xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/InlineCost.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inline cost analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/CodeMetrics.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ProfileSummaryInfo.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/AssemblyAnnotationWriter.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/InstVisitor.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/raw_ostream.h"
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "inline-cost"
49 
50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
51 
52 static cl::opt<int>
53     DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
54                      cl::ZeroOrMore,
55                      cl::desc("Default amount of inlining to perform"));
56 
57 static cl::opt<bool> PrintInstructionComments(
58     "print-instruction-comments", cl::Hidden, cl::init(false),
59     cl::desc("Prints comments for instruction based on inline cost analysis"));
60 
61 static cl::opt<int> InlineThreshold(
62     "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
63     cl::desc("Control the amount of inlining to perform (default = 225)"));
64 
65 static cl::opt<int> HintThreshold(
66     "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
67     cl::desc("Threshold for inlining functions with inline hint"));
68 
69 static cl::opt<int>
70     ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
71                           cl::init(45), cl::ZeroOrMore,
72                           cl::desc("Threshold for inlining cold callsites"));
73 
74 static cl::opt<bool> InlineEnableCostBenefitAnalysis(
75     "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false),
76     cl::desc("Enable the cost-benefit analysis for the inliner"));
77 
78 static cl::opt<int> InlineSavingsMultiplier(
79     "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore,
80     cl::desc("Multiplier to multiply cycle savings by during inlining"));
81 
82 static cl::opt<int>
83     InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100),
84                         cl::ZeroOrMore,
85                         cl::desc("The maximum size of a callee that get's "
86                                  "inlined without sufficient cycle savings"));
87 
88 // We introduce this threshold to help performance of instrumentation based
89 // PGO before we actually hook up inliner with analysis passes such as BPI and
90 // BFI.
91 static cl::opt<int> ColdThreshold(
92     "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
93     cl::desc("Threshold for inlining functions with cold attribute"));
94 
95 static cl::opt<int>
96     HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
97                          cl::ZeroOrMore,
98                          cl::desc("Threshold for hot callsites "));
99 
100 static cl::opt<int> LocallyHotCallSiteThreshold(
101     "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
102     cl::desc("Threshold for locally hot callsites "));
103 
104 static cl::opt<int> ColdCallSiteRelFreq(
105     "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
106     cl::desc("Maximum block frequency, expressed as a percentage of caller's "
107              "entry frequency, for a callsite to be cold in the absence of "
108              "profile information."));
109 
110 static cl::opt<int> HotCallSiteRelFreq(
111     "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
112     cl::desc("Minimum block frequency, expressed as a multiple of caller's "
113              "entry frequency, for a callsite to be hot in the absence of "
114              "profile information."));
115 
116 static cl::opt<int> CallPenalty(
117     "inline-call-penalty", cl::Hidden, cl::init(25),
118     cl::desc("Call penalty that is applied per callsite when inlining"));
119 
120 static cl::opt<bool> OptComputeFullInlineCost(
121     "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
122     cl::desc("Compute the full inline cost of a call site even when the cost "
123              "exceeds the threshold."));
124 
125 static cl::opt<bool> InlineCallerSupersetNoBuiltin(
126     "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
127     cl::ZeroOrMore,
128     cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
129              "attributes."));
130 
131 static cl::opt<bool> DisableGEPConstOperand(
132     "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
133     cl::desc("Disables evaluation of GetElementPtr with constant operands"));
134 
135 namespace {
136 class InlineCostCallAnalyzer;
137 
138 // This struct is used to store information about inline cost of a
139 // particular instruction
140 struct InstructionCostDetail {
141   int CostBefore = 0;
142   int CostAfter = 0;
143   int ThresholdBefore = 0;
144   int ThresholdAfter = 0;
145 
146   int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }
147 
148   int getCostDelta() const { return CostAfter - CostBefore; }
149 
150   bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
151 };
152 
153 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
154 private:
155   InlineCostCallAnalyzer *const ICCA;
156 
157 public:
158   InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
159   virtual void emitInstructionAnnot(const Instruction *I,
160                                     formatted_raw_ostream &OS) override;
161 };
162 
163 /// Carry out call site analysis, in order to evaluate inlinability.
164 /// NOTE: the type is currently used as implementation detail of functions such
165 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the
166 /// expectation is that they come from the outer scope, from the wrapper
167 /// functions. If we want to support constructing CallAnalyzer objects where
168 /// lambdas are provided inline at construction, or where the object needs to
169 /// otherwise survive past the scope of the provided functions, we need to
170 /// revisit the argument types.
171 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
172   typedef InstVisitor<CallAnalyzer, bool> Base;
173   friend class InstVisitor<CallAnalyzer, bool>;
174 
175 protected:
176   virtual ~CallAnalyzer() {}
177   /// The TargetTransformInfo available for this compilation.
178   const TargetTransformInfo &TTI;
179 
180   /// Getter for the cache of @llvm.assume intrinsics.
181   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
182 
183   /// Getter for BlockFrequencyInfo
184   function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
185 
186   /// Profile summary information.
187   ProfileSummaryInfo *PSI;
188 
189   /// The called function.
190   Function &F;
191 
192   // Cache the DataLayout since we use it a lot.
193   const DataLayout &DL;
194 
195   /// The OptimizationRemarkEmitter available for this compilation.
196   OptimizationRemarkEmitter *ORE;
197 
198   /// The candidate callsite being analyzed. Please do not use this to do
199   /// analysis in the caller function; we want the inline cost query to be
200   /// easily cacheable. Instead, use the cover function paramHasAttr.
201   CallBase &CandidateCall;
202 
203   /// Extension points for handling callsite features.
204   // Called before a basic block was analyzed.
205   virtual void onBlockStart(const BasicBlock *BB) {}
206 
207   /// Called after a basic block was analyzed.
208   virtual void onBlockAnalyzed(const BasicBlock *BB) {}
209 
210   /// Called before an instruction was analyzed
211   virtual void onInstructionAnalysisStart(const Instruction *I) {}
212 
213   /// Called after an instruction was analyzed
214   virtual void onInstructionAnalysisFinish(const Instruction *I) {}
215 
216   /// Called at the end of the analysis of the callsite. Return the outcome of
217   /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
218   /// the reason it can't.
219   virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
220   /// Called when we're about to start processing a basic block, and every time
221   /// we are done processing an instruction. Return true if there is no point in
222   /// continuing the analysis (e.g. we've determined already the call site is
223   /// too expensive to inline)
224   virtual bool shouldStop() { return false; }
225 
226   /// Called before the analysis of the callee body starts (with callsite
227   /// contexts propagated).  It checks callsite-specific information. Return a
228   /// reason analysis can't continue if that's the case, or 'true' if it may
229   /// continue.
230   virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
231   /// Called if the analysis engine decides SROA cannot be done for the given
232   /// alloca.
233   virtual void onDisableSROA(AllocaInst *Arg) {}
234 
235   /// Called the analysis engine determines load elimination won't happen.
236   virtual void onDisableLoadElimination() {}
237 
238   /// Called to account for a call.
239   virtual void onCallPenalty() {}
240 
241   /// Called to account for the expectation the inlining would result in a load
242   /// elimination.
243   virtual void onLoadEliminationOpportunity() {}
244 
245   /// Called to account for the cost of argument setup for the Call in the
246   /// callee's body (not the callsite currently under analysis).
247   virtual void onCallArgumentSetup(const CallBase &Call) {}
248 
249   /// Called to account for a load relative intrinsic.
250   virtual void onLoadRelativeIntrinsic() {}
251 
252   /// Called to account for a lowered call.
253   virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
254   }
255 
256   /// Account for a jump table of given size. Return false to stop further
257   /// processing the switch instruction
258   virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
259 
260   /// Account for a case cluster of given size. Return false to stop further
261   /// processing of the instruction.
262   virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
263 
264   /// Called at the end of processing a switch instruction, with the given
265   /// number of case clusters.
266   virtual void onFinalizeSwitch(unsigned JumpTableSize,
267                                 unsigned NumCaseCluster) {}
268 
269   /// Called to account for any other instruction not specifically accounted
270   /// for.
271   virtual void onMissedSimplification() {}
272 
273   /// Start accounting potential benefits due to SROA for the given alloca.
274   virtual void onInitializeSROAArg(AllocaInst *Arg) {}
275 
276   /// Account SROA savings for the AllocaInst value.
277   virtual void onAggregateSROAUse(AllocaInst *V) {}
278 
279   bool handleSROA(Value *V, bool DoNotDisable) {
280     // Check for SROA candidates in comparisons.
281     if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
282       if (DoNotDisable) {
283         onAggregateSROAUse(SROAArg);
284         return true;
285       }
286       disableSROAForArg(SROAArg);
287     }
288     return false;
289   }
290 
291   bool IsCallerRecursive = false;
292   bool IsRecursiveCall = false;
293   bool ExposesReturnsTwice = false;
294   bool HasDynamicAlloca = false;
295   bool ContainsNoDuplicateCall = false;
296   bool HasReturn = false;
297   bool HasIndirectBr = false;
298   bool HasUninlineableIntrinsic = false;
299   bool InitsVargArgs = false;
300 
301   /// Number of bytes allocated statically by the callee.
302   uint64_t AllocatedSize = 0;
303   unsigned NumInstructions = 0;
304   unsigned NumVectorInstructions = 0;
305 
306   /// While we walk the potentially-inlined instructions, we build up and
307   /// maintain a mapping of simplified values specific to this callsite. The
308   /// idea is to propagate any special information we have about arguments to
309   /// this call through the inlinable section of the function, and account for
310   /// likely simplifications post-inlining. The most important aspect we track
311   /// is CFG altering simplifications -- when we prove a basic block dead, that
312   /// can cause dramatic shifts in the cost of inlining a function.
313   DenseMap<Value *, Constant *> SimplifiedValues;
314 
315   /// Keep track of the values which map back (through function arguments) to
316   /// allocas on the caller stack which could be simplified through SROA.
317   DenseMap<Value *, AllocaInst *> SROAArgValues;
318 
319   /// Keep track of Allocas for which we believe we may get SROA optimization.
320   DenseSet<AllocaInst *> EnabledSROAAllocas;
321 
322   /// Keep track of values which map to a pointer base and constant offset.
323   DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
324 
325   /// Keep track of dead blocks due to the constant arguments.
326   SetVector<BasicBlock *> DeadBlocks;
327 
328   /// The mapping of the blocks to their known unique successors due to the
329   /// constant arguments.
330   DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
331 
332   /// Model the elimination of repeated loads that is expected to happen
333   /// whenever we simplify away the stores that would otherwise cause them to be
334   /// loads.
335   bool EnableLoadElimination;
336   SmallPtrSet<Value *, 16> LoadAddrSet;
337 
338   AllocaInst *getSROAArgForValueOrNull(Value *V) const {
339     auto It = SROAArgValues.find(V);
340     if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
341       return nullptr;
342     return It->second;
343   }
344 
345   // Custom simplification helper routines.
346   bool isAllocaDerivedArg(Value *V);
347   void disableSROAForArg(AllocaInst *SROAArg);
348   void disableSROA(Value *V);
349   void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
350   void disableLoadElimination();
351   bool isGEPFree(GetElementPtrInst &GEP);
352   bool canFoldInboundsGEP(GetElementPtrInst &I);
353   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
354   bool simplifyCallSite(Function *F, CallBase &Call);
355   template <typename Callable>
356   bool simplifyInstruction(Instruction &I, Callable Evaluate);
357   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
358 
359   /// Return true if the given argument to the function being considered for
360   /// inlining has the given attribute set either at the call site or the
361   /// function declaration.  Primarily used to inspect call site specific
362   /// attributes since these can be more precise than the ones on the callee
363   /// itself.
364   bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
365 
366   /// Return true if the given value is known non null within the callee if
367   /// inlined through this particular callsite.
368   bool isKnownNonNullInCallee(Value *V);
369 
370   /// Return true if size growth is allowed when inlining the callee at \p Call.
371   bool allowSizeGrowth(CallBase &Call);
372 
373   // Custom analysis routines.
374   InlineResult analyzeBlock(BasicBlock *BB,
375                             SmallPtrSetImpl<const Value *> &EphValues);
376 
377   // Disable several entry points to the visitor so we don't accidentally use
378   // them by declaring but not defining them here.
379   void visit(Module *);
380   void visit(Module &);
381   void visit(Function *);
382   void visit(Function &);
383   void visit(BasicBlock *);
384   void visit(BasicBlock &);
385 
386   // Provide base case for our instruction visit.
387   bool visitInstruction(Instruction &I);
388 
389   // Our visit overrides.
390   bool visitAlloca(AllocaInst &I);
391   bool visitPHI(PHINode &I);
392   bool visitGetElementPtr(GetElementPtrInst &I);
393   bool visitBitCast(BitCastInst &I);
394   bool visitPtrToInt(PtrToIntInst &I);
395   bool visitIntToPtr(IntToPtrInst &I);
396   bool visitCastInst(CastInst &I);
397   bool visitCmpInst(CmpInst &I);
398   bool visitSub(BinaryOperator &I);
399   bool visitBinaryOperator(BinaryOperator &I);
400   bool visitFNeg(UnaryOperator &I);
401   bool visitLoad(LoadInst &I);
402   bool visitStore(StoreInst &I);
403   bool visitExtractValue(ExtractValueInst &I);
404   bool visitInsertValue(InsertValueInst &I);
405   bool visitCallBase(CallBase &Call);
406   bool visitReturnInst(ReturnInst &RI);
407   bool visitBranchInst(BranchInst &BI);
408   bool visitSelectInst(SelectInst &SI);
409   bool visitSwitchInst(SwitchInst &SI);
410   bool visitIndirectBrInst(IndirectBrInst &IBI);
411   bool visitResumeInst(ResumeInst &RI);
412   bool visitCleanupReturnInst(CleanupReturnInst &RI);
413   bool visitCatchReturnInst(CatchReturnInst &RI);
414   bool visitUnreachableInst(UnreachableInst &I);
415 
416 public:
417   CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
418                function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
419                function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
420                ProfileSummaryInfo *PSI = nullptr,
421                OptimizationRemarkEmitter *ORE = nullptr)
422       : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
423         PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
424         CandidateCall(Call), EnableLoadElimination(true) {}
425 
426   InlineResult analyze();
427 
428   Optional<Constant *> getSimplifiedValue(Instruction *I) {
429     if (SimplifiedValues.find(I) != SimplifiedValues.end())
430       return SimplifiedValues[I];
431     return None;
432   }
433 
434   // Keep a bunch of stats about the cost savings found so we can print them
435   // out when debugging.
436   unsigned NumConstantArgs = 0;
437   unsigned NumConstantOffsetPtrArgs = 0;
438   unsigned NumAllocaArgs = 0;
439   unsigned NumConstantPtrCmps = 0;
440   unsigned NumConstantPtrDiffs = 0;
441   unsigned NumInstructionsSimplified = 0;
442 
443   void dump();
444 };
445 
446 // Considering forming a binary search, we should find the number of nodes
447 // which is same as the number of comparisons when lowered. For a given
448 // number of clusters, n, we can define a recursive function, f(n), to find
449 // the number of nodes in the tree. The recursion is :
450 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
451 // and f(n) = n, when n <= 3.
452 // This will lead a binary tree where the leaf should be either f(2) or f(3)
453 // when n > 3.  So, the number of comparisons from leaves should be n, while
454 // the number of non-leaf should be :
455 //   2^(log2(n) - 1) - 1
456 //   = 2^log2(n) * 2^-1 - 1
457 //   = n / 2 - 1.
458 // Considering comparisons from leaf and non-leaf nodes, we can estimate the
459 // number of comparisons in a simple closed form :
460 //   n + n / 2 - 1 = n * 3 / 2 - 1
461 int64_t getExpectedNumberOfCompare(int NumCaseCluster) {
462   return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1;
463 }
464 
465 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
466 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
467 class InlineCostCallAnalyzer final : public CallAnalyzer {
468   const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
469   const bool ComputeFullInlineCost;
470   int LoadEliminationCost = 0;
471   /// Bonus to be applied when percentage of vector instructions in callee is
472   /// high (see more details in updateThreshold).
473   int VectorBonus = 0;
474   /// Bonus to be applied when the callee has only one reachable basic block.
475   int SingleBBBonus = 0;
476 
477   /// Tunable parameters that control the analysis.
478   const InlineParams &Params;
479 
480   // This DenseMap stores the delta change in cost and threshold after
481   // accounting for the given instruction. The map is filled only with the
482   // flag PrintInstructionComments on.
483   DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;
484 
485   /// Upper bound for the inlining cost. Bonuses are being applied to account
486   /// for speculative "expected profit" of the inlining decision.
487   int Threshold = 0;
488 
489   /// Attempt to evaluate indirect calls to boost its inline cost.
490   const bool BoostIndirectCalls;
491 
492   /// Ignore the threshold when finalizing analysis.
493   const bool IgnoreThreshold;
494 
495   // True if the cost-benefit-analysis-based inliner is enabled.
496   const bool CostBenefitAnalysisEnabled;
497 
498   /// Inlining cost measured in abstract units, accounts for all the
499   /// instructions expected to be executed for a given function invocation.
500   /// Instructions that are statically proven to be dead based on call-site
501   /// arguments are not counted here.
502   int Cost = 0;
503 
504   // The cumulative cost at the beginning of the basic block being analyzed.  At
505   // the end of analyzing each basic block, "Cost - CostAtBBStart" represents
506   // the size of that basic block.
507   int CostAtBBStart = 0;
508 
509   // The static size of live but cold basic blocks.  This is "static" in the
510   // sense that it's not weighted by profile counts at all.
511   int ColdSize = 0;
512 
513   // Whether inlining is decided by cost-benefit analysis.
514   bool DecidedByCostBenefit = false;
515 
516   // The cost-benefit pair computed by cost-benefit analysis.
517   Optional<CostBenefitPair> CostBenefit = None;
518 
519   bool SingleBB = true;
520 
521   unsigned SROACostSavings = 0;
522   unsigned SROACostSavingsLost = 0;
523 
524   /// The mapping of caller Alloca values to their accumulated cost savings. If
525   /// we have to disable SROA for one of the allocas, this tells us how much
526   /// cost must be added.
527   DenseMap<AllocaInst *, int> SROAArgCosts;
528 
529   /// Return true if \p Call is a cold callsite.
530   bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
531 
532   /// Update Threshold based on callsite properties such as callee
533   /// attributes and callee hotness for PGO builds. The Callee is explicitly
534   /// passed to support analyzing indirect calls whose target is inferred by
535   /// analysis.
536   void updateThreshold(CallBase &Call, Function &Callee);
537   /// Return a higher threshold if \p Call is a hot callsite.
538   Optional<int> getHotCallSiteThreshold(CallBase &Call,
539                                         BlockFrequencyInfo *CallerBFI);
540 
541   /// Handle a capped 'int' increment for Cost.
542   void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
543     assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
544     Cost = std::min<int>(UpperBound, Cost + Inc);
545   }
546 
547   void onDisableSROA(AllocaInst *Arg) override {
548     auto CostIt = SROAArgCosts.find(Arg);
549     if (CostIt == SROAArgCosts.end())
550       return;
551     addCost(CostIt->second);
552     SROACostSavings -= CostIt->second;
553     SROACostSavingsLost += CostIt->second;
554     SROAArgCosts.erase(CostIt);
555   }
556 
557   void onDisableLoadElimination() override {
558     addCost(LoadEliminationCost);
559     LoadEliminationCost = 0;
560   }
561   void onCallPenalty() override { addCost(CallPenalty); }
562   void onCallArgumentSetup(const CallBase &Call) override {
563     // Pay the price of the argument setup. We account for the average 1
564     // instruction per call argument setup here.
565     addCost(Call.arg_size() * InlineConstants::InstrCost);
566   }
567   void onLoadRelativeIntrinsic() override {
568     // This is normally lowered to 4 LLVM instructions.
569     addCost(3 * InlineConstants::InstrCost);
570   }
571   void onLoweredCall(Function *F, CallBase &Call,
572                      bool IsIndirectCall) override {
573     // We account for the average 1 instruction per call argument setup here.
574     addCost(Call.arg_size() * InlineConstants::InstrCost);
575 
576     // If we have a constant that we are calling as a function, we can peer
577     // through it and see the function target. This happens not infrequently
578     // during devirtualization and so we want to give it a hefty bonus for
579     // inlining, but cap that bonus in the event that inlining wouldn't pan out.
580     // Pretend to inline the function, with a custom threshold.
581     if (IsIndirectCall && BoostIndirectCalls) {
582       auto IndirectCallParams = Params;
583       IndirectCallParams.DefaultThreshold =
584           InlineConstants::IndirectCallThreshold;
585       /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
586       /// to instantiate the derived class.
587       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
588                                 GetAssumptionCache, GetBFI, PSI, ORE, false);
589       if (CA.analyze().isSuccess()) {
590         // We were able to inline the indirect call! Subtract the cost from the
591         // threshold to get the bonus we want to apply, but don't go below zero.
592         Cost -= std::max(0, CA.getThreshold() - CA.getCost());
593       }
594     } else
595       // Otherwise simply add the cost for merely making the call.
596       addCost(CallPenalty);
597   }
598 
599   void onFinalizeSwitch(unsigned JumpTableSize,
600                         unsigned NumCaseCluster) override {
601     // If suitable for a jump table, consider the cost for the table size and
602     // branch to destination.
603     // Maximum valid cost increased in this function.
604     if (JumpTableSize) {
605       int64_t JTCost =
606           static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost +
607           4 * InlineConstants::InstrCost;
608 
609       addCost(JTCost, static_cast<int64_t>(CostUpperBound));
610       return;
611     }
612 
613     if (NumCaseCluster <= 3) {
614       // Suppose a comparison includes one compare and one conditional branch.
615       addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
616       return;
617     }
618 
619     int64_t ExpectedNumberOfCompare =
620         getExpectedNumberOfCompare(NumCaseCluster);
621     int64_t SwitchCost =
622         ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
623 
624     addCost(SwitchCost, static_cast<int64_t>(CostUpperBound));
625   }
626   void onMissedSimplification() override {
627     addCost(InlineConstants::InstrCost);
628   }
629 
630   void onInitializeSROAArg(AllocaInst *Arg) override {
631     assert(Arg != nullptr &&
632            "Should not initialize SROA costs for null value.");
633     SROAArgCosts[Arg] = 0;
634   }
635 
636   void onAggregateSROAUse(AllocaInst *SROAArg) override {
637     auto CostIt = SROAArgCosts.find(SROAArg);
638     assert(CostIt != SROAArgCosts.end() &&
639            "expected this argument to have a cost");
640     CostIt->second += InlineConstants::InstrCost;
641     SROACostSavings += InlineConstants::InstrCost;
642   }
643 
644   void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; }
645 
646   void onBlockAnalyzed(const BasicBlock *BB) override {
647     if (CostBenefitAnalysisEnabled) {
648       // Keep track of the static size of live but cold basic blocks.  For now,
649       // we define a cold basic block to be one that's never executed.
650       assert(GetBFI && "GetBFI must be available");
651       BlockFrequencyInfo *BFI = &(GetBFI(F));
652       assert(BFI && "BFI must be available");
653       auto ProfileCount = BFI->getBlockProfileCount(BB);
654       assert(ProfileCount.hasValue());
655       if (ProfileCount.getValue() == 0)
656         ColdSize += Cost - CostAtBBStart;
657     }
658 
659     auto *TI = BB->getTerminator();
660     // If we had any successors at this point, than post-inlining is likely to
661     // have them as well. Note that we assume any basic blocks which existed
662     // due to branches or switches which folded above will also fold after
663     // inlining.
664     if (SingleBB && TI->getNumSuccessors() > 1) {
665       // Take off the bonus we applied to the threshold.
666       Threshold -= SingleBBBonus;
667       SingleBB = false;
668     }
669   }
670 
671   void onInstructionAnalysisStart(const Instruction *I) override {
672     // This function is called to store the initial cost of inlining before
673     // the given instruction was assessed.
674     if (!PrintInstructionComments)
675       return;
676     InstructionCostDetailMap[I].CostBefore = Cost;
677     InstructionCostDetailMap[I].ThresholdBefore = Threshold;
678   }
679 
680   void onInstructionAnalysisFinish(const Instruction *I) override {
681     // This function is called to find new values of cost and threshold after
682     // the instruction has been assessed.
683     if (!PrintInstructionComments)
684       return;
685     InstructionCostDetailMap[I].CostAfter = Cost;
686     InstructionCostDetailMap[I].ThresholdAfter = Threshold;
687   }
688 
689   bool isCostBenefitAnalysisEnabled() {
690     if (!PSI || !PSI->hasProfileSummary())
691       return false;
692 
693     if (!GetBFI)
694       return false;
695 
696     if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) {
697       // Honor the explicit request from the user.
698       if (!InlineEnableCostBenefitAnalysis)
699         return false;
700     } else {
701       // Otherwise, require instrumentation profile.
702       if (!PSI->hasInstrumentationProfile())
703         return false;
704     }
705 
706     auto *Caller = CandidateCall.getParent()->getParent();
707     if (!Caller->getEntryCount())
708       return false;
709 
710     BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller));
711     if (!CallerBFI)
712       return false;
713 
714     // For now, limit to hot call site.
715     if (!PSI->isHotCallSite(CandidateCall, CallerBFI))
716       return false;
717 
718     // Make sure we have a nonzero entry count.
719     auto EntryCount = F.getEntryCount();
720     if (!EntryCount || !EntryCount.getCount())
721       return false;
722 
723     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
724     if (!CalleeBFI)
725       return false;
726 
727     return true;
728   }
729 
730   // Determine whether we should inline the given call site, taking into account
731   // both the size cost and the cycle savings.  Return None if we don't have
732   // suficient profiling information to determine.
733   Optional<bool> costBenefitAnalysis() {
734     if (!CostBenefitAnalysisEnabled)
735       return None;
736 
737     // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0
738     // for the prelink phase of the AutoFDO + ThinLTO build.  Honor the logic by
739     // falling back to the cost-based metric.
740     // TODO: Improve this hacky condition.
741     if (Threshold == 0)
742       return None;
743 
744     assert(GetBFI);
745     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
746     assert(CalleeBFI);
747 
748     // The cycle savings expressed as the sum of InlineConstants::InstrCost
749     // multiplied by the estimated dynamic count of each instruction we can
750     // avoid.  Savings come from the call site cost, such as argument setup and
751     // the call instruction, as well as the instructions that are folded.
752     //
753     // We use 128-bit APInt here to avoid potential overflow.  This variable
754     // should stay well below 10^^24 (or 2^^80) in practice.  This "worst" case
755     // assumes that we can avoid or fold a billion instructions, each with a
756     // profile count of 10^^15 -- roughly the number of cycles for a 24-hour
757     // period on a 4GHz machine.
758     APInt CycleSavings(128, 0);
759 
760     for (auto &BB : F) {
761       APInt CurrentSavings(128, 0);
762       for (auto &I : BB) {
763         if (BranchInst *BI = dyn_cast<BranchInst>(&I)) {
764           // Count a conditional branch as savings if it becomes unconditional.
765           if (BI->isConditional() &&
766               dyn_cast_or_null<ConstantInt>(
767                   SimplifiedValues.lookup(BI->getCondition()))) {
768             CurrentSavings += InlineConstants::InstrCost;
769           }
770         } else if (Value *V = dyn_cast<Value>(&I)) {
771           // Count an instruction as savings if we can fold it.
772           if (SimplifiedValues.count(V)) {
773             CurrentSavings += InlineConstants::InstrCost;
774           }
775         }
776       }
777 
778       auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB);
779       assert(ProfileCount.hasValue());
780       CurrentSavings *= ProfileCount.getValue();
781       CycleSavings += CurrentSavings;
782     }
783 
784     // Compute the cycle savings per call.
785     auto EntryProfileCount = F.getEntryCount();
786     assert(EntryProfileCount.hasValue() && EntryProfileCount.getCount());
787     auto EntryCount = EntryProfileCount.getCount();
788     CycleSavings += EntryCount / 2;
789     CycleSavings = CycleSavings.udiv(EntryCount);
790 
791     // Compute the total savings for the call site.
792     auto *CallerBB = CandidateCall.getParent();
793     BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent())));
794     CycleSavings += getCallsiteCost(this->CandidateCall, DL);
795     CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue();
796 
797     // Remove the cost of the cold basic blocks.
798     int Size = Cost - ColdSize;
799 
800     // Allow tiny callees to be inlined regardless of whether they meet the
801     // savings threshold.
802     Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1;
803 
804     CostBenefit.emplace(APInt(128, Size), CycleSavings);
805 
806     // Return true if the savings justify the cost of inlining.  Specifically,
807     // we evaluate the following inequality:
808     //
809     //  CycleSavings      PSI->getOrCompHotCountThreshold()
810     // -------------- >= -----------------------------------
811     //       Size              InlineSavingsMultiplier
812     //
813     // Note that the left hand side is specific to a call site.  The right hand
814     // side is a constant for the entire executable.
815     APInt LHS = CycleSavings;
816     LHS *= InlineSavingsMultiplier;
817     APInt RHS(128, PSI->getOrCompHotCountThreshold());
818     RHS *= Size;
819     return LHS.uge(RHS);
820   }
821 
822   InlineResult finalizeAnalysis() override {
823     // Loops generally act a lot like calls in that they act like barriers to
824     // movement, require a certain amount of setup, etc. So when optimising for
825     // size, we penalise any call sites that perform loops. We do this after all
826     // other costs here, so will likely only be dealing with relatively small
827     // functions (and hence DT and LI will hopefully be cheap).
828     auto *Caller = CandidateCall.getFunction();
829     if (Caller->hasMinSize()) {
830       DominatorTree DT(F);
831       LoopInfo LI(DT);
832       int NumLoops = 0;
833       for (Loop *L : LI) {
834         // Ignore loops that will not be executed
835         if (DeadBlocks.count(L->getHeader()))
836           continue;
837         NumLoops++;
838       }
839       addCost(NumLoops * InlineConstants::LoopPenalty);
840     }
841 
842     // We applied the maximum possible vector bonus at the beginning. Now,
843     // subtract the excess bonus, if any, from the Threshold before
844     // comparing against Cost.
845     if (NumVectorInstructions <= NumInstructions / 10)
846       Threshold -= VectorBonus;
847     else if (NumVectorInstructions <= NumInstructions / 2)
848       Threshold -= VectorBonus / 2;
849 
850     if (auto Result = costBenefitAnalysis()) {
851       DecidedByCostBenefit = true;
852       if (Result.getValue())
853         return InlineResult::success();
854       else
855         return InlineResult::failure("Cost over threshold.");
856     }
857 
858     if (IgnoreThreshold || Cost < std::max(1, Threshold))
859       return InlineResult::success();
860     return InlineResult::failure("Cost over threshold.");
861   }
862   bool shouldStop() override {
863     // Bail out the moment we cross the threshold. This means we'll under-count
864     // the cost, but only when undercounting doesn't matter.
865     return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost;
866   }
867 
868   void onLoadEliminationOpportunity() override {
869     LoadEliminationCost += InlineConstants::InstrCost;
870   }
871 
872   InlineResult onAnalysisStart() override {
873     // Perform some tweaks to the cost and threshold based on the direct
874     // callsite information.
875 
876     // We want to more aggressively inline vector-dense kernels, so up the
877     // threshold, and we'll lower it if the % of vector instructions gets too
878     // low. Note that these bonuses are some what arbitrary and evolved over
879     // time by accident as much as because they are principled bonuses.
880     //
881     // FIXME: It would be nice to remove all such bonuses. At least it would be
882     // nice to base the bonus values on something more scientific.
883     assert(NumInstructions == 0);
884     assert(NumVectorInstructions == 0);
885 
886     // Update the threshold based on callsite properties
887     updateThreshold(CandidateCall, F);
888 
889     // While Threshold depends on commandline options that can take negative
890     // values, we want to enforce the invariant that the computed threshold and
891     // bonuses are non-negative.
892     assert(Threshold >= 0);
893     assert(SingleBBBonus >= 0);
894     assert(VectorBonus >= 0);
895 
896     // Speculatively apply all possible bonuses to Threshold. If cost exceeds
897     // this Threshold any time, and cost cannot decrease, we can stop processing
898     // the rest of the function body.
899     Threshold += (SingleBBBonus + VectorBonus);
900 
901     // Give out bonuses for the callsite, as the instructions setting them up
902     // will be gone after inlining.
903     addCost(-getCallsiteCost(this->CandidateCall, DL));
904 
905     // If this function uses the coldcc calling convention, prefer not to inline
906     // it.
907     if (F.getCallingConv() == CallingConv::Cold)
908       Cost += InlineConstants::ColdccPenalty;
909 
910     // Check if we're done. This can happen due to bonuses and penalties.
911     if (Cost >= Threshold && !ComputeFullInlineCost)
912       return InlineResult::failure("high cost");
913 
914     return InlineResult::success();
915   }
916 
917 public:
918   InlineCostCallAnalyzer(
919       Function &Callee, CallBase &Call, const InlineParams &Params,
920       const TargetTransformInfo &TTI,
921       function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
922       function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
923       ProfileSummaryInfo *PSI = nullptr,
924       OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
925       bool IgnoreThreshold = false)
926       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
927         ComputeFullInlineCost(OptComputeFullInlineCost ||
928                               Params.ComputeFullInlineCost || ORE ||
929                               isCostBenefitAnalysisEnabled()),
930         Params(Params), Threshold(Params.DefaultThreshold),
931         BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
932         CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()),
933         Writer(this) {}
934 
935   /// Annotation Writer for instruction details
936   InlineCostAnnotationWriter Writer;
937 
938   void dump();
939 
940   // Prints the same analysis as dump(), but its definition is not dependent
941   // on the build.
942   void print();
943 
944   Optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
945     if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end())
946       return InstructionCostDetailMap[I];
947     return None;
948   }
949 
950   virtual ~InlineCostCallAnalyzer() {}
951   int getThreshold() const { return Threshold; }
952   int getCost() const { return Cost; }
953   Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; }
954   bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; }
955 };
956 
957 class InlineCostFeaturesAnalyzer final : public CallAnalyzer {
958 private:
959   InlineCostFeatures Cost = {};
960 
961   // FIXME: These constants are taken from the heuristic-based cost visitor.
962   // These should be removed entirely in a later revision to avoid reliance on
963   // heuristics in the ML inliner.
964   static constexpr int JTCostMultiplier = 4;
965   static constexpr int CaseClusterCostMultiplier = 2;
966   static constexpr int SwitchCostMultiplier = 2;
967 
968   // FIXME: These are taken from the heuristic-based cost visitor: we should
969   // eventually abstract these to the CallAnalyzer to avoid duplication.
970   unsigned SROACostSavingOpportunities = 0;
971   int VectorBonus = 0;
972   int SingleBBBonus = 0;
973   int Threshold = 5;
974 
975   DenseMap<AllocaInst *, unsigned> SROACosts;
976 
977   void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) {
978     Cost[static_cast<size_t>(Feature)] += Delta;
979   }
980 
981   void set(InlineCostFeatureIndex Feature, int64_t Value) {
982     Cost[static_cast<size_t>(Feature)] = Value;
983   }
984 
985   void onDisableSROA(AllocaInst *Arg) override {
986     auto CostIt = SROACosts.find(Arg);
987     if (CostIt == SROACosts.end())
988       return;
989 
990     increment(InlineCostFeatureIndex::SROALosses, CostIt->second);
991     SROACostSavingOpportunities -= CostIt->second;
992     SROACosts.erase(CostIt);
993   }
994 
995   void onDisableLoadElimination() override {
996     set(InlineCostFeatureIndex::LoadElimination, 1);
997   }
998 
999   void onCallPenalty() override {
1000     increment(InlineCostFeatureIndex::CallPenalty, CallPenalty);
1001   }
1002 
1003   void onCallArgumentSetup(const CallBase &Call) override {
1004     increment(InlineCostFeatureIndex::CallArgumentSetup,
1005               Call.arg_size() * InlineConstants::InstrCost);
1006   }
1007 
1008   void onLoadRelativeIntrinsic() override {
1009     increment(InlineCostFeatureIndex::LoadRelativeIntrinsic,
1010               3 * InlineConstants::InstrCost);
1011   }
1012 
1013   void onLoweredCall(Function *F, CallBase &Call,
1014                      bool IsIndirectCall) override {
1015     increment(InlineCostFeatureIndex::LoweredCallArgSetup,
1016               Call.arg_size() * InlineConstants::InstrCost);
1017 
1018     if (IsIndirectCall) {
1019       InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0,
1020                                          /*HintThreshold*/ {},
1021                                          /*ColdThreshold*/ {},
1022                                          /*OptSizeThreshold*/ {},
1023                                          /*OptMinSizeThreshold*/ {},
1024                                          /*HotCallSiteThreshold*/ {},
1025                                          /*LocallyHotCallSiteThreshold*/ {},
1026                                          /*ColdCallSiteThreshold*/ {},
1027                                          /*ComputeFullInlineCost*/ true,
1028                                          /*EnableDeferral*/ true};
1029       IndirectCallParams.DefaultThreshold =
1030           InlineConstants::IndirectCallThreshold;
1031 
1032       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
1033                                 GetAssumptionCache, GetBFI, PSI, ORE, false,
1034                                 true);
1035       if (CA.analyze().isSuccess()) {
1036         increment(InlineCostFeatureIndex::NestedInlineCostEstimate,
1037                   CA.getCost());
1038         increment(InlineCostFeatureIndex::NestedInlines, 1);
1039       }
1040     } else {
1041       onCallPenalty();
1042     }
1043   }
1044 
1045   void onFinalizeSwitch(unsigned JumpTableSize,
1046                         unsigned NumCaseCluster) override {
1047 
1048     if (JumpTableSize) {
1049       int64_t JTCost =
1050           static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost +
1051           JTCostMultiplier * InlineConstants::InstrCost;
1052       increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost);
1053       return;
1054     }
1055 
1056     if (NumCaseCluster <= 3) {
1057       increment(InlineCostFeatureIndex::CaseClusterPenalty,
1058                 NumCaseCluster * CaseClusterCostMultiplier *
1059                     InlineConstants::InstrCost);
1060       return;
1061     }
1062 
1063     int64_t ExpectedNumberOfCompare =
1064         getExpectedNumberOfCompare(NumCaseCluster);
1065 
1066     int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier *
1067                          InlineConstants::InstrCost;
1068     increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost);
1069   }
1070 
1071   void onMissedSimplification() override {
1072     increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions,
1073               InlineConstants::InstrCost);
1074   }
1075 
1076   void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; }
1077   void onAggregateSROAUse(AllocaInst *Arg) override {
1078     SROACosts.find(Arg)->second += InlineConstants::InstrCost;
1079     SROACostSavingOpportunities += InlineConstants::InstrCost;
1080   }
1081 
1082   void onBlockAnalyzed(const BasicBlock *BB) override {
1083     if (BB->getTerminator()->getNumSuccessors() > 1)
1084       set(InlineCostFeatureIndex::IsMultipleBlocks, 1);
1085     Threshold -= SingleBBBonus;
1086   }
1087 
1088   InlineResult finalizeAnalysis() override {
1089     auto *Caller = CandidateCall.getFunction();
1090     if (Caller->hasMinSize()) {
1091       DominatorTree DT(F);
1092       LoopInfo LI(DT);
1093       for (Loop *L : LI) {
1094         // Ignore loops that will not be executed
1095         if (DeadBlocks.count(L->getHeader()))
1096           continue;
1097         increment(InlineCostFeatureIndex::NumLoops,
1098                   InlineConstants::LoopPenalty);
1099       }
1100     }
1101     set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size());
1102     set(InlineCostFeatureIndex::SimplifiedInstructions,
1103         NumInstructionsSimplified);
1104     set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs);
1105     set(InlineCostFeatureIndex::ConstantOffsetPtrArgs,
1106         NumConstantOffsetPtrArgs);
1107     set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities);
1108 
1109     if (NumVectorInstructions <= NumInstructions / 10)
1110       Threshold -= VectorBonus;
1111     else if (NumVectorInstructions <= NumInstructions / 2)
1112       Threshold -= VectorBonus / 2;
1113 
1114     set(InlineCostFeatureIndex::Threshold, Threshold);
1115 
1116     return InlineResult::success();
1117   }
1118 
1119   bool shouldStop() override { return false; }
1120 
1121   void onLoadEliminationOpportunity() override {
1122     increment(InlineCostFeatureIndex::LoadElimination, 1);
1123   }
1124 
1125   InlineResult onAnalysisStart() override {
1126     increment(InlineCostFeatureIndex::CallSiteCost,
1127               -1 * getCallsiteCost(this->CandidateCall, DL));
1128 
1129     set(InlineCostFeatureIndex::ColdCcPenalty,
1130         (F.getCallingConv() == CallingConv::Cold));
1131 
1132     // FIXME: we shouldn't repeat this logic in both the Features and Cost
1133     // analyzer - instead, we should abstract it to a common method in the
1134     // CallAnalyzer
1135     int SingleBBBonusPercent = 50;
1136     int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1137     Threshold += TTI.adjustInliningThreshold(&CandidateCall);
1138     Threshold *= TTI.getInliningThresholdMultiplier();
1139     SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1140     VectorBonus = Threshold * VectorBonusPercent / 100;
1141     Threshold += (SingleBBBonus + VectorBonus);
1142 
1143     return InlineResult::success();
1144   }
1145 
1146 public:
1147   InlineCostFeaturesAnalyzer(
1148       const TargetTransformInfo &TTI,
1149       function_ref<AssumptionCache &(Function &)> &GetAssumptionCache,
1150       function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1151       ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee,
1152       CallBase &Call)
1153       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {}
1154 
1155   const InlineCostFeatures &features() const { return Cost; }
1156 };
1157 
1158 } // namespace
1159 
1160 /// Test whether the given value is an Alloca-derived function argument.
1161 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
1162   return SROAArgValues.count(V);
1163 }
1164 
1165 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
1166   onDisableSROA(SROAArg);
1167   EnabledSROAAllocas.erase(SROAArg);
1168   disableLoadElimination();
1169 }
1170 
1171 void InlineCostAnnotationWriter::emitInstructionAnnot(
1172     const Instruction *I, formatted_raw_ostream &OS) {
1173   // The cost of inlining of the given instruction is printed always.
1174   // The threshold delta is printed only when it is non-zero. It happens
1175   // when we decided to give a bonus at a particular instruction.
1176   Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
1177   if (!Record)
1178     OS << "; No analysis for the instruction";
1179   else {
1180     OS << "; cost before = " << Record->CostBefore
1181        << ", cost after = " << Record->CostAfter
1182        << ", threshold before = " << Record->ThresholdBefore
1183        << ", threshold after = " << Record->ThresholdAfter << ", ";
1184     OS << "cost delta = " << Record->getCostDelta();
1185     if (Record->hasThresholdChanged())
1186       OS << ", threshold delta = " << Record->getThresholdDelta();
1187   }
1188   auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
1189   if (C) {
1190     OS << ", simplified to ";
1191     C.getValue()->print(OS, true);
1192   }
1193   OS << "\n";
1194 }
1195 
1196 /// If 'V' maps to a SROA candidate, disable SROA for it.
1197 void CallAnalyzer::disableSROA(Value *V) {
1198   if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
1199     disableSROAForArg(SROAArg);
1200   }
1201 }
1202 
1203 void CallAnalyzer::disableLoadElimination() {
1204   if (EnableLoadElimination) {
1205     onDisableLoadElimination();
1206     EnableLoadElimination = false;
1207   }
1208 }
1209 
1210 /// Accumulate a constant GEP offset into an APInt if possible.
1211 ///
1212 /// Returns false if unable to compute the offset for any reason. Respects any
1213 /// simplified values known during the analysis of this callsite.
1214 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
1215   unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
1216   assert(IntPtrWidth == Offset.getBitWidth());
1217 
1218   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1219        GTI != GTE; ++GTI) {
1220     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1221     if (!OpC)
1222       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
1223         OpC = dyn_cast<ConstantInt>(SimpleOp);
1224     if (!OpC)
1225       return false;
1226     if (OpC->isZero())
1227       continue;
1228 
1229     // Handle a struct index, which adds its field offset to the pointer.
1230     if (StructType *STy = GTI.getStructTypeOrNull()) {
1231       unsigned ElementIdx = OpC->getZExtValue();
1232       const StructLayout *SL = DL.getStructLayout(STy);
1233       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
1234       continue;
1235     }
1236 
1237     APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
1238     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
1239   }
1240   return true;
1241 }
1242 
1243 /// Use TTI to check whether a GEP is free.
1244 ///
1245 /// Respects any simplified values known during the analysis of this callsite.
1246 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
1247   SmallVector<Value *, 4> Operands;
1248   Operands.push_back(GEP.getOperand(0));
1249   for (const Use &Op : GEP.indices())
1250     if (Constant *SimpleOp = SimplifiedValues.lookup(Op))
1251       Operands.push_back(SimpleOp);
1252     else
1253       Operands.push_back(Op);
1254   return TTI.getUserCost(&GEP, Operands,
1255                          TargetTransformInfo::TCK_SizeAndLatency) ==
1256          TargetTransformInfo::TCC_Free;
1257 }
1258 
1259 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
1260   disableSROA(I.getOperand(0));
1261 
1262   // Check whether inlining will turn a dynamic alloca into a static
1263   // alloca and handle that case.
1264   if (I.isArrayAllocation()) {
1265     Constant *Size = SimplifiedValues.lookup(I.getArraySize());
1266     if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
1267       // Sometimes a dynamic alloca could be converted into a static alloca
1268       // after this constant prop, and become a huge static alloca on an
1269       // unconditional CFG path. Avoid inlining if this is going to happen above
1270       // a threshold.
1271       // FIXME: If the threshold is removed or lowered too much, we could end up
1272       // being too pessimistic and prevent inlining non-problematic code. This
1273       // could result in unintended perf regressions. A better overall strategy
1274       // is needed to track stack usage during inlining.
1275       Type *Ty = I.getAllocatedType();
1276       AllocatedSize = SaturatingMultiplyAdd(
1277           AllocSize->getLimitedValue(),
1278           DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize);
1279       if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline)
1280         HasDynamicAlloca = true;
1281       return false;
1282     }
1283   }
1284 
1285   // Accumulate the allocated size.
1286   if (I.isStaticAlloca()) {
1287     Type *Ty = I.getAllocatedType();
1288     AllocatedSize =
1289         SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize);
1290   }
1291 
1292   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
1293   // a variety of reasons, and so we would like to not inline them into
1294   // functions which don't currently have a dynamic alloca. This simply
1295   // disables inlining altogether in the presence of a dynamic alloca.
1296   if (!I.isStaticAlloca())
1297     HasDynamicAlloca = true;
1298 
1299   return false;
1300 }
1301 
1302 bool CallAnalyzer::visitPHI(PHINode &I) {
1303   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
1304   // though we don't want to propagate it's bonuses. The idea is to disable
1305   // SROA if it *might* be used in an inappropriate manner.
1306 
1307   // Phi nodes are always zero-cost.
1308   // FIXME: Pointer sizes may differ between different address spaces, so do we
1309   // need to use correct address space in the call to getPointerSizeInBits here?
1310   // Or could we skip the getPointerSizeInBits call completely? As far as I can
1311   // see the ZeroOffset is used as a dummy value, so we can probably use any
1312   // bit width for the ZeroOffset?
1313   APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
1314   bool CheckSROA = I.getType()->isPointerTy();
1315 
1316   // Track the constant or pointer with constant offset we've seen so far.
1317   Constant *FirstC = nullptr;
1318   std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
1319   Value *FirstV = nullptr;
1320 
1321   for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
1322     BasicBlock *Pred = I.getIncomingBlock(i);
1323     // If the incoming block is dead, skip the incoming block.
1324     if (DeadBlocks.count(Pred))
1325       continue;
1326     // If the parent block of phi is not the known successor of the incoming
1327     // block, skip the incoming block.
1328     BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
1329     if (KnownSuccessor && KnownSuccessor != I.getParent())
1330       continue;
1331 
1332     Value *V = I.getIncomingValue(i);
1333     // If the incoming value is this phi itself, skip the incoming value.
1334     if (&I == V)
1335       continue;
1336 
1337     Constant *C = dyn_cast<Constant>(V);
1338     if (!C)
1339       C = SimplifiedValues.lookup(V);
1340 
1341     std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
1342     if (!C && CheckSROA)
1343       BaseAndOffset = ConstantOffsetPtrs.lookup(V);
1344 
1345     if (!C && !BaseAndOffset.first)
1346       // The incoming value is neither a constant nor a pointer with constant
1347       // offset, exit early.
1348       return true;
1349 
1350     if (FirstC) {
1351       if (FirstC == C)
1352         // If we've seen a constant incoming value before and it is the same
1353         // constant we see this time, continue checking the next incoming value.
1354         continue;
1355       // Otherwise early exit because we either see a different constant or saw
1356       // a constant before but we have a pointer with constant offset this time.
1357       return true;
1358     }
1359 
1360     if (FirstV) {
1361       // The same logic as above, but check pointer with constant offset here.
1362       if (FirstBaseAndOffset == BaseAndOffset)
1363         continue;
1364       return true;
1365     }
1366 
1367     if (C) {
1368       // This is the 1st time we've seen a constant, record it.
1369       FirstC = C;
1370       continue;
1371     }
1372 
1373     // The remaining case is that this is the 1st time we've seen a pointer with
1374     // constant offset, record it.
1375     FirstV = V;
1376     FirstBaseAndOffset = BaseAndOffset;
1377   }
1378 
1379   // Check if we can map phi to a constant.
1380   if (FirstC) {
1381     SimplifiedValues[&I] = FirstC;
1382     return true;
1383   }
1384 
1385   // Check if we can map phi to a pointer with constant offset.
1386   if (FirstBaseAndOffset.first) {
1387     ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
1388 
1389     if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
1390       SROAArgValues[&I] = SROAArg;
1391   }
1392 
1393   return true;
1394 }
1395 
1396 /// Check we can fold GEPs of constant-offset call site argument pointers.
1397 /// This requires target data and inbounds GEPs.
1398 ///
1399 /// \return true if the specified GEP can be folded.
1400 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
1401   // Check if we have a base + offset for the pointer.
1402   std::pair<Value *, APInt> BaseAndOffset =
1403       ConstantOffsetPtrs.lookup(I.getPointerOperand());
1404   if (!BaseAndOffset.first)
1405     return false;
1406 
1407   // Check if the offset of this GEP is constant, and if so accumulate it
1408   // into Offset.
1409   if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
1410     return false;
1411 
1412   // Add the result as a new mapping to Base + Offset.
1413   ConstantOffsetPtrs[&I] = BaseAndOffset;
1414 
1415   return true;
1416 }
1417 
1418 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
1419   auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
1420 
1421   // Lambda to check whether a GEP's indices are all constant.
1422   auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
1423     for (const Use &Op : GEP.indices())
1424       if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op))
1425         return false;
1426     return true;
1427   };
1428 
1429   if (!DisableGEPConstOperand)
1430     if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1431           SmallVector<Constant *, 2> Indices;
1432           for (unsigned int Index = 1; Index < COps.size(); ++Index)
1433             Indices.push_back(COps[Index]);
1434           return ConstantExpr::getGetElementPtr(
1435               I.getSourceElementType(), COps[0], Indices, I.isInBounds());
1436         }))
1437       return true;
1438 
1439   if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
1440     if (SROAArg)
1441       SROAArgValues[&I] = SROAArg;
1442 
1443     // Constant GEPs are modeled as free.
1444     return true;
1445   }
1446 
1447   // Variable GEPs will require math and will disable SROA.
1448   if (SROAArg)
1449     disableSROAForArg(SROAArg);
1450   return isGEPFree(I);
1451 }
1452 
1453 /// Simplify \p I if its operands are constants and update SimplifiedValues.
1454 /// \p Evaluate is a callable specific to instruction type that evaluates the
1455 /// instruction when all the operands are constants.
1456 template <typename Callable>
1457 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
1458   SmallVector<Constant *, 2> COps;
1459   for (Value *Op : I.operands()) {
1460     Constant *COp = dyn_cast<Constant>(Op);
1461     if (!COp)
1462       COp = SimplifiedValues.lookup(Op);
1463     if (!COp)
1464       return false;
1465     COps.push_back(COp);
1466   }
1467   auto *C = Evaluate(COps);
1468   if (!C)
1469     return false;
1470   SimplifiedValues[&I] = C;
1471   return true;
1472 }
1473 
1474 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
1475   // Propagate constants through bitcasts.
1476   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1477         return ConstantExpr::getBitCast(COps[0], I.getType());
1478       }))
1479     return true;
1480 
1481   // Track base/offsets through casts
1482   std::pair<Value *, APInt> BaseAndOffset =
1483       ConstantOffsetPtrs.lookup(I.getOperand(0));
1484   // Casts don't change the offset, just wrap it up.
1485   if (BaseAndOffset.first)
1486     ConstantOffsetPtrs[&I] = BaseAndOffset;
1487 
1488   // Also look for SROA candidates here.
1489   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1490     SROAArgValues[&I] = SROAArg;
1491 
1492   // Bitcasts are always zero cost.
1493   return true;
1494 }
1495 
1496 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
1497   // Propagate constants through ptrtoint.
1498   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1499         return ConstantExpr::getPtrToInt(COps[0], I.getType());
1500       }))
1501     return true;
1502 
1503   // Track base/offset pairs when converted to a plain integer provided the
1504   // integer is large enough to represent the pointer.
1505   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
1506   unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
1507   if (IntegerSize == DL.getPointerSizeInBits(AS)) {
1508     std::pair<Value *, APInt> BaseAndOffset =
1509         ConstantOffsetPtrs.lookup(I.getOperand(0));
1510     if (BaseAndOffset.first)
1511       ConstantOffsetPtrs[&I] = BaseAndOffset;
1512   }
1513 
1514   // This is really weird. Technically, ptrtoint will disable SROA. However,
1515   // unless that ptrtoint is *used* somewhere in the live basic blocks after
1516   // inlining, it will be nuked, and SROA should proceed. All of the uses which
1517   // would block SROA would also block SROA if applied directly to a pointer,
1518   // and so we can just add the integer in here. The only places where SROA is
1519   // preserved either cannot fire on an integer, or won't in-and-of themselves
1520   // disable SROA (ext) w/o some later use that we would see and disable.
1521   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1522     SROAArgValues[&I] = SROAArg;
1523 
1524   return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1525          TargetTransformInfo::TCC_Free;
1526 }
1527 
1528 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
1529   // Propagate constants through ptrtoint.
1530   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1531         return ConstantExpr::getIntToPtr(COps[0], I.getType());
1532       }))
1533     return true;
1534 
1535   // Track base/offset pairs when round-tripped through a pointer without
1536   // modifications provided the integer is not too large.
1537   Value *Op = I.getOperand(0);
1538   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
1539   if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
1540     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
1541     if (BaseAndOffset.first)
1542       ConstantOffsetPtrs[&I] = BaseAndOffset;
1543   }
1544 
1545   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
1546   if (auto *SROAArg = getSROAArgForValueOrNull(Op))
1547     SROAArgValues[&I] = SROAArg;
1548 
1549   return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1550          TargetTransformInfo::TCC_Free;
1551 }
1552 
1553 bool CallAnalyzer::visitCastInst(CastInst &I) {
1554   // Propagate constants through casts.
1555   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1556         return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
1557       }))
1558     return true;
1559 
1560   // Disable SROA in the face of arbitrary casts we don't explicitly list
1561   // elsewhere.
1562   disableSROA(I.getOperand(0));
1563 
1564   // If this is a floating-point cast, and the target says this operation
1565   // is expensive, this may eventually become a library call. Treat the cost
1566   // as such.
1567   switch (I.getOpcode()) {
1568   case Instruction::FPTrunc:
1569   case Instruction::FPExt:
1570   case Instruction::UIToFP:
1571   case Instruction::SIToFP:
1572   case Instruction::FPToUI:
1573   case Instruction::FPToSI:
1574     if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1575       onCallPenalty();
1576     break;
1577   default:
1578     break;
1579   }
1580 
1581   return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1582          TargetTransformInfo::TCC_Free;
1583 }
1584 
1585 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
1586   return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
1587 }
1588 
1589 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
1590   // Does the *call site* have the NonNull attribute set on an argument?  We
1591   // use the attribute on the call site to memoize any analysis done in the
1592   // caller. This will also trip if the callee function has a non-null
1593   // parameter attribute, but that's a less interesting case because hopefully
1594   // the callee would already have been simplified based on that.
1595   if (Argument *A = dyn_cast<Argument>(V))
1596     if (paramHasAttr(A, Attribute::NonNull))
1597       return true;
1598 
1599   // Is this an alloca in the caller?  This is distinct from the attribute case
1600   // above because attributes aren't updated within the inliner itself and we
1601   // always want to catch the alloca derived case.
1602   if (isAllocaDerivedArg(V))
1603     // We can actually predict the result of comparisons between an
1604     // alloca-derived value and null. Note that this fires regardless of
1605     // SROA firing.
1606     return true;
1607 
1608   return false;
1609 }
1610 
1611 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
1612   // If the normal destination of the invoke or the parent block of the call
1613   // site is unreachable-terminated, there is little point in inlining this
1614   // unless there is literally zero cost.
1615   // FIXME: Note that it is possible that an unreachable-terminated block has a
1616   // hot entry. For example, in below scenario inlining hot_call_X() may be
1617   // beneficial :
1618   // main() {
1619   //   hot_call_1();
1620   //   ...
1621   //   hot_call_N()
1622   //   exit(0);
1623   // }
1624   // For now, we are not handling this corner case here as it is rare in real
1625   // code. In future, we should elaborate this based on BPI and BFI in more
1626   // general threshold adjusting heuristics in updateThreshold().
1627   if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
1628     if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
1629       return false;
1630   } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
1631     return false;
1632 
1633   return true;
1634 }
1635 
1636 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
1637                                             BlockFrequencyInfo *CallerBFI) {
1638   // If global profile summary is available, then callsite's coldness is
1639   // determined based on that.
1640   if (PSI && PSI->hasProfileSummary())
1641     return PSI->isColdCallSite(Call, CallerBFI);
1642 
1643   // Otherwise we need BFI to be available.
1644   if (!CallerBFI)
1645     return false;
1646 
1647   // Determine if the callsite is cold relative to caller's entry. We could
1648   // potentially cache the computation of scaled entry frequency, but the added
1649   // complexity is not worth it unless this scaling shows up high in the
1650   // profiles.
1651   const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
1652   auto CallSiteBB = Call.getParent();
1653   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1654   auto CallerEntryFreq =
1655       CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
1656   return CallSiteFreq < CallerEntryFreq * ColdProb;
1657 }
1658 
1659 Optional<int>
1660 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
1661                                                 BlockFrequencyInfo *CallerBFI) {
1662 
1663   // If global profile summary is available, then callsite's hotness is
1664   // determined based on that.
1665   if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
1666     return Params.HotCallSiteThreshold;
1667 
1668   // Otherwise we need BFI to be available and to have a locally hot callsite
1669   // threshold.
1670   if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
1671     return None;
1672 
1673   // Determine if the callsite is hot relative to caller's entry. We could
1674   // potentially cache the computation of scaled entry frequency, but the added
1675   // complexity is not worth it unless this scaling shows up high in the
1676   // profiles.
1677   auto CallSiteBB = Call.getParent();
1678   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
1679   auto CallerEntryFreq = CallerBFI->getEntryFreq();
1680   if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
1681     return Params.LocallyHotCallSiteThreshold;
1682 
1683   // Otherwise treat it normally.
1684   return None;
1685 }
1686 
1687 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
1688   // If no size growth is allowed for this inlining, set Threshold to 0.
1689   if (!allowSizeGrowth(Call)) {
1690     Threshold = 0;
1691     return;
1692   }
1693 
1694   Function *Caller = Call.getCaller();
1695 
1696   // return min(A, B) if B is valid.
1697   auto MinIfValid = [](int A, Optional<int> B) {
1698     return B ? std::min(A, B.getValue()) : A;
1699   };
1700 
1701   // return max(A, B) if B is valid.
1702   auto MaxIfValid = [](int A, Optional<int> B) {
1703     return B ? std::max(A, B.getValue()) : A;
1704   };
1705 
1706   // Various bonus percentages. These are multiplied by Threshold to get the
1707   // bonus values.
1708   // SingleBBBonus: This bonus is applied if the callee has a single reachable
1709   // basic block at the given callsite context. This is speculatively applied
1710   // and withdrawn if more than one basic block is seen.
1711   //
1712   // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
1713   // of the last call to a static function as inlining such functions is
1714   // guaranteed to reduce code size.
1715   //
1716   // These bonus percentages may be set to 0 based on properties of the caller
1717   // and the callsite.
1718   int SingleBBBonusPercent = 50;
1719   int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1720   int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
1721 
1722   // Lambda to set all the above bonus and bonus percentages to 0.
1723   auto DisallowAllBonuses = [&]() {
1724     SingleBBBonusPercent = 0;
1725     VectorBonusPercent = 0;
1726     LastCallToStaticBonus = 0;
1727   };
1728 
1729   // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
1730   // and reduce the threshold if the caller has the necessary attribute.
1731   if (Caller->hasMinSize()) {
1732     Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
1733     // For minsize, we want to disable the single BB bonus and the vector
1734     // bonuses, but not the last-call-to-static bonus. Inlining the last call to
1735     // a static function will, at the minimum, eliminate the parameter setup and
1736     // call/return instructions.
1737     SingleBBBonusPercent = 0;
1738     VectorBonusPercent = 0;
1739   } else if (Caller->hasOptSize())
1740     Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
1741 
1742   // Adjust the threshold based on inlinehint attribute and profile based
1743   // hotness information if the caller does not have MinSize attribute.
1744   if (!Caller->hasMinSize()) {
1745     if (Callee.hasFnAttribute(Attribute::InlineHint))
1746       Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1747 
1748     // FIXME: After switching to the new passmanager, simplify the logic below
1749     // by checking only the callsite hotness/coldness as we will reliably
1750     // have local profile information.
1751     //
1752     // Callsite hotness and coldness can be determined if sample profile is
1753     // used (which adds hotness metadata to calls) or if caller's
1754     // BlockFrequencyInfo is available.
1755     BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
1756     auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
1757     if (!Caller->hasOptSize() && HotCallSiteThreshold) {
1758       LLVM_DEBUG(dbgs() << "Hot callsite.\n");
1759       // FIXME: This should update the threshold only if it exceeds the
1760       // current threshold, but AutoFDO + ThinLTO currently relies on this
1761       // behavior to prevent inlining of hot callsites during ThinLTO
1762       // compile phase.
1763       Threshold = HotCallSiteThreshold.getValue();
1764     } else if (isColdCallSite(Call, CallerBFI)) {
1765       LLVM_DEBUG(dbgs() << "Cold callsite.\n");
1766       // Do not apply bonuses for a cold callsite including the
1767       // LastCallToStatic bonus. While this bonus might result in code size
1768       // reduction, it can cause the size of a non-cold caller to increase
1769       // preventing it from being inlined.
1770       DisallowAllBonuses();
1771       Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
1772     } else if (PSI) {
1773       // Use callee's global profile information only if we have no way of
1774       // determining this via callsite information.
1775       if (PSI->isFunctionEntryHot(&Callee)) {
1776         LLVM_DEBUG(dbgs() << "Hot callee.\n");
1777         // If callsite hotness can not be determined, we may still know
1778         // that the callee is hot and treat it as a weaker hint for threshold
1779         // increase.
1780         Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1781       } else if (PSI->isFunctionEntryCold(&Callee)) {
1782         LLVM_DEBUG(dbgs() << "Cold callee.\n");
1783         // Do not apply bonuses for a cold callee including the
1784         // LastCallToStatic bonus. While this bonus might result in code size
1785         // reduction, it can cause the size of a non-cold caller to increase
1786         // preventing it from being inlined.
1787         DisallowAllBonuses();
1788         Threshold = MinIfValid(Threshold, Params.ColdThreshold);
1789       }
1790     }
1791   }
1792 
1793   Threshold += TTI.adjustInliningThreshold(&Call);
1794 
1795   // Finally, take the target-specific inlining threshold multiplier into
1796   // account.
1797   Threshold *= TTI.getInliningThresholdMultiplier();
1798 
1799   SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1800   VectorBonus = Threshold * VectorBonusPercent / 100;
1801 
1802   bool OnlyOneCallAndLocalLinkage =
1803       F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
1804   // If there is only one call of the function, and it has internal linkage,
1805   // the cost of inlining it drops dramatically. It may seem odd to update
1806   // Cost in updateThreshold, but the bonus depends on the logic in this method.
1807   if (OnlyOneCallAndLocalLinkage)
1808     Cost -= LastCallToStaticBonus;
1809 }
1810 
1811 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
1812   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1813   // First try to handle simplified comparisons.
1814   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1815         return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
1816       }))
1817     return true;
1818 
1819   if (I.getOpcode() == Instruction::FCmp)
1820     return false;
1821 
1822   // Otherwise look for a comparison between constant offset pointers with
1823   // a common base.
1824   Value *LHSBase, *RHSBase;
1825   APInt LHSOffset, RHSOffset;
1826   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1827   if (LHSBase) {
1828     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1829     if (RHSBase && LHSBase == RHSBase) {
1830       // We have common bases, fold the icmp to a constant based on the
1831       // offsets.
1832       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1833       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1834       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
1835         SimplifiedValues[&I] = C;
1836         ++NumConstantPtrCmps;
1837         return true;
1838       }
1839     }
1840   }
1841 
1842   // If the comparison is an equality comparison with null, we can simplify it
1843   // if we know the value (argument) can't be null
1844   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
1845       isKnownNonNullInCallee(I.getOperand(0))) {
1846     bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
1847     SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
1848                                       : ConstantInt::getFalse(I.getType());
1849     return true;
1850   }
1851   return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
1852 }
1853 
1854 bool CallAnalyzer::visitSub(BinaryOperator &I) {
1855   // Try to handle a special case: we can fold computing the difference of two
1856   // constant-related pointers.
1857   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1858   Value *LHSBase, *RHSBase;
1859   APInt LHSOffset, RHSOffset;
1860   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1861   if (LHSBase) {
1862     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1863     if (RHSBase && LHSBase == RHSBase) {
1864       // We have common bases, fold the subtract to a constant based on the
1865       // offsets.
1866       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1867       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1868       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
1869         SimplifiedValues[&I] = C;
1870         ++NumConstantPtrDiffs;
1871         return true;
1872       }
1873     }
1874   }
1875 
1876   // Otherwise, fall back to the generic logic for simplifying and handling
1877   // instructions.
1878   return Base::visitSub(I);
1879 }
1880 
1881 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
1882   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1883   Constant *CLHS = dyn_cast<Constant>(LHS);
1884   if (!CLHS)
1885     CLHS = SimplifiedValues.lookup(LHS);
1886   Constant *CRHS = dyn_cast<Constant>(RHS);
1887   if (!CRHS)
1888     CRHS = SimplifiedValues.lookup(RHS);
1889 
1890   Value *SimpleV = nullptr;
1891   if (auto FI = dyn_cast<FPMathOperator>(&I))
1892     SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
1893                             FI->getFastMathFlags(), DL);
1894   else
1895     SimpleV =
1896         SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
1897 
1898   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1899     SimplifiedValues[&I] = C;
1900 
1901   if (SimpleV)
1902     return true;
1903 
1904   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
1905   disableSROA(LHS);
1906   disableSROA(RHS);
1907 
1908   // If the instruction is floating point, and the target says this operation
1909   // is expensive, this may eventually become a library call. Treat the cost
1910   // as such. Unless it's fneg which can be implemented with an xor.
1911   using namespace llvm::PatternMatch;
1912   if (I.getType()->isFloatingPointTy() &&
1913       TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
1914       !match(&I, m_FNeg(m_Value())))
1915     onCallPenalty();
1916 
1917   return false;
1918 }
1919 
1920 bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
1921   Value *Op = I.getOperand(0);
1922   Constant *COp = dyn_cast<Constant>(Op);
1923   if (!COp)
1924     COp = SimplifiedValues.lookup(Op);
1925 
1926   Value *SimpleV = SimplifyFNegInst(
1927       COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
1928 
1929   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1930     SimplifiedValues[&I] = C;
1931 
1932   if (SimpleV)
1933     return true;
1934 
1935   // Disable any SROA on arguments to arbitrary, unsimplified fneg.
1936   disableSROA(Op);
1937 
1938   return false;
1939 }
1940 
1941 bool CallAnalyzer::visitLoad(LoadInst &I) {
1942   if (handleSROA(I.getPointerOperand(), I.isSimple()))
1943     return true;
1944 
1945   // If the data is already loaded from this address and hasn't been clobbered
1946   // by any stores or calls, this load is likely to be redundant and can be
1947   // eliminated.
1948   if (EnableLoadElimination &&
1949       !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
1950     onLoadEliminationOpportunity();
1951     return true;
1952   }
1953 
1954   return false;
1955 }
1956 
1957 bool CallAnalyzer::visitStore(StoreInst &I) {
1958   if (handleSROA(I.getPointerOperand(), I.isSimple()))
1959     return true;
1960 
1961   // The store can potentially clobber loads and prevent repeated loads from
1962   // being eliminated.
1963   // FIXME:
1964   // 1. We can probably keep an initial set of eliminatable loads substracted
1965   // from the cost even when we finally see a store. We just need to disable
1966   // *further* accumulation of elimination savings.
1967   // 2. We should probably at some point thread MemorySSA for the callee into
1968   // this and then use that to actually compute *really* precise savings.
1969   disableLoadElimination();
1970   return false;
1971 }
1972 
1973 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
1974   // Constant folding for extract value is trivial.
1975   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1976         return ConstantExpr::getExtractValue(COps[0], I.getIndices());
1977       }))
1978     return true;
1979 
1980   // SROA can't look through these, but they may be free.
1981   return Base::visitExtractValue(I);
1982 }
1983 
1984 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
1985   // Constant folding for insert value is trivial.
1986   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1987         return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
1988                                             /*InsertedValueOperand*/ COps[1],
1989                                             I.getIndices());
1990       }))
1991     return true;
1992 
1993   // SROA can't look through these, but they may be free.
1994   return Base::visitInsertValue(I);
1995 }
1996 
1997 /// Try to simplify a call site.
1998 ///
1999 /// Takes a concrete function and callsite and tries to actually simplify it by
2000 /// analyzing the arguments and call itself with instsimplify. Returns true if
2001 /// it has simplified the callsite to some other entity (a constant), making it
2002 /// free.
2003 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
2004   // FIXME: Using the instsimplify logic directly for this is inefficient
2005   // because we have to continually rebuild the argument list even when no
2006   // simplifications can be performed. Until that is fixed with remapping
2007   // inside of instsimplify, directly constant fold calls here.
2008   if (!canConstantFoldCallTo(&Call, F))
2009     return false;
2010 
2011   // Try to re-map the arguments to constants.
2012   SmallVector<Constant *, 4> ConstantArgs;
2013   ConstantArgs.reserve(Call.arg_size());
2014   for (Value *I : Call.args()) {
2015     Constant *C = dyn_cast<Constant>(I);
2016     if (!C)
2017       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
2018     if (!C)
2019       return false; // This argument doesn't map to a constant.
2020 
2021     ConstantArgs.push_back(C);
2022   }
2023   if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
2024     SimplifiedValues[&Call] = C;
2025     return true;
2026   }
2027 
2028   return false;
2029 }
2030 
2031 bool CallAnalyzer::visitCallBase(CallBase &Call) {
2032   if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
2033       !F.hasFnAttribute(Attribute::ReturnsTwice)) {
2034     // This aborts the entire analysis.
2035     ExposesReturnsTwice = true;
2036     return false;
2037   }
2038   if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
2039     ContainsNoDuplicateCall = true;
2040 
2041   Value *Callee = Call.getCalledOperand();
2042   Function *F = dyn_cast_or_null<Function>(Callee);
2043   bool IsIndirectCall = !F;
2044   if (IsIndirectCall) {
2045     // Check if this happens to be an indirect function call to a known function
2046     // in this inline context. If not, we've done all we can.
2047     F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
2048     if (!F) {
2049       onCallArgumentSetup(Call);
2050 
2051       if (!Call.onlyReadsMemory())
2052         disableLoadElimination();
2053       return Base::visitCallBase(Call);
2054     }
2055   }
2056 
2057   assert(F && "Expected a call to a known function");
2058 
2059   // When we have a concrete function, first try to simplify it directly.
2060   if (simplifyCallSite(F, Call))
2061     return true;
2062 
2063   // Next check if it is an intrinsic we know about.
2064   // FIXME: Lift this into part of the InstVisitor.
2065   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
2066     switch (II->getIntrinsicID()) {
2067     default:
2068       if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
2069         disableLoadElimination();
2070       return Base::visitCallBase(Call);
2071 
2072     case Intrinsic::load_relative:
2073       onLoadRelativeIntrinsic();
2074       return false;
2075 
2076     case Intrinsic::memset:
2077     case Intrinsic::memcpy:
2078     case Intrinsic::memmove:
2079       disableLoadElimination();
2080       // SROA can usually chew through these intrinsics, but they aren't free.
2081       return false;
2082     case Intrinsic::icall_branch_funnel:
2083     case Intrinsic::localescape:
2084       HasUninlineableIntrinsic = true;
2085       return false;
2086     case Intrinsic::vastart:
2087       InitsVargArgs = true;
2088       return false;
2089     case Intrinsic::launder_invariant_group:
2090     case Intrinsic::strip_invariant_group:
2091       if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0)))
2092         SROAArgValues[II] = SROAArg;
2093       return true;
2094     }
2095   }
2096 
2097   if (F == Call.getFunction()) {
2098     // This flag will fully abort the analysis, so don't bother with anything
2099     // else.
2100     IsRecursiveCall = true;
2101     return false;
2102   }
2103 
2104   if (TTI.isLoweredToCall(F)) {
2105     onLoweredCall(F, Call, IsIndirectCall);
2106   }
2107 
2108   if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
2109     disableLoadElimination();
2110   return Base::visitCallBase(Call);
2111 }
2112 
2113 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
2114   // At least one return instruction will be free after inlining.
2115   bool Free = !HasReturn;
2116   HasReturn = true;
2117   return Free;
2118 }
2119 
2120 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
2121   // We model unconditional branches as essentially free -- they really
2122   // shouldn't exist at all, but handling them makes the behavior of the
2123   // inliner more regular and predictable. Interestingly, conditional branches
2124   // which will fold away are also free.
2125   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
2126          dyn_cast_or_null<ConstantInt>(
2127              SimplifiedValues.lookup(BI.getCondition()));
2128 }
2129 
2130 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
2131   bool CheckSROA = SI.getType()->isPointerTy();
2132   Value *TrueVal = SI.getTrueValue();
2133   Value *FalseVal = SI.getFalseValue();
2134 
2135   Constant *TrueC = dyn_cast<Constant>(TrueVal);
2136   if (!TrueC)
2137     TrueC = SimplifiedValues.lookup(TrueVal);
2138   Constant *FalseC = dyn_cast<Constant>(FalseVal);
2139   if (!FalseC)
2140     FalseC = SimplifiedValues.lookup(FalseVal);
2141   Constant *CondC =
2142       dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
2143 
2144   if (!CondC) {
2145     // Select C, X, X => X
2146     if (TrueC == FalseC && TrueC) {
2147       SimplifiedValues[&SI] = TrueC;
2148       return true;
2149     }
2150 
2151     if (!CheckSROA)
2152       return Base::visitSelectInst(SI);
2153 
2154     std::pair<Value *, APInt> TrueBaseAndOffset =
2155         ConstantOffsetPtrs.lookup(TrueVal);
2156     std::pair<Value *, APInt> FalseBaseAndOffset =
2157         ConstantOffsetPtrs.lookup(FalseVal);
2158     if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
2159       ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
2160 
2161       if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
2162         SROAArgValues[&SI] = SROAArg;
2163       return true;
2164     }
2165 
2166     return Base::visitSelectInst(SI);
2167   }
2168 
2169   // Select condition is a constant.
2170   Value *SelectedV = CondC->isAllOnesValue()  ? TrueVal
2171                      : (CondC->isNullValue()) ? FalseVal
2172                                               : nullptr;
2173   if (!SelectedV) {
2174     // Condition is a vector constant that is not all 1s or all 0s.  If all
2175     // operands are constants, ConstantExpr::getSelect() can handle the cases
2176     // such as select vectors.
2177     if (TrueC && FalseC) {
2178       if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
2179         SimplifiedValues[&SI] = C;
2180         return true;
2181       }
2182     }
2183     return Base::visitSelectInst(SI);
2184   }
2185 
2186   // Condition is either all 1s or all 0s. SI can be simplified.
2187   if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
2188     SimplifiedValues[&SI] = SelectedC;
2189     return true;
2190   }
2191 
2192   if (!CheckSROA)
2193     return true;
2194 
2195   std::pair<Value *, APInt> BaseAndOffset =
2196       ConstantOffsetPtrs.lookup(SelectedV);
2197   if (BaseAndOffset.first) {
2198     ConstantOffsetPtrs[&SI] = BaseAndOffset;
2199 
2200     if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
2201       SROAArgValues[&SI] = SROAArg;
2202   }
2203 
2204   return true;
2205 }
2206 
2207 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
2208   // We model unconditional switches as free, see the comments on handling
2209   // branches.
2210   if (isa<ConstantInt>(SI.getCondition()))
2211     return true;
2212   if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
2213     if (isa<ConstantInt>(V))
2214       return true;
2215 
2216   // Assume the most general case where the switch is lowered into
2217   // either a jump table, bit test, or a balanced binary tree consisting of
2218   // case clusters without merging adjacent clusters with the same
2219   // destination. We do not consider the switches that are lowered with a mix
2220   // of jump table/bit test/binary search tree. The cost of the switch is
2221   // proportional to the size of the tree or the size of jump table range.
2222   //
2223   // NB: We convert large switches which are just used to initialize large phi
2224   // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent
2225   // inlining those. It will prevent inlining in cases where the optimization
2226   // does not (yet) fire.
2227 
2228   unsigned JumpTableSize = 0;
2229   BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
2230   unsigned NumCaseCluster =
2231       TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
2232 
2233   onFinalizeSwitch(JumpTableSize, NumCaseCluster);
2234   return false;
2235 }
2236 
2237 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
2238   // We never want to inline functions that contain an indirectbr.  This is
2239   // incorrect because all the blockaddress's (in static global initializers
2240   // for example) would be referring to the original function, and this
2241   // indirect jump would jump from the inlined copy of the function into the
2242   // original function which is extremely undefined behavior.
2243   // FIXME: This logic isn't really right; we can safely inline functions with
2244   // indirectbr's as long as no other function or global references the
2245   // blockaddress of a block within the current function.
2246   HasIndirectBr = true;
2247   return false;
2248 }
2249 
2250 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
2251   // FIXME: It's not clear that a single instruction is an accurate model for
2252   // the inline cost of a resume instruction.
2253   return false;
2254 }
2255 
2256 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
2257   // FIXME: It's not clear that a single instruction is an accurate model for
2258   // the inline cost of a cleanupret instruction.
2259   return false;
2260 }
2261 
2262 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
2263   // FIXME: It's not clear that a single instruction is an accurate model for
2264   // the inline cost of a catchret instruction.
2265   return false;
2266 }
2267 
2268 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
2269   // FIXME: It might be reasonably to discount the cost of instructions leading
2270   // to unreachable as they have the lowest possible impact on both runtime and
2271   // code size.
2272   return true; // No actual code is needed for unreachable.
2273 }
2274 
2275 bool CallAnalyzer::visitInstruction(Instruction &I) {
2276   // Some instructions are free. All of the free intrinsics can also be
2277   // handled by SROA, etc.
2278   if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
2279       TargetTransformInfo::TCC_Free)
2280     return true;
2281 
2282   // We found something we don't understand or can't handle. Mark any SROA-able
2283   // values in the operand list as no longer viable.
2284   for (const Use &Op : I.operands())
2285     disableSROA(Op);
2286 
2287   return false;
2288 }
2289 
2290 /// Analyze a basic block for its contribution to the inline cost.
2291 ///
2292 /// This method walks the analyzer over every instruction in the given basic
2293 /// block and accounts for their cost during inlining at this callsite. It
2294 /// aborts early if the threshold has been exceeded or an impossible to inline
2295 /// construct has been detected. It returns false if inlining is no longer
2296 /// viable, and true if inlining remains viable.
2297 InlineResult
2298 CallAnalyzer::analyzeBlock(BasicBlock *BB,
2299                            SmallPtrSetImpl<const Value *> &EphValues) {
2300   for (Instruction &I : *BB) {
2301     // FIXME: Currently, the number of instructions in a function regardless of
2302     // our ability to simplify them during inline to constants or dead code,
2303     // are actually used by the vector bonus heuristic. As long as that's true,
2304     // we have to special case debug intrinsics here to prevent differences in
2305     // inlining due to debug symbols. Eventually, the number of unsimplified
2306     // instructions shouldn't factor into the cost computation, but until then,
2307     // hack around it here.
2308     if (isa<DbgInfoIntrinsic>(I))
2309       continue;
2310 
2311     // Skip pseudo-probes.
2312     if (isa<PseudoProbeInst>(I))
2313       continue;
2314 
2315     // Skip ephemeral values.
2316     if (EphValues.count(&I))
2317       continue;
2318 
2319     ++NumInstructions;
2320     if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy())
2321       ++NumVectorInstructions;
2322 
2323     // If the instruction simplified to a constant, there is no cost to this
2324     // instruction. Visit the instructions using our InstVisitor to account for
2325     // all of the per-instruction logic. The visit tree returns true if we
2326     // consumed the instruction in any way, and false if the instruction's base
2327     // cost should count against inlining.
2328     onInstructionAnalysisStart(&I);
2329 
2330     if (Base::visit(&I))
2331       ++NumInstructionsSimplified;
2332     else
2333       onMissedSimplification();
2334 
2335     onInstructionAnalysisFinish(&I);
2336     using namespace ore;
2337     // If the visit this instruction detected an uninlinable pattern, abort.
2338     InlineResult IR = InlineResult::success();
2339     if (IsRecursiveCall)
2340       IR = InlineResult::failure("recursive");
2341     else if (ExposesReturnsTwice)
2342       IR = InlineResult::failure("exposes returns twice");
2343     else if (HasDynamicAlloca)
2344       IR = InlineResult::failure("dynamic alloca");
2345     else if (HasIndirectBr)
2346       IR = InlineResult::failure("indirect branch");
2347     else if (HasUninlineableIntrinsic)
2348       IR = InlineResult::failure("uninlinable intrinsic");
2349     else if (InitsVargArgs)
2350       IR = InlineResult::failure("varargs");
2351     if (!IR.isSuccess()) {
2352       if (ORE)
2353         ORE->emit([&]() {
2354           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2355                                           &CandidateCall)
2356                  << NV("Callee", &F) << " has uninlinable pattern ("
2357                  << NV("InlineResult", IR.getFailureReason())
2358                  << ") and cost is not fully computed";
2359         });
2360       return IR;
2361     }
2362 
2363     // If the caller is a recursive function then we don't want to inline
2364     // functions which allocate a lot of stack space because it would increase
2365     // the caller stack usage dramatically.
2366     if (IsCallerRecursive &&
2367         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
2368       auto IR =
2369           InlineResult::failure("recursive and allocates too much stack space");
2370       if (ORE)
2371         ORE->emit([&]() {
2372           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2373                                           &CandidateCall)
2374                  << NV("Callee", &F) << " is "
2375                  << NV("InlineResult", IR.getFailureReason())
2376                  << ". Cost is not fully computed";
2377         });
2378       return IR;
2379     }
2380 
2381     if (shouldStop())
2382       return InlineResult::failure(
2383           "Call site analysis is not favorable to inlining.");
2384   }
2385 
2386   return InlineResult::success();
2387 }
2388 
2389 /// Compute the base pointer and cumulative constant offsets for V.
2390 ///
2391 /// This strips all constant offsets off of V, leaving it the base pointer, and
2392 /// accumulates the total constant offset applied in the returned constant. It
2393 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
2394 /// no constant offsets applied.
2395 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
2396   if (!V->getType()->isPointerTy())
2397     return nullptr;
2398 
2399   unsigned AS = V->getType()->getPointerAddressSpace();
2400   unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
2401   APInt Offset = APInt::getNullValue(IntPtrWidth);
2402 
2403   // Even though we don't look through PHI nodes, we could be called on an
2404   // instruction in an unreachable block, which may be on a cycle.
2405   SmallPtrSet<Value *, 4> Visited;
2406   Visited.insert(V);
2407   do {
2408     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2409       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
2410         return nullptr;
2411       V = GEP->getPointerOperand();
2412     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2413       V = cast<Operator>(V)->getOperand(0);
2414     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2415       if (GA->isInterposable())
2416         break;
2417       V = GA->getAliasee();
2418     } else {
2419       break;
2420     }
2421     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2422   } while (Visited.insert(V).second);
2423 
2424   Type *IdxPtrTy = DL.getIndexType(V->getType());
2425   return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
2426 }
2427 
2428 /// Find dead blocks due to deleted CFG edges during inlining.
2429 ///
2430 /// If we know the successor of the current block, \p CurrBB, has to be \p
2431 /// NextBB, the other successors of \p CurrBB are dead if these successors have
2432 /// no live incoming CFG edges.  If one block is found to be dead, we can
2433 /// continue growing the dead block list by checking the successors of the dead
2434 /// blocks to see if all their incoming edges are dead or not.
2435 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
2436   auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
2437     // A CFG edge is dead if the predecessor is dead or the predecessor has a
2438     // known successor which is not the one under exam.
2439     return (DeadBlocks.count(Pred) ||
2440             (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
2441   };
2442 
2443   auto IsNewlyDead = [&](BasicBlock *BB) {
2444     // If all the edges to a block are dead, the block is also dead.
2445     return (!DeadBlocks.count(BB) &&
2446             llvm::all_of(predecessors(BB),
2447                          [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
2448   };
2449 
2450   for (BasicBlock *Succ : successors(CurrBB)) {
2451     if (Succ == NextBB || !IsNewlyDead(Succ))
2452       continue;
2453     SmallVector<BasicBlock *, 4> NewDead;
2454     NewDead.push_back(Succ);
2455     while (!NewDead.empty()) {
2456       BasicBlock *Dead = NewDead.pop_back_val();
2457       if (DeadBlocks.insert(Dead))
2458         // Continue growing the dead block lists.
2459         for (BasicBlock *S : successors(Dead))
2460           if (IsNewlyDead(S))
2461             NewDead.push_back(S);
2462     }
2463   }
2464 }
2465 
2466 /// Analyze a call site for potential inlining.
2467 ///
2468 /// Returns true if inlining this call is viable, and false if it is not
2469 /// viable. It computes the cost and adjusts the threshold based on numerous
2470 /// factors and heuristics. If this method returns false but the computed cost
2471 /// is below the computed threshold, then inlining was forcibly disabled by
2472 /// some artifact of the routine.
2473 InlineResult CallAnalyzer::analyze() {
2474   ++NumCallsAnalyzed;
2475 
2476   auto Result = onAnalysisStart();
2477   if (!Result.isSuccess())
2478     return Result;
2479 
2480   if (F.empty())
2481     return InlineResult::success();
2482 
2483   Function *Caller = CandidateCall.getFunction();
2484   // Check if the caller function is recursive itself.
2485   for (User *U : Caller->users()) {
2486     CallBase *Call = dyn_cast<CallBase>(U);
2487     if (Call && Call->getFunction() == Caller) {
2488       IsCallerRecursive = true;
2489       break;
2490     }
2491   }
2492 
2493   // Populate our simplified values by mapping from function arguments to call
2494   // arguments with known important simplifications.
2495   auto CAI = CandidateCall.arg_begin();
2496   for (Argument &FAI : F.args()) {
2497     assert(CAI != CandidateCall.arg_end());
2498     if (Constant *C = dyn_cast<Constant>(CAI))
2499       SimplifiedValues[&FAI] = C;
2500 
2501     Value *PtrArg = *CAI;
2502     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
2503       ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue());
2504 
2505       // We can SROA any pointer arguments derived from alloca instructions.
2506       if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
2507         SROAArgValues[&FAI] = SROAArg;
2508         onInitializeSROAArg(SROAArg);
2509         EnabledSROAAllocas.insert(SROAArg);
2510       }
2511     }
2512     ++CAI;
2513   }
2514   NumConstantArgs = SimplifiedValues.size();
2515   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
2516   NumAllocaArgs = SROAArgValues.size();
2517 
2518   // FIXME: If a caller has multiple calls to a callee, we end up recomputing
2519   // the ephemeral values multiple times (and they're completely determined by
2520   // the callee, so this is purely duplicate work).
2521   SmallPtrSet<const Value *, 32> EphValues;
2522   CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
2523 
2524   // The worklist of live basic blocks in the callee *after* inlining. We avoid
2525   // adding basic blocks of the callee which can be proven to be dead for this
2526   // particular call site in order to get more accurate cost estimates. This
2527   // requires a somewhat heavyweight iteration pattern: we need to walk the
2528   // basic blocks in a breadth-first order as we insert live successors. To
2529   // accomplish this, prioritizing for small iterations because we exit after
2530   // crossing our threshold, we use a small-size optimized SetVector.
2531   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
2532                     SmallPtrSet<BasicBlock *, 16>>
2533       BBSetVector;
2534   BBSetVector BBWorklist;
2535   BBWorklist.insert(&F.getEntryBlock());
2536 
2537   // Note that we *must not* cache the size, this loop grows the worklist.
2538   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
2539     if (shouldStop())
2540       break;
2541 
2542     BasicBlock *BB = BBWorklist[Idx];
2543     if (BB->empty())
2544       continue;
2545 
2546     onBlockStart(BB);
2547 
2548     // Disallow inlining a blockaddress with uses other than strictly callbr.
2549     // A blockaddress only has defined behavior for an indirect branch in the
2550     // same function, and we do not currently support inlining indirect
2551     // branches.  But, the inliner may not see an indirect branch that ends up
2552     // being dead code at a particular call site. If the blockaddress escapes
2553     // the function, e.g., via a global variable, inlining may lead to an
2554     // invalid cross-function reference.
2555     // FIXME: pr/39560: continue relaxing this overt restriction.
2556     if (BB->hasAddressTaken())
2557       for (User *U : BlockAddress::get(&*BB)->users())
2558         if (!isa<CallBrInst>(*U))
2559           return InlineResult::failure("blockaddress used outside of callbr");
2560 
2561     // Analyze the cost of this block. If we blow through the threshold, this
2562     // returns false, and we can bail on out.
2563     InlineResult IR = analyzeBlock(BB, EphValues);
2564     if (!IR.isSuccess())
2565       return IR;
2566 
2567     Instruction *TI = BB->getTerminator();
2568 
2569     // Add in the live successors by first checking whether we have terminator
2570     // that may be simplified based on the values simplified by this call.
2571     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2572       if (BI->isConditional()) {
2573         Value *Cond = BI->getCondition();
2574         if (ConstantInt *SimpleCond =
2575                 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2576           BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
2577           BBWorklist.insert(NextBB);
2578           KnownSuccessors[BB] = NextBB;
2579           findDeadBlocks(BB, NextBB);
2580           continue;
2581         }
2582       }
2583     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2584       Value *Cond = SI->getCondition();
2585       if (ConstantInt *SimpleCond =
2586               dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2587         BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
2588         BBWorklist.insert(NextBB);
2589         KnownSuccessors[BB] = NextBB;
2590         findDeadBlocks(BB, NextBB);
2591         continue;
2592       }
2593     }
2594 
2595     // If we're unable to select a particular successor, just count all of
2596     // them.
2597     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
2598          ++TIdx)
2599       BBWorklist.insert(TI->getSuccessor(TIdx));
2600 
2601     onBlockAnalyzed(BB);
2602   }
2603 
2604   bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
2605                                     &F == CandidateCall.getCalledFunction();
2606   // If this is a noduplicate call, we can still inline as long as
2607   // inlining this would cause the removal of the caller (so the instruction
2608   // is not actually duplicated, just moved).
2609   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
2610     return InlineResult::failure("noduplicate");
2611 
2612   return finalizeAnalysis();
2613 }
2614 
2615 void InlineCostCallAnalyzer::print() {
2616 #define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
2617   if (PrintInstructionComments)
2618     F.print(dbgs(), &Writer);
2619   DEBUG_PRINT_STAT(NumConstantArgs);
2620   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
2621   DEBUG_PRINT_STAT(NumAllocaArgs);
2622   DEBUG_PRINT_STAT(NumConstantPtrCmps);
2623   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
2624   DEBUG_PRINT_STAT(NumInstructionsSimplified);
2625   DEBUG_PRINT_STAT(NumInstructions);
2626   DEBUG_PRINT_STAT(SROACostSavings);
2627   DEBUG_PRINT_STAT(SROACostSavingsLost);
2628   DEBUG_PRINT_STAT(LoadEliminationCost);
2629   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
2630   DEBUG_PRINT_STAT(Cost);
2631   DEBUG_PRINT_STAT(Threshold);
2632 #undef DEBUG_PRINT_STAT
2633 }
2634 
2635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2636 /// Dump stats about this call's analysis.
2637 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(); }
2638 #endif
2639 
2640 /// Test that there are no attribute conflicts between Caller and Callee
2641 ///        that prevent inlining.
2642 static bool functionsHaveCompatibleAttributes(
2643     Function *Caller, Function *Callee, TargetTransformInfo &TTI,
2644     function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
2645   // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
2646   // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
2647   // object, and always returns the same object (which is overwritten on each
2648   // GetTLI call). Therefore we copy the first result.
2649   auto CalleeTLI = GetTLI(*Callee);
2650   return TTI.areInlineCompatible(Caller, Callee) &&
2651          GetTLI(*Caller).areInlineCompatible(CalleeTLI,
2652                                              InlineCallerSupersetNoBuiltin) &&
2653          AttributeFuncs::areInlineCompatible(*Caller, *Callee);
2654 }
2655 
2656 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
2657   int Cost = 0;
2658   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
2659     if (Call.isByValArgument(I)) {
2660       // We approximate the number of loads and stores needed by dividing the
2661       // size of the byval type by the target's pointer size.
2662       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2663       unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I));
2664       unsigned AS = PTy->getAddressSpace();
2665       unsigned PointerSize = DL.getPointerSizeInBits(AS);
2666       // Ceiling division.
2667       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
2668 
2669       // If it generates more than 8 stores it is likely to be expanded as an
2670       // inline memcpy so we take that as an upper bound. Otherwise we assume
2671       // one load and one store per word copied.
2672       // FIXME: The maxStoresPerMemcpy setting from the target should be used
2673       // here instead of a magic number of 8, but it's not available via
2674       // DataLayout.
2675       NumStores = std::min(NumStores, 8U);
2676 
2677       Cost += 2 * NumStores * InlineConstants::InstrCost;
2678     } else {
2679       // For non-byval arguments subtract off one instruction per call
2680       // argument.
2681       Cost += InlineConstants::InstrCost;
2682     }
2683   }
2684   // The call instruction also disappears after inlining.
2685   Cost += InlineConstants::InstrCost + CallPenalty;
2686   return Cost;
2687 }
2688 
2689 InlineCost llvm::getInlineCost(
2690     CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2691     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2692     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2693     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2694     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2695   return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2696                        GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
2697 }
2698 
2699 Optional<int> llvm::getInliningCostEstimate(
2700     CallBase &Call, TargetTransformInfo &CalleeTTI,
2701     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2702     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2703     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2704   const InlineParams Params = {/* DefaultThreshold*/ 0,
2705                                /*HintThreshold*/ {},
2706                                /*ColdThreshold*/ {},
2707                                /*OptSizeThreshold*/ {},
2708                                /*OptMinSizeThreshold*/ {},
2709                                /*HotCallSiteThreshold*/ {},
2710                                /*LocallyHotCallSiteThreshold*/ {},
2711                                /*ColdCallSiteThreshold*/ {},
2712                                /*ComputeFullInlineCost*/ true,
2713                                /*EnableDeferral*/ true};
2714 
2715   InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
2716                             GetAssumptionCache, GetBFI, PSI, ORE, true,
2717                             /*IgnoreThreshold*/ true);
2718   auto R = CA.analyze();
2719   if (!R.isSuccess())
2720     return None;
2721   return CA.getCost();
2722 }
2723 
2724 Optional<InlineCostFeatures> llvm::getInliningCostFeatures(
2725     CallBase &Call, TargetTransformInfo &CalleeTTI,
2726     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2727     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2728     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2729   InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI,
2730                                  ORE, *Call.getCalledFunction(), Call);
2731   auto R = CFA.analyze();
2732   if (!R.isSuccess())
2733     return None;
2734   return CFA.features();
2735 }
2736 
2737 Optional<InlineResult> llvm::getAttributeBasedInliningDecision(
2738     CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
2739     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
2740 
2741   // Cannot inline indirect calls.
2742   if (!Callee)
2743     return InlineResult::failure("indirect call");
2744 
2745   // When callee coroutine function is inlined into caller coroutine function
2746   // before coro-split pass,
2747   // coro-early pass can not handle this quiet well.
2748   // So we won't inline the coroutine function if it have not been unsplited
2749   if (Callee->isPresplitCoroutine())
2750     return InlineResult::failure("unsplited coroutine call");
2751 
2752   // Never inline calls with byval arguments that does not have the alloca
2753   // address space. Since byval arguments can be replaced with a copy to an
2754   // alloca, the inlined code would need to be adjusted to handle that the
2755   // argument is in the alloca address space (so it is a little bit complicated
2756   // to solve).
2757   unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2758   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
2759     if (Call.isByValArgument(I)) {
2760       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2761       if (PTy->getAddressSpace() != AllocaAS)
2762         return InlineResult::failure("byval arguments without alloca"
2763                                      " address space");
2764     }
2765 
2766   // Calls to functions with always-inline attributes should be inlined
2767   // whenever possible.
2768   if (Call.hasFnAttr(Attribute::AlwaysInline)) {
2769     auto IsViable = isInlineViable(*Callee);
2770     if (IsViable.isSuccess())
2771       return InlineResult::success();
2772     return InlineResult::failure(IsViable.getFailureReason());
2773   }
2774 
2775   // Never inline functions with conflicting attributes (unless callee has
2776   // always-inline attribute).
2777   Function *Caller = Call.getCaller();
2778   if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
2779     return InlineResult::failure("conflicting attributes");
2780 
2781   // Don't inline this call if the caller has the optnone attribute.
2782   if (Caller->hasOptNone())
2783     return InlineResult::failure("optnone attribute");
2784 
2785   // Don't inline a function that treats null pointer as valid into a caller
2786   // that does not have this attribute.
2787   if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
2788     return InlineResult::failure("nullptr definitions incompatible");
2789 
2790   // Don't inline functions which can be interposed at link-time.
2791   if (Callee->isInterposable())
2792     return InlineResult::failure("interposable");
2793 
2794   // Don't inline functions marked noinline.
2795   if (Callee->hasFnAttribute(Attribute::NoInline))
2796     return InlineResult::failure("noinline function attribute");
2797 
2798   // Don't inline call sites marked noinline.
2799   if (Call.isNoInline())
2800     return InlineResult::failure("noinline call site attribute");
2801 
2802   // Don't inline functions if one does not have any stack protector attribute
2803   // but the other does.
2804   if (Caller->hasStackProtectorFnAttr() && !Callee->hasStackProtectorFnAttr())
2805     return InlineResult::failure(
2806         "stack protected caller but callee requested no stack protector");
2807   if (Callee->hasStackProtectorFnAttr() && !Caller->hasStackProtectorFnAttr())
2808     return InlineResult::failure(
2809         "stack protected callee but caller requested no stack protector");
2810 
2811   return None;
2812 }
2813 
2814 InlineCost llvm::getInlineCost(
2815     CallBase &Call, Function *Callee, const InlineParams &Params,
2816     TargetTransformInfo &CalleeTTI,
2817     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2818     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2819     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2820     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2821 
2822   auto UserDecision =
2823       llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);
2824 
2825   if (UserDecision.hasValue()) {
2826     if (UserDecision->isSuccess())
2827       return llvm::InlineCost::getAlways("always inline attribute");
2828     return llvm::InlineCost::getNever(UserDecision->getFailureReason());
2829   }
2830 
2831   LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
2832                           << "... (caller:" << Call.getCaller()->getName()
2833                           << ")\n");
2834 
2835   InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
2836                             GetAssumptionCache, GetBFI, PSI, ORE);
2837   InlineResult ShouldInline = CA.analyze();
2838 
2839   LLVM_DEBUG(CA.dump());
2840 
2841   // Always make cost benefit based decision explicit.
2842   // We use always/never here since threshold is not meaningful,
2843   // as it's not what drives cost-benefit analysis.
2844   if (CA.wasDecidedByCostBenefit()) {
2845     if (ShouldInline.isSuccess())
2846       return InlineCost::getAlways("benefit over cost",
2847                                    CA.getCostBenefitPair());
2848     else
2849       return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair());
2850   }
2851 
2852   // Check if there was a reason to force inlining or no inlining.
2853   if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold())
2854     return InlineCost::getNever(ShouldInline.getFailureReason());
2855   if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold())
2856     return InlineCost::getAlways("empty function");
2857 
2858   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
2859 }
2860 
2861 InlineResult llvm::isInlineViable(Function &F) {
2862   bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
2863   for (BasicBlock &BB : F) {
2864     // Disallow inlining of functions which contain indirect branches.
2865     if (isa<IndirectBrInst>(BB.getTerminator()))
2866       return InlineResult::failure("contains indirect branches");
2867 
2868     // Disallow inlining of blockaddresses which are used by non-callbr
2869     // instructions.
2870     if (BB.hasAddressTaken())
2871       for (User *U : BlockAddress::get(&BB)->users())
2872         if (!isa<CallBrInst>(*U))
2873           return InlineResult::failure("blockaddress used outside of callbr");
2874 
2875     for (auto &II : BB) {
2876       CallBase *Call = dyn_cast<CallBase>(&II);
2877       if (!Call)
2878         continue;
2879 
2880       // Disallow recursive calls.
2881       Function *Callee = Call->getCalledFunction();
2882       if (&F == Callee)
2883         return InlineResult::failure("recursive call");
2884 
2885       // Disallow calls which expose returns-twice to a function not previously
2886       // attributed as such.
2887       if (!ReturnsTwice && isa<CallInst>(Call) &&
2888           cast<CallInst>(Call)->canReturnTwice())
2889         return InlineResult::failure("exposes returns-twice attribute");
2890 
2891       if (Callee)
2892         switch (Callee->getIntrinsicID()) {
2893         default:
2894           break;
2895         case llvm::Intrinsic::icall_branch_funnel:
2896           // Disallow inlining of @llvm.icall.branch.funnel because current
2897           // backend can't separate call targets from call arguments.
2898           return InlineResult::failure(
2899               "disallowed inlining of @llvm.icall.branch.funnel");
2900         case llvm::Intrinsic::localescape:
2901           // Disallow inlining functions that call @llvm.localescape. Doing this
2902           // correctly would require major changes to the inliner.
2903           return InlineResult::failure(
2904               "disallowed inlining of @llvm.localescape");
2905         case llvm::Intrinsic::vastart:
2906           // Disallow inlining of functions that initialize VarArgs with
2907           // va_start.
2908           return InlineResult::failure(
2909               "contains VarArgs initialized with va_start");
2910         }
2911     }
2912   }
2913 
2914   return InlineResult::success();
2915 }
2916 
2917 // APIs to create InlineParams based on command line flags and/or other
2918 // parameters.
2919 
2920 InlineParams llvm::getInlineParams(int Threshold) {
2921   InlineParams Params;
2922 
2923   // This field is the threshold to use for a callee by default. This is
2924   // derived from one or more of:
2925   //  * optimization or size-optimization levels,
2926   //  * a value passed to createFunctionInliningPass function, or
2927   //  * the -inline-threshold flag.
2928   //  If the -inline-threshold flag is explicitly specified, that is used
2929   //  irrespective of anything else.
2930   if (InlineThreshold.getNumOccurrences() > 0)
2931     Params.DefaultThreshold = InlineThreshold;
2932   else
2933     Params.DefaultThreshold = Threshold;
2934 
2935   // Set the HintThreshold knob from the -inlinehint-threshold.
2936   Params.HintThreshold = HintThreshold;
2937 
2938   // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
2939   Params.HotCallSiteThreshold = HotCallSiteThreshold;
2940 
2941   // If the -locally-hot-callsite-threshold is explicitly specified, use it to
2942   // populate LocallyHotCallSiteThreshold. Later, we populate
2943   // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
2944   // we know that optimization level is O3 (in the getInlineParams variant that
2945   // takes the opt and size levels).
2946   // FIXME: Remove this check (and make the assignment unconditional) after
2947   // addressing size regression issues at O2.
2948   if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
2949     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2950 
2951   // Set the ColdCallSiteThreshold knob from the
2952   // -inline-cold-callsite-threshold.
2953   Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
2954 
2955   // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
2956   // -inlinehint-threshold commandline option is not explicitly given. If that
2957   // option is present, then its value applies even for callees with size and
2958   // minsize attributes.
2959   // If the -inline-threshold is not specified, set the ColdThreshold from the
2960   // -inlinecold-threshold even if it is not explicitly passed. If
2961   // -inline-threshold is specified, then -inlinecold-threshold needs to be
2962   // explicitly specified to set the ColdThreshold knob
2963   if (InlineThreshold.getNumOccurrences() == 0) {
2964     Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
2965     Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
2966     Params.ColdThreshold = ColdThreshold;
2967   } else if (ColdThreshold.getNumOccurrences() > 0) {
2968     Params.ColdThreshold = ColdThreshold;
2969   }
2970   return Params;
2971 }
2972 
2973 InlineParams llvm::getInlineParams() {
2974   return getInlineParams(DefaultThreshold);
2975 }
2976 
2977 // Compute the default threshold for inlining based on the opt level and the
2978 // size opt level.
2979 static int computeThresholdFromOptLevels(unsigned OptLevel,
2980                                          unsigned SizeOptLevel) {
2981   if (OptLevel > 2)
2982     return InlineConstants::OptAggressiveThreshold;
2983   if (SizeOptLevel == 1) // -Os
2984     return InlineConstants::OptSizeThreshold;
2985   if (SizeOptLevel == 2) // -Oz
2986     return InlineConstants::OptMinSizeThreshold;
2987   return DefaultThreshold;
2988 }
2989 
2990 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
2991   auto Params =
2992       getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
2993   // At O3, use the value of -locally-hot-callsite-threshold option to populate
2994   // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
2995   // when it is specified explicitly.
2996   if (OptLevel > 2)
2997     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2998   return Params;
2999 }
3000 
3001 PreservedAnalyses
3002 InlineCostAnnotationPrinterPass::run(Function &F,
3003                                      FunctionAnalysisManager &FAM) {
3004   PrintInstructionComments = true;
3005   std::function<AssumptionCache &(Function &)> GetAssumptionCache =
3006       [&](Function &F) -> AssumptionCache & {
3007     return FAM.getResult<AssumptionAnalysis>(F);
3008   };
3009   Module *M = F.getParent();
3010   ProfileSummaryInfo PSI(*M);
3011   DataLayout DL(M);
3012   TargetTransformInfo TTI(DL);
3013   // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
3014   // In the current implementation, the type of InlineParams doesn't matter as
3015   // the pass serves only for verification of inliner's decisions.
3016   // We can add a flag which determines InlineParams for this run. Right now,
3017   // the default InlineParams are used.
3018   const InlineParams Params = llvm::getInlineParams();
3019   for (BasicBlock &BB : F) {
3020     for (Instruction &I : BB) {
3021       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3022         Function *CalledFunction = CI->getCalledFunction();
3023         if (!CalledFunction || CalledFunction->isDeclaration())
3024           continue;
3025         OptimizationRemarkEmitter ORE(CalledFunction);
3026         InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
3027                                     GetAssumptionCache, nullptr, &PSI, &ORE);
3028         ICCA.analyze();
3029         OS << "      Analyzing call of " << CalledFunction->getName()
3030            << "... (caller:" << CI->getCaller()->getName() << ")\n";
3031         ICCA.print();
3032       }
3033     }
3034   }
3035   return PreservedAnalyses::all();
3036 }
3037