then callsite's coldness is 1639 // determined based on that. 1640 if (PSI && PSI->hasProfileSummary()) 1641 return PSI->isColdCallSite(Call, CallerBFI); 1642 1643 // Otherwise we need BFI to be available. 1644 if (!CallerBFI) 1645 return false; 1646 1647 // Determine if the callsite is cold relative to caller's entry. We could 1648 // potentially cache the computation of scaled entry frequency, but the added 1649 // complexity is not worth it unless this scaling shows up high in the 1650 // profiles. 1651 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1652 auto CallSiteBB = Call.getParent(); 1653 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1654 auto CallerEntryFreq = 1655 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1656 return CallSiteFreq < CallerEntryFreq * ColdProb; 1657 } 1658 1659 Optional<int> 1660 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1661 BlockFrequencyInfo *CallerBFI) { 1662 1663 // If global profile summary is available, then callsite's hotness is 1664 // determined based on that. 1665 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1666 return Params.HotCallSiteThreshold; 1667 1668 // Otherwise we need BFI to be available and to have a locally hot callsite 1669 // threshold. 1670 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1671 return None; 1672 1673 // Determine if the callsite is hot relative to caller's entry. We could 1674 // potentially cache the computation of scaled entry frequency, but the added 1675 // complexity is not worth it unless this scaling shows up high in the 1676 // profiles. 1677 auto CallSiteBB = Call.getParent(); 1678 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1679 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1680 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1681 return Params.LocallyHotCallSiteThreshold; 1682 1683 // Otherwise treat it normally. 1684 return None; 1685 } 1686 1687 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1688 // If no size growth is allowed for this inlining, set Threshold to 0. 1689 if (!allowSizeGrowth(Call)) { 1690 Threshold = 0; 1691 return; 1692 } 1693 1694 Function *Caller = Call.getCaller(); 1695 1696 // return min(A, B) if B is valid. 1697 auto MinIfValid = [](int A, Optional<int> B) { 1698 return B ? std::min(A, B.getValue()) : A; 1699 }; 1700 1701 // return max(A, B) if B is valid. 1702 auto MaxIfValid = [](int A, Optional<int> B) { 1703 return B ? std::max(A, B.getValue()) : A; 1704 }; 1705 1706 // Various bonus percentages. These are multiplied by Threshold to get the 1707 // bonus values. 1708 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1709 // basic block at the given callsite context. This is speculatively applied 1710 // and withdrawn if more than one basic block is seen. 1711 // 1712 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1713 // of the last call to a static function as inlining such functions is 1714 // guaranteed to reduce code size. 1715 // 1716 // These bonus percentages may be set to 0 based on properties of the caller 1717 // and the callsite. 1718 int SingleBBBonusPercent = 50; 1719 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1720 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1721 1722 // Lambda to set all the above bonus and bonus percentages to 0. 1723 auto DisallowAllBonuses = [&]() { 1724 SingleBBBonusPercent = 0; 1725 VectorBonusPercent = 0; 1726 LastCallToStaticBonus = 0; 1727 }; 1728 1729 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1730 // and reduce the threshold if the caller has the necessary attribute. 1731 if (Caller->hasMinSize()) { 1732 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1733 // For minsize, we want to disable the single BB bonus and the vector 1734 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1735 // a static function will, at the minimum, eliminate the parameter setup and 1736 // call/return instructions. 1737 SingleBBBonusPercent = 0; 1738 VectorBonusPercent = 0; 1739 } else if (Caller->hasOptSize()) 1740 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1741 1742 // Adjust the threshold based on inlinehint attribute and profile based 1743 // hotness information if the caller does not have MinSize attribute. 1744 if (!Caller->hasMinSize()) { 1745 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1746 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1747 1748 // FIXME: After switching to the new passmanager, simplify the logic below 1749 // by checking only the callsite hotness/coldness as we will reliably 1750 // have local profile information. 1751 // 1752 // Callsite hotness and coldness can be determined if sample profile is 1753 // used (which adds hotness metadata to calls) or if caller's 1754 // BlockFrequencyInfo is available. 1755 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1756 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1757 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1758 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1759 // FIXME: This should update the threshold only if it exceeds the 1760 // current threshold, but AutoFDO + ThinLTO currently relies on this 1761 // behavior to prevent inlining of hot callsites during ThinLTO 1762 // compile phase. 1763 Threshold = HotCallSiteThreshold.getValue(); 1764 } else if (isColdCallSite(Call, CallerBFI)) { 1765 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1766 // Do not apply bonuses for a cold callsite including the 1767 // LastCallToStatic bonus. While this bonus might result in code size 1768 // reduction, it can cause the size of a non-cold caller to increase 1769 // preventing it from being inlined. 1770 DisallowAllBonuses(); 1771 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1772 } else if (PSI) { 1773 // Use callee's global profile information only if we have no way of 1774 // determining this via callsite information. 1775 if (PSI->isFunctionEntryHot(&Callee)) { 1776 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1777 // If callsite hotness can not be determined, we may still know 1778 // that the callee is hot and treat it as a weaker hint for threshold 1779 // increase. 1780 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1781 } else if (PSI->isFunctionEntryCold(&Callee)) { 1782 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1783 // Do not apply bonuses for a cold callee including the 1784 // LastCallToStatic bonus. While this bonus might result in code size 1785 // reduction, it can cause the size of a non-cold caller to increase 1786 // preventing it from being inlined. 1787 DisallowAllBonuses(); 1788 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1789 } 1790 } 1791 } 1792 1793 Threshold += TTI.adjustInliningThreshold(&Call); 1794 1795 // Finally, take the target-specific inlining threshold multiplier into 1796 // account. 1797 Threshold *= TTI.getInliningThresholdMultiplier(); 1798 1799 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1800 VectorBonus = Threshold * VectorBonusPercent / 100; 1801 1802 bool OnlyOneCallAndLocalLinkage = 1803 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1804 // If there is only one call of the function, and it has internal linkage, 1805 // the cost of inlining it drops dramatically. It may seem odd to update 1806 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1807 if (OnlyOneCallAndLocalLinkage) 1808 Cost -= LastCallToStaticBonus; 1809 } 1810 1811 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1812 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1813 // First try to handle simplified comparisons. 1814 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1815 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1816 })) 1817 return true; 1818 1819 if (I.getOpcode() == Instruction::FCmp) 1820 return false; 1821 1822 // Otherwise look for a comparison between constant offset pointers with 1823 // a common base. 1824 Value *LHSBase, *RHSBase; 1825 APInt LHSOffset, RHSOffset; 1826 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1827 if (LHSBase) { 1828 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1829 if (RHSBase && LHSBase == RHSBase) { 1830 // We have common bases, fold the icmp to a constant based on the 1831 // offsets. 1832 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1833 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1834 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1835 SimplifiedValues[&I] = C; 1836 ++NumConstantPtrCmps; 1837 return true; 1838 } 1839 } 1840 } 1841 1842 // If the comparison is an equality comparison with null, we can simplify it 1843 // if we know the value (argument) can't be null 1844 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1845 isKnownNonNullInCallee(I.getOperand(0))) { 1846 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1847 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1848 : ConstantInt::getFalse(I.getType()); 1849 return true; 1850 } 1851 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1852 } 1853 1854 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1855 // Try to handle a special case: we can fold computing the difference of two 1856 // constant-related pointers. 1857 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1858 Value *LHSBase, *RHSBase; 1859 APInt LHSOffset, RHSOffset; 1860 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1861 if (LHSBase) { 1862 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1863 if (RHSBase && LHSBase == RHSBase) { 1864 // We have common bases, fold the subtract to a constant based on the 1865 // offsets. 1866 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1867 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1868 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1869 SimplifiedValues[&I] = C; 1870 ++NumConstantPtrDiffs; 1871 return true; 1872 } 1873 } 1874 } 1875 1876 // Otherwise, fall back to the generic logic for simplifying and handling 1877 // instructions. 1878 return Base::visitSub(I); 1879 } 1880 1881 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1882 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1883 Constant *CLHS = dyn_cast<Constant>(LHS); 1884 if (!CLHS) 1885 CLHS = SimplifiedValues.lookup(LHS); 1886 Constant *CRHS = dyn_cast<Constant>(RHS); 1887 if (!CRHS) 1888 CRHS = SimplifiedValues.lookup(RHS); 1889 1890 Value *SimpleV = nullptr; 1891 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1892 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1893 FI->getFastMathFlags(), DL); 1894 else 1895 SimpleV = 1896 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1897 1898 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1899 SimplifiedValues[&I] = C; 1900 1901 if (SimpleV) 1902 return true; 1903 1904 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1905 disableSROA(LHS); 1906 disableSROA(RHS); 1907 1908 // If the instruction is floating point, and the target says this operation 1909 // is expensive, this may eventually become a library call. Treat the cost 1910 // as such. Unless it's fneg which can be implemented with an xor. 1911 using namespace llvm::PatternMatch; 1912 if (I.getType()->isFloatingPointTy() && 1913 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1914 !match(&I, m_FNeg(m_Value()))) 1915 onCallPenalty(); 1916 1917 return false; 1918 } 1919 1920 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1921 Value *Op = I.getOperand(0); 1922 Constant *COp = dyn_cast<Constant>(Op); 1923 if (!COp) 1924 COp = SimplifiedValues.lookup(Op); 1925 1926 Value *SimpleV = SimplifyFNegInst( 1927 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1928 1929 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1930 SimplifiedValues[&I] = C; 1931 1932 if (SimpleV) 1933 return true; 1934 1935 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1936 disableSROA(Op); 1937 1938 return false; 1939 } 1940 1941 bool CallAnalyzer::visitLoad(LoadInst &I) { 1942 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1943 return true; 1944 1945 // If the data is already loaded from this address and hasn't been clobbered 1946 // by any stores or calls, this load is likely to be redundant and can be 1947 // eliminated. 1948 if (EnableLoadElimination && 1949 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1950 onLoadEliminationOpportunity(); 1951 return true; 1952 } 1953 1954 return false; 1955 } 1956 1957 bool CallAnalyzer::visitStore(StoreInst &I) { 1958 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1959 return true; 1960 1961 // The store can potentially clobber loads and prevent repeated loads from 1962 // being eliminated. 1963 // FIXME: 1964 // 1. We can probably keep an initial set of eliminatable loads substracted 1965 // from the cost even when we finally see a store. We just need to disable 1966 // *further* accumulation of elimination savings. 1967 // 2. We should probably at some point thread MemorySSA for the callee into 1968 // this and then use that to actually compute *really* precise savings. 1969 disableLoadElimination(); 1970 return false; 1971 } 1972 1973 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1974 // Constant folding for extract value is trivial. 1975 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1976 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1977 })) 1978 return true; 1979 1980 // SROA can't look through these, but they may be free. 1981 return Base::visitExtractValue(I); 1982 } 1983 1984 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1985 // Constant folding for insert value is trivial. 1986 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1987 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1988 /*InsertedValueOperand*/ COps[1], 1989 I.getIndices()); 1990 })) 1991 return true; 1992 1993 // SROA can't look through these, but they may be free. 1994 return Base::visitInsertValue(I); 1995 } 1996 1997 /// Try to simplify a call site. 1998 /// 1999 /// Takes a concrete function and callsite and tries to actually simplify it by 2000 /// analyzing the arguments and call itself with instsimplify. Returns true if 2001 /// it has simplified the callsite to some other entity (a constant), making it 2002 /// free. 2003 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2004 // FIXME: Using the instsimplify logic directly for this is inefficient 2005 // because we have to continually rebuild the argument list even when no 2006 // simplifications can be performed. Until that is fixed with remapping 2007 // inside of instsimplify, directly constant fold calls here. 2008 if (!canConstantFoldCallTo(&Call, F)) 2009 return false; 2010 2011 // Try to re-map the arguments to constants. 2012 SmallVector<Constant *, 4> ConstantArgs; 2013 ConstantArgs.reserve(Call.arg_size()); 2014 for (Value *I : Call.args()) { 2015 Constant *C = dyn_cast<Constant>(I); 2016 if (!C) 2017 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2018 if (!C) 2019 return false; // This argument doesn't map to a constant. 2020 2021 ConstantArgs.push_back(C); 2022 } 2023 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2024 SimplifiedValues[&Call] = C; 2025 return true; 2026 } 2027 2028 return false; 2029 } 2030 2031 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2032 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2033 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2034 // This aborts the entire analysis. 2035 ExposesReturnsTwice = true; 2036 return false; 2037 } 2038 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2039 ContainsNoDuplicateCall = true; 2040 2041 Value *Callee = Call.getCalledOperand(); 2042 Function *F = dyn_cast_or_null<Function>(Callee); 2043 bool IsIndirectCall = !F; 2044 if (IsIndirectCall) { 2045 // Check if this happens to be an indirect function call to a known function 2046 // in this inline context. If not, we've done all we can. 2047 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2048 if (!F) { 2049 onCallArgumentSetup(Call); 2050 2051 if (!Call.onlyReadsMemory()) 2052 disableLoadElimination(); 2053 return Base::visitCallBase(Call); 2054 } 2055 } 2056 2057 assert(F && "Expected a call to a known function"); 2058 2059 // When we have a concrete function, first try to simplify it directly. 2060 if (simplifyCallSite(F, Call)) 2061 return true; 2062 2063 // Next check if it is an intrinsic we know about. 2064 // FIXME: Lift this into part of the InstVisitor. 2065 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2066 switch (II->getIntrinsicID()) { 2067 default: 2068 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2069 disableLoadElimination(); 2070 return Base::visitCallBase(Call); 2071 2072 case Intrinsic::load_relative: 2073 onLoadRelativeIntrinsic(); 2074 return false; 2075 2076 case Intrinsic::memset: 2077 case Intrinsic::memcpy: 2078 case Intrinsic::memmove: 2079 disableLoadElimination(); 2080 // SROA can usually chew through these intrinsics, but they aren't free. 2081 return false; 2082 case Intrinsic::icall_branch_funnel: 2083 case Intrinsic::localescape: 2084 HasUninlineableIntrinsic = true; 2085 return false; 2086 case Intrinsic::vastart: 2087 InitsVargArgs = true; 2088 return false; 2089 case Intrinsic::launder_invariant_group: 2090 case Intrinsic::strip_invariant_group: 2091 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2092 SROAArgValues[II] = SROAArg; 2093 return true; 2094 } 2095 } 2096 2097 if (F == Call.getFunction()) { 2098 // This flag will fully abort the analysis, so don't bother with anything 2099 // else. 2100 IsRecursiveCall = true; 2101 return false; 2102 } 2103 2104 if (TTI.isLoweredToCall(F)) { 2105 onLoweredCall(F, Call, IsIndirectCall); 2106 } 2107 2108 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2109 disableLoadElimination(); 2110 return Base::visitCallBase(Call); 2111 } 2112 2113 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2114 // At least one return instruction will be free after inlining. 2115 bool Free = !HasReturn; 2116 HasReturn = true; 2117 return Free; 2118 } 2119 2120 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2121 // We model unconditional branches as essentially free -- they really 2122 // shouldn't exist at all, but handling them makes the behavior of the 2123 // inliner more regular and predictable. Interestingly, conditional branches 2124 // which will fold away are also free. 2125 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2126 dyn_cast_or_null<ConstantInt>( 2127 SimplifiedValues.lookup(BI.getCondition())); 2128 } 2129 2130 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2131 bool CheckSROA = SI.getType()->isPointerTy(); 2132 Value *TrueVal = SI.getTrueValue(); 2133 Value *FalseVal = SI.getFalseValue(); 2134 2135 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2136 if (!TrueC) 2137 TrueC = SimplifiedValues.lookup(TrueVal); 2138 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2139 if (!FalseC) 2140 FalseC = SimplifiedValues.lookup(FalseVal); 2141 Constant *CondC = 2142 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2143 2144 if (!CondC) { 2145 // Select C, X, X => X 2146 if (TrueC == FalseC && TrueC) { 2147 SimplifiedValues[&SI] = TrueC; 2148 return true; 2149 } 2150 2151 if (!CheckSROA) 2152 return Base::visitSelectInst(SI); 2153 2154 std::pair<Value *, APInt> TrueBaseAndOffset = 2155 ConstantOffsetPtrs.lookup(TrueVal); 2156 std::pair<Value *, APInt> FalseBaseAndOffset = 2157 ConstantOffsetPtrs.lookup(FalseVal); 2158 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2159 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2160 2161 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2162 SROAArgValues[&SI] = SROAArg; 2163 return true; 2164 } 2165 2166 return Base::visitSelectInst(SI); 2167 } 2168 2169 // Select condition is a constant. 2170 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2171 : (CondC->isNullValue()) ? FalseVal 2172 : nullptr; 2173 if (!SelectedV) { 2174 // Condition is a vector constant that is not all 1s or all 0s. If all 2175 // operands are constants, ConstantExpr::getSelect() can handle the cases 2176 // such as select vectors. 2177 if (TrueC && FalseC) { 2178 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 2179 SimplifiedValues[&SI] = C; 2180 return true; 2181 } 2182 } 2183 return Base::visitSelectInst(SI); 2184 } 2185 2186 // Condition is either all 1s or all 0s. SI can be simplified. 2187 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2188 SimplifiedValues[&SI] = SelectedC; 2189 return true; 2190 } 2191 2192 if (!CheckSROA) 2193 return true; 2194 2195 std::pair<Value *, APInt> BaseAndOffset = 2196 ConstantOffsetPtrs.lookup(SelectedV); 2197 if (BaseAndOffset.first) { 2198 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2199 2200 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2201 SROAArgValues[&SI] = SROAArg; 2202 } 2203 2204 return true; 2205 } 2206 2207 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2208 // We model unconditional switches as free, see the comments on handling 2209 // branches. 2210 if (isa<ConstantInt>(SI.getCondition())) 2211 return true; 2212 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2213 if (isa<ConstantInt>(V)) 2214 return true; 2215 2216 // Assume the most general case where the switch is lowered into 2217 // either a jump table, bit test, or a balanced binary tree consisting of 2218 // case clusters without merging adjacent clusters with the same 2219 // destination. We do not consider the switches that are lowered with a mix 2220 // of jump table/bit test/binary search tree. The cost of the switch is 2221 // proportional to the size of the tree or the size of jump table range. 2222 // 2223 // NB: We convert large switches which are just used to initialize large phi 2224 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2225 // inlining those. It will prevent inlining in cases where the optimization 2226 // does not (yet) fire. 2227 2228 unsigned JumpTableSize = 0; 2229 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2230 unsigned NumCaseCluster = 2231 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2232 2233 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2234 return false; 2235 } 2236 2237 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2238 // We never want to inline functions that contain an indirectbr. This is 2239 // incorrect because all the blockaddress's (in static global initializers 2240 // for example) would be referring to the original function, and this 2241 // indirect jump would jump from the inlined copy of the function into the 2242 // original function which is extremely undefined behavior. 2243 // FIXME: This logic isn't really right; we can safely inline functions with 2244 // indirectbr's as long as no other function or global references the 2245 // blockaddress of a block within the current function. 2246 HasIndirectBr = true; 2247 return false; 2248 } 2249 2250 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2251 // FIXME: It's not clear that a single instruction is an accurate model for 2252 // the inline cost of a resume instruction. 2253 return false; 2254 } 2255 2256 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2257 // FIXME: It's not clear that a single instruction is an accurate model for 2258 // the inline cost of a cleanupret instruction. 2259 return false; 2260 } 2261 2262 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2263 // FIXME: It's not clear that a single instruction is an accurate model for 2264 // the inline cost of a catchret instruction. 2265 return false; 2266 } 2267 2268 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2269 // FIXME: It might be reasonably to discount the cost of instructions leading 2270 // to unreachable as they have the lowest possible impact on both runtime and 2271 // code size. 2272 return true; // No actual code is needed for unreachable. 2273 } 2274 2275 bool CallAnalyzer::visitInstruction(Instruction &I) { 2276 // Some instructions are free. All of the free intrinsics can also be 2277 // handled by SROA, etc. 2278 if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2279 TargetTransformInfo::TCC_Free) 2280 return true; 2281 2282 // We found something we don't understand or can't handle. Mark any SROA-able 2283 // values in the operand list as no longer viable. 2284 for (const Use &Op : I.operands()) 2285 disableSROA(Op); 2286 2287 return false; 2288 } 2289 2290 /// Analyze a basic block for its contribution to the inline cost. 2291 /// 2292 /// This method walks the analyzer over every instruction in the given basic 2293 /// block and accounts for their cost during inlining at this callsite. It 2294 /// aborts early if the threshold has been exceeded or an impossible to inline 2295 /// construct has been detected. It returns false if inlining is no longer 2296 /// viable, and true if inlining remains viable. 2297 InlineResult 2298 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2299 SmallPtrSetImpl<const Value *> &EphValues) { 2300 for (Instruction &I : *BB) { 2301 // FIXME: Currently, the number of instructions in a function regardless of 2302 // our ability to simplify them during inline to constants or dead code, 2303 // are actually used by the vector bonus heuristic. As long as that's true, 2304 // we have to special case debug intrinsics here to prevent differences in 2305 // inlining due to debug symbols. Eventually, the number of unsimplified 2306 // instructions shouldn't factor into the cost computation, but until then, 2307 // hack around it here. 2308 if (isa<DbgInfoIntrinsic>(I)) 2309 continue; 2310 2311 // Skip pseudo-probes. 2312 if (isa<PseudoProbeInst>(I)) 2313 continue; 2314 2315 // Skip ephemeral values. 2316 if (EphValues.count(&I)) 2317 continue; 2318 2319 ++NumInstructions; 2320 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2321 ++NumVectorInstructions; 2322 2323 // If the instruction simplified to a constant, there is no cost to this 2324 // instruction. Visit the instructions using our InstVisitor to account for 2325 // all of the per-instruction logic. The visit tree returns true if we 2326 // consumed the instruction in any way, and false if the instruction's base 2327 // cost should count against inlining. 2328 onInstructionAnalysisStart(&I); 2329 2330 if (Base::visit(&I)) 2331 ++NumInstructionsSimplified; 2332 else 2333 onMissedSimplification(); 2334 2335 onInstructionAnalysisFinish(&I); 2336 using namespace ore; 2337 // If the visit this instruction detected an uninlinable pattern, abort. 2338 InlineResult IR = InlineResult::success(); 2339 if (IsRecursiveCall) 2340 IR = InlineResult::failure("recursive"); 2341 else if (ExposesReturnsTwice) 2342 IR = InlineResult::failure("exposes returns twice"); 2343 else if (HasDynamicAlloca) 2344 IR = InlineResult::failure("dynamic alloca"); 2345 else if (HasIndirectBr) 2346 IR = InlineResult::failure("indirect branch"); 2347 else if (HasUninlineableIntrinsic) 2348 IR = InlineResult::failure("uninlinable intrinsic"); 2349 else if (InitsVargArgs) 2350 IR = InlineResult::failure("varargs"); 2351 if (!IR.isSuccess()) { 2352 if (ORE) 2353 ORE->emit([&]() { 2354 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2355 &CandidateCall) 2356 << NV("Callee", &F) << " has uninlinable pattern (" 2357 << NV("InlineResult", IR.getFailureReason()) 2358 << ") and cost is not fully computed"; 2359 }); 2360 return IR; 2361 } 2362 2363 // If the caller is a recursive function then we don't want to inline 2364 // functions which allocate a lot of stack space because it would increase 2365 // the caller stack usage dramatically. 2366 if (IsCallerRecursive && 2367 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 2368 auto IR = 2369 InlineResult::failure("recursive and allocates too much stack space"); 2370 if (ORE) 2371 ORE->emit([&]() { 2372 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2373 &CandidateCall) 2374 << NV("Callee", &F) << " is " 2375 << NV("InlineResult", IR.getFailureReason()) 2376 << ". Cost is not fully computed"; 2377 }); 2378 return IR; 2379 } 2380 2381 if (shouldStop()) 2382 return InlineResult::failure( 2383 "Call site analysis is not favorable to inlining."); 2384 } 2385 2386 return InlineResult::success(); 2387 } 2388 2389 /// Compute the base pointer and cumulative constant offsets for V. 2390 /// 2391 /// This strips all constant offsets off of V, leaving it the base pointer, and 2392 /// accumulates the total constant offset applied in the returned constant. It 2393 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2394 /// no constant offsets applied. 2395 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2396 if (!V->getType()->isPointerTy()) 2397 return nullptr; 2398 2399 unsigned AS = V->getType()->getPointerAddressSpace(); 2400 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2401 APInt Offset = APInt::getNullValue(IntPtrWidth); 2402 2403 // Even though we don't look through PHI nodes, we could be called on an 2404 // instruction in an unreachable block, which may be on a cycle. 2405 SmallPtrSet<Value *, 4> Visited; 2406 Visited.insert(V); 2407 do { 2408 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2409 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2410 return nullptr; 2411 V = GEP->getPointerOperand(); 2412 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2413 V = cast<Operator>(V)->getOperand(0); 2414 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2415 if (GA->isInterposable()) 2416 break; 2417 V = GA->getAliasee(); 2418 } else { 2419 break; 2420 } 2421 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2422 } while (Visited.insert(V).second); 2423 2424 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2425 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2426 } 2427 2428 /// Find dead blocks due to deleted CFG edges during inlining. 2429 /// 2430 /// If we know the successor of the current block, \p CurrBB, has to be \p 2431 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2432 /// no live incoming CFG edges. If one block is found to be dead, we can 2433 /// continue growing the dead block list by checking the successors of the dead 2434 /// blocks to see if all their incoming edges are dead or not. 2435 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2436 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2437 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2438 // known successor which is not the one under exam. 2439 return (DeadBlocks.count(Pred) || 2440 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2441 }; 2442 2443 auto IsNewlyDead = [&](BasicBlock *BB) { 2444 // If all the edges to a block are dead, the block is also dead. 2445 return (!DeadBlocks.count(BB) && 2446 llvm::all_of(predecessors(BB), 2447 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2448 }; 2449 2450 for (BasicBlock *Succ : successors(CurrBB)) { 2451 if (Succ == NextBB || !IsNewlyDead(Succ)) 2452 continue; 2453 SmallVector<BasicBlock *, 4> NewDead; 2454 NewDead.push_back(Succ); 2455 while (!NewDead.empty()) { 2456 BasicBlock *Dead = NewDead.pop_back_val(); 2457 if (DeadBlocks.insert(Dead)) 2458 // Continue growing the dead block lists. 2459 for (BasicBlock *S : successors(Dead)) 2460 if (IsNewlyDead(S)) 2461 NewDead.push_back(S); 2462 } 2463 } 2464 } 2465 2466 /// Analyze a call site for potential inlining. 2467 /// 2468 /// Returns true if inlining this call is viable, and false if it is not 2469 /// viable. It computes the cost and adjusts the threshold based on numerous 2470 /// factors and heuristics. If this method returns false but the computed cost 2471 /// is below the computed threshold, then inlining was forcibly disabled by 2472 /// some artifact of the routine. 2473 InlineResult CallAnalyzer::analyze() { 2474 ++NumCallsAnalyzed; 2475 2476 auto Result = onAnalysisStart(); 2477 if (!Result.isSuccess()) 2478 return Result; 2479 2480 if (F.empty()) 2481 return InlineResult::success(); 2482 2483 Function *Caller = CandidateCall.getFunction(); 2484 // Check if the caller function is recursive itself. 2485 for (User *U : Caller->users()) { 2486 CallBase *Call = dyn_cast<CallBase>(U); 2487 if (Call && Call->getFunction() == Caller) { 2488 IsCallerRecursive = true; 2489 break; 2490 } 2491 } 2492 2493 // Populate our simplified values by mapping from function arguments to call 2494 // arguments with known important simplifications. 2495 auto CAI = CandidateCall.arg_begin(); 2496 for (Argument &FAI : F.args()) { 2497 assert(CAI != CandidateCall.arg_end()); 2498 if (Constant *C = dyn_cast<Constant>(CAI)) 2499 SimplifiedValues[&FAI] = C; 2500 2501 Value *PtrArg = *CAI; 2502 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2503 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2504 2505 // We can SROA any pointer arguments derived from alloca instructions. 2506 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2507 SROAArgValues[&FAI] = SROAArg; 2508 onInitializeSROAArg(SROAArg); 2509 EnabledSROAAllocas.insert(SROAArg); 2510 } 2511 } 2512 ++CAI; 2513 } 2514 NumConstantArgs = SimplifiedValues.size(); 2515 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2516 NumAllocaArgs = SROAArgValues.size(); 2517 2518 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2519 // the ephemeral values multiple times (and they're completely determined by 2520 // the callee, so this is purely duplicate work). 2521 SmallPtrSet<const Value *, 32> EphValues; 2522 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2523 2524 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2525 // adding basic blocks of the callee which can be proven to be dead for this 2526 // particular call site in order to get more accurate cost estimates. This 2527 // requires a somewhat heavyweight iteration pattern: we need to walk the 2528 // basic blocks in a breadth-first order as we insert live successors. To 2529 // accomplish this, prioritizing for small iterations because we exit after 2530 // crossing our threshold, we use a small-size optimized SetVector. 2531 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2532 SmallPtrSet<BasicBlock *, 16>> 2533 BBSetVector; 2534 BBSetVector BBWorklist; 2535 BBWorklist.insert(&F.getEntryBlock()); 2536 2537 // Note that we *must not* cache the size, this loop grows the worklist. 2538 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2539 if (shouldStop()) 2540 break; 2541 2542 BasicBlock *BB = BBWorklist[Idx]; 2543 if (BB->empty()) 2544 continue; 2545 2546 onBlockStart(BB); 2547 2548 // Disallow inlining a blockaddress with uses other than strictly callbr. 2549 // A blockaddress only has defined behavior for an indirect branch in the 2550 // same function, and we do not currently support inlining indirect 2551 // branches. But, the inliner may not see an indirect branch that ends up 2552 // being dead code at a particular call site. If the blockaddress escapes 2553 // the function, e.g., via a global variable, inlining may lead to an 2554 // invalid cross-function reference. 2555 // FIXME: pr/39560: continue relaxing this overt restriction. 2556 if (BB->hasAddressTaken()) 2557 for (User *U : BlockAddress::get(&*BB)->users()) 2558 if (!isa<CallBrInst>(*U)) 2559 return InlineResult::failure("blockaddress used outside of callbr"); 2560 2561 // Analyze the cost of this block. If we blow through the threshold, this 2562 // returns false, and we can bail on out. 2563 InlineResult IR = analyzeBlock(BB, EphValues); 2564 if (!IR.isSuccess()) 2565 return IR; 2566 2567 Instruction *TI = BB->getTerminator(); 2568 2569 // Add in the live successors by first checking whether we have terminator 2570 // that may be simplified based on the values simplified by this call. 2571 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2572 if (BI->isConditional()) { 2573 Value *Cond = BI->getCondition(); 2574 if (ConstantInt *SimpleCond = 2575 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2576 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2577 BBWorklist.insert(NextBB); 2578 KnownSuccessors[BB] = NextBB; 2579 findDeadBlocks(BB, NextBB); 2580 continue; 2581 } 2582 } 2583 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2584 Value *Cond = SI->getCondition(); 2585 if (ConstantInt *SimpleCond = 2586 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2587 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2588 BBWorklist.insert(NextBB); 2589 KnownSuccessors[BB] = NextBB; 2590 findDeadBlocks(BB, NextBB); 2591 continue; 2592 } 2593 } 2594 2595 // If we're unable to select a particular successor, just count all of 2596 // them. 2597 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2598 ++TIdx) 2599 BBWorklist.insert(TI->getSuccessor(TIdx)); 2600 2601 onBlockAnalyzed(BB); 2602 } 2603 2604 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2605 &F == CandidateCall.getCalledFunction(); 2606 // If this is a noduplicate call, we can still inline as long as 2607 // inlining this would cause the removal of the caller (so the instruction 2608 // is not actually duplicated, just moved). 2609 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2610 return InlineResult::failure("noduplicate"); 2611 2612 return finalizeAnalysis(); 2613 } 2614 2615 void InlineCostCallAnalyzer::print() { 2616 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2617 if (PrintInstructionComments) 2618 F.print(dbgs(), &Writer); 2619 DEBUG_PRINT_STAT(NumConstantArgs); 2620 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2621 DEBUG_PRINT_STAT(NumAllocaArgs); 2622 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2623 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2624 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2625 DEBUG_PRINT_STAT(NumInstructions); 2626 DEBUG_PRINT_STAT(SROACostSavings); 2627 DEBUG_PRINT_STAT(SROACostSavingsLost); 2628 DEBUG_PRINT_STAT(LoadEliminationCost); 2629 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2630 DEBUG_PRINT_STAT(Cost); 2631 DEBUG_PRINT_STAT(Threshold); 2632 #undef DEBUG_PRINT_STAT 2633 } 2634 2635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2636 /// Dump stats about this call's analysis. 2637 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(); } 2638 #endif 2639 2640 /// Test that there are no attribute conflicts between Caller and Callee 2641 /// that prevent inlining. 2642 static bool functionsHaveCompatibleAttributes( 2643 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2644 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2645 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2646 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2647 // object, and always returns the same object (which is overwritten on each 2648 // GetTLI call). Therefore we copy the first result. 2649 auto CalleeTLI = GetTLI(*Callee); 2650 return TTI.areInlineCompatible(Caller, Callee) && 2651 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2652 InlineCallerSupersetNoBuiltin) && 2653 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2654 } 2655 2656 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2657 int Cost = 0; 2658 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2659 if (Call.isByValArgument(I)) { 2660 // We approximate the number of loads and stores needed by dividing the 2661 // size of the byval type by the target's pointer size. 2662 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2663 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2664 unsigned AS = PTy->getAddressSpace(); 2665 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2666 // Ceiling division. 2667 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2668 2669 // If it generates more than 8 stores it is likely to be expanded as an 2670 // inline memcpy so we take that as an upper bound. Otherwise we assume 2671 // one load and one store per word copied. 2672 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2673 // here instead of a magic number of 8, but it's not available via 2674 // DataLayout. 2675 NumStores = std::min(NumStores, 8U); 2676 2677 Cost += 2 * NumStores * InlineConstants::InstrCost; 2678 } else { 2679 // For non-byval arguments subtract off one instruction per call 2680 // argument. 2681 Cost += InlineConstants::InstrCost; 2682 } 2683 } 2684 // The call instruction also disappears after inlining. 2685 Cost += InlineConstants::InstrCost + CallPenalty; 2686 return Cost; 2687 } 2688 2689 InlineCost llvm::getInlineCost( 2690 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2691 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2692 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2693 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2694 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2695 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2696 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2697 } 2698 2699 Optional<int> llvm::getInliningCostEstimate( 2700 CallBase &Call, TargetTransformInfo &CalleeTTI, 2701 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2702 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2703 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2704 const InlineParams Params = {/* DefaultThreshold*/ 0, 2705 /*HintThreshold*/ {}, 2706 /*ColdThreshold*/ {}, 2707 /*OptSizeThreshold*/ {}, 2708 /*OptMinSizeThreshold*/ {}, 2709 /*HotCallSiteThreshold*/ {}, 2710 /*LocallyHotCallSiteThreshold*/ {}, 2711 /*ColdCallSiteThreshold*/ {}, 2712 /*ComputeFullInlineCost*/ true, 2713 /*EnableDeferral*/ true}; 2714 2715 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2716 GetAssumptionCache, GetBFI, PSI, ORE, true, 2717 /*IgnoreThreshold*/ true); 2718 auto R = CA.analyze(); 2719 if (!R.isSuccess()) 2720 return None; 2721 return CA.getCost(); 2722 } 2723 2724 Optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2725 CallBase &Call, TargetTransformInfo &CalleeTTI, 2726 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2727 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2728 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2729 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2730 ORE, *Call.getCalledFunction(), Call); 2731 auto R = CFA.analyze(); 2732 if (!R.isSuccess()) 2733 return None; 2734 return CFA.features(); 2735 } 2736 2737 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2738 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2739 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2740 2741 // Cannot inline indirect calls. 2742 if (!Callee) 2743 return InlineResult::failure("indirect call"); 2744 2745 // When callee coroutine function is inlined into caller coroutine function 2746 // before coro-split pass, 2747 // coro-early pass can not handle this quiet well. 2748 // So we won't inline the coroutine function if it have not been unsplited 2749 if (Callee->isPresplitCoroutine()) 2750 return InlineResult::failure("unsplited coroutine call"); 2751 2752 // Never inline calls with byval arguments that does not have the alloca 2753 // address space. Since byval arguments can be replaced with a copy to an 2754 // alloca, the inlined code would need to be adjusted to handle that the 2755 // argument is in the alloca address space (so it is a little bit complicated 2756 // to solve). 2757 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2758 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2759 if (Call.isByValArgument(I)) { 2760 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2761 if (PTy->getAddressSpace() != AllocaAS) 2762 return InlineResult::failure("byval arguments without alloca" 2763 " address space"); 2764 } 2765 2766 // Calls to functions with always-inline attributes should be inlined 2767 // whenever possible. 2768 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2769 auto IsViable = isInlineViable(*Callee); 2770 if (IsViable.isSuccess()) 2771 return InlineResult::success(); 2772 return InlineResult::failure(IsViable.getFailureReason()); 2773 } 2774 2775 // Never inline functions with conflicting attributes (unless callee has 2776 // always-inline attribute). 2777 Function *Caller = Call.getCaller(); 2778 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2779 return InlineResult::failure("conflicting attributes"); 2780 2781 // Don't inline this call if the caller has the optnone attribute. 2782 if (Caller->hasOptNone()) 2783 return InlineResult::failure("optnone attribute"); 2784 2785 // Don't inline a function that treats null pointer as valid into a caller 2786 // that does not have this attribute. 2787 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2788 return InlineResult::failure("nullptr definitions incompatible"); 2789 2790 // Don't inline functions which can be interposed at link-time. 2791 if (Callee->isInterposable()) 2792 return InlineResult::failure("interposable"); 2793 2794 // Don't inline functions marked noinline. 2795 if (Callee->hasFnAttribute(Attribute::NoInline)) 2796 return InlineResult::failure("noinline function attribute"); 2797 2798 // Don't inline call sites marked noinline. 2799 if (Call.isNoInline()) 2800 return InlineResult::failure("noinline call site attribute"); 2801 2802 // Don't inline functions if one does not have any stack protector attribute 2803 // but the other does. 2804 if (Caller->hasStackProtectorFnAttr() && !Callee->hasStackProtectorFnAttr()) 2805 return InlineResult::failure( 2806 "stack protected caller but callee requested no stack protector"); 2807 if (Callee->hasStackProtectorFnAttr() && !Caller->hasStackProtectorFnAttr()) 2808 return InlineResult::failure( 2809 "stack protected callee but caller requested no stack protector"); 2810 2811 return None; 2812 } 2813 2814 InlineCost llvm::getInlineCost( 2815 CallBase &Call, Function *Callee, const InlineParams &Params, 2816 TargetTransformInfo &CalleeTTI, 2817 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2818 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2819 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2820 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2821 2822 auto UserDecision = 2823 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2824 2825 if (UserDecision.hasValue()) { 2826 if (UserDecision->isSuccess()) 2827 return llvm::InlineCost::getAlways("always inline attribute"); 2828 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2829 } 2830 2831 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2832 << "... (caller:" << Call.getCaller()->getName() 2833 << ")\n"); 2834 2835 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2836 GetAssumptionCache, GetBFI, PSI, ORE); 2837 InlineResult ShouldInline = CA.analyze(); 2838 2839 LLVM_DEBUG(CA.dump()); 2840 2841 // Always make cost benefit based decision explicit. 2842 // We use always/never here since threshold is not meaningful, 2843 // as it's not what drives cost-benefit analysis. 2844 if (CA.wasDecidedByCostBenefit()) { 2845 if (ShouldInline.isSuccess()) 2846 return InlineCost::getAlways("benefit over cost", 2847 CA.getCostBenefitPair()); 2848 else 2849 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 2850 } 2851 2852 // Check if there was a reason to force inlining or no inlining. 2853 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2854 return InlineCost::getNever(ShouldInline.getFailureReason()); 2855 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2856 return InlineCost::getAlways("empty function"); 2857 2858 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2859 } 2860 2861 InlineResult llvm::isInlineViable(Function &F) { 2862 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2863 for (BasicBlock &BB : F) { 2864 // Disallow inlining of functions which contain indirect branches. 2865 if (isa<IndirectBrInst>(BB.getTerminator())) 2866 return InlineResult::failure("contains indirect branches"); 2867 2868 // Disallow inlining of blockaddresses which are used by non-callbr 2869 // instructions. 2870 if (BB.hasAddressTaken()) 2871 for (User *U : BlockAddress::get(&BB)->users()) 2872 if (!isa<CallBrInst>(*U)) 2873 return InlineResult::failure("blockaddress used outside of callbr"); 2874 2875 for (auto &II : BB) { 2876 CallBase *Call = dyn_cast<CallBase>(&II); 2877 if (!Call) 2878 continue; 2879 2880 // Disallow recursive calls. 2881 Function *Callee = Call->getCalledFunction(); 2882 if (&F == Callee) 2883 return InlineResult::failure("recursive call"); 2884 2885 // Disallow calls which expose returns-twice to a function not previously 2886 // attributed as such. 2887 if (!ReturnsTwice && isa<CallInst>(Call) && 2888 cast<CallInst>(Call)->canReturnTwice()) 2889 return InlineResult::failure("exposes returns-twice attribute"); 2890 2891 if (Callee) 2892 switch (Callee->getIntrinsicID()) { 2893 default: 2894 break; 2895 case llvm::Intrinsic::icall_branch_funnel: 2896 // Disallow inlining of @llvm.icall.branch.funnel because current 2897 // backend can't separate call targets from call arguments. 2898 return InlineResult::failure( 2899 "disallowed inlining of @llvm.icall.branch.funnel"); 2900 case llvm::Intrinsic::localescape: 2901 // Disallow inlining functions that call @llvm.localescape. Doing this 2902 // correctly would require major changes to the inliner. 2903 return InlineResult::failure( 2904 "disallowed inlining of @llvm.localescape"); 2905 case llvm::Intrinsic::vastart: 2906 // Disallow inlining of functions that initialize VarArgs with 2907 // va_start. 2908 return InlineResult::failure( 2909 "contains VarArgs initialized with va_start"); 2910 } 2911 } 2912 } 2913 2914 return InlineResult::success(); 2915 } 2916 2917 // APIs to create InlineParams based on command line flags and/or other 2918 // parameters. 2919 2920 InlineParams llvm::getInlineParams(int Threshold) { 2921 InlineParams Params; 2922 2923 // This field is the threshold to use for a callee by default. This is 2924 // derived from one or more of: 2925 // * optimization or size-optimization levels, 2926 // * a value passed to createFunctionInliningPass function, or 2927 // * the -inline-threshold flag. 2928 // If the -inline-threshold flag is explicitly specified, that is used 2929 // irrespective of anything else. 2930 if (InlineThreshold.getNumOccurrences() > 0) 2931 Params.DefaultThreshold = InlineThreshold; 2932 else 2933 Params.DefaultThreshold = Threshold; 2934 2935 // Set the HintThreshold knob from the -inlinehint-threshold. 2936 Params.HintThreshold = HintThreshold; 2937 2938 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2939 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2940 2941 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2942 // populate LocallyHotCallSiteThreshold. Later, we populate 2943 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2944 // we know that optimization level is O3 (in the getInlineParams variant that 2945 // takes the opt and size levels). 2946 // FIXME: Remove this check (and make the assignment unconditional) after 2947 // addressing size regression issues at O2. 2948 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2949 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2950 2951 // Set the ColdCallSiteThreshold knob from the 2952 // -inline-cold-callsite-threshold. 2953 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2954 2955 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2956 // -inlinehint-threshold commandline option is not explicitly given. If that 2957 // option is present, then its value applies even for callees with size and 2958 // minsize attributes. 2959 // If the -inline-threshold is not specified, set the ColdThreshold from the 2960 // -inlinecold-threshold even if it is not explicitly passed. If 2961 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2962 // explicitly specified to set the ColdThreshold knob 2963 if (InlineThreshold.getNumOccurrences() == 0) { 2964 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2965 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2966 Params.ColdThreshold = ColdThreshold; 2967 } else if (ColdThreshold.getNumOccurrences() > 0) { 2968 Params.ColdThreshold = ColdThreshold; 2969 } 2970 return Params; 2971 } 2972 2973 InlineParams llvm::getInlineParams() { 2974 return getInlineParams(DefaultThreshold); 2975 } 2976 2977 // Compute the default threshold for inlining based on the opt level and the 2978 // size opt level. 2979 static int computeThresholdFromOptLevels(unsigned OptLevel, 2980 unsigned SizeOptLevel) { 2981 if (OptLevel > 2) 2982 return InlineConstants::OptAggressiveThreshold; 2983 if (SizeOptLevel == 1) // -Os 2984 return InlineConstants::OptSizeThreshold; 2985 if (SizeOptLevel == 2) // -Oz 2986 return InlineConstants::OptMinSizeThreshold; 2987 return DefaultThreshold; 2988 } 2989 2990 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2991 auto Params = 2992 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2993 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2994 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2995 // when it is specified explicitly. 2996 if (OptLevel > 2) 2997 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2998 return Params; 2999 } 3000 3001 PreservedAnalyses 3002 InlineCostAnnotationPrinterPass::run(Function &F, 3003 FunctionAnalysisManager &FAM) { 3004 PrintInstructionComments = true; 3005 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3006 [&](Function &F) -> AssumptionCache & { 3007 return FAM.getResult<AssumptionAnalysis>(F); 3008 }; 3009 Module *M = F.getParent(); 3010 ProfileSummaryInfo PSI(*M); 3011 DataLayout DL(M); 3012 TargetTransformInfo TTI(DL); 3013 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3014 // In the current implementation, the type of InlineParams doesn't matter as 3015 // the pass serves only for verification of inliner's decisions. 3016 // We can add a flag which determines InlineParams for this run. Right now, 3017 // the default InlineParams are used. 3018 const InlineParams Params = llvm::getInlineParams(); 3019 for (BasicBlock &BB : F) { 3020 for (Instruction &I : BB) { 3021 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3022 Function *CalledFunction = CI->getCalledFunction(); 3023 if (!CalledFunction || CalledFunction->isDeclaration()) 3024 continue; 3025 OptimizationRemarkEmitter ORE(CalledFunction); 3026 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3027 GetAssumptionCache, nullptr, &PSI, &ORE); 3028 ICCA.analyze(); 3029 OS << " Analyzing call of " << CalledFunction->getName() 3030 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3031 ICCA.print(); 3032 } 3033 } 3034 } 3035 return PreservedAnalyses::all(); 3036 } 3037