xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/InlineCost.cpp (revision 06e20d1babecec1f45ffda513f55a8db5f1c0f56)
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inline cost analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/CodeMetrics.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ProfileSummaryInfo.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/AssemblyAnnotationWriter.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/InstVisitor.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/raw_ostream.h"
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "inline-cost"
49 
50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
51 
52 static cl::opt<int>
53     DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
54                      cl::ZeroOrMore,
55                      cl::desc("Default amount of inlining to perform"));
56 
57 static cl::opt<bool> PrintInstructionComments(
58     "print-instruction-comments", cl::Hidden, cl::init(false),
59     cl::desc("Prints comments for instruction based on inline cost analysis"));
60 
61 static cl::opt<int> InlineThreshold(
62     "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
63     cl::desc("Control the amount of inlining to perform (default = 225)"));
64 
65 static cl::opt<int> HintThreshold(
66     "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
67     cl::desc("Threshold for inlining functions with inline hint"));
68 
69 static cl::opt<int>
70     ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
71                           cl::init(45), cl::ZeroOrMore,
72                           cl::desc("Threshold for inlining cold callsites"));
73 
74 // We introduce this threshold to help performance of instrumentation based
75 // PGO before we actually hook up inliner with analysis passes such as BPI and
76 // BFI.
77 static cl::opt<int> ColdThreshold(
78     "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
79     cl::desc("Threshold for inlining functions with cold attribute"));
80 
81 static cl::opt<int>
82     HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
83                          cl::ZeroOrMore,
84                          cl::desc("Threshold for hot callsites "));
85 
86 static cl::opt<int> LocallyHotCallSiteThreshold(
87     "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
88     cl::desc("Threshold for locally hot callsites "));
89 
90 static cl::opt<int> ColdCallSiteRelFreq(
91     "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
92     cl::desc("Maximum block frequency, expressed as a percentage of caller's "
93              "entry frequency, for a callsite to be cold in the absence of "
94              "profile information."));
95 
96 static cl::opt<int> HotCallSiteRelFreq(
97     "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
98     cl::desc("Minimum block frequency, expressed as a multiple of caller's "
99              "entry frequency, for a callsite to be hot in the absence of "
100              "profile information."));
101 
102 static cl::opt<bool> OptComputeFullInlineCost(
103     "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
104     cl::desc("Compute the full inline cost of a call site even when the cost "
105              "exceeds the threshold."));
106 
107 static cl::opt<bool> InlineCallerSupersetNoBuiltin(
108     "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
109     cl::ZeroOrMore,
110     cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
111              "attributes."));
112 
113 static cl::opt<bool> DisableGEPConstOperand(
114     "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
115     cl::desc("Disables evaluation of GetElementPtr with constant operands"));
116 
117 namespace {
118 class InlineCostCallAnalyzer;
119 
120 // This struct is used to store information about inline cost of a
121 // particular instruction
122 struct InstructionCostDetail {
123   int CostBefore = 0;
124   int CostAfter = 0;
125   int ThresholdBefore = 0;
126   int ThresholdAfter = 0;
127 
128   int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }
129 
130   int getCostDelta() const { return CostAfter - CostBefore; }
131 
132   bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
133 };
134 
135 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
136 private:
137   InlineCostCallAnalyzer *const ICCA;
138 
139 public:
140   InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
141   virtual void emitInstructionAnnot(const Instruction *I,
142                                     formatted_raw_ostream &OS) override;
143 };
144 
145 /// Carry out call site analysis, in order to evaluate inlinability.
146 /// NOTE: the type is currently used as implementation detail of functions such
147 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the
148 /// expectation is that they come from the outer scope, from the wrapper
149 /// functions. If we want to support constructing CallAnalyzer objects where
150 /// lambdas are provided inline at construction, or where the object needs to
151 /// otherwise survive past the scope of the provided functions, we need to
152 /// revisit the argument types.
153 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
154   typedef InstVisitor<CallAnalyzer, bool> Base;
155   friend class InstVisitor<CallAnalyzer, bool>;
156 
157 protected:
158   virtual ~CallAnalyzer() {}
159   /// The TargetTransformInfo available for this compilation.
160   const TargetTransformInfo &TTI;
161 
162   /// Getter for the cache of @llvm.assume intrinsics.
163   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
164 
165   /// Getter for BlockFrequencyInfo
166   function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
167 
168   /// Profile summary information.
169   ProfileSummaryInfo *PSI;
170 
171   /// The called function.
172   Function &F;
173 
174   // Cache the DataLayout since we use it a lot.
175   const DataLayout &DL;
176 
177   /// The OptimizationRemarkEmitter available for this compilation.
178   OptimizationRemarkEmitter *ORE;
179 
180   /// The candidate callsite being analyzed. Please do not use this to do
181   /// analysis in the caller function; we want the inline cost query to be
182   /// easily cacheable. Instead, use the cover function paramHasAttr.
183   CallBase &CandidateCall;
184 
185   /// Extension points for handling callsite features.
186   /// Called after a basic block was analyzed.
187   virtual void onBlockAnalyzed(const BasicBlock *BB) {}
188 
189   /// Called before an instruction was analyzed
190   virtual void onInstructionAnalysisStart(const Instruction *I) {}
191 
192   /// Called after an instruction was analyzed
193   virtual void onInstructionAnalysisFinish(const Instruction *I) {}
194 
195   /// Called at the end of the analysis of the callsite. Return the outcome of
196   /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
197   /// the reason it can't.
198   virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
199   /// Called when we're about to start processing a basic block, and every time
200   /// we are done processing an instruction. Return true if there is no point in
201   /// continuing the analysis (e.g. we've determined already the call site is
202   /// too expensive to inline)
203   virtual bool shouldStop() { return false; }
204 
205   /// Called before the analysis of the callee body starts (with callsite
206   /// contexts propagated).  It checks callsite-specific information. Return a
207   /// reason analysis can't continue if that's the case, or 'true' if it may
208   /// continue.
209   virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
210   /// Called if the analysis engine decides SROA cannot be done for the given
211   /// alloca.
212   virtual void onDisableSROA(AllocaInst *Arg) {}
213 
214   /// Called the analysis engine determines load elimination won't happen.
215   virtual void onDisableLoadElimination() {}
216 
217   /// Called to account for a call.
218   virtual void onCallPenalty() {}
219 
220   /// Called to account for the expectation the inlining would result in a load
221   /// elimination.
222   virtual void onLoadEliminationOpportunity() {}
223 
224   /// Called to account for the cost of argument setup for the Call in the
225   /// callee's body (not the callsite currently under analysis).
226   virtual void onCallArgumentSetup(const CallBase &Call) {}
227 
228   /// Called to account for a load relative intrinsic.
229   virtual void onLoadRelativeIntrinsic() {}
230 
231   /// Called to account for a lowered call.
232   virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
233   }
234 
235   /// Account for a jump table of given size. Return false to stop further
236   /// processing the switch instruction
237   virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
238 
239   /// Account for a case cluster of given size. Return false to stop further
240   /// processing of the instruction.
241   virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
242 
243   /// Called at the end of processing a switch instruction, with the given
244   /// number of case clusters.
245   virtual void onFinalizeSwitch(unsigned JumpTableSize,
246                                 unsigned NumCaseCluster) {}
247 
248   /// Called to account for any other instruction not specifically accounted
249   /// for.
250   virtual void onMissedSimplification() {}
251 
252   /// Start accounting potential benefits due to SROA for the given alloca.
253   virtual void onInitializeSROAArg(AllocaInst *Arg) {}
254 
255   /// Account SROA savings for the AllocaInst value.
256   virtual void onAggregateSROAUse(AllocaInst *V) {}
257 
258   bool handleSROA(Value *V, bool DoNotDisable) {
259     // Check for SROA candidates in comparisons.
260     if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
261       if (DoNotDisable) {
262         onAggregateSROAUse(SROAArg);
263         return true;
264       }
265       disableSROAForArg(SROAArg);
266     }
267     return false;
268   }
269 
270   bool IsCallerRecursive = false;
271   bool IsRecursiveCall = false;
272   bool ExposesReturnsTwice = false;
273   bool HasDynamicAlloca = false;
274   bool ContainsNoDuplicateCall = false;
275   bool HasReturn = false;
276   bool HasIndirectBr = false;
277   bool HasUninlineableIntrinsic = false;
278   bool InitsVargArgs = false;
279 
280   /// Number of bytes allocated statically by the callee.
281   uint64_t AllocatedSize = 0;
282   unsigned NumInstructions = 0;
283   unsigned NumVectorInstructions = 0;
284 
285   /// While we walk the potentially-inlined instructions, we build up and
286   /// maintain a mapping of simplified values specific to this callsite. The
287   /// idea is to propagate any special information we have about arguments to
288   /// this call through the inlinable section of the function, and account for
289   /// likely simplifications post-inlining. The most important aspect we track
290   /// is CFG altering simplifications -- when we prove a basic block dead, that
291   /// can cause dramatic shifts in the cost of inlining a function.
292   DenseMap<Value *, Constant *> SimplifiedValues;
293 
294   /// Keep track of the values which map back (through function arguments) to
295   /// allocas on the caller stack which could be simplified through SROA.
296   DenseMap<Value *, AllocaInst *> SROAArgValues;
297 
298   /// Keep track of Allocas for which we believe we may get SROA optimization.
299   DenseSet<AllocaInst *> EnabledSROAAllocas;
300 
301   /// Keep track of values which map to a pointer base and constant offset.
302   DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
303 
304   /// Keep track of dead blocks due to the constant arguments.
305   SetVector<BasicBlock *> DeadBlocks;
306 
307   /// The mapping of the blocks to their known unique successors due to the
308   /// constant arguments.
309   DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
310 
311   /// Model the elimination of repeated loads that is expected to happen
312   /// whenever we simplify away the stores that would otherwise cause them to be
313   /// loads.
314   bool EnableLoadElimination;
315   SmallPtrSet<Value *, 16> LoadAddrSet;
316 
317   AllocaInst *getSROAArgForValueOrNull(Value *V) const {
318     auto It = SROAArgValues.find(V);
319     if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
320       return nullptr;
321     return It->second;
322   }
323 
324   // Custom simplification helper routines.
325   bool isAllocaDerivedArg(Value *V);
326   void disableSROAForArg(AllocaInst *SROAArg);
327   void disableSROA(Value *V);
328   void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
329   void disableLoadElimination();
330   bool isGEPFree(GetElementPtrInst &GEP);
331   bool canFoldInboundsGEP(GetElementPtrInst &I);
332   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
333   bool simplifyCallSite(Function *F, CallBase &Call);
334   template <typename Callable>
335   bool simplifyInstruction(Instruction &I, Callable Evaluate);
336   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
337 
338   /// Return true if the given argument to the function being considered for
339   /// inlining has the given attribute set either at the call site or the
340   /// function declaration.  Primarily used to inspect call site specific
341   /// attributes since these can be more precise than the ones on the callee
342   /// itself.
343   bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
344 
345   /// Return true if the given value is known non null within the callee if
346   /// inlined through this particular callsite.
347   bool isKnownNonNullInCallee(Value *V);
348 
349   /// Return true if size growth is allowed when inlining the callee at \p Call.
350   bool allowSizeGrowth(CallBase &Call);
351 
352   // Custom analysis routines.
353   InlineResult analyzeBlock(BasicBlock *BB,
354                             SmallPtrSetImpl<const Value *> &EphValues);
355 
356   // Disable several entry points to the visitor so we don't accidentally use
357   // them by declaring but not defining them here.
358   void visit(Module *);
359   void visit(Module &);
360   void visit(Function *);
361   void visit(Function &);
362   void visit(BasicBlock *);
363   void visit(BasicBlock &);
364 
365   // Provide base case for our instruction visit.
366   bool visitInstruction(Instruction &I);
367 
368   // Our visit overrides.
369   bool visitAlloca(AllocaInst &I);
370   bool visitPHI(PHINode &I);
371   bool visitGetElementPtr(GetElementPtrInst &I);
372   bool visitBitCast(BitCastInst &I);
373   bool visitPtrToInt(PtrToIntInst &I);
374   bool visitIntToPtr(IntToPtrInst &I);
375   bool visitCastInst(CastInst &I);
376   bool visitUnaryInstruction(UnaryInstruction &I);
377   bool visitCmpInst(CmpInst &I);
378   bool visitSub(BinaryOperator &I);
379   bool visitBinaryOperator(BinaryOperator &I);
380   bool visitFNeg(UnaryOperator &I);
381   bool visitLoad(LoadInst &I);
382   bool visitStore(StoreInst &I);
383   bool visitExtractValue(ExtractValueInst &I);
384   bool visitInsertValue(InsertValueInst &I);
385   bool visitCallBase(CallBase &Call);
386   bool visitReturnInst(ReturnInst &RI);
387   bool visitBranchInst(BranchInst &BI);
388   bool visitSelectInst(SelectInst &SI);
389   bool visitSwitchInst(SwitchInst &SI);
390   bool visitIndirectBrInst(IndirectBrInst &IBI);
391   bool visitResumeInst(ResumeInst &RI);
392   bool visitCleanupReturnInst(CleanupReturnInst &RI);
393   bool visitCatchReturnInst(CatchReturnInst &RI);
394   bool visitUnreachableInst(UnreachableInst &I);
395 
396 public:
397   CallAnalyzer(
398       Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
399       function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
400       function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
401       ProfileSummaryInfo *PSI = nullptr,
402       OptimizationRemarkEmitter *ORE = nullptr)
403       : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
404         PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
405         CandidateCall(Call), EnableLoadElimination(true) {}
406 
407   InlineResult analyze();
408 
409   Optional<Constant*> getSimplifiedValue(Instruction *I) {
410     if (SimplifiedValues.find(I) != SimplifiedValues.end())
411       return SimplifiedValues[I];
412     return None;
413   }
414 
415   // Keep a bunch of stats about the cost savings found so we can print them
416   // out when debugging.
417   unsigned NumConstantArgs = 0;
418   unsigned NumConstantOffsetPtrArgs = 0;
419   unsigned NumAllocaArgs = 0;
420   unsigned NumConstantPtrCmps = 0;
421   unsigned NumConstantPtrDiffs = 0;
422   unsigned NumInstructionsSimplified = 0;
423 
424   void dump();
425 };
426 
427 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
428 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
429 class InlineCostCallAnalyzer final : public CallAnalyzer {
430   const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
431   const bool ComputeFullInlineCost;
432   int LoadEliminationCost = 0;
433   /// Bonus to be applied when percentage of vector instructions in callee is
434   /// high (see more details in updateThreshold).
435   int VectorBonus = 0;
436   /// Bonus to be applied when the callee has only one reachable basic block.
437   int SingleBBBonus = 0;
438 
439   /// Tunable parameters that control the analysis.
440   const InlineParams &Params;
441 
442   // This DenseMap stores the delta change in cost and threshold after
443   // accounting for the given instruction. The map is filled only with the
444   // flag PrintInstructionComments on.
445   DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;
446 
447   /// Upper bound for the inlining cost. Bonuses are being applied to account
448   /// for speculative "expected profit" of the inlining decision.
449   int Threshold = 0;
450 
451   /// Attempt to evaluate indirect calls to boost its inline cost.
452   const bool BoostIndirectCalls;
453 
454   /// Ignore the threshold when finalizing analysis.
455   const bool IgnoreThreshold;
456 
457   /// Inlining cost measured in abstract units, accounts for all the
458   /// instructions expected to be executed for a given function invocation.
459   /// Instructions that are statically proven to be dead based on call-site
460   /// arguments are not counted here.
461   int Cost = 0;
462 
463   bool SingleBB = true;
464 
465   unsigned SROACostSavings = 0;
466   unsigned SROACostSavingsLost = 0;
467 
468   /// The mapping of caller Alloca values to their accumulated cost savings. If
469   /// we have to disable SROA for one of the allocas, this tells us how much
470   /// cost must be added.
471   DenseMap<AllocaInst *, int> SROAArgCosts;
472 
473   /// Return true if \p Call is a cold callsite.
474   bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
475 
476   /// Update Threshold based on callsite properties such as callee
477   /// attributes and callee hotness for PGO builds. The Callee is explicitly
478   /// passed to support analyzing indirect calls whose target is inferred by
479   /// analysis.
480   void updateThreshold(CallBase &Call, Function &Callee);
481   /// Return a higher threshold if \p Call is a hot callsite.
482   Optional<int> getHotCallSiteThreshold(CallBase &Call,
483                                         BlockFrequencyInfo *CallerBFI);
484 
485   /// Handle a capped 'int' increment for Cost.
486   void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
487     assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
488     Cost = (int)std::min(UpperBound, Cost + Inc);
489   }
490 
491   void onDisableSROA(AllocaInst *Arg) override {
492     auto CostIt = SROAArgCosts.find(Arg);
493     if (CostIt == SROAArgCosts.end())
494       return;
495     addCost(CostIt->second);
496     SROACostSavings -= CostIt->second;
497     SROACostSavingsLost += CostIt->second;
498     SROAArgCosts.erase(CostIt);
499   }
500 
501   void onDisableLoadElimination() override {
502     addCost(LoadEliminationCost);
503     LoadEliminationCost = 0;
504   }
505   void onCallPenalty() override { addCost(InlineConstants::CallPenalty); }
506   void onCallArgumentSetup(const CallBase &Call) override {
507     // Pay the price of the argument setup. We account for the average 1
508     // instruction per call argument setup here.
509     addCost(Call.arg_size() * InlineConstants::InstrCost);
510   }
511   void onLoadRelativeIntrinsic() override {
512     // This is normally lowered to 4 LLVM instructions.
513     addCost(3 * InlineConstants::InstrCost);
514   }
515   void onLoweredCall(Function *F, CallBase &Call,
516                      bool IsIndirectCall) override {
517     // We account for the average 1 instruction per call argument setup here.
518     addCost(Call.arg_size() * InlineConstants::InstrCost);
519 
520     // If we have a constant that we are calling as a function, we can peer
521     // through it and see the function target. This happens not infrequently
522     // during devirtualization and so we want to give it a hefty bonus for
523     // inlining, but cap that bonus in the event that inlining wouldn't pan out.
524     // Pretend to inline the function, with a custom threshold.
525     if (IsIndirectCall && BoostIndirectCalls) {
526       auto IndirectCallParams = Params;
527       IndirectCallParams.DefaultThreshold =
528           InlineConstants::IndirectCallThreshold;
529       /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
530       /// to instantiate the derived class.
531       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
532                                 GetAssumptionCache, GetBFI, PSI, ORE, false);
533       if (CA.analyze().isSuccess()) {
534         // We were able to inline the indirect call! Subtract the cost from the
535         // threshold to get the bonus we want to apply, but don't go below zero.
536         Cost -= std::max(0, CA.getThreshold() - CA.getCost());
537       }
538     } else
539       // Otherwise simply add the cost for merely making the call.
540       addCost(InlineConstants::CallPenalty);
541   }
542 
543   void onFinalizeSwitch(unsigned JumpTableSize,
544                         unsigned NumCaseCluster) override {
545     // If suitable for a jump table, consider the cost for the table size and
546     // branch to destination.
547     // Maximum valid cost increased in this function.
548     if (JumpTableSize) {
549       int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
550                        4 * InlineConstants::InstrCost;
551 
552       addCost(JTCost, (int64_t)CostUpperBound);
553       return;
554     }
555     // Considering forming a binary search, we should find the number of nodes
556     // which is same as the number of comparisons when lowered. For a given
557     // number of clusters, n, we can define a recursive function, f(n), to find
558     // the number of nodes in the tree. The recursion is :
559     // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
560     // and f(n) = n, when n <= 3.
561     // This will lead a binary tree where the leaf should be either f(2) or f(3)
562     // when n > 3.  So, the number of comparisons from leaves should be n, while
563     // the number of non-leaf should be :
564     //   2^(log2(n) - 1) - 1
565     //   = 2^log2(n) * 2^-1 - 1
566     //   = n / 2 - 1.
567     // Considering comparisons from leaf and non-leaf nodes, we can estimate the
568     // number of comparisons in a simple closed form :
569     //   n + n / 2 - 1 = n * 3 / 2 - 1
570     if (NumCaseCluster <= 3) {
571       // Suppose a comparison includes one compare and one conditional branch.
572       addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
573       return;
574     }
575 
576     int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
577     int64_t SwitchCost =
578         ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
579 
580     addCost(SwitchCost, (int64_t)CostUpperBound);
581   }
582   void onMissedSimplification() override {
583     addCost(InlineConstants::InstrCost);
584   }
585 
586   void onInitializeSROAArg(AllocaInst *Arg) override {
587     assert(Arg != nullptr &&
588            "Should not initialize SROA costs for null value.");
589     SROAArgCosts[Arg] = 0;
590   }
591 
592   void onAggregateSROAUse(AllocaInst *SROAArg) override {
593     auto CostIt = SROAArgCosts.find(SROAArg);
594     assert(CostIt != SROAArgCosts.end() &&
595            "expected this argument to have a cost");
596     CostIt->second += InlineConstants::InstrCost;
597     SROACostSavings += InlineConstants::InstrCost;
598   }
599 
600   void onBlockAnalyzed(const BasicBlock *BB) override {
601     auto *TI = BB->getTerminator();
602     // If we had any successors at this point, than post-inlining is likely to
603     // have them as well. Note that we assume any basic blocks which existed
604     // due to branches or switches which folded above will also fold after
605     // inlining.
606     if (SingleBB && TI->getNumSuccessors() > 1) {
607       // Take off the bonus we applied to the threshold.
608       Threshold -= SingleBBBonus;
609       SingleBB = false;
610     }
611   }
612 
613   void onInstructionAnalysisStart(const Instruction *I) override {
614     // This function is called to store the initial cost of inlining before
615     // the given instruction was assessed.
616     if (!PrintInstructionComments)
617       return;
618     InstructionCostDetailMap[I].CostBefore = Cost;
619     InstructionCostDetailMap[I].ThresholdBefore = Threshold;
620   }
621 
622   void onInstructionAnalysisFinish(const Instruction *I) override {
623     // This function is called to find new values of cost and threshold after
624     // the instruction has been assessed.
625     if (!PrintInstructionComments)
626       return;
627     InstructionCostDetailMap[I].CostAfter = Cost;
628     InstructionCostDetailMap[I].ThresholdAfter = Threshold;
629   }
630 
631   InlineResult finalizeAnalysis() override {
632     // Loops generally act a lot like calls in that they act like barriers to
633     // movement, require a certain amount of setup, etc. So when optimising for
634     // size, we penalise any call sites that perform loops. We do this after all
635     // other costs here, so will likely only be dealing with relatively small
636     // functions (and hence DT and LI will hopefully be cheap).
637     auto *Caller = CandidateCall.getFunction();
638     if (Caller->hasMinSize()) {
639       DominatorTree DT(F);
640       LoopInfo LI(DT);
641       int NumLoops = 0;
642       for (Loop *L : LI) {
643         // Ignore loops that will not be executed
644         if (DeadBlocks.count(L->getHeader()))
645           continue;
646         NumLoops++;
647       }
648       addCost(NumLoops * InlineConstants::CallPenalty);
649     }
650 
651     // We applied the maximum possible vector bonus at the beginning. Now,
652     // subtract the excess bonus, if any, from the Threshold before
653     // comparing against Cost.
654     if (NumVectorInstructions <= NumInstructions / 10)
655       Threshold -= VectorBonus;
656     else if (NumVectorInstructions <= NumInstructions / 2)
657       Threshold -= VectorBonus / 2;
658 
659     if (IgnoreThreshold || Cost < std::max(1, Threshold))
660       return InlineResult::success();
661     return InlineResult::failure("Cost over threshold.");
662   }
663   bool shouldStop() override {
664     // Bail out the moment we cross the threshold. This means we'll under-count
665     // the cost, but only when undercounting doesn't matter.
666     return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost;
667   }
668 
669   void onLoadEliminationOpportunity() override {
670     LoadEliminationCost += InlineConstants::InstrCost;
671   }
672 
673   InlineResult onAnalysisStart() override {
674     // Perform some tweaks to the cost and threshold based on the direct
675     // callsite information.
676 
677     // We want to more aggressively inline vector-dense kernels, so up the
678     // threshold, and we'll lower it if the % of vector instructions gets too
679     // low. Note that these bonuses are some what arbitrary and evolved over
680     // time by accident as much as because they are principled bonuses.
681     //
682     // FIXME: It would be nice to remove all such bonuses. At least it would be
683     // nice to base the bonus values on something more scientific.
684     assert(NumInstructions == 0);
685     assert(NumVectorInstructions == 0);
686 
687     // Update the threshold based on callsite properties
688     updateThreshold(CandidateCall, F);
689 
690     // While Threshold depends on commandline options that can take negative
691     // values, we want to enforce the invariant that the computed threshold and
692     // bonuses are non-negative.
693     assert(Threshold >= 0);
694     assert(SingleBBBonus >= 0);
695     assert(VectorBonus >= 0);
696 
697     // Speculatively apply all possible bonuses to Threshold. If cost exceeds
698     // this Threshold any time, and cost cannot decrease, we can stop processing
699     // the rest of the function body.
700     Threshold += (SingleBBBonus + VectorBonus);
701 
702     // Give out bonuses for the callsite, as the instructions setting them up
703     // will be gone after inlining.
704     addCost(-getCallsiteCost(this->CandidateCall, DL));
705 
706     // If this function uses the coldcc calling convention, prefer not to inline
707     // it.
708     if (F.getCallingConv() == CallingConv::Cold)
709       Cost += InlineConstants::ColdccPenalty;
710 
711     // Check if we're done. This can happen due to bonuses and penalties.
712     if (Cost >= Threshold && !ComputeFullInlineCost)
713       return InlineResult::failure("high cost");
714 
715     return InlineResult::success();
716   }
717 
718 public:
719   InlineCostCallAnalyzer(
720       Function &Callee, CallBase &Call, const InlineParams &Params,
721       const TargetTransformInfo &TTI,
722       function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
723       function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
724       ProfileSummaryInfo *PSI = nullptr,
725       OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
726       bool IgnoreThreshold = false)
727       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
728         ComputeFullInlineCost(OptComputeFullInlineCost ||
729                               Params.ComputeFullInlineCost || ORE),
730         Params(Params), Threshold(Params.DefaultThreshold),
731         BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
732         Writer(this) {}
733 
734   /// Annotation Writer for instruction details
735   InlineCostAnnotationWriter Writer;
736 
737   void dump();
738 
739   // Prints the same analysis as dump(), but its definition is not dependent
740   // on the build.
741   void print();
742 
743   Optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
744     if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end())
745       return InstructionCostDetailMap[I];
746     return None;
747   }
748 
749   virtual ~InlineCostCallAnalyzer() {}
750   int getThreshold() { return Threshold; }
751   int getCost() { return Cost; }
752 };
753 } // namespace
754 
755 /// Test whether the given value is an Alloca-derived function argument.
756 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
757   return SROAArgValues.count(V);
758 }
759 
760 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
761   onDisableSROA(SROAArg);
762   EnabledSROAAllocas.erase(SROAArg);
763   disableLoadElimination();
764 }
765 
766 void InlineCostAnnotationWriter::emitInstructionAnnot(const Instruction *I,
767                                                 formatted_raw_ostream &OS) {
768   // The cost of inlining of the given instruction is printed always.
769   // The threshold delta is printed only when it is non-zero. It happens
770   // when we decided to give a bonus at a particular instruction.
771   Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
772   if (!Record)
773     OS << "; No analysis for the instruction";
774   else {
775     OS << "; cost before = " << Record->CostBefore
776        << ", cost after = " << Record->CostAfter
777        << ", threshold before = " << Record->ThresholdBefore
778        << ", threshold after = " << Record->ThresholdAfter << ", ";
779     OS << "cost delta = " << Record->getCostDelta();
780     if (Record->hasThresholdChanged())
781       OS << ", threshold delta = " << Record->getThresholdDelta();
782   }
783   auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
784   if (C) {
785     OS << ", simplified to ";
786     C.getValue()->print(OS, true);
787   }
788   OS << "\n";
789 }
790 
791 /// If 'V' maps to a SROA candidate, disable SROA for it.
792 void CallAnalyzer::disableSROA(Value *V) {
793   if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
794     disableSROAForArg(SROAArg);
795   }
796 }
797 
798 void CallAnalyzer::disableLoadElimination() {
799   if (EnableLoadElimination) {
800     onDisableLoadElimination();
801     EnableLoadElimination = false;
802   }
803 }
804 
805 /// Accumulate a constant GEP offset into an APInt if possible.
806 ///
807 /// Returns false if unable to compute the offset for any reason. Respects any
808 /// simplified values known during the analysis of this callsite.
809 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
810   unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
811   assert(IntPtrWidth == Offset.getBitWidth());
812 
813   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
814        GTI != GTE; ++GTI) {
815     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
816     if (!OpC)
817       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
818         OpC = dyn_cast<ConstantInt>(SimpleOp);
819     if (!OpC)
820       return false;
821     if (OpC->isZero())
822       continue;
823 
824     // Handle a struct index, which adds its field offset to the pointer.
825     if (StructType *STy = GTI.getStructTypeOrNull()) {
826       unsigned ElementIdx = OpC->getZExtValue();
827       const StructLayout *SL = DL.getStructLayout(STy);
828       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
829       continue;
830     }
831 
832     APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
833     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
834   }
835   return true;
836 }
837 
838 /// Use TTI to check whether a GEP is free.
839 ///
840 /// Respects any simplified values known during the analysis of this callsite.
841 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
842   SmallVector<Value *, 4> Operands;
843   Operands.push_back(GEP.getOperand(0));
844   for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
845     if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
846       Operands.push_back(SimpleOp);
847     else
848       Operands.push_back(*I);
849   return TargetTransformInfo::TCC_Free ==
850          TTI.getUserCost(&GEP, Operands,
851                          TargetTransformInfo::TCK_SizeAndLatency);
852 }
853 
854 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
855   // Check whether inlining will turn a dynamic alloca into a static
856   // alloca and handle that case.
857   if (I.isArrayAllocation()) {
858     Constant *Size = SimplifiedValues.lookup(I.getArraySize());
859     if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
860       // Sometimes a dynamic alloca could be converted into a static alloca
861       // after this constant prop, and become a huge static alloca on an
862       // unconditional CFG path. Avoid inlining if this is going to happen above
863       // a threshold.
864       // FIXME: If the threshold is removed or lowered too much, we could end up
865       // being too pessimistic and prevent inlining non-problematic code. This
866       // could result in unintended perf regressions. A better overall strategy
867       // is needed to track stack usage during inlining.
868       Type *Ty = I.getAllocatedType();
869       AllocatedSize = SaturatingMultiplyAdd(
870           AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(),
871           AllocatedSize);
872       if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) {
873         HasDynamicAlloca = true;
874         return false;
875       }
876       return Base::visitAlloca(I);
877     }
878   }
879 
880   // Accumulate the allocated size.
881   if (I.isStaticAlloca()) {
882     Type *Ty = I.getAllocatedType();
883     AllocatedSize =
884         SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize);
885   }
886 
887   // We will happily inline static alloca instructions.
888   if (I.isStaticAlloca())
889     return Base::visitAlloca(I);
890 
891   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
892   // a variety of reasons, and so we would like to not inline them into
893   // functions which don't currently have a dynamic alloca. This simply
894   // disables inlining altogether in the presence of a dynamic alloca.
895   HasDynamicAlloca = true;
896   return false;
897 }
898 
899 bool CallAnalyzer::visitPHI(PHINode &I) {
900   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
901   // though we don't want to propagate it's bonuses. The idea is to disable
902   // SROA if it *might* be used in an inappropriate manner.
903 
904   // Phi nodes are always zero-cost.
905   // FIXME: Pointer sizes may differ between different address spaces, so do we
906   // need to use correct address space in the call to getPointerSizeInBits here?
907   // Or could we skip the getPointerSizeInBits call completely? As far as I can
908   // see the ZeroOffset is used as a dummy value, so we can probably use any
909   // bit width for the ZeroOffset?
910   APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
911   bool CheckSROA = I.getType()->isPointerTy();
912 
913   // Track the constant or pointer with constant offset we've seen so far.
914   Constant *FirstC = nullptr;
915   std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
916   Value *FirstV = nullptr;
917 
918   for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
919     BasicBlock *Pred = I.getIncomingBlock(i);
920     // If the incoming block is dead, skip the incoming block.
921     if (DeadBlocks.count(Pred))
922       continue;
923     // If the parent block of phi is not the known successor of the incoming
924     // block, skip the incoming block.
925     BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
926     if (KnownSuccessor && KnownSuccessor != I.getParent())
927       continue;
928 
929     Value *V = I.getIncomingValue(i);
930     // If the incoming value is this phi itself, skip the incoming value.
931     if (&I == V)
932       continue;
933 
934     Constant *C = dyn_cast<Constant>(V);
935     if (!C)
936       C = SimplifiedValues.lookup(V);
937 
938     std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
939     if (!C && CheckSROA)
940       BaseAndOffset = ConstantOffsetPtrs.lookup(V);
941 
942     if (!C && !BaseAndOffset.first)
943       // The incoming value is neither a constant nor a pointer with constant
944       // offset, exit early.
945       return true;
946 
947     if (FirstC) {
948       if (FirstC == C)
949         // If we've seen a constant incoming value before and it is the same
950         // constant we see this time, continue checking the next incoming value.
951         continue;
952       // Otherwise early exit because we either see a different constant or saw
953       // a constant before but we have a pointer with constant offset this time.
954       return true;
955     }
956 
957     if (FirstV) {
958       // The same logic as above, but check pointer with constant offset here.
959       if (FirstBaseAndOffset == BaseAndOffset)
960         continue;
961       return true;
962     }
963 
964     if (C) {
965       // This is the 1st time we've seen a constant, record it.
966       FirstC = C;
967       continue;
968     }
969 
970     // The remaining case is that this is the 1st time we've seen a pointer with
971     // constant offset, record it.
972     FirstV = V;
973     FirstBaseAndOffset = BaseAndOffset;
974   }
975 
976   // Check if we can map phi to a constant.
977   if (FirstC) {
978     SimplifiedValues[&I] = FirstC;
979     return true;
980   }
981 
982   // Check if we can map phi to a pointer with constant offset.
983   if (FirstBaseAndOffset.first) {
984     ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
985 
986     if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
987       SROAArgValues[&I] = SROAArg;
988   }
989 
990   return true;
991 }
992 
993 /// Check we can fold GEPs of constant-offset call site argument pointers.
994 /// This requires target data and inbounds GEPs.
995 ///
996 /// \return true if the specified GEP can be folded.
997 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
998   // Check if we have a base + offset for the pointer.
999   std::pair<Value *, APInt> BaseAndOffset =
1000       ConstantOffsetPtrs.lookup(I.getPointerOperand());
1001   if (!BaseAndOffset.first)
1002     return false;
1003 
1004   // Check if the offset of this GEP is constant, and if so accumulate it
1005   // into Offset.
1006   if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
1007     return false;
1008 
1009   // Add the result as a new mapping to Base + Offset.
1010   ConstantOffsetPtrs[&I] = BaseAndOffset;
1011 
1012   return true;
1013 }
1014 
1015 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
1016   auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
1017 
1018   // Lambda to check whether a GEP's indices are all constant.
1019   auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
1020     for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
1021       if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
1022         return false;
1023     return true;
1024   };
1025 
1026   if (!DisableGEPConstOperand)
1027     if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1028         SmallVector<Constant *, 2> Indices;
1029         for (unsigned int Index = 1 ; Index < COps.size() ; ++Index)
1030             Indices.push_back(COps[Index]);
1031         return ConstantExpr::getGetElementPtr(I.getSourceElementType(), COps[0],
1032                                               Indices, I.isInBounds());
1033         }))
1034       return true;
1035 
1036   if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
1037     if (SROAArg)
1038       SROAArgValues[&I] = SROAArg;
1039 
1040     // Constant GEPs are modeled as free.
1041     return true;
1042   }
1043 
1044   // Variable GEPs will require math and will disable SROA.
1045   if (SROAArg)
1046     disableSROAForArg(SROAArg);
1047   return isGEPFree(I);
1048 }
1049 
1050 /// Simplify \p I if its operands are constants and update SimplifiedValues.
1051 /// \p Evaluate is a callable specific to instruction type that evaluates the
1052 /// instruction when all the operands are constants.
1053 template <typename Callable>
1054 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
1055   SmallVector<Constant *, 2> COps;
1056   for (Value *Op : I.operands()) {
1057     Constant *COp = dyn_cast<Constant>(Op);
1058     if (!COp)
1059       COp = SimplifiedValues.lookup(Op);
1060     if (!COp)
1061       return false;
1062     COps.push_back(COp);
1063   }
1064   auto *C = Evaluate(COps);
1065   if (!C)
1066     return false;
1067   SimplifiedValues[&I] = C;
1068   return true;
1069 }
1070 
1071 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
1072   // Propagate constants through bitcasts.
1073   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1074         return ConstantExpr::getBitCast(COps[0], I.getType());
1075       }))
1076     return true;
1077 
1078   // Track base/offsets through casts
1079   std::pair<Value *, APInt> BaseAndOffset =
1080       ConstantOffsetPtrs.lookup(I.getOperand(0));
1081   // Casts don't change the offset, just wrap it up.
1082   if (BaseAndOffset.first)
1083     ConstantOffsetPtrs[&I] = BaseAndOffset;
1084 
1085   // Also look for SROA candidates here.
1086   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1087     SROAArgValues[&I] = SROAArg;
1088 
1089   // Bitcasts are always zero cost.
1090   return true;
1091 }
1092 
1093 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
1094   // Propagate constants through ptrtoint.
1095   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1096         return ConstantExpr::getPtrToInt(COps[0], I.getType());
1097       }))
1098     return true;
1099 
1100   // Track base/offset pairs when converted to a plain integer provided the
1101   // integer is large enough to represent the pointer.
1102   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
1103   unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
1104   if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
1105     std::pair<Value *, APInt> BaseAndOffset =
1106         ConstantOffsetPtrs.lookup(I.getOperand(0));
1107     if (BaseAndOffset.first)
1108       ConstantOffsetPtrs[&I] = BaseAndOffset;
1109   }
1110 
1111   // This is really weird. Technically, ptrtoint will disable SROA. However,
1112   // unless that ptrtoint is *used* somewhere in the live basic blocks after
1113   // inlining, it will be nuked, and SROA should proceed. All of the uses which
1114   // would block SROA would also block SROA if applied directly to a pointer,
1115   // and so we can just add the integer in here. The only places where SROA is
1116   // preserved either cannot fire on an integer, or won't in-and-of themselves
1117   // disable SROA (ext) w/o some later use that we would see and disable.
1118   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1119     SROAArgValues[&I] = SROAArg;
1120 
1121   return TargetTransformInfo::TCC_Free ==
1122          TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
1123 }
1124 
1125 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
1126   // Propagate constants through ptrtoint.
1127   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1128         return ConstantExpr::getIntToPtr(COps[0], I.getType());
1129       }))
1130     return true;
1131 
1132   // Track base/offset pairs when round-tripped through a pointer without
1133   // modifications provided the integer is not too large.
1134   Value *Op = I.getOperand(0);
1135   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
1136   if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
1137     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
1138     if (BaseAndOffset.first)
1139       ConstantOffsetPtrs[&I] = BaseAndOffset;
1140   }
1141 
1142   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
1143   if (auto *SROAArg = getSROAArgForValueOrNull(Op))
1144     SROAArgValues[&I] = SROAArg;
1145 
1146   return TargetTransformInfo::TCC_Free ==
1147          TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
1148 }
1149 
1150 bool CallAnalyzer::visitCastInst(CastInst &I) {
1151   // Propagate constants through casts.
1152   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1153         return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
1154       }))
1155     return true;
1156 
1157   // Disable SROA in the face of arbitrary casts we don't explicitly list
1158   // elsewhere.
1159   disableSROA(I.getOperand(0));
1160 
1161   // If this is a floating-point cast, and the target says this operation
1162   // is expensive, this may eventually become a library call. Treat the cost
1163   // as such.
1164   switch (I.getOpcode()) {
1165   case Instruction::FPTrunc:
1166   case Instruction::FPExt:
1167   case Instruction::UIToFP:
1168   case Instruction::SIToFP:
1169   case Instruction::FPToUI:
1170   case Instruction::FPToSI:
1171     if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1172       onCallPenalty();
1173     break;
1174   default:
1175     break;
1176   }
1177 
1178   return TargetTransformInfo::TCC_Free ==
1179          TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
1180 }
1181 
1182 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
1183   Value *Operand = I.getOperand(0);
1184   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1185         return ConstantFoldInstOperands(&I, COps[0], DL);
1186       }))
1187     return true;
1188 
1189   // Disable any SROA on the argument to arbitrary unary instructions.
1190   disableSROA(Operand);
1191 
1192   return false;
1193 }
1194 
1195 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
1196   return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
1197 }
1198 
1199 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
1200   // Does the *call site* have the NonNull attribute set on an argument?  We
1201   // use the attribute on the call site to memoize any analysis done in the
1202   // caller. This will also trip if the callee function has a non-null
1203   // parameter attribute, but that's a less interesting case because hopefully
1204   // the callee would already have been simplified based on that.
1205   if (Argument *A = dyn_cast<Argument>(V))
1206     if (paramHasAttr(A, Attribute::NonNull))
1207       return true;
1208 
1209   // Is this an alloca in the caller?  This is distinct from the attribute case
1210   // above because attributes aren't updated within the inliner itself and we
1211   // always want to catch the alloca derived case.
1212   if (isAllocaDerivedArg(V))
1213     // We can actually predict the result of comparisons between an
1214     // alloca-derived value and null. Note that this fires regardless of
1215     // SROA firing.
1216     return true;
1217 
1218   return false;
1219 }
1220 
1221 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
1222   // If the normal destination of the invoke or the parent block of the call
1223   // site is unreachable-terminated, there is little point in inlining this
1224   // unless there is literally zero cost.
1225   // FIXME: Note that it is possible that an unreachable-terminated block has a
1226   // hot entry. For example, in below scenario inlining hot_call_X() may be
1227   // beneficial :
1228   // main() {
1229   //   hot_call_1();
1230   //   ...
1231   //   hot_call_N()
1232   //   exit(0);
1233   // }
1234   // For now, we are not handling this corner case here as it is rare in real
1235   // code. In future, we should elaborate this based on BPI and BFI in more
1236   // general threshold adjusting heuristics in updateThreshold().
1237   if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
1238     if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
1239       return false;
1240   } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
1241     return false;
1242 
1243   return true;
1244 }
1245 
1246 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
1247                                             BlockFrequencyInfo *CallerBFI) {
1248   // If global profile summary is available, then callsite's coldness is
1249   // determined based on that.
1250   if (PSI && PSI->hasProfileSummary())
1251     return PSI->isColdCallSite(Call, CallerBFI);
1252 
1253   // Otherwise we need BFI to be available.
1254   if (!CallerBFI)
1255     return false;
1256 
1257   // Determine if the callsite is cold relative to caller's entry. We could
1258   // potentially cache the computation of scaled entry frequency, but the added
1259   // complexity is not worth it unless this scaling shows up high in the
1260   // profiles.
1261   const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
1262   auto CallSiteBB = Call.getParent();
1263   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1264   auto CallerEntryFreq =
1265       CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
1266   return CallSiteFreq < CallerEntryFreq * ColdProb;
1267 }
1268 
1269 Optional<int>
1270 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
1271                                                 BlockFrequencyInfo *CallerBFI) {
1272 
1273   // If global profile summary is available, then callsite's hotness is
1274   // determined based on that.
1275   if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
1276     return Params.HotCallSiteThreshold;
1277 
1278   // Otherwise we need BFI to be available and to have a locally hot callsite
1279   // threshold.
1280   if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
1281     return None;
1282 
1283   // Determine if the callsite is hot relative to caller's entry. We could
1284   // potentially cache the computation of scaled entry frequency, but the added
1285   // complexity is not worth it unless this scaling shows up high in the
1286   // profiles.
1287   auto CallSiteBB = Call.getParent();
1288   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
1289   auto CallerEntryFreq = CallerBFI->getEntryFreq();
1290   if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
1291     return Params.LocallyHotCallSiteThreshold;
1292 
1293   // Otherwise treat it normally.
1294   return None;
1295 }
1296 
1297 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
1298   // If no size growth is allowed for this inlining, set Threshold to 0.
1299   if (!allowSizeGrowth(Call)) {
1300     Threshold = 0;
1301     return;
1302   }
1303 
1304   Function *Caller = Call.getCaller();
1305 
1306   // return min(A, B) if B is valid.
1307   auto MinIfValid = [](int A, Optional<int> B) {
1308     return B ? std::min(A, B.getValue()) : A;
1309   };
1310 
1311   // return max(A, B) if B is valid.
1312   auto MaxIfValid = [](int A, Optional<int> B) {
1313     return B ? std::max(A, B.getValue()) : A;
1314   };
1315 
1316   // Various bonus percentages. These are multiplied by Threshold to get the
1317   // bonus values.
1318   // SingleBBBonus: This bonus is applied if the callee has a single reachable
1319   // basic block at the given callsite context. This is speculatively applied
1320   // and withdrawn if more than one basic block is seen.
1321   //
1322   // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
1323   // of the last call to a static function as inlining such functions is
1324   // guaranteed to reduce code size.
1325   //
1326   // These bonus percentages may be set to 0 based on properties of the caller
1327   // and the callsite.
1328   int SingleBBBonusPercent = 50;
1329   int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1330   int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
1331 
1332   // Lambda to set all the above bonus and bonus percentages to 0.
1333   auto DisallowAllBonuses = [&]() {
1334     SingleBBBonusPercent = 0;
1335     VectorBonusPercent = 0;
1336     LastCallToStaticBonus = 0;
1337   };
1338 
1339   // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
1340   // and reduce the threshold if the caller has the necessary attribute.
1341   if (Caller->hasMinSize()) {
1342     Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
1343     // For minsize, we want to disable the single BB bonus and the vector
1344     // bonuses, but not the last-call-to-static bonus. Inlining the last call to
1345     // a static function will, at the minimum, eliminate the parameter setup and
1346     // call/return instructions.
1347     SingleBBBonusPercent = 0;
1348     VectorBonusPercent = 0;
1349   } else if (Caller->hasOptSize())
1350     Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
1351 
1352   // Adjust the threshold based on inlinehint attribute and profile based
1353   // hotness information if the caller does not have MinSize attribute.
1354   if (!Caller->hasMinSize()) {
1355     if (Callee.hasFnAttribute(Attribute::InlineHint))
1356       Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1357 
1358     // FIXME: After switching to the new passmanager, simplify the logic below
1359     // by checking only the callsite hotness/coldness as we will reliably
1360     // have local profile information.
1361     //
1362     // Callsite hotness and coldness can be determined if sample profile is
1363     // used (which adds hotness metadata to calls) or if caller's
1364     // BlockFrequencyInfo is available.
1365     BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
1366     auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
1367     if (!Caller->hasOptSize() && HotCallSiteThreshold) {
1368       LLVM_DEBUG(dbgs() << "Hot callsite.\n");
1369       // FIXME: This should update the threshold only if it exceeds the
1370       // current threshold, but AutoFDO + ThinLTO currently relies on this
1371       // behavior to prevent inlining of hot callsites during ThinLTO
1372       // compile phase.
1373       Threshold = HotCallSiteThreshold.getValue();
1374     } else if (isColdCallSite(Call, CallerBFI)) {
1375       LLVM_DEBUG(dbgs() << "Cold callsite.\n");
1376       // Do not apply bonuses for a cold callsite including the
1377       // LastCallToStatic bonus. While this bonus might result in code size
1378       // reduction, it can cause the size of a non-cold caller to increase
1379       // preventing it from being inlined.
1380       DisallowAllBonuses();
1381       Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
1382     } else if (PSI) {
1383       // Use callee's global profile information only if we have no way of
1384       // determining this via callsite information.
1385       if (PSI->isFunctionEntryHot(&Callee)) {
1386         LLVM_DEBUG(dbgs() << "Hot callee.\n");
1387         // If callsite hotness can not be determined, we may still know
1388         // that the callee is hot and treat it as a weaker hint for threshold
1389         // increase.
1390         Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1391       } else if (PSI->isFunctionEntryCold(&Callee)) {
1392         LLVM_DEBUG(dbgs() << "Cold callee.\n");
1393         // Do not apply bonuses for a cold callee including the
1394         // LastCallToStatic bonus. While this bonus might result in code size
1395         // reduction, it can cause the size of a non-cold caller to increase
1396         // preventing it from being inlined.
1397         DisallowAllBonuses();
1398         Threshold = MinIfValid(Threshold, Params.ColdThreshold);
1399       }
1400     }
1401   }
1402 
1403   // Finally, take the target-specific inlining threshold multiplier into
1404   // account.
1405   Threshold *= TTI.getInliningThresholdMultiplier();
1406 
1407   SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1408   VectorBonus = Threshold * VectorBonusPercent / 100;
1409 
1410   bool OnlyOneCallAndLocalLinkage =
1411       F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
1412   // If there is only one call of the function, and it has internal linkage,
1413   // the cost of inlining it drops dramatically. It may seem odd to update
1414   // Cost in updateThreshold, but the bonus depends on the logic in this method.
1415   if (OnlyOneCallAndLocalLinkage)
1416     Cost -= LastCallToStaticBonus;
1417 }
1418 
1419 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
1420   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1421   // First try to handle simplified comparisons.
1422   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1423         return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
1424       }))
1425     return true;
1426 
1427   if (I.getOpcode() == Instruction::FCmp)
1428     return false;
1429 
1430   // Otherwise look for a comparison between constant offset pointers with
1431   // a common base.
1432   Value *LHSBase, *RHSBase;
1433   APInt LHSOffset, RHSOffset;
1434   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1435   if (LHSBase) {
1436     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1437     if (RHSBase && LHSBase == RHSBase) {
1438       // We have common bases, fold the icmp to a constant based on the
1439       // offsets.
1440       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1441       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1442       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
1443         SimplifiedValues[&I] = C;
1444         ++NumConstantPtrCmps;
1445         return true;
1446       }
1447     }
1448   }
1449 
1450   // If the comparison is an equality comparison with null, we can simplify it
1451   // if we know the value (argument) can't be null
1452   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
1453       isKnownNonNullInCallee(I.getOperand(0))) {
1454     bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
1455     SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
1456                                       : ConstantInt::getFalse(I.getType());
1457     return true;
1458   }
1459   return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
1460 }
1461 
1462 bool CallAnalyzer::visitSub(BinaryOperator &I) {
1463   // Try to handle a special case: we can fold computing the difference of two
1464   // constant-related pointers.
1465   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1466   Value *LHSBase, *RHSBase;
1467   APInt LHSOffset, RHSOffset;
1468   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1469   if (LHSBase) {
1470     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1471     if (RHSBase && LHSBase == RHSBase) {
1472       // We have common bases, fold the subtract to a constant based on the
1473       // offsets.
1474       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1475       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1476       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
1477         SimplifiedValues[&I] = C;
1478         ++NumConstantPtrDiffs;
1479         return true;
1480       }
1481     }
1482   }
1483 
1484   // Otherwise, fall back to the generic logic for simplifying and handling
1485   // instructions.
1486   return Base::visitSub(I);
1487 }
1488 
1489 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
1490   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1491   Constant *CLHS = dyn_cast<Constant>(LHS);
1492   if (!CLHS)
1493     CLHS = SimplifiedValues.lookup(LHS);
1494   Constant *CRHS = dyn_cast<Constant>(RHS);
1495   if (!CRHS)
1496     CRHS = SimplifiedValues.lookup(RHS);
1497 
1498   Value *SimpleV = nullptr;
1499   if (auto FI = dyn_cast<FPMathOperator>(&I))
1500     SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
1501                             FI->getFastMathFlags(), DL);
1502   else
1503     SimpleV =
1504         SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
1505 
1506   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1507     SimplifiedValues[&I] = C;
1508 
1509   if (SimpleV)
1510     return true;
1511 
1512   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
1513   disableSROA(LHS);
1514   disableSROA(RHS);
1515 
1516   // If the instruction is floating point, and the target says this operation
1517   // is expensive, this may eventually become a library call. Treat the cost
1518   // as such. Unless it's fneg which can be implemented with an xor.
1519   using namespace llvm::PatternMatch;
1520   if (I.getType()->isFloatingPointTy() &&
1521       TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
1522       !match(&I, m_FNeg(m_Value())))
1523     onCallPenalty();
1524 
1525   return false;
1526 }
1527 
1528 bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
1529   Value *Op = I.getOperand(0);
1530   Constant *COp = dyn_cast<Constant>(Op);
1531   if (!COp)
1532     COp = SimplifiedValues.lookup(Op);
1533 
1534   Value *SimpleV = SimplifyFNegInst(
1535       COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
1536 
1537   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1538     SimplifiedValues[&I] = C;
1539 
1540   if (SimpleV)
1541     return true;
1542 
1543   // Disable any SROA on arguments to arbitrary, unsimplified fneg.
1544   disableSROA(Op);
1545 
1546   return false;
1547 }
1548 
1549 bool CallAnalyzer::visitLoad(LoadInst &I) {
1550   if (handleSROA(I.getPointerOperand(), I.isSimple()))
1551     return true;
1552 
1553   // If the data is already loaded from this address and hasn't been clobbered
1554   // by any stores or calls, this load is likely to be redundant and can be
1555   // eliminated.
1556   if (EnableLoadElimination &&
1557       !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
1558     onLoadEliminationOpportunity();
1559     return true;
1560   }
1561 
1562   return false;
1563 }
1564 
1565 bool CallAnalyzer::visitStore(StoreInst &I) {
1566   if (handleSROA(I.getPointerOperand(), I.isSimple()))
1567     return true;
1568 
1569   // The store can potentially clobber loads and prevent repeated loads from
1570   // being eliminated.
1571   // FIXME:
1572   // 1. We can probably keep an initial set of eliminatable loads substracted
1573   // from the cost even when we finally see a store. We just need to disable
1574   // *further* accumulation of elimination savings.
1575   // 2. We should probably at some point thread MemorySSA for the callee into
1576   // this and then use that to actually compute *really* precise savings.
1577   disableLoadElimination();
1578   return false;
1579 }
1580 
1581 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
1582   // Constant folding for extract value is trivial.
1583   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1584         return ConstantExpr::getExtractValue(COps[0], I.getIndices());
1585       }))
1586     return true;
1587 
1588   // SROA can look through these but give them a cost.
1589   return false;
1590 }
1591 
1592 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
1593   // Constant folding for insert value is trivial.
1594   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1595         return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
1596                                             /*InsertedValueOperand*/ COps[1],
1597                                             I.getIndices());
1598       }))
1599     return true;
1600 
1601   // SROA can look through these but give them a cost.
1602   return false;
1603 }
1604 
1605 /// Try to simplify a call site.
1606 ///
1607 /// Takes a concrete function and callsite and tries to actually simplify it by
1608 /// analyzing the arguments and call itself with instsimplify. Returns true if
1609 /// it has simplified the callsite to some other entity (a constant), making it
1610 /// free.
1611 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
1612   // FIXME: Using the instsimplify logic directly for this is inefficient
1613   // because we have to continually rebuild the argument list even when no
1614   // simplifications can be performed. Until that is fixed with remapping
1615   // inside of instsimplify, directly constant fold calls here.
1616   if (!canConstantFoldCallTo(&Call, F))
1617     return false;
1618 
1619   // Try to re-map the arguments to constants.
1620   SmallVector<Constant *, 4> ConstantArgs;
1621   ConstantArgs.reserve(Call.arg_size());
1622   for (Value *I : Call.args()) {
1623     Constant *C = dyn_cast<Constant>(I);
1624     if (!C)
1625       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
1626     if (!C)
1627       return false; // This argument doesn't map to a constant.
1628 
1629     ConstantArgs.push_back(C);
1630   }
1631   if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
1632     SimplifiedValues[&Call] = C;
1633     return true;
1634   }
1635 
1636   return false;
1637 }
1638 
1639 bool CallAnalyzer::visitCallBase(CallBase &Call) {
1640   if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
1641       !F.hasFnAttribute(Attribute::ReturnsTwice)) {
1642     // This aborts the entire analysis.
1643     ExposesReturnsTwice = true;
1644     return false;
1645   }
1646   if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
1647     ContainsNoDuplicateCall = true;
1648 
1649   Value *Callee = Call.getCalledOperand();
1650   Function *F = dyn_cast_or_null<Function>(Callee);
1651   bool IsIndirectCall = !F;
1652   if (IsIndirectCall) {
1653     // Check if this happens to be an indirect function call to a known function
1654     // in this inline context. If not, we've done all we can.
1655     F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
1656     if (!F) {
1657       onCallArgumentSetup(Call);
1658 
1659       if (!Call.onlyReadsMemory())
1660         disableLoadElimination();
1661       return Base::visitCallBase(Call);
1662     }
1663   }
1664 
1665   assert(F && "Expected a call to a known function");
1666 
1667   // When we have a concrete function, first try to simplify it directly.
1668   if (simplifyCallSite(F, Call))
1669     return true;
1670 
1671   // Next check if it is an intrinsic we know about.
1672   // FIXME: Lift this into part of the InstVisitor.
1673   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
1674     switch (II->getIntrinsicID()) {
1675     default:
1676       if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
1677         disableLoadElimination();
1678       return Base::visitCallBase(Call);
1679 
1680     case Intrinsic::load_relative:
1681       onLoadRelativeIntrinsic();
1682       return false;
1683 
1684     case Intrinsic::memset:
1685     case Intrinsic::memcpy:
1686     case Intrinsic::memmove:
1687       disableLoadElimination();
1688       // SROA can usually chew through these intrinsics, but they aren't free.
1689       return false;
1690     case Intrinsic::icall_branch_funnel:
1691     case Intrinsic::localescape:
1692       HasUninlineableIntrinsic = true;
1693       return false;
1694     case Intrinsic::vastart:
1695       InitsVargArgs = true;
1696       return false;
1697     }
1698   }
1699 
1700   if (F == Call.getFunction()) {
1701     // This flag will fully abort the analysis, so don't bother with anything
1702     // else.
1703     IsRecursiveCall = true;
1704     return false;
1705   }
1706 
1707   if (TTI.isLoweredToCall(F)) {
1708     onLoweredCall(F, Call, IsIndirectCall);
1709   }
1710 
1711   if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
1712     disableLoadElimination();
1713   return Base::visitCallBase(Call);
1714 }
1715 
1716 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
1717   // At least one return instruction will be free after inlining.
1718   bool Free = !HasReturn;
1719   HasReturn = true;
1720   return Free;
1721 }
1722 
1723 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
1724   // We model unconditional branches as essentially free -- they really
1725   // shouldn't exist at all, but handling them makes the behavior of the
1726   // inliner more regular and predictable. Interestingly, conditional branches
1727   // which will fold away are also free.
1728   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
1729          dyn_cast_or_null<ConstantInt>(
1730              SimplifiedValues.lookup(BI.getCondition()));
1731 }
1732 
1733 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
1734   bool CheckSROA = SI.getType()->isPointerTy();
1735   Value *TrueVal = SI.getTrueValue();
1736   Value *FalseVal = SI.getFalseValue();
1737 
1738   Constant *TrueC = dyn_cast<Constant>(TrueVal);
1739   if (!TrueC)
1740     TrueC = SimplifiedValues.lookup(TrueVal);
1741   Constant *FalseC = dyn_cast<Constant>(FalseVal);
1742   if (!FalseC)
1743     FalseC = SimplifiedValues.lookup(FalseVal);
1744   Constant *CondC =
1745       dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
1746 
1747   if (!CondC) {
1748     // Select C, X, X => X
1749     if (TrueC == FalseC && TrueC) {
1750       SimplifiedValues[&SI] = TrueC;
1751       return true;
1752     }
1753 
1754     if (!CheckSROA)
1755       return Base::visitSelectInst(SI);
1756 
1757     std::pair<Value *, APInt> TrueBaseAndOffset =
1758         ConstantOffsetPtrs.lookup(TrueVal);
1759     std::pair<Value *, APInt> FalseBaseAndOffset =
1760         ConstantOffsetPtrs.lookup(FalseVal);
1761     if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
1762       ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
1763 
1764       if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
1765         SROAArgValues[&SI] = SROAArg;
1766       return true;
1767     }
1768 
1769     return Base::visitSelectInst(SI);
1770   }
1771 
1772   // Select condition is a constant.
1773   Value *SelectedV = CondC->isAllOnesValue()
1774                          ? TrueVal
1775                          : (CondC->isNullValue()) ? FalseVal : nullptr;
1776   if (!SelectedV) {
1777     // Condition is a vector constant that is not all 1s or all 0s.  If all
1778     // operands are constants, ConstantExpr::getSelect() can handle the cases
1779     // such as select vectors.
1780     if (TrueC && FalseC) {
1781       if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
1782         SimplifiedValues[&SI] = C;
1783         return true;
1784       }
1785     }
1786     return Base::visitSelectInst(SI);
1787   }
1788 
1789   // Condition is either all 1s or all 0s. SI can be simplified.
1790   if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
1791     SimplifiedValues[&SI] = SelectedC;
1792     return true;
1793   }
1794 
1795   if (!CheckSROA)
1796     return true;
1797 
1798   std::pair<Value *, APInt> BaseAndOffset =
1799       ConstantOffsetPtrs.lookup(SelectedV);
1800   if (BaseAndOffset.first) {
1801     ConstantOffsetPtrs[&SI] = BaseAndOffset;
1802 
1803     if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
1804       SROAArgValues[&SI] = SROAArg;
1805   }
1806 
1807   return true;
1808 }
1809 
1810 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
1811   // We model unconditional switches as free, see the comments on handling
1812   // branches.
1813   if (isa<ConstantInt>(SI.getCondition()))
1814     return true;
1815   if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
1816     if (isa<ConstantInt>(V))
1817       return true;
1818 
1819   // Assume the most general case where the switch is lowered into
1820   // either a jump table, bit test, or a balanced binary tree consisting of
1821   // case clusters without merging adjacent clusters with the same
1822   // destination. We do not consider the switches that are lowered with a mix
1823   // of jump table/bit test/binary search tree. The cost of the switch is
1824   // proportional to the size of the tree or the size of jump table range.
1825   //
1826   // NB: We convert large switches which are just used to initialize large phi
1827   // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
1828   // inlining those. It will prevent inlining in cases where the optimization
1829   // does not (yet) fire.
1830 
1831   unsigned JumpTableSize = 0;
1832   BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
1833   unsigned NumCaseCluster =
1834       TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
1835 
1836   onFinalizeSwitch(JumpTableSize, NumCaseCluster);
1837   return false;
1838 }
1839 
1840 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
1841   // We never want to inline functions that contain an indirectbr.  This is
1842   // incorrect because all the blockaddress's (in static global initializers
1843   // for example) would be referring to the original function, and this
1844   // indirect jump would jump from the inlined copy of the function into the
1845   // original function which is extremely undefined behavior.
1846   // FIXME: This logic isn't really right; we can safely inline functions with
1847   // indirectbr's as long as no other function or global references the
1848   // blockaddress of a block within the current function.
1849   HasIndirectBr = true;
1850   return false;
1851 }
1852 
1853 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
1854   // FIXME: It's not clear that a single instruction is an accurate model for
1855   // the inline cost of a resume instruction.
1856   return false;
1857 }
1858 
1859 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
1860   // FIXME: It's not clear that a single instruction is an accurate model for
1861   // the inline cost of a cleanupret instruction.
1862   return false;
1863 }
1864 
1865 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
1866   // FIXME: It's not clear that a single instruction is an accurate model for
1867   // the inline cost of a catchret instruction.
1868   return false;
1869 }
1870 
1871 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
1872   // FIXME: It might be reasonably to discount the cost of instructions leading
1873   // to unreachable as they have the lowest possible impact on both runtime and
1874   // code size.
1875   return true; // No actual code is needed for unreachable.
1876 }
1877 
1878 bool CallAnalyzer::visitInstruction(Instruction &I) {
1879   // Some instructions are free. All of the free intrinsics can also be
1880   // handled by SROA, etc.
1881   if (TargetTransformInfo::TCC_Free ==
1882       TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency))
1883     return true;
1884 
1885   // We found something we don't understand or can't handle. Mark any SROA-able
1886   // values in the operand list as no longer viable.
1887   for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
1888     disableSROA(*OI);
1889 
1890   return false;
1891 }
1892 
1893 /// Analyze a basic block for its contribution to the inline cost.
1894 ///
1895 /// This method walks the analyzer over every instruction in the given basic
1896 /// block and accounts for their cost during inlining at this callsite. It
1897 /// aborts early if the threshold has been exceeded or an impossible to inline
1898 /// construct has been detected. It returns false if inlining is no longer
1899 /// viable, and true if inlining remains viable.
1900 InlineResult
1901 CallAnalyzer::analyzeBlock(BasicBlock *BB,
1902                            SmallPtrSetImpl<const Value *> &EphValues) {
1903   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1904     // FIXME: Currently, the number of instructions in a function regardless of
1905     // our ability to simplify them during inline to constants or dead code,
1906     // are actually used by the vector bonus heuristic. As long as that's true,
1907     // we have to special case debug intrinsics here to prevent differences in
1908     // inlining due to debug symbols. Eventually, the number of unsimplified
1909     // instructions shouldn't factor into the cost computation, but until then,
1910     // hack around it here.
1911     if (isa<DbgInfoIntrinsic>(I))
1912       continue;
1913 
1914     // Skip ephemeral values.
1915     if (EphValues.count(&*I))
1916       continue;
1917 
1918     ++NumInstructions;
1919     if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
1920       ++NumVectorInstructions;
1921 
1922     // If the instruction simplified to a constant, there is no cost to this
1923     // instruction. Visit the instructions using our InstVisitor to account for
1924     // all of the per-instruction logic. The visit tree returns true if we
1925     // consumed the instruction in any way, and false if the instruction's base
1926     // cost should count against inlining.
1927     onInstructionAnalysisStart(&*I);
1928 
1929     if (Base::visit(&*I))
1930       ++NumInstructionsSimplified;
1931     else
1932       onMissedSimplification();
1933 
1934     onInstructionAnalysisFinish(&*I);
1935     using namespace ore;
1936     // If the visit this instruction detected an uninlinable pattern, abort.
1937     InlineResult IR = InlineResult::success();
1938     if (IsRecursiveCall)
1939       IR = InlineResult::failure("recursive");
1940     else if (ExposesReturnsTwice)
1941       IR = InlineResult::failure("exposes returns twice");
1942     else if (HasDynamicAlloca)
1943       IR = InlineResult::failure("dynamic alloca");
1944     else if (HasIndirectBr)
1945       IR = InlineResult::failure("indirect branch");
1946     else if (HasUninlineableIntrinsic)
1947       IR = InlineResult::failure("uninlinable intrinsic");
1948     else if (InitsVargArgs)
1949       IR = InlineResult::failure("varargs");
1950     if (!IR.isSuccess()) {
1951       if (ORE)
1952         ORE->emit([&]() {
1953           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1954                                           &CandidateCall)
1955                  << NV("Callee", &F) << " has uninlinable pattern ("
1956                  << NV("InlineResult", IR.getFailureReason())
1957                  << ") and cost is not fully computed";
1958         });
1959       return IR;
1960     }
1961 
1962     // If the caller is a recursive function then we don't want to inline
1963     // functions which allocate a lot of stack space because it would increase
1964     // the caller stack usage dramatically.
1965     if (IsCallerRecursive &&
1966         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
1967       auto IR =
1968           InlineResult::failure("recursive and allocates too much stack space");
1969       if (ORE)
1970         ORE->emit([&]() {
1971           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1972                                           &CandidateCall)
1973                  << NV("Callee", &F) << " is "
1974                  << NV("InlineResult", IR.getFailureReason())
1975                  << ". Cost is not fully computed";
1976         });
1977       return IR;
1978     }
1979 
1980     if (shouldStop())
1981       return InlineResult::failure(
1982           "Call site analysis is not favorable to inlining.");
1983   }
1984 
1985   return InlineResult::success();
1986 }
1987 
1988 /// Compute the base pointer and cumulative constant offsets for V.
1989 ///
1990 /// This strips all constant offsets off of V, leaving it the base pointer, and
1991 /// accumulates the total constant offset applied in the returned constant. It
1992 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
1993 /// no constant offsets applied.
1994 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
1995   if (!V->getType()->isPointerTy())
1996     return nullptr;
1997 
1998   unsigned AS = V->getType()->getPointerAddressSpace();
1999   unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
2000   APInt Offset = APInt::getNullValue(IntPtrWidth);
2001 
2002   // Even though we don't look through PHI nodes, we could be called on an
2003   // instruction in an unreachable block, which may be on a cycle.
2004   SmallPtrSet<Value *, 4> Visited;
2005   Visited.insert(V);
2006   do {
2007     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2008       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
2009         return nullptr;
2010       V = GEP->getPointerOperand();
2011     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2012       V = cast<Operator>(V)->getOperand(0);
2013     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2014       if (GA->isInterposable())
2015         break;
2016       V = GA->getAliasee();
2017     } else {
2018       break;
2019     }
2020     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2021   } while (Visited.insert(V).second);
2022 
2023   Type *IdxPtrTy = DL.getIndexType(V->getType());
2024   return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
2025 }
2026 
2027 /// Find dead blocks due to deleted CFG edges during inlining.
2028 ///
2029 /// If we know the successor of the current block, \p CurrBB, has to be \p
2030 /// NextBB, the other successors of \p CurrBB are dead if these successors have
2031 /// no live incoming CFG edges.  If one block is found to be dead, we can
2032 /// continue growing the dead block list by checking the successors of the dead
2033 /// blocks to see if all their incoming edges are dead or not.
2034 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
2035   auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
2036     // A CFG edge is dead if the predecessor is dead or the predecessor has a
2037     // known successor which is not the one under exam.
2038     return (DeadBlocks.count(Pred) ||
2039             (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
2040   };
2041 
2042   auto IsNewlyDead = [&](BasicBlock *BB) {
2043     // If all the edges to a block are dead, the block is also dead.
2044     return (!DeadBlocks.count(BB) &&
2045             llvm::all_of(predecessors(BB),
2046                          [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
2047   };
2048 
2049   for (BasicBlock *Succ : successors(CurrBB)) {
2050     if (Succ == NextBB || !IsNewlyDead(Succ))
2051       continue;
2052     SmallVector<BasicBlock *, 4> NewDead;
2053     NewDead.push_back(Succ);
2054     while (!NewDead.empty()) {
2055       BasicBlock *Dead = NewDead.pop_back_val();
2056       if (DeadBlocks.insert(Dead))
2057         // Continue growing the dead block lists.
2058         for (BasicBlock *S : successors(Dead))
2059           if (IsNewlyDead(S))
2060             NewDead.push_back(S);
2061     }
2062   }
2063 }
2064 
2065 /// Analyze a call site for potential inlining.
2066 ///
2067 /// Returns true if inlining this call is viable, and false if it is not
2068 /// viable. It computes the cost and adjusts the threshold based on numerous
2069 /// factors and heuristics. If this method returns false but the computed cost
2070 /// is below the computed threshold, then inlining was forcibly disabled by
2071 /// some artifact of the routine.
2072 InlineResult CallAnalyzer::analyze() {
2073   ++NumCallsAnalyzed;
2074 
2075   auto Result = onAnalysisStart();
2076   if (!Result.isSuccess())
2077     return Result;
2078 
2079   if (F.empty())
2080     return InlineResult::success();
2081 
2082   Function *Caller = CandidateCall.getFunction();
2083   // Check if the caller function is recursive itself.
2084   for (User *U : Caller->users()) {
2085     CallBase *Call = dyn_cast<CallBase>(U);
2086     if (Call && Call->getFunction() == Caller) {
2087       IsCallerRecursive = true;
2088       break;
2089     }
2090   }
2091 
2092   // Populate our simplified values by mapping from function arguments to call
2093   // arguments with known important simplifications.
2094   auto CAI = CandidateCall.arg_begin();
2095   for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
2096        FAI != FAE; ++FAI, ++CAI) {
2097     assert(CAI != CandidateCall.arg_end());
2098     if (Constant *C = dyn_cast<Constant>(CAI))
2099       SimplifiedValues[&*FAI] = C;
2100 
2101     Value *PtrArg = *CAI;
2102     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
2103       ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
2104 
2105       // We can SROA any pointer arguments derived from alloca instructions.
2106       if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
2107         SROAArgValues[&*FAI] = SROAArg;
2108         onInitializeSROAArg(SROAArg);
2109         EnabledSROAAllocas.insert(SROAArg);
2110       }
2111     }
2112   }
2113   NumConstantArgs = SimplifiedValues.size();
2114   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
2115   NumAllocaArgs = SROAArgValues.size();
2116 
2117   // FIXME: If a caller has multiple calls to a callee, we end up recomputing
2118   // the ephemeral values multiple times (and they're completely determined by
2119   // the callee, so this is purely duplicate work).
2120   SmallPtrSet<const Value *, 32> EphValues;
2121   CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
2122 
2123   // The worklist of live basic blocks in the callee *after* inlining. We avoid
2124   // adding basic blocks of the callee which can be proven to be dead for this
2125   // particular call site in order to get more accurate cost estimates. This
2126   // requires a somewhat heavyweight iteration pattern: we need to walk the
2127   // basic blocks in a breadth-first order as we insert live successors. To
2128   // accomplish this, prioritizing for small iterations because we exit after
2129   // crossing our threshold, we use a small-size optimized SetVector.
2130   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
2131                     SmallPtrSet<BasicBlock *, 16>>
2132       BBSetVector;
2133   BBSetVector BBWorklist;
2134   BBWorklist.insert(&F.getEntryBlock());
2135 
2136   // Note that we *must not* cache the size, this loop grows the worklist.
2137   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
2138     if (shouldStop())
2139       break;
2140 
2141     BasicBlock *BB = BBWorklist[Idx];
2142     if (BB->empty())
2143       continue;
2144 
2145     // Disallow inlining a blockaddress with uses other than strictly callbr.
2146     // A blockaddress only has defined behavior for an indirect branch in the
2147     // same function, and we do not currently support inlining indirect
2148     // branches.  But, the inliner may not see an indirect branch that ends up
2149     // being dead code at a particular call site. If the blockaddress escapes
2150     // the function, e.g., via a global variable, inlining may lead to an
2151     // invalid cross-function reference.
2152     // FIXME: pr/39560: continue relaxing this overt restriction.
2153     if (BB->hasAddressTaken())
2154       for (User *U : BlockAddress::get(&*BB)->users())
2155         if (!isa<CallBrInst>(*U))
2156           return InlineResult::failure("blockaddress used outside of callbr");
2157 
2158     // Analyze the cost of this block. If we blow through the threshold, this
2159     // returns false, and we can bail on out.
2160     InlineResult IR = analyzeBlock(BB, EphValues);
2161     if (!IR.isSuccess())
2162       return IR;
2163 
2164     Instruction *TI = BB->getTerminator();
2165 
2166     // Add in the live successors by first checking whether we have terminator
2167     // that may be simplified based on the values simplified by this call.
2168     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2169       if (BI->isConditional()) {
2170         Value *Cond = BI->getCondition();
2171         if (ConstantInt *SimpleCond =
2172                 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2173           BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
2174           BBWorklist.insert(NextBB);
2175           KnownSuccessors[BB] = NextBB;
2176           findDeadBlocks(BB, NextBB);
2177           continue;
2178         }
2179       }
2180     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2181       Value *Cond = SI->getCondition();
2182       if (ConstantInt *SimpleCond =
2183               dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2184         BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
2185         BBWorklist.insert(NextBB);
2186         KnownSuccessors[BB] = NextBB;
2187         findDeadBlocks(BB, NextBB);
2188         continue;
2189       }
2190     }
2191 
2192     // If we're unable to select a particular successor, just count all of
2193     // them.
2194     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
2195          ++TIdx)
2196       BBWorklist.insert(TI->getSuccessor(TIdx));
2197 
2198     onBlockAnalyzed(BB);
2199   }
2200 
2201   bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
2202                                     &F == CandidateCall.getCalledFunction();
2203   // If this is a noduplicate call, we can still inline as long as
2204   // inlining this would cause the removal of the caller (so the instruction
2205   // is not actually duplicated, just moved).
2206   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
2207     return InlineResult::failure("noduplicate");
2208 
2209   return finalizeAnalysis();
2210 }
2211 
2212 void InlineCostCallAnalyzer::print() {
2213 #define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
2214   if (PrintInstructionComments)
2215     F.print(dbgs(), &Writer);
2216   DEBUG_PRINT_STAT(NumConstantArgs);
2217   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
2218   DEBUG_PRINT_STAT(NumAllocaArgs);
2219   DEBUG_PRINT_STAT(NumConstantPtrCmps);
2220   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
2221   DEBUG_PRINT_STAT(NumInstructionsSimplified);
2222   DEBUG_PRINT_STAT(NumInstructions);
2223   DEBUG_PRINT_STAT(SROACostSavings);
2224   DEBUG_PRINT_STAT(SROACostSavingsLost);
2225   DEBUG_PRINT_STAT(LoadEliminationCost);
2226   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
2227   DEBUG_PRINT_STAT(Cost);
2228   DEBUG_PRINT_STAT(Threshold);
2229 #undef DEBUG_PRINT_STAT
2230 }
2231 
2232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2233 /// Dump stats about this call's analysis.
2234 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() {
2235   print();
2236 }
2237 #endif
2238 
2239 /// Test that there are no attribute conflicts between Caller and Callee
2240 ///        that prevent inlining.
2241 static bool functionsHaveCompatibleAttributes(
2242     Function *Caller, Function *Callee, TargetTransformInfo &TTI,
2243     function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
2244   // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
2245   // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
2246   // object, and always returns the same object (which is overwritten on each
2247   // GetTLI call). Therefore we copy the first result.
2248   auto CalleeTLI = GetTLI(*Callee);
2249   return TTI.areInlineCompatible(Caller, Callee) &&
2250          GetTLI(*Caller).areInlineCompatible(CalleeTLI,
2251                                              InlineCallerSupersetNoBuiltin) &&
2252          AttributeFuncs::areInlineCompatible(*Caller, *Callee);
2253 }
2254 
2255 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
2256   int Cost = 0;
2257   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
2258     if (Call.isByValArgument(I)) {
2259       // We approximate the number of loads and stores needed by dividing the
2260       // size of the byval type by the target's pointer size.
2261       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2262       unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
2263       unsigned AS = PTy->getAddressSpace();
2264       unsigned PointerSize = DL.getPointerSizeInBits(AS);
2265       // Ceiling division.
2266       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
2267 
2268       // If it generates more than 8 stores it is likely to be expanded as an
2269       // inline memcpy so we take that as an upper bound. Otherwise we assume
2270       // one load and one store per word copied.
2271       // FIXME: The maxStoresPerMemcpy setting from the target should be used
2272       // here instead of a magic number of 8, but it's not available via
2273       // DataLayout.
2274       NumStores = std::min(NumStores, 8U);
2275 
2276       Cost += 2 * NumStores * InlineConstants::InstrCost;
2277     } else {
2278       // For non-byval arguments subtract off one instruction per call
2279       // argument.
2280       Cost += InlineConstants::InstrCost;
2281     }
2282   }
2283   // The call instruction also disappears after inlining.
2284   Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
2285   return Cost;
2286 }
2287 
2288 InlineCost llvm::getInlineCost(
2289     CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2290     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2291     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2292     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2293     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2294   return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2295                        GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
2296 }
2297 
2298 Optional<int> llvm::getInliningCostEstimate(
2299     CallBase &Call, TargetTransformInfo &CalleeTTI,
2300     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2301     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2302     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2303   const InlineParams Params = {/* DefaultThreshold*/ 0,
2304                                /*HintThreshold*/ {},
2305                                /*ColdThreshold*/ {},
2306                                /*OptSizeThreshold*/ {},
2307                                /*OptMinSizeThreshold*/ {},
2308                                /*HotCallSiteThreshold*/ {},
2309                                /*LocallyHotCallSiteThreshold*/ {},
2310                                /*ColdCallSiteThreshold*/ {},
2311                                /*ComputeFullInlineCost*/ true,
2312                                /*EnableDeferral*/ true};
2313 
2314   InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
2315                             GetAssumptionCache, GetBFI, PSI, ORE, true,
2316                             /*IgnoreThreshold*/ true);
2317   auto R = CA.analyze();
2318   if (!R.isSuccess())
2319     return None;
2320   return CA.getCost();
2321 }
2322 
2323 Optional<InlineResult> llvm::getAttributeBasedInliningDecision(
2324     CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
2325     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
2326 
2327   // Cannot inline indirect calls.
2328   if (!Callee)
2329     return InlineResult::failure("indirect call");
2330 
2331   // Never inline calls with byval arguments that does not have the alloca
2332   // address space. Since byval arguments can be replaced with a copy to an
2333   // alloca, the inlined code would need to be adjusted to handle that the
2334   // argument is in the alloca address space (so it is a little bit complicated
2335   // to solve).
2336   unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2337   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
2338     if (Call.isByValArgument(I)) {
2339       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2340       if (PTy->getAddressSpace() != AllocaAS)
2341         return InlineResult::failure("byval arguments without alloca"
2342                                      " address space");
2343     }
2344 
2345   // Calls to functions with always-inline attributes should be inlined
2346   // whenever possible.
2347   if (Call.hasFnAttr(Attribute::AlwaysInline)) {
2348     auto IsViable = isInlineViable(*Callee);
2349     if (IsViable.isSuccess())
2350       return InlineResult::success();
2351     return InlineResult::failure(IsViable.getFailureReason());
2352   }
2353 
2354   // Never inline functions with conflicting attributes (unless callee has
2355   // always-inline attribute).
2356   Function *Caller = Call.getCaller();
2357   if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
2358     return InlineResult::failure("conflicting attributes");
2359 
2360   // Don't inline this call if the caller has the optnone attribute.
2361   if (Caller->hasOptNone())
2362     return InlineResult::failure("optnone attribute");
2363 
2364   // Don't inline a function that treats null pointer as valid into a caller
2365   // that does not have this attribute.
2366   if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
2367     return InlineResult::failure("nullptr definitions incompatible");
2368 
2369   // Don't inline functions which can be interposed at link-time.
2370   if (Callee->isInterposable())
2371     return InlineResult::failure("interposable");
2372 
2373   // Don't inline functions marked noinline.
2374   if (Callee->hasFnAttribute(Attribute::NoInline))
2375     return InlineResult::failure("noinline function attribute");
2376 
2377   // Don't inline call sites marked noinline.
2378   if (Call.isNoInline())
2379     return InlineResult::failure("noinline call site attribute");
2380 
2381   return None;
2382 }
2383 
2384 InlineCost llvm::getInlineCost(
2385     CallBase &Call, Function *Callee, const InlineParams &Params,
2386     TargetTransformInfo &CalleeTTI,
2387     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2388     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2389     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2390     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2391 
2392   auto UserDecision =
2393       llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);
2394 
2395   if (UserDecision.hasValue()) {
2396     if (UserDecision->isSuccess())
2397       return llvm::InlineCost::getAlways("always inline attribute");
2398     return llvm::InlineCost::getNever(UserDecision->getFailureReason());
2399   }
2400 
2401   LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
2402                           << "... (caller:" << Call.getCaller()->getName()
2403                           << ")\n");
2404 
2405   InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
2406                             GetAssumptionCache, GetBFI, PSI, ORE);
2407   InlineResult ShouldInline = CA.analyze();
2408 
2409   LLVM_DEBUG(CA.dump());
2410 
2411   // Check if there was a reason to force inlining or no inlining.
2412   if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold())
2413     return InlineCost::getNever(ShouldInline.getFailureReason());
2414   if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold())
2415     return InlineCost::getAlways("empty function");
2416 
2417   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
2418 }
2419 
2420 InlineResult llvm::isInlineViable(Function &F) {
2421   bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
2422   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2423     // Disallow inlining of functions which contain indirect branches.
2424     if (isa<IndirectBrInst>(BI->getTerminator()))
2425       return InlineResult::failure("contains indirect branches");
2426 
2427     // Disallow inlining of blockaddresses which are used by non-callbr
2428     // instructions.
2429     if (BI->hasAddressTaken())
2430       for (User *U : BlockAddress::get(&*BI)->users())
2431         if (!isa<CallBrInst>(*U))
2432           return InlineResult::failure("blockaddress used outside of callbr");
2433 
2434     for (auto &II : *BI) {
2435       CallBase *Call = dyn_cast<CallBase>(&II);
2436       if (!Call)
2437         continue;
2438 
2439       // Disallow recursive calls.
2440       if (&F == Call->getCalledFunction())
2441         return InlineResult::failure("recursive call");
2442 
2443       // Disallow calls which expose returns-twice to a function not previously
2444       // attributed as such.
2445       if (!ReturnsTwice && isa<CallInst>(Call) &&
2446           cast<CallInst>(Call)->canReturnTwice())
2447         return InlineResult::failure("exposes returns-twice attribute");
2448 
2449       if (Call->getCalledFunction())
2450         switch (Call->getCalledFunction()->getIntrinsicID()) {
2451         default:
2452           break;
2453         case llvm::Intrinsic::icall_branch_funnel:
2454           // Disallow inlining of @llvm.icall.branch.funnel because current
2455           // backend can't separate call targets from call arguments.
2456           return InlineResult::failure(
2457               "disallowed inlining of @llvm.icall.branch.funnel");
2458         case llvm::Intrinsic::localescape:
2459           // Disallow inlining functions that call @llvm.localescape. Doing this
2460           // correctly would require major changes to the inliner.
2461           return InlineResult::failure(
2462               "disallowed inlining of @llvm.localescape");
2463         case llvm::Intrinsic::vastart:
2464           // Disallow inlining of functions that initialize VarArgs with
2465           // va_start.
2466           return InlineResult::failure(
2467               "contains VarArgs initialized with va_start");
2468         }
2469     }
2470   }
2471 
2472   return InlineResult::success();
2473 }
2474 
2475 // APIs to create InlineParams based on command line flags and/or other
2476 // parameters.
2477 
2478 InlineParams llvm::getInlineParams(int Threshold) {
2479   InlineParams Params;
2480 
2481   // This field is the threshold to use for a callee by default. This is
2482   // derived from one or more of:
2483   //  * optimization or size-optimization levels,
2484   //  * a value passed to createFunctionInliningPass function, or
2485   //  * the -inline-threshold flag.
2486   //  If the -inline-threshold flag is explicitly specified, that is used
2487   //  irrespective of anything else.
2488   if (InlineThreshold.getNumOccurrences() > 0)
2489     Params.DefaultThreshold = InlineThreshold;
2490   else
2491     Params.DefaultThreshold = Threshold;
2492 
2493   // Set the HintThreshold knob from the -inlinehint-threshold.
2494   Params.HintThreshold = HintThreshold;
2495 
2496   // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
2497   Params.HotCallSiteThreshold = HotCallSiteThreshold;
2498 
2499   // If the -locally-hot-callsite-threshold is explicitly specified, use it to
2500   // populate LocallyHotCallSiteThreshold. Later, we populate
2501   // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
2502   // we know that optimization level is O3 (in the getInlineParams variant that
2503   // takes the opt and size levels).
2504   // FIXME: Remove this check (and make the assignment unconditional) after
2505   // addressing size regression issues at O2.
2506   if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
2507     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2508 
2509   // Set the ColdCallSiteThreshold knob from the
2510   // -inline-cold-callsite-threshold.
2511   Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
2512 
2513   // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
2514   // -inlinehint-threshold commandline option is not explicitly given. If that
2515   // option is present, then its value applies even for callees with size and
2516   // minsize attributes.
2517   // If the -inline-threshold is not specified, set the ColdThreshold from the
2518   // -inlinecold-threshold even if it is not explicitly passed. If
2519   // -inline-threshold is specified, then -inlinecold-threshold needs to be
2520   // explicitly specified to set the ColdThreshold knob
2521   if (InlineThreshold.getNumOccurrences() == 0) {
2522     Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
2523     Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
2524     Params.ColdThreshold = ColdThreshold;
2525   } else if (ColdThreshold.getNumOccurrences() > 0) {
2526     Params.ColdThreshold = ColdThreshold;
2527   }
2528   return Params;
2529 }
2530 
2531 InlineParams llvm::getInlineParams() {
2532   return getInlineParams(DefaultThreshold);
2533 }
2534 
2535 // Compute the default threshold for inlining based on the opt level and the
2536 // size opt level.
2537 static int computeThresholdFromOptLevels(unsigned OptLevel,
2538                                          unsigned SizeOptLevel) {
2539   if (OptLevel > 2)
2540     return InlineConstants::OptAggressiveThreshold;
2541   if (SizeOptLevel == 1) // -Os
2542     return InlineConstants::OptSizeThreshold;
2543   if (SizeOptLevel == 2) // -Oz
2544     return InlineConstants::OptMinSizeThreshold;
2545   return DefaultThreshold;
2546 }
2547 
2548 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
2549   auto Params =
2550       getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
2551   // At O3, use the value of -locally-hot-callsite-threshold option to populate
2552   // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
2553   // when it is specified explicitly.
2554   if (OptLevel > 2)
2555     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2556   return Params;
2557 }
2558 
2559 PreservedAnalyses
2560 InlineCostAnnotationPrinterPass::run(Function &F,
2561                                      FunctionAnalysisManager &FAM) {
2562   PrintInstructionComments = true;
2563   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
2564       Function &F) -> AssumptionCache & {
2565     return FAM.getResult<AssumptionAnalysis>(F);
2566   };
2567   Module *M = F.getParent();
2568   ProfileSummaryInfo PSI(*M);
2569   DataLayout DL(M);
2570   TargetTransformInfo TTI(DL);
2571   // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
2572   // In the current implementation, the type of InlineParams doesn't matter as
2573   // the pass serves only for verification of inliner's decisions.
2574   // We can add a flag which determines InlineParams for this run. Right now,
2575   // the default InlineParams are used.
2576   const InlineParams Params = llvm::getInlineParams();
2577     for (BasicBlock &BB : F) {
2578     for (Instruction &I : BB) {
2579       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2580         Function *CalledFunction = CI->getCalledFunction();
2581         if (!CalledFunction || CalledFunction->isDeclaration())
2582           continue;
2583         OptimizationRemarkEmitter ORE(CalledFunction);
2584         InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
2585                                     GetAssumptionCache, nullptr, &PSI, &ORE);
2586         ICCA.analyze();
2587         OS << "      Analyzing call of " << CalledFunction->getName()
2588            << "... (caller:" << CI->getCaller()->getName() << ")\n";
2589         ICCA.print();
2590       }
2591     }
2592   }
2593   return PreservedAnalyses::all();
2594 }
2595