1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/InstVisitor.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/FormattedStream.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <climits> 47 #include <limits> 48 #include <optional> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "inline-cost" 53 54 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 55 56 static cl::opt<int> 57 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 58 cl::desc("Default amount of inlining to perform")); 59 60 // We introduce this option since there is a minor compile-time win by avoiding 61 // addition of TTI attributes (target-features in particular) to inline 62 // candidates when they are guaranteed to be the same as top level methods in 63 // some use cases. If we avoid adding the attribute, we need an option to avoid 64 // checking these attributes. 65 static cl::opt<bool> IgnoreTTIInlineCompatible( 66 "ignore-tti-inline-compatible", cl::Hidden, cl::init(false), 67 cl::desc("Ignore TTI attributes compatibility check between callee/caller " 68 "during inline cost calculation")); 69 70 static cl::opt<bool> PrintInstructionComments( 71 "print-instruction-comments", cl::Hidden, cl::init(false), 72 cl::desc("Prints comments for instruction based on inline cost analysis")); 73 74 static cl::opt<int> InlineThreshold( 75 "inline-threshold", cl::Hidden, cl::init(225), 76 cl::desc("Control the amount of inlining to perform (default = 225)")); 77 78 static cl::opt<int> HintThreshold( 79 "inlinehint-threshold", cl::Hidden, cl::init(325), 80 cl::desc("Threshold for inlining functions with inline hint")); 81 82 static cl::opt<int> 83 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 84 cl::init(45), 85 cl::desc("Threshold for inlining cold callsites")); 86 87 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 88 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 89 cl::desc("Enable the cost-benefit analysis for the inliner")); 90 91 static cl::opt<int> InlineSavingsMultiplier( 92 "inline-savings-multiplier", cl::Hidden, cl::init(8), 93 cl::desc("Multiplier to multiply cycle savings by during inlining")); 94 95 static cl::opt<int> 96 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 97 cl::desc("The maximum size of a callee that get's " 98 "inlined without sufficient cycle savings")); 99 100 // We introduce this threshold to help performance of instrumentation based 101 // PGO before we actually hook up inliner with analysis passes such as BPI and 102 // BFI. 103 static cl::opt<int> ColdThreshold( 104 "inlinecold-threshold", cl::Hidden, cl::init(45), 105 cl::desc("Threshold for inlining functions with cold attribute")); 106 107 static cl::opt<int> 108 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 109 cl::desc("Threshold for hot callsites ")); 110 111 static cl::opt<int> LocallyHotCallSiteThreshold( 112 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), 113 cl::desc("Threshold for locally hot callsites ")); 114 115 static cl::opt<int> ColdCallSiteRelFreq( 116 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), 117 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 118 "entry frequency, for a callsite to be cold in the absence of " 119 "profile information.")); 120 121 static cl::opt<int> HotCallSiteRelFreq( 122 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), 123 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 124 "entry frequency, for a callsite to be hot in the absence of " 125 "profile information.")); 126 127 static cl::opt<int> 128 InstrCost("inline-instr-cost", cl::Hidden, cl::init(5), 129 cl::desc("Cost of a single instruction when inlining")); 130 131 static cl::opt<int> 132 MemAccessCost("inline-memaccess-cost", cl::Hidden, cl::init(0), 133 cl::desc("Cost of load/store instruction when inlining")); 134 135 static cl::opt<int> CallPenalty( 136 "inline-call-penalty", cl::Hidden, cl::init(25), 137 cl::desc("Call penalty that is applied per callsite when inlining")); 138 139 static cl::opt<size_t> 140 StackSizeThreshold("inline-max-stacksize", cl::Hidden, 141 cl::init(std::numeric_limits<size_t>::max()), 142 cl::desc("Do not inline functions with a stack size " 143 "that exceeds the specified limit")); 144 145 static cl::opt<size_t> RecurStackSizeThreshold( 146 "recursive-inline-max-stacksize", cl::Hidden, 147 cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller), 148 cl::desc("Do not inline recursive functions with a stack " 149 "size that exceeds the specified limit")); 150 151 static cl::opt<bool> OptComputeFullInlineCost( 152 "inline-cost-full", cl::Hidden, 153 cl::desc("Compute the full inline cost of a call site even when the cost " 154 "exceeds the threshold.")); 155 156 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 157 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 158 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 159 "attributes.")); 160 161 static cl::opt<bool> DisableGEPConstOperand( 162 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 163 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 164 165 namespace llvm { 166 std::optional<int> getStringFnAttrAsInt(const Attribute &Attr) { 167 if (Attr.isValid()) { 168 int AttrValue = 0; 169 if (!Attr.getValueAsString().getAsInteger(10, AttrValue)) 170 return AttrValue; 171 } 172 return std::nullopt; 173 } 174 175 std::optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 176 return getStringFnAttrAsInt(CB.getFnAttr(AttrKind)); 177 } 178 179 std::optional<int> getStringFnAttrAsInt(Function *F, StringRef AttrKind) { 180 return getStringFnAttrAsInt(F->getFnAttribute(AttrKind)); 181 } 182 183 namespace InlineConstants { 184 int getInstrCost() { return InstrCost; } 185 186 } // namespace InlineConstants 187 188 } // namespace llvm 189 190 namespace { 191 class InlineCostCallAnalyzer; 192 193 // This struct is used to store information about inline cost of a 194 // particular instruction 195 struct InstructionCostDetail { 196 int CostBefore = 0; 197 int CostAfter = 0; 198 int ThresholdBefore = 0; 199 int ThresholdAfter = 0; 200 201 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 202 203 int getCostDelta() const { return CostAfter - CostBefore; } 204 205 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 206 }; 207 208 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 209 private: 210 InlineCostCallAnalyzer *const ICCA; 211 212 public: 213 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 214 void emitInstructionAnnot(const Instruction *I, 215 formatted_raw_ostream &OS) override; 216 }; 217 218 /// Carry out call site analysis, in order to evaluate inlinability. 219 /// NOTE: the type is currently used as implementation detail of functions such 220 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 221 /// expectation is that they come from the outer scope, from the wrapper 222 /// functions. If we want to support constructing CallAnalyzer objects where 223 /// lambdas are provided inline at construction, or where the object needs to 224 /// otherwise survive past the scope of the provided functions, we need to 225 /// revisit the argument types. 226 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 227 typedef InstVisitor<CallAnalyzer, bool> Base; 228 friend class InstVisitor<CallAnalyzer, bool>; 229 230 protected: 231 virtual ~CallAnalyzer() = default; 232 /// The TargetTransformInfo available for this compilation. 233 const TargetTransformInfo &TTI; 234 235 /// Getter for the cache of @llvm.assume intrinsics. 236 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 237 238 /// Getter for BlockFrequencyInfo 239 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 240 241 /// Profile summary information. 242 ProfileSummaryInfo *PSI; 243 244 /// The called function. 245 Function &F; 246 247 // Cache the DataLayout since we use it a lot. 248 const DataLayout &DL; 249 250 /// The OptimizationRemarkEmitter available for this compilation. 251 OptimizationRemarkEmitter *ORE; 252 253 /// The candidate callsite being analyzed. Please do not use this to do 254 /// analysis in the caller function; we want the inline cost query to be 255 /// easily cacheable. Instead, use the cover function paramHasAttr. 256 CallBase &CandidateCall; 257 258 /// Extension points for handling callsite features. 259 // Called before a basic block was analyzed. 260 virtual void onBlockStart(const BasicBlock *BB) {} 261 262 /// Called after a basic block was analyzed. 263 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 264 265 /// Called before an instruction was analyzed 266 virtual void onInstructionAnalysisStart(const Instruction *I) {} 267 268 /// Called after an instruction was analyzed 269 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 270 271 /// Called at the end of the analysis of the callsite. Return the outcome of 272 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 273 /// the reason it can't. 274 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 275 /// Called when we're about to start processing a basic block, and every time 276 /// we are done processing an instruction. Return true if there is no point in 277 /// continuing the analysis (e.g. we've determined already the call site is 278 /// too expensive to inline) 279 virtual bool shouldStop() { return false; } 280 281 /// Called before the analysis of the callee body starts (with callsite 282 /// contexts propagated). It checks callsite-specific information. Return a 283 /// reason analysis can't continue if that's the case, or 'true' if it may 284 /// continue. 285 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 286 /// Called if the analysis engine decides SROA cannot be done for the given 287 /// alloca. 288 virtual void onDisableSROA(AllocaInst *Arg) {} 289 290 /// Called the analysis engine determines load elimination won't happen. 291 virtual void onDisableLoadElimination() {} 292 293 /// Called when we visit a CallBase, before the analysis starts. Return false 294 /// to stop further processing of the instruction. 295 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 296 297 /// Called to account for a call. 298 virtual void onCallPenalty() {} 299 300 /// Called to account for a load or store. 301 virtual void onMemAccess(){}; 302 303 /// Called to account for the expectation the inlining would result in a load 304 /// elimination. 305 virtual void onLoadEliminationOpportunity() {} 306 307 /// Called to account for the cost of argument setup for the Call in the 308 /// callee's body (not the callsite currently under analysis). 309 virtual void onCallArgumentSetup(const CallBase &Call) {} 310 311 /// Called to account for a load relative intrinsic. 312 virtual void onLoadRelativeIntrinsic() {} 313 314 /// Called to account for a lowered call. 315 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 316 } 317 318 /// Account for a jump table of given size. Return false to stop further 319 /// processing the switch instruction 320 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 321 322 /// Account for a case cluster of given size. Return false to stop further 323 /// processing of the instruction. 324 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 325 326 /// Called at the end of processing a switch instruction, with the given 327 /// number of case clusters. 328 virtual void onFinalizeSwitch(unsigned JumpTableSize, 329 unsigned NumCaseCluster) {} 330 331 /// Called to account for any other instruction not specifically accounted 332 /// for. 333 virtual void onMissedSimplification() {} 334 335 /// Start accounting potential benefits due to SROA for the given alloca. 336 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 337 338 /// Account SROA savings for the AllocaInst value. 339 virtual void onAggregateSROAUse(AllocaInst *V) {} 340 341 bool handleSROA(Value *V, bool DoNotDisable) { 342 // Check for SROA candidates in comparisons. 343 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 344 if (DoNotDisable) { 345 onAggregateSROAUse(SROAArg); 346 return true; 347 } 348 disableSROAForArg(SROAArg); 349 } 350 return false; 351 } 352 353 bool IsCallerRecursive = false; 354 bool IsRecursiveCall = false; 355 bool ExposesReturnsTwice = false; 356 bool HasDynamicAlloca = false; 357 bool ContainsNoDuplicateCall = false; 358 bool HasReturn = false; 359 bool HasIndirectBr = false; 360 bool HasUninlineableIntrinsic = false; 361 bool InitsVargArgs = false; 362 363 /// Number of bytes allocated statically by the callee. 364 uint64_t AllocatedSize = 0; 365 unsigned NumInstructions = 0; 366 unsigned NumVectorInstructions = 0; 367 368 /// While we walk the potentially-inlined instructions, we build up and 369 /// maintain a mapping of simplified values specific to this callsite. The 370 /// idea is to propagate any special information we have about arguments to 371 /// this call through the inlinable section of the function, and account for 372 /// likely simplifications post-inlining. The most important aspect we track 373 /// is CFG altering simplifications -- when we prove a basic block dead, that 374 /// can cause dramatic shifts in the cost of inlining a function. 375 DenseMap<Value *, Constant *> SimplifiedValues; 376 377 /// Keep track of the values which map back (through function arguments) to 378 /// allocas on the caller stack which could be simplified through SROA. 379 DenseMap<Value *, AllocaInst *> SROAArgValues; 380 381 /// Keep track of Allocas for which we believe we may get SROA optimization. 382 DenseSet<AllocaInst *> EnabledSROAAllocas; 383 384 /// Keep track of values which map to a pointer base and constant offset. 385 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 386 387 /// Keep track of dead blocks due to the constant arguments. 388 SmallPtrSet<BasicBlock *, 16> DeadBlocks; 389 390 /// The mapping of the blocks to their known unique successors due to the 391 /// constant arguments. 392 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 393 394 /// Model the elimination of repeated loads that is expected to happen 395 /// whenever we simplify away the stores that would otherwise cause them to be 396 /// loads. 397 bool EnableLoadElimination = true; 398 399 /// Whether we allow inlining for recursive call. 400 bool AllowRecursiveCall = false; 401 402 SmallPtrSet<Value *, 16> LoadAddrSet; 403 404 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 405 auto It = SROAArgValues.find(V); 406 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 407 return nullptr; 408 return It->second; 409 } 410 411 // Custom simplification helper routines. 412 bool isAllocaDerivedArg(Value *V); 413 void disableSROAForArg(AllocaInst *SROAArg); 414 void disableSROA(Value *V); 415 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 416 void disableLoadElimination(); 417 bool isGEPFree(GetElementPtrInst &GEP); 418 bool canFoldInboundsGEP(GetElementPtrInst &I); 419 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 420 bool simplifyCallSite(Function *F, CallBase &Call); 421 bool simplifyInstruction(Instruction &I); 422 bool simplifyIntrinsicCallIsConstant(CallBase &CB); 423 bool simplifyIntrinsicCallObjectSize(CallBase &CB); 424 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 425 426 /// Return true if the given argument to the function being considered for 427 /// inlining has the given attribute set either at the call site or the 428 /// function declaration. Primarily used to inspect call site specific 429 /// attributes since these can be more precise than the ones on the callee 430 /// itself. 431 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 432 433 /// Return true if the given value is known non null within the callee if 434 /// inlined through this particular callsite. 435 bool isKnownNonNullInCallee(Value *V); 436 437 /// Return true if size growth is allowed when inlining the callee at \p Call. 438 bool allowSizeGrowth(CallBase &Call); 439 440 // Custom analysis routines. 441 InlineResult analyzeBlock(BasicBlock *BB, 442 SmallPtrSetImpl<const Value *> &EphValues); 443 444 // Disable several entry points to the visitor so we don't accidentally use 445 // them by declaring but not defining them here. 446 void visit(Module *); 447 void visit(Module &); 448 void visit(Function *); 449 void visit(Function &); 450 void visit(BasicBlock *); 451 void visit(BasicBlock &); 452 453 // Provide base case for our instruction visit. 454 bool visitInstruction(Instruction &I); 455 456 // Our visit overrides. 457 bool visitAlloca(AllocaInst &I); 458 bool visitPHI(PHINode &I); 459 bool visitGetElementPtr(GetElementPtrInst &I); 460 bool visitBitCast(BitCastInst &I); 461 bool visitPtrToInt(PtrToIntInst &I); 462 bool visitIntToPtr(IntToPtrInst &I); 463 bool visitCastInst(CastInst &I); 464 bool visitCmpInst(CmpInst &I); 465 bool visitSub(BinaryOperator &I); 466 bool visitBinaryOperator(BinaryOperator &I); 467 bool visitFNeg(UnaryOperator &I); 468 bool visitLoad(LoadInst &I); 469 bool visitStore(StoreInst &I); 470 bool visitExtractValue(ExtractValueInst &I); 471 bool visitInsertValue(InsertValueInst &I); 472 bool visitCallBase(CallBase &Call); 473 bool visitReturnInst(ReturnInst &RI); 474 bool visitBranchInst(BranchInst &BI); 475 bool visitSelectInst(SelectInst &SI); 476 bool visitSwitchInst(SwitchInst &SI); 477 bool visitIndirectBrInst(IndirectBrInst &IBI); 478 bool visitResumeInst(ResumeInst &RI); 479 bool visitCleanupReturnInst(CleanupReturnInst &RI); 480 bool visitCatchReturnInst(CatchReturnInst &RI); 481 bool visitUnreachableInst(UnreachableInst &I); 482 483 public: 484 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 485 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 486 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 487 ProfileSummaryInfo *PSI = nullptr, 488 OptimizationRemarkEmitter *ORE = nullptr) 489 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 490 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 491 CandidateCall(Call) {} 492 493 InlineResult analyze(); 494 495 std::optional<Constant *> getSimplifiedValue(Instruction *I) { 496 if (SimplifiedValues.contains(I)) 497 return SimplifiedValues[I]; 498 return std::nullopt; 499 } 500 501 // Keep a bunch of stats about the cost savings found so we can print them 502 // out when debugging. 503 unsigned NumConstantArgs = 0; 504 unsigned NumConstantOffsetPtrArgs = 0; 505 unsigned NumAllocaArgs = 0; 506 unsigned NumConstantPtrCmps = 0; 507 unsigned NumConstantPtrDiffs = 0; 508 unsigned NumInstructionsSimplified = 0; 509 510 void dump(); 511 }; 512 513 // Considering forming a binary search, we should find the number of nodes 514 // which is same as the number of comparisons when lowered. For a given 515 // number of clusters, n, we can define a recursive function, f(n), to find 516 // the number of nodes in the tree. The recursion is : 517 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 518 // and f(n) = n, when n <= 3. 519 // This will lead a binary tree where the leaf should be either f(2) or f(3) 520 // when n > 3. So, the number of comparisons from leaves should be n, while 521 // the number of non-leaf should be : 522 // 2^(log2(n) - 1) - 1 523 // = 2^log2(n) * 2^-1 - 1 524 // = n / 2 - 1. 525 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 526 // number of comparisons in a simple closed form : 527 // n + n / 2 - 1 = n * 3 / 2 - 1 528 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 529 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 530 } 531 532 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 533 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 534 class InlineCostCallAnalyzer final : public CallAnalyzer { 535 const bool ComputeFullInlineCost; 536 int LoadEliminationCost = 0; 537 /// Bonus to be applied when percentage of vector instructions in callee is 538 /// high (see more details in updateThreshold). 539 int VectorBonus = 0; 540 /// Bonus to be applied when the callee has only one reachable basic block. 541 int SingleBBBonus = 0; 542 543 /// Tunable parameters that control the analysis. 544 const InlineParams &Params; 545 546 // This DenseMap stores the delta change in cost and threshold after 547 // accounting for the given instruction. The map is filled only with the 548 // flag PrintInstructionComments on. 549 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 550 551 /// Upper bound for the inlining cost. Bonuses are being applied to account 552 /// for speculative "expected profit" of the inlining decision. 553 int Threshold = 0; 554 555 /// The amount of StaticBonus applied. 556 int StaticBonusApplied = 0; 557 558 /// Attempt to evaluate indirect calls to boost its inline cost. 559 const bool BoostIndirectCalls; 560 561 /// Ignore the threshold when finalizing analysis. 562 const bool IgnoreThreshold; 563 564 // True if the cost-benefit-analysis-based inliner is enabled. 565 const bool CostBenefitAnalysisEnabled; 566 567 /// Inlining cost measured in abstract units, accounts for all the 568 /// instructions expected to be executed for a given function invocation. 569 /// Instructions that are statically proven to be dead based on call-site 570 /// arguments are not counted here. 571 int Cost = 0; 572 573 // The cumulative cost at the beginning of the basic block being analyzed. At 574 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 575 // the size of that basic block. 576 int CostAtBBStart = 0; 577 578 // The static size of live but cold basic blocks. This is "static" in the 579 // sense that it's not weighted by profile counts at all. 580 int ColdSize = 0; 581 582 // Whether inlining is decided by cost-threshold analysis. 583 bool DecidedByCostThreshold = false; 584 585 // Whether inlining is decided by cost-benefit analysis. 586 bool DecidedByCostBenefit = false; 587 588 // The cost-benefit pair computed by cost-benefit analysis. 589 std::optional<CostBenefitPair> CostBenefit; 590 591 bool SingleBB = true; 592 593 unsigned SROACostSavings = 0; 594 unsigned SROACostSavingsLost = 0; 595 596 /// The mapping of caller Alloca values to their accumulated cost savings. If 597 /// we have to disable SROA for one of the allocas, this tells us how much 598 /// cost must be added. 599 DenseMap<AllocaInst *, int> SROAArgCosts; 600 601 /// Return true if \p Call is a cold callsite. 602 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 603 604 /// Update Threshold based on callsite properties such as callee 605 /// attributes and callee hotness for PGO builds. The Callee is explicitly 606 /// passed to support analyzing indirect calls whose target is inferred by 607 /// analysis. 608 void updateThreshold(CallBase &Call, Function &Callee); 609 /// Return a higher threshold if \p Call is a hot callsite. 610 std::optional<int> getHotCallSiteThreshold(CallBase &Call, 611 BlockFrequencyInfo *CallerBFI); 612 613 /// Handle a capped 'int' increment for Cost. 614 void addCost(int64_t Inc) { 615 Inc = std::max<int64_t>(std::min<int64_t>(INT_MAX, Inc), INT_MIN); 616 Cost = std::max<int64_t>(std::min<int64_t>(INT_MAX, Inc + Cost), INT_MIN); 617 } 618 619 void onDisableSROA(AllocaInst *Arg) override { 620 auto CostIt = SROAArgCosts.find(Arg); 621 if (CostIt == SROAArgCosts.end()) 622 return; 623 addCost(CostIt->second); 624 SROACostSavings -= CostIt->second; 625 SROACostSavingsLost += CostIt->second; 626 SROAArgCosts.erase(CostIt); 627 } 628 629 void onDisableLoadElimination() override { 630 addCost(LoadEliminationCost); 631 LoadEliminationCost = 0; 632 } 633 634 bool onCallBaseVisitStart(CallBase &Call) override { 635 if (std::optional<int> AttrCallThresholdBonus = 636 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 637 Threshold += *AttrCallThresholdBonus; 638 639 if (std::optional<int> AttrCallCost = 640 getStringFnAttrAsInt(Call, "call-inline-cost")) { 641 addCost(*AttrCallCost); 642 // Prevent further processing of the call since we want to override its 643 // inline cost, not just add to it. 644 return false; 645 } 646 return true; 647 } 648 649 void onCallPenalty() override { addCost(CallPenalty); } 650 651 void onMemAccess() override { addCost(MemAccessCost); } 652 653 void onCallArgumentSetup(const CallBase &Call) override { 654 // Pay the price of the argument setup. We account for the average 1 655 // instruction per call argument setup here. 656 addCost(Call.arg_size() * InstrCost); 657 } 658 void onLoadRelativeIntrinsic() override { 659 // This is normally lowered to 4 LLVM instructions. 660 addCost(3 * InstrCost); 661 } 662 void onLoweredCall(Function *F, CallBase &Call, 663 bool IsIndirectCall) override { 664 // We account for the average 1 instruction per call argument setup here. 665 addCost(Call.arg_size() * InstrCost); 666 667 // If we have a constant that we are calling as a function, we can peer 668 // through it and see the function target. This happens not infrequently 669 // during devirtualization and so we want to give it a hefty bonus for 670 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 671 // Pretend to inline the function, with a custom threshold. 672 if (IsIndirectCall && BoostIndirectCalls) { 673 auto IndirectCallParams = Params; 674 IndirectCallParams.DefaultThreshold = 675 InlineConstants::IndirectCallThreshold; 676 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 677 /// to instantiate the derived class. 678 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 679 GetAssumptionCache, GetBFI, PSI, ORE, false); 680 if (CA.analyze().isSuccess()) { 681 // We were able to inline the indirect call! Subtract the cost from the 682 // threshold to get the bonus we want to apply, but don't go below zero. 683 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 684 } 685 } else 686 // Otherwise simply add the cost for merely making the call. 687 addCost(CallPenalty); 688 } 689 690 void onFinalizeSwitch(unsigned JumpTableSize, 691 unsigned NumCaseCluster) override { 692 // If suitable for a jump table, consider the cost for the table size and 693 // branch to destination. 694 // Maximum valid cost increased in this function. 695 if (JumpTableSize) { 696 int64_t JTCost = 697 static_cast<int64_t>(JumpTableSize) * InstrCost + 4 * InstrCost; 698 699 addCost(JTCost); 700 return; 701 } 702 703 if (NumCaseCluster <= 3) { 704 // Suppose a comparison includes one compare and one conditional branch. 705 addCost(NumCaseCluster * 2 * InstrCost); 706 return; 707 } 708 709 int64_t ExpectedNumberOfCompare = 710 getExpectedNumberOfCompare(NumCaseCluster); 711 int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InstrCost; 712 713 addCost(SwitchCost); 714 } 715 void onMissedSimplification() override { addCost(InstrCost); } 716 717 void onInitializeSROAArg(AllocaInst *Arg) override { 718 assert(Arg != nullptr && 719 "Should not initialize SROA costs for null value."); 720 auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg); 721 SROACostSavings += SROAArgCost; 722 SROAArgCosts[Arg] = SROAArgCost; 723 } 724 725 void onAggregateSROAUse(AllocaInst *SROAArg) override { 726 auto CostIt = SROAArgCosts.find(SROAArg); 727 assert(CostIt != SROAArgCosts.end() && 728 "expected this argument to have a cost"); 729 CostIt->second += InstrCost; 730 SROACostSavings += InstrCost; 731 } 732 733 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 734 735 void onBlockAnalyzed(const BasicBlock *BB) override { 736 if (CostBenefitAnalysisEnabled) { 737 // Keep track of the static size of live but cold basic blocks. For now, 738 // we define a cold basic block to be one that's never executed. 739 assert(GetBFI && "GetBFI must be available"); 740 BlockFrequencyInfo *BFI = &(GetBFI(F)); 741 assert(BFI && "BFI must be available"); 742 auto ProfileCount = BFI->getBlockProfileCount(BB); 743 if (*ProfileCount == 0) 744 ColdSize += Cost - CostAtBBStart; 745 } 746 747 auto *TI = BB->getTerminator(); 748 // If we had any successors at this point, than post-inlining is likely to 749 // have them as well. Note that we assume any basic blocks which existed 750 // due to branches or switches which folded above will also fold after 751 // inlining. 752 if (SingleBB && TI->getNumSuccessors() > 1) { 753 // Take off the bonus we applied to the threshold. 754 Threshold -= SingleBBBonus; 755 SingleBB = false; 756 } 757 } 758 759 void onInstructionAnalysisStart(const Instruction *I) override { 760 // This function is called to store the initial cost of inlining before 761 // the given instruction was assessed. 762 if (!PrintInstructionComments) 763 return; 764 InstructionCostDetailMap[I].CostBefore = Cost; 765 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 766 } 767 768 void onInstructionAnalysisFinish(const Instruction *I) override { 769 // This function is called to find new values of cost and threshold after 770 // the instruction has been assessed. 771 if (!PrintInstructionComments) 772 return; 773 InstructionCostDetailMap[I].CostAfter = Cost; 774 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 775 } 776 777 bool isCostBenefitAnalysisEnabled() { 778 if (!PSI || !PSI->hasProfileSummary()) 779 return false; 780 781 if (!GetBFI) 782 return false; 783 784 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 785 // Honor the explicit request from the user. 786 if (!InlineEnableCostBenefitAnalysis) 787 return false; 788 } else { 789 // Otherwise, require instrumentation profile. 790 if (!PSI->hasInstrumentationProfile()) 791 return false; 792 } 793 794 auto *Caller = CandidateCall.getParent()->getParent(); 795 if (!Caller->getEntryCount()) 796 return false; 797 798 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 799 if (!CallerBFI) 800 return false; 801 802 // For now, limit to hot call site. 803 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 804 return false; 805 806 // Make sure we have a nonzero entry count. 807 auto EntryCount = F.getEntryCount(); 808 if (!EntryCount || !EntryCount->getCount()) 809 return false; 810 811 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 812 if (!CalleeBFI) 813 return false; 814 815 return true; 816 } 817 818 // Determine whether we should inline the given call site, taking into account 819 // both the size cost and the cycle savings. Return std::nullopt if we don't 820 // have suficient profiling information to determine. 821 std::optional<bool> costBenefitAnalysis() { 822 if (!CostBenefitAnalysisEnabled) 823 return std::nullopt; 824 825 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 826 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 827 // falling back to the cost-based metric. 828 // TODO: Improve this hacky condition. 829 if (Threshold == 0) 830 return std::nullopt; 831 832 assert(GetBFI); 833 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 834 assert(CalleeBFI); 835 836 // The cycle savings expressed as the sum of InstrCost 837 // multiplied by the estimated dynamic count of each instruction we can 838 // avoid. Savings come from the call site cost, such as argument setup and 839 // the call instruction, as well as the instructions that are folded. 840 // 841 // We use 128-bit APInt here to avoid potential overflow. This variable 842 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 843 // assumes that we can avoid or fold a billion instructions, each with a 844 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 845 // period on a 4GHz machine. 846 APInt CycleSavings(128, 0); 847 848 for (auto &BB : F) { 849 APInt CurrentSavings(128, 0); 850 for (auto &I : BB) { 851 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 852 // Count a conditional branch as savings if it becomes unconditional. 853 if (BI->isConditional() && 854 isa_and_nonnull<ConstantInt>( 855 SimplifiedValues.lookup(BI->getCondition()))) { 856 CurrentSavings += InstrCost; 857 } 858 } else if (Value *V = dyn_cast<Value>(&I)) { 859 // Count an instruction as savings if we can fold it. 860 if (SimplifiedValues.count(V)) { 861 CurrentSavings += InstrCost; 862 } 863 } 864 } 865 866 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 867 CurrentSavings *= *ProfileCount; 868 CycleSavings += CurrentSavings; 869 } 870 871 // Compute the cycle savings per call. 872 auto EntryProfileCount = F.getEntryCount(); 873 assert(EntryProfileCount && EntryProfileCount->getCount()); 874 auto EntryCount = EntryProfileCount->getCount(); 875 CycleSavings += EntryCount / 2; 876 CycleSavings = CycleSavings.udiv(EntryCount); 877 878 // Compute the total savings for the call site. 879 auto *CallerBB = CandidateCall.getParent(); 880 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 881 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 882 CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB); 883 884 // Remove the cost of the cold basic blocks. 885 int Size = Cost - ColdSize; 886 887 // Allow tiny callees to be inlined regardless of whether they meet the 888 // savings threshold. 889 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 890 891 CostBenefit.emplace(APInt(128, Size), CycleSavings); 892 893 // Return true if the savings justify the cost of inlining. Specifically, 894 // we evaluate the following inequality: 895 // 896 // CycleSavings PSI->getOrCompHotCountThreshold() 897 // -------------- >= ----------------------------------- 898 // Size InlineSavingsMultiplier 899 // 900 // Note that the left hand side is specific to a call site. The right hand 901 // side is a constant for the entire executable. 902 APInt LHS = CycleSavings; 903 LHS *= InlineSavingsMultiplier; 904 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 905 RHS *= Size; 906 return LHS.uge(RHS); 907 } 908 909 InlineResult finalizeAnalysis() override { 910 // Loops generally act a lot like calls in that they act like barriers to 911 // movement, require a certain amount of setup, etc. So when optimising for 912 // size, we penalise any call sites that perform loops. We do this after all 913 // other costs here, so will likely only be dealing with relatively small 914 // functions (and hence DT and LI will hopefully be cheap). 915 auto *Caller = CandidateCall.getFunction(); 916 if (Caller->hasMinSize()) { 917 DominatorTree DT(F); 918 LoopInfo LI(DT); 919 int NumLoops = 0; 920 for (Loop *L : LI) { 921 // Ignore loops that will not be executed 922 if (DeadBlocks.count(L->getHeader())) 923 continue; 924 NumLoops++; 925 } 926 addCost(NumLoops * InlineConstants::LoopPenalty); 927 } 928 929 // We applied the maximum possible vector bonus at the beginning. Now, 930 // subtract the excess bonus, if any, from the Threshold before 931 // comparing against Cost. 932 if (NumVectorInstructions <= NumInstructions / 10) 933 Threshold -= VectorBonus; 934 else if (NumVectorInstructions <= NumInstructions / 2) 935 Threshold -= VectorBonus / 2; 936 937 if (std::optional<int> AttrCost = 938 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 939 Cost = *AttrCost; 940 941 if (std::optional<int> AttrCostMult = getStringFnAttrAsInt( 942 CandidateCall, 943 InlineConstants::FunctionInlineCostMultiplierAttributeName)) 944 Cost *= *AttrCostMult; 945 946 if (std::optional<int> AttrThreshold = 947 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 948 Threshold = *AttrThreshold; 949 950 if (auto Result = costBenefitAnalysis()) { 951 DecidedByCostBenefit = true; 952 if (*Result) 953 return InlineResult::success(); 954 else 955 return InlineResult::failure("Cost over threshold."); 956 } 957 958 if (IgnoreThreshold) 959 return InlineResult::success(); 960 961 DecidedByCostThreshold = true; 962 return Cost < std::max(1, Threshold) 963 ? InlineResult::success() 964 : InlineResult::failure("Cost over threshold."); 965 } 966 967 bool shouldStop() override { 968 if (IgnoreThreshold || ComputeFullInlineCost) 969 return false; 970 // Bail out the moment we cross the threshold. This means we'll under-count 971 // the cost, but only when undercounting doesn't matter. 972 if (Cost < Threshold) 973 return false; 974 DecidedByCostThreshold = true; 975 return true; 976 } 977 978 void onLoadEliminationOpportunity() override { 979 LoadEliminationCost += InstrCost; 980 } 981 982 InlineResult onAnalysisStart() override { 983 // Perform some tweaks to the cost and threshold based on the direct 984 // callsite information. 985 986 // We want to more aggressively inline vector-dense kernels, so up the 987 // threshold, and we'll lower it if the % of vector instructions gets too 988 // low. Note that these bonuses are some what arbitrary and evolved over 989 // time by accident as much as because they are principled bonuses. 990 // 991 // FIXME: It would be nice to remove all such bonuses. At least it would be 992 // nice to base the bonus values on something more scientific. 993 assert(NumInstructions == 0); 994 assert(NumVectorInstructions == 0); 995 996 // Update the threshold based on callsite properties 997 updateThreshold(CandidateCall, F); 998 999 // While Threshold depends on commandline options that can take negative 1000 // values, we want to enforce the invariant that the computed threshold and 1001 // bonuses are non-negative. 1002 assert(Threshold >= 0); 1003 assert(SingleBBBonus >= 0); 1004 assert(VectorBonus >= 0); 1005 1006 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 1007 // this Threshold any time, and cost cannot decrease, we can stop processing 1008 // the rest of the function body. 1009 Threshold += (SingleBBBonus + VectorBonus); 1010 1011 // Give out bonuses for the callsite, as the instructions setting them up 1012 // will be gone after inlining. 1013 addCost(-getCallsiteCost(this->CandidateCall, DL)); 1014 1015 // If this function uses the coldcc calling convention, prefer not to inline 1016 // it. 1017 if (F.getCallingConv() == CallingConv::Cold) 1018 Cost += InlineConstants::ColdccPenalty; 1019 1020 LLVM_DEBUG(dbgs() << " Initial cost: " << Cost << "\n"); 1021 1022 // Check if we're done. This can happen due to bonuses and penalties. 1023 if (Cost >= Threshold && !ComputeFullInlineCost) 1024 return InlineResult::failure("high cost"); 1025 1026 return InlineResult::success(); 1027 } 1028 1029 public: 1030 InlineCostCallAnalyzer( 1031 Function &Callee, CallBase &Call, const InlineParams &Params, 1032 const TargetTransformInfo &TTI, 1033 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 1034 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 1035 ProfileSummaryInfo *PSI = nullptr, 1036 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 1037 bool IgnoreThreshold = false) 1038 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 1039 ComputeFullInlineCost(OptComputeFullInlineCost || 1040 Params.ComputeFullInlineCost || ORE || 1041 isCostBenefitAnalysisEnabled()), 1042 Params(Params), Threshold(Params.DefaultThreshold), 1043 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 1044 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 1045 Writer(this) { 1046 AllowRecursiveCall = *Params.AllowRecursiveCall; 1047 } 1048 1049 /// Annotation Writer for instruction details 1050 InlineCostAnnotationWriter Writer; 1051 1052 void dump(); 1053 1054 // Prints the same analysis as dump(), but its definition is not dependent 1055 // on the build. 1056 void print(raw_ostream &OS); 1057 1058 std::optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1059 if (InstructionCostDetailMap.contains(I)) 1060 return InstructionCostDetailMap[I]; 1061 return std::nullopt; 1062 } 1063 1064 virtual ~InlineCostCallAnalyzer() = default; 1065 int getThreshold() const { return Threshold; } 1066 int getCost() const { return Cost; } 1067 int getStaticBonusApplied() const { return StaticBonusApplied; } 1068 std::optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1069 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1070 bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; } 1071 }; 1072 1073 // Return true if CB is the sole call to local function Callee. 1074 static bool isSoleCallToLocalFunction(const CallBase &CB, 1075 const Function &Callee) { 1076 return Callee.hasLocalLinkage() && Callee.hasOneLiveUse() && 1077 &Callee == CB.getCalledFunction(); 1078 } 1079 1080 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1081 private: 1082 InlineCostFeatures Cost = {}; 1083 1084 // FIXME: These constants are taken from the heuristic-based cost visitor. 1085 // These should be removed entirely in a later revision to avoid reliance on 1086 // heuristics in the ML inliner. 1087 static constexpr int JTCostMultiplier = 4; 1088 static constexpr int CaseClusterCostMultiplier = 2; 1089 static constexpr int SwitchCostMultiplier = 2; 1090 1091 // FIXME: These are taken from the heuristic-based cost visitor: we should 1092 // eventually abstract these to the CallAnalyzer to avoid duplication. 1093 unsigned SROACostSavingOpportunities = 0; 1094 int VectorBonus = 0; 1095 int SingleBBBonus = 0; 1096 int Threshold = 5; 1097 1098 DenseMap<AllocaInst *, unsigned> SROACosts; 1099 1100 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1101 Cost[static_cast<size_t>(Feature)] += Delta; 1102 } 1103 1104 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1105 Cost[static_cast<size_t>(Feature)] = Value; 1106 } 1107 1108 void onDisableSROA(AllocaInst *Arg) override { 1109 auto CostIt = SROACosts.find(Arg); 1110 if (CostIt == SROACosts.end()) 1111 return; 1112 1113 increment(InlineCostFeatureIndex::sroa_losses, CostIt->second); 1114 SROACostSavingOpportunities -= CostIt->second; 1115 SROACosts.erase(CostIt); 1116 } 1117 1118 void onDisableLoadElimination() override { 1119 set(InlineCostFeatureIndex::load_elimination, 1); 1120 } 1121 1122 void onCallPenalty() override { 1123 increment(InlineCostFeatureIndex::call_penalty, CallPenalty); 1124 } 1125 1126 void onCallArgumentSetup(const CallBase &Call) override { 1127 increment(InlineCostFeatureIndex::call_argument_setup, 1128 Call.arg_size() * InstrCost); 1129 } 1130 1131 void onLoadRelativeIntrinsic() override { 1132 increment(InlineCostFeatureIndex::load_relative_intrinsic, 3 * InstrCost); 1133 } 1134 1135 void onLoweredCall(Function *F, CallBase &Call, 1136 bool IsIndirectCall) override { 1137 increment(InlineCostFeatureIndex::lowered_call_arg_setup, 1138 Call.arg_size() * InstrCost); 1139 1140 if (IsIndirectCall) { 1141 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1142 /*HintThreshold*/ {}, 1143 /*ColdThreshold*/ {}, 1144 /*OptSizeThreshold*/ {}, 1145 /*OptMinSizeThreshold*/ {}, 1146 /*HotCallSiteThreshold*/ {}, 1147 /*LocallyHotCallSiteThreshold*/ {}, 1148 /*ColdCallSiteThreshold*/ {}, 1149 /*ComputeFullInlineCost*/ true, 1150 /*EnableDeferral*/ true}; 1151 IndirectCallParams.DefaultThreshold = 1152 InlineConstants::IndirectCallThreshold; 1153 1154 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1155 GetAssumptionCache, GetBFI, PSI, ORE, false, 1156 true); 1157 if (CA.analyze().isSuccess()) { 1158 increment(InlineCostFeatureIndex::nested_inline_cost_estimate, 1159 CA.getCost()); 1160 increment(InlineCostFeatureIndex::nested_inlines, 1); 1161 } 1162 } else { 1163 onCallPenalty(); 1164 } 1165 } 1166 1167 void onFinalizeSwitch(unsigned JumpTableSize, 1168 unsigned NumCaseCluster) override { 1169 1170 if (JumpTableSize) { 1171 int64_t JTCost = static_cast<int64_t>(JumpTableSize) * InstrCost + 1172 JTCostMultiplier * InstrCost; 1173 increment(InlineCostFeatureIndex::jump_table_penalty, JTCost); 1174 return; 1175 } 1176 1177 if (NumCaseCluster <= 3) { 1178 increment(InlineCostFeatureIndex::case_cluster_penalty, 1179 NumCaseCluster * CaseClusterCostMultiplier * InstrCost); 1180 return; 1181 } 1182 1183 int64_t ExpectedNumberOfCompare = 1184 getExpectedNumberOfCompare(NumCaseCluster); 1185 1186 int64_t SwitchCost = 1187 ExpectedNumberOfCompare * SwitchCostMultiplier * InstrCost; 1188 increment(InlineCostFeatureIndex::switch_penalty, SwitchCost); 1189 } 1190 1191 void onMissedSimplification() override { 1192 increment(InlineCostFeatureIndex::unsimplified_common_instructions, 1193 InstrCost); 1194 } 1195 1196 void onInitializeSROAArg(AllocaInst *Arg) override { 1197 auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg); 1198 SROACosts[Arg] = SROAArgCost; 1199 SROACostSavingOpportunities += SROAArgCost; 1200 } 1201 1202 void onAggregateSROAUse(AllocaInst *Arg) override { 1203 SROACosts.find(Arg)->second += InstrCost; 1204 SROACostSavingOpportunities += InstrCost; 1205 } 1206 1207 void onBlockAnalyzed(const BasicBlock *BB) override { 1208 if (BB->getTerminator()->getNumSuccessors() > 1) 1209 set(InlineCostFeatureIndex::is_multiple_blocks, 1); 1210 Threshold -= SingleBBBonus; 1211 } 1212 1213 InlineResult finalizeAnalysis() override { 1214 auto *Caller = CandidateCall.getFunction(); 1215 if (Caller->hasMinSize()) { 1216 DominatorTree DT(F); 1217 LoopInfo LI(DT); 1218 for (Loop *L : LI) { 1219 // Ignore loops that will not be executed 1220 if (DeadBlocks.count(L->getHeader())) 1221 continue; 1222 increment(InlineCostFeatureIndex::num_loops, 1223 InlineConstants::LoopPenalty); 1224 } 1225 } 1226 set(InlineCostFeatureIndex::dead_blocks, DeadBlocks.size()); 1227 set(InlineCostFeatureIndex::simplified_instructions, 1228 NumInstructionsSimplified); 1229 set(InlineCostFeatureIndex::constant_args, NumConstantArgs); 1230 set(InlineCostFeatureIndex::constant_offset_ptr_args, 1231 NumConstantOffsetPtrArgs); 1232 set(InlineCostFeatureIndex::sroa_savings, SROACostSavingOpportunities); 1233 1234 if (NumVectorInstructions <= NumInstructions / 10) 1235 Threshold -= VectorBonus; 1236 else if (NumVectorInstructions <= NumInstructions / 2) 1237 Threshold -= VectorBonus / 2; 1238 1239 set(InlineCostFeatureIndex::threshold, Threshold); 1240 1241 return InlineResult::success(); 1242 } 1243 1244 bool shouldStop() override { return false; } 1245 1246 void onLoadEliminationOpportunity() override { 1247 increment(InlineCostFeatureIndex::load_elimination, 1); 1248 } 1249 1250 InlineResult onAnalysisStart() override { 1251 increment(InlineCostFeatureIndex::callsite_cost, 1252 -1 * getCallsiteCost(this->CandidateCall, DL)); 1253 1254 set(InlineCostFeatureIndex::cold_cc_penalty, 1255 (F.getCallingConv() == CallingConv::Cold)); 1256 1257 set(InlineCostFeatureIndex::last_call_to_static_bonus, 1258 isSoleCallToLocalFunction(CandidateCall, F)); 1259 1260 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1261 // analyzer - instead, we should abstract it to a common method in the 1262 // CallAnalyzer 1263 int SingleBBBonusPercent = 50; 1264 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1265 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1266 Threshold *= TTI.getInliningThresholdMultiplier(); 1267 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1268 VectorBonus = Threshold * VectorBonusPercent / 100; 1269 Threshold += (SingleBBBonus + VectorBonus); 1270 1271 return InlineResult::success(); 1272 } 1273 1274 public: 1275 InlineCostFeaturesAnalyzer( 1276 const TargetTransformInfo &TTI, 1277 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1278 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1279 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1280 CallBase &Call) 1281 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1282 1283 const InlineCostFeatures &features() const { return Cost; } 1284 }; 1285 1286 } // namespace 1287 1288 /// Test whether the given value is an Alloca-derived function argument. 1289 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1290 return SROAArgValues.count(V); 1291 } 1292 1293 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1294 onDisableSROA(SROAArg); 1295 EnabledSROAAllocas.erase(SROAArg); 1296 disableLoadElimination(); 1297 } 1298 1299 void InlineCostAnnotationWriter::emitInstructionAnnot( 1300 const Instruction *I, formatted_raw_ostream &OS) { 1301 // The cost of inlining of the given instruction is printed always. 1302 // The threshold delta is printed only when it is non-zero. It happens 1303 // when we decided to give a bonus at a particular instruction. 1304 std::optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1305 if (!Record) 1306 OS << "; No analysis for the instruction"; 1307 else { 1308 OS << "; cost before = " << Record->CostBefore 1309 << ", cost after = " << Record->CostAfter 1310 << ", threshold before = " << Record->ThresholdBefore 1311 << ", threshold after = " << Record->ThresholdAfter << ", "; 1312 OS << "cost delta = " << Record->getCostDelta(); 1313 if (Record->hasThresholdChanged()) 1314 OS << ", threshold delta = " << Record->getThresholdDelta(); 1315 } 1316 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1317 if (C) { 1318 OS << ", simplified to "; 1319 (*C)->print(OS, true); 1320 } 1321 OS << "\n"; 1322 } 1323 1324 /// If 'V' maps to a SROA candidate, disable SROA for it. 1325 void CallAnalyzer::disableSROA(Value *V) { 1326 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1327 disableSROAForArg(SROAArg); 1328 } 1329 } 1330 1331 void CallAnalyzer::disableLoadElimination() { 1332 if (EnableLoadElimination) { 1333 onDisableLoadElimination(); 1334 EnableLoadElimination = false; 1335 } 1336 } 1337 1338 /// Accumulate a constant GEP offset into an APInt if possible. 1339 /// 1340 /// Returns false if unable to compute the offset for any reason. Respects any 1341 /// simplified values known during the analysis of this callsite. 1342 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1343 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1344 assert(IntPtrWidth == Offset.getBitWidth()); 1345 1346 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1347 GTI != GTE; ++GTI) { 1348 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1349 if (!OpC) 1350 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1351 OpC = dyn_cast<ConstantInt>(SimpleOp); 1352 if (!OpC) 1353 return false; 1354 if (OpC->isZero()) 1355 continue; 1356 1357 // Handle a struct index, which adds its field offset to the pointer. 1358 if (StructType *STy = GTI.getStructTypeOrNull()) { 1359 unsigned ElementIdx = OpC->getZExtValue(); 1360 const StructLayout *SL = DL.getStructLayout(STy); 1361 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1362 continue; 1363 } 1364 1365 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1366 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1367 } 1368 return true; 1369 } 1370 1371 /// Use TTI to check whether a GEP is free. 1372 /// 1373 /// Respects any simplified values known during the analysis of this callsite. 1374 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1375 SmallVector<Value *, 4> Operands; 1376 Operands.push_back(GEP.getOperand(0)); 1377 for (const Use &Op : GEP.indices()) 1378 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1379 Operands.push_back(SimpleOp); 1380 else 1381 Operands.push_back(Op); 1382 return TTI.getInstructionCost(&GEP, Operands, 1383 TargetTransformInfo::TCK_SizeAndLatency) == 1384 TargetTransformInfo::TCC_Free; 1385 } 1386 1387 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1388 disableSROA(I.getOperand(0)); 1389 1390 // Check whether inlining will turn a dynamic alloca into a static 1391 // alloca and handle that case. 1392 if (I.isArrayAllocation()) { 1393 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1394 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1395 // Sometimes a dynamic alloca could be converted into a static alloca 1396 // after this constant prop, and become a huge static alloca on an 1397 // unconditional CFG path. Avoid inlining if this is going to happen above 1398 // a threshold. 1399 // FIXME: If the threshold is removed or lowered too much, we could end up 1400 // being too pessimistic and prevent inlining non-problematic code. This 1401 // could result in unintended perf regressions. A better overall strategy 1402 // is needed to track stack usage during inlining. 1403 Type *Ty = I.getAllocatedType(); 1404 AllocatedSize = SaturatingMultiplyAdd( 1405 AllocSize->getLimitedValue(), 1406 DL.getTypeAllocSize(Ty).getKnownMinValue(), AllocatedSize); 1407 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1408 HasDynamicAlloca = true; 1409 return false; 1410 } 1411 } 1412 1413 // Accumulate the allocated size. 1414 if (I.isStaticAlloca()) { 1415 Type *Ty = I.getAllocatedType(); 1416 AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinValue(), 1417 AllocatedSize); 1418 } 1419 1420 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1421 // a variety of reasons, and so we would like to not inline them into 1422 // functions which don't currently have a dynamic alloca. This simply 1423 // disables inlining altogether in the presence of a dynamic alloca. 1424 if (!I.isStaticAlloca()) 1425 HasDynamicAlloca = true; 1426 1427 return false; 1428 } 1429 1430 bool CallAnalyzer::visitPHI(PHINode &I) { 1431 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1432 // though we don't want to propagate it's bonuses. The idea is to disable 1433 // SROA if it *might* be used in an inappropriate manner. 1434 1435 // Phi nodes are always zero-cost. 1436 // FIXME: Pointer sizes may differ between different address spaces, so do we 1437 // need to use correct address space in the call to getPointerSizeInBits here? 1438 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1439 // see the ZeroOffset is used as a dummy value, so we can probably use any 1440 // bit width for the ZeroOffset? 1441 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); 1442 bool CheckSROA = I.getType()->isPointerTy(); 1443 1444 // Track the constant or pointer with constant offset we've seen so far. 1445 Constant *FirstC = nullptr; 1446 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1447 Value *FirstV = nullptr; 1448 1449 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1450 BasicBlock *Pred = I.getIncomingBlock(i); 1451 // If the incoming block is dead, skip the incoming block. 1452 if (DeadBlocks.count(Pred)) 1453 continue; 1454 // If the parent block of phi is not the known successor of the incoming 1455 // block, skip the incoming block. 1456 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1457 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1458 continue; 1459 1460 Value *V = I.getIncomingValue(i); 1461 // If the incoming value is this phi itself, skip the incoming value. 1462 if (&I == V) 1463 continue; 1464 1465 Constant *C = dyn_cast<Constant>(V); 1466 if (!C) 1467 C = SimplifiedValues.lookup(V); 1468 1469 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1470 if (!C && CheckSROA) 1471 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1472 1473 if (!C && !BaseAndOffset.first) 1474 // The incoming value is neither a constant nor a pointer with constant 1475 // offset, exit early. 1476 return true; 1477 1478 if (FirstC) { 1479 if (FirstC == C) 1480 // If we've seen a constant incoming value before and it is the same 1481 // constant we see this time, continue checking the next incoming value. 1482 continue; 1483 // Otherwise early exit because we either see a different constant or saw 1484 // a constant before but we have a pointer with constant offset this time. 1485 return true; 1486 } 1487 1488 if (FirstV) { 1489 // The same logic as above, but check pointer with constant offset here. 1490 if (FirstBaseAndOffset == BaseAndOffset) 1491 continue; 1492 return true; 1493 } 1494 1495 if (C) { 1496 // This is the 1st time we've seen a constant, record it. 1497 FirstC = C; 1498 continue; 1499 } 1500 1501 // The remaining case is that this is the 1st time we've seen a pointer with 1502 // constant offset, record it. 1503 FirstV = V; 1504 FirstBaseAndOffset = BaseAndOffset; 1505 } 1506 1507 // Check if we can map phi to a constant. 1508 if (FirstC) { 1509 SimplifiedValues[&I] = FirstC; 1510 return true; 1511 } 1512 1513 // Check if we can map phi to a pointer with constant offset. 1514 if (FirstBaseAndOffset.first) { 1515 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1516 1517 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1518 SROAArgValues[&I] = SROAArg; 1519 } 1520 1521 return true; 1522 } 1523 1524 /// Check we can fold GEPs of constant-offset call site argument pointers. 1525 /// This requires target data and inbounds GEPs. 1526 /// 1527 /// \return true if the specified GEP can be folded. 1528 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1529 // Check if we have a base + offset for the pointer. 1530 std::pair<Value *, APInt> BaseAndOffset = 1531 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1532 if (!BaseAndOffset.first) 1533 return false; 1534 1535 // Check if the offset of this GEP is constant, and if so accumulate it 1536 // into Offset. 1537 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1538 return false; 1539 1540 // Add the result as a new mapping to Base + Offset. 1541 ConstantOffsetPtrs[&I] = BaseAndOffset; 1542 1543 return true; 1544 } 1545 1546 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1547 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1548 1549 // Lambda to check whether a GEP's indices are all constant. 1550 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1551 for (const Use &Op : GEP.indices()) 1552 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1553 return false; 1554 return true; 1555 }; 1556 1557 if (!DisableGEPConstOperand) 1558 if (simplifyInstruction(I)) 1559 return true; 1560 1561 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1562 if (SROAArg) 1563 SROAArgValues[&I] = SROAArg; 1564 1565 // Constant GEPs are modeled as free. 1566 return true; 1567 } 1568 1569 // Variable GEPs will require math and will disable SROA. 1570 if (SROAArg) 1571 disableSROAForArg(SROAArg); 1572 return isGEPFree(I); 1573 } 1574 1575 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1576 bool CallAnalyzer::simplifyInstruction(Instruction &I) { 1577 SmallVector<Constant *> COps; 1578 for (Value *Op : I.operands()) { 1579 Constant *COp = dyn_cast<Constant>(Op); 1580 if (!COp) 1581 COp = SimplifiedValues.lookup(Op); 1582 if (!COp) 1583 return false; 1584 COps.push_back(COp); 1585 } 1586 auto *C = ConstantFoldInstOperands(&I, COps, DL); 1587 if (!C) 1588 return false; 1589 SimplifiedValues[&I] = C; 1590 return true; 1591 } 1592 1593 /// Try to simplify a call to llvm.is.constant. 1594 /// 1595 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since 1596 /// we expect calls of this specific intrinsic to be infrequent. 1597 /// 1598 /// FIXME: Given that we know CB's parent (F) caller 1599 /// (CandidateCall->getParent()->getParent()), we might be able to determine 1600 /// whether inlining F into F's caller would change how the call to 1601 /// llvm.is.constant would evaluate. 1602 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { 1603 Value *Arg = CB.getArgOperand(0); 1604 auto *C = dyn_cast<Constant>(Arg); 1605 1606 if (!C) 1607 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg)); 1608 1609 Type *RT = CB.getFunctionType()->getReturnType(); 1610 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); 1611 return true; 1612 } 1613 1614 bool CallAnalyzer::simplifyIntrinsicCallObjectSize(CallBase &CB) { 1615 // As per the langref, "The fourth argument to llvm.objectsize determines if 1616 // the value should be evaluated at runtime." 1617 if (cast<ConstantInt>(CB.getArgOperand(3))->isOne()) 1618 return false; 1619 1620 Value *V = lowerObjectSizeCall(&cast<IntrinsicInst>(CB), DL, nullptr, 1621 /*MustSucceed=*/true); 1622 Constant *C = dyn_cast_or_null<Constant>(V); 1623 if (C) 1624 SimplifiedValues[&CB] = C; 1625 return C; 1626 } 1627 1628 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1629 // Propagate constants through bitcasts. 1630 if (simplifyInstruction(I)) 1631 return true; 1632 1633 // Track base/offsets through casts 1634 std::pair<Value *, APInt> BaseAndOffset = 1635 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1636 // Casts don't change the offset, just wrap it up. 1637 if (BaseAndOffset.first) 1638 ConstantOffsetPtrs[&I] = BaseAndOffset; 1639 1640 // Also look for SROA candidates here. 1641 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1642 SROAArgValues[&I] = SROAArg; 1643 1644 // Bitcasts are always zero cost. 1645 return true; 1646 } 1647 1648 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1649 // Propagate constants through ptrtoint. 1650 if (simplifyInstruction(I)) 1651 return true; 1652 1653 // Track base/offset pairs when converted to a plain integer provided the 1654 // integer is large enough to represent the pointer. 1655 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1656 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1657 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1658 std::pair<Value *, APInt> BaseAndOffset = 1659 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1660 if (BaseAndOffset.first) 1661 ConstantOffsetPtrs[&I] = BaseAndOffset; 1662 } 1663 1664 // This is really weird. Technically, ptrtoint will disable SROA. However, 1665 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1666 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1667 // would block SROA would also block SROA if applied directly to a pointer, 1668 // and so we can just add the integer in here. The only places where SROA is 1669 // preserved either cannot fire on an integer, or won't in-and-of themselves 1670 // disable SROA (ext) w/o some later use that we would see and disable. 1671 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1672 SROAArgValues[&I] = SROAArg; 1673 1674 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1675 TargetTransformInfo::TCC_Free; 1676 } 1677 1678 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1679 // Propagate constants through ptrtoint. 1680 if (simplifyInstruction(I)) 1681 return true; 1682 1683 // Track base/offset pairs when round-tripped through a pointer without 1684 // modifications provided the integer is not too large. 1685 Value *Op = I.getOperand(0); 1686 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1687 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1688 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1689 if (BaseAndOffset.first) 1690 ConstantOffsetPtrs[&I] = BaseAndOffset; 1691 } 1692 1693 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1694 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1695 SROAArgValues[&I] = SROAArg; 1696 1697 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1698 TargetTransformInfo::TCC_Free; 1699 } 1700 1701 bool CallAnalyzer::visitCastInst(CastInst &I) { 1702 // Propagate constants through casts. 1703 if (simplifyInstruction(I)) 1704 return true; 1705 1706 // Disable SROA in the face of arbitrary casts we don't explicitly list 1707 // elsewhere. 1708 disableSROA(I.getOperand(0)); 1709 1710 // If this is a floating-point cast, and the target says this operation 1711 // is expensive, this may eventually become a library call. Treat the cost 1712 // as such. 1713 switch (I.getOpcode()) { 1714 case Instruction::FPTrunc: 1715 case Instruction::FPExt: 1716 case Instruction::UIToFP: 1717 case Instruction::SIToFP: 1718 case Instruction::FPToUI: 1719 case Instruction::FPToSI: 1720 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1721 onCallPenalty(); 1722 break; 1723 default: 1724 break; 1725 } 1726 1727 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1728 TargetTransformInfo::TCC_Free; 1729 } 1730 1731 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1732 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1733 } 1734 1735 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1736 // Does the *call site* have the NonNull attribute set on an argument? We 1737 // use the attribute on the call site to memoize any analysis done in the 1738 // caller. This will also trip if the callee function has a non-null 1739 // parameter attribute, but that's a less interesting case because hopefully 1740 // the callee would already have been simplified based on that. 1741 if (Argument *A = dyn_cast<Argument>(V)) 1742 if (paramHasAttr(A, Attribute::NonNull)) 1743 return true; 1744 1745 // Is this an alloca in the caller? This is distinct from the attribute case 1746 // above because attributes aren't updated within the inliner itself and we 1747 // always want to catch the alloca derived case. 1748 if (isAllocaDerivedArg(V)) 1749 // We can actually predict the result of comparisons between an 1750 // alloca-derived value and null. Note that this fires regardless of 1751 // SROA firing. 1752 return true; 1753 1754 return false; 1755 } 1756 1757 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1758 // If the normal destination of the invoke or the parent block of the call 1759 // site is unreachable-terminated, there is little point in inlining this 1760 // unless there is literally zero cost. 1761 // FIXME: Note that it is possible that an unreachable-terminated block has a 1762 // hot entry. For example, in below scenario inlining hot_call_X() may be 1763 // beneficial : 1764 // main() { 1765 // hot_call_1(); 1766 // ... 1767 // hot_call_N() 1768 // exit(0); 1769 // } 1770 // For now, we are not handling this corner case here as it is rare in real 1771 // code. In future, we should elaborate this based on BPI and BFI in more 1772 // general threshold adjusting heuristics in updateThreshold(). 1773 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1774 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1775 return false; 1776 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1777 return false; 1778 1779 return true; 1780 } 1781 1782 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1783 BlockFrequencyInfo *CallerBFI) { 1784 // If global profile summary is available, then callsite's coldness is 1785 // determined based on that. 1786 if (PSI && PSI->hasProfileSummary()) 1787 return PSI->isColdCallSite(Call, CallerBFI); 1788 1789 // Otherwise we need BFI to be available. 1790 if (!CallerBFI) 1791 return false; 1792 1793 // Determine if the callsite is cold relative to caller's entry. We could 1794 // potentially cache the computation of scaled entry frequency, but the added 1795 // complexity is not worth it unless this scaling shows up high in the 1796 // profiles. 1797 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1798 auto CallSiteBB = Call.getParent(); 1799 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1800 auto CallerEntryFreq = 1801 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1802 return CallSiteFreq < CallerEntryFreq * ColdProb; 1803 } 1804 1805 std::optional<int> 1806 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1807 BlockFrequencyInfo *CallerBFI) { 1808 1809 // If global profile summary is available, then callsite's hotness is 1810 // determined based on that. 1811 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1812 return Params.HotCallSiteThreshold; 1813 1814 // Otherwise we need BFI to be available and to have a locally hot callsite 1815 // threshold. 1816 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1817 return std::nullopt; 1818 1819 // Determine if the callsite is hot relative to caller's entry. We could 1820 // potentially cache the computation of scaled entry frequency, but the added 1821 // complexity is not worth it unless this scaling shows up high in the 1822 // profiles. 1823 auto CallSiteBB = Call.getParent(); 1824 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1825 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1826 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1827 return Params.LocallyHotCallSiteThreshold; 1828 1829 // Otherwise treat it normally. 1830 return std::nullopt; 1831 } 1832 1833 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1834 // If no size growth is allowed for this inlining, set Threshold to 0. 1835 if (!allowSizeGrowth(Call)) { 1836 Threshold = 0; 1837 return; 1838 } 1839 1840 Function *Caller = Call.getCaller(); 1841 1842 // return min(A, B) if B is valid. 1843 auto MinIfValid = [](int A, std::optional<int> B) { 1844 return B ? std::min(A, *B) : A; 1845 }; 1846 1847 // return max(A, B) if B is valid. 1848 auto MaxIfValid = [](int A, std::optional<int> B) { 1849 return B ? std::max(A, *B) : A; 1850 }; 1851 1852 // Various bonus percentages. These are multiplied by Threshold to get the 1853 // bonus values. 1854 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1855 // basic block at the given callsite context. This is speculatively applied 1856 // and withdrawn if more than one basic block is seen. 1857 // 1858 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1859 // of the last call to a static function as inlining such functions is 1860 // guaranteed to reduce code size. 1861 // 1862 // These bonus percentages may be set to 0 based on properties of the caller 1863 // and the callsite. 1864 int SingleBBBonusPercent = 50; 1865 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1866 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1867 1868 // Lambda to set all the above bonus and bonus percentages to 0. 1869 auto DisallowAllBonuses = [&]() { 1870 SingleBBBonusPercent = 0; 1871 VectorBonusPercent = 0; 1872 LastCallToStaticBonus = 0; 1873 }; 1874 1875 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1876 // and reduce the threshold if the caller has the necessary attribute. 1877 if (Caller->hasMinSize()) { 1878 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1879 // For minsize, we want to disable the single BB bonus and the vector 1880 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1881 // a static function will, at the minimum, eliminate the parameter setup and 1882 // call/return instructions. 1883 SingleBBBonusPercent = 0; 1884 VectorBonusPercent = 0; 1885 } else if (Caller->hasOptSize()) 1886 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1887 1888 // Adjust the threshold based on inlinehint attribute and profile based 1889 // hotness information if the caller does not have MinSize attribute. 1890 if (!Caller->hasMinSize()) { 1891 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1892 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1893 1894 // FIXME: After switching to the new passmanager, simplify the logic below 1895 // by checking only the callsite hotness/coldness as we will reliably 1896 // have local profile information. 1897 // 1898 // Callsite hotness and coldness can be determined if sample profile is 1899 // used (which adds hotness metadata to calls) or if caller's 1900 // BlockFrequencyInfo is available. 1901 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1902 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1903 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1904 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1905 // FIXME: This should update the threshold only if it exceeds the 1906 // current threshold, but AutoFDO + ThinLTO currently relies on this 1907 // behavior to prevent inlining of hot callsites during ThinLTO 1908 // compile phase. 1909 Threshold = *HotCallSiteThreshold; 1910 } else if (isColdCallSite(Call, CallerBFI)) { 1911 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1912 // Do not apply bonuses for a cold callsite including the 1913 // LastCallToStatic bonus. While this bonus might result in code size 1914 // reduction, it can cause the size of a non-cold caller to increase 1915 // preventing it from being inlined. 1916 DisallowAllBonuses(); 1917 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1918 } else if (PSI) { 1919 // Use callee's global profile information only if we have no way of 1920 // determining this via callsite information. 1921 if (PSI->isFunctionEntryHot(&Callee)) { 1922 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1923 // If callsite hotness can not be determined, we may still know 1924 // that the callee is hot and treat it as a weaker hint for threshold 1925 // increase. 1926 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1927 } else if (PSI->isFunctionEntryCold(&Callee)) { 1928 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1929 // Do not apply bonuses for a cold callee including the 1930 // LastCallToStatic bonus. While this bonus might result in code size 1931 // reduction, it can cause the size of a non-cold caller to increase 1932 // preventing it from being inlined. 1933 DisallowAllBonuses(); 1934 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1935 } 1936 } 1937 } 1938 1939 Threshold += TTI.adjustInliningThreshold(&Call); 1940 1941 // Finally, take the target-specific inlining threshold multiplier into 1942 // account. 1943 Threshold *= TTI.getInliningThresholdMultiplier(); 1944 1945 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1946 VectorBonus = Threshold * VectorBonusPercent / 100; 1947 1948 // If there is only one call of the function, and it has internal linkage, 1949 // the cost of inlining it drops dramatically. It may seem odd to update 1950 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1951 if (isSoleCallToLocalFunction(Call, F)) { 1952 Cost -= LastCallToStaticBonus; 1953 StaticBonusApplied = LastCallToStaticBonus; 1954 } 1955 } 1956 1957 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1958 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1959 // First try to handle simplified comparisons. 1960 if (simplifyInstruction(I)) 1961 return true; 1962 1963 if (I.getOpcode() == Instruction::FCmp) 1964 return false; 1965 1966 // Otherwise look for a comparison between constant offset pointers with 1967 // a common base. 1968 Value *LHSBase, *RHSBase; 1969 APInt LHSOffset, RHSOffset; 1970 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1971 if (LHSBase) { 1972 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1973 if (RHSBase && LHSBase == RHSBase) { 1974 // We have common bases, fold the icmp to a constant based on the 1975 // offsets. 1976 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1977 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1978 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1979 SimplifiedValues[&I] = C; 1980 ++NumConstantPtrCmps; 1981 return true; 1982 } 1983 } 1984 } 1985 1986 auto isImplicitNullCheckCmp = [](const CmpInst &I) { 1987 for (auto *User : I.users()) 1988 if (auto *Instr = dyn_cast<Instruction>(User)) 1989 if (!Instr->getMetadata(LLVMContext::MD_make_implicit)) 1990 return false; 1991 return true; 1992 }; 1993 1994 // If the comparison is an equality comparison with null, we can simplify it 1995 // if we know the value (argument) can't be null 1996 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) { 1997 if (isKnownNonNullInCallee(I.getOperand(0))) { 1998 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1999 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 2000 : ConstantInt::getFalse(I.getType()); 2001 return true; 2002 } 2003 // Implicit null checks act as unconditional branches and their comparisons 2004 // should be treated as simplified and free of cost. 2005 if (isImplicitNullCheckCmp(I)) 2006 return true; 2007 } 2008 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 2009 } 2010 2011 bool CallAnalyzer::visitSub(BinaryOperator &I) { 2012 // Try to handle a special case: we can fold computing the difference of two 2013 // constant-related pointers. 2014 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 2015 Value *LHSBase, *RHSBase; 2016 APInt LHSOffset, RHSOffset; 2017 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 2018 if (LHSBase) { 2019 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 2020 if (RHSBase && LHSBase == RHSBase) { 2021 // We have common bases, fold the subtract to a constant based on the 2022 // offsets. 2023 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 2024 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 2025 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 2026 SimplifiedValues[&I] = C; 2027 ++NumConstantPtrDiffs; 2028 return true; 2029 } 2030 } 2031 } 2032 2033 // Otherwise, fall back to the generic logic for simplifying and handling 2034 // instructions. 2035 return Base::visitSub(I); 2036 } 2037 2038 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 2039 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 2040 Constant *CLHS = dyn_cast<Constant>(LHS); 2041 if (!CLHS) 2042 CLHS = SimplifiedValues.lookup(LHS); 2043 Constant *CRHS = dyn_cast<Constant>(RHS); 2044 if (!CRHS) 2045 CRHS = SimplifiedValues.lookup(RHS); 2046 2047 Value *SimpleV = nullptr; 2048 if (auto FI = dyn_cast<FPMathOperator>(&I)) 2049 SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 2050 FI->getFastMathFlags(), DL); 2051 else 2052 SimpleV = 2053 simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 2054 2055 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2056 SimplifiedValues[&I] = C; 2057 2058 if (SimpleV) 2059 return true; 2060 2061 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 2062 disableSROA(LHS); 2063 disableSROA(RHS); 2064 2065 // If the instruction is floating point, and the target says this operation 2066 // is expensive, this may eventually become a library call. Treat the cost 2067 // as such. Unless it's fneg which can be implemented with an xor. 2068 using namespace llvm::PatternMatch; 2069 if (I.getType()->isFloatingPointTy() && 2070 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 2071 !match(&I, m_FNeg(m_Value()))) 2072 onCallPenalty(); 2073 2074 return false; 2075 } 2076 2077 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 2078 Value *Op = I.getOperand(0); 2079 Constant *COp = dyn_cast<Constant>(Op); 2080 if (!COp) 2081 COp = SimplifiedValues.lookup(Op); 2082 2083 Value *SimpleV = simplifyFNegInst( 2084 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 2085 2086 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2087 SimplifiedValues[&I] = C; 2088 2089 if (SimpleV) 2090 return true; 2091 2092 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 2093 disableSROA(Op); 2094 2095 return false; 2096 } 2097 2098 bool CallAnalyzer::visitLoad(LoadInst &I) { 2099 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2100 return true; 2101 2102 // If the data is already loaded from this address and hasn't been clobbered 2103 // by any stores or calls, this load is likely to be redundant and can be 2104 // eliminated. 2105 if (EnableLoadElimination && 2106 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2107 onLoadEliminationOpportunity(); 2108 return true; 2109 } 2110 2111 onMemAccess(); 2112 return false; 2113 } 2114 2115 bool CallAnalyzer::visitStore(StoreInst &I) { 2116 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2117 return true; 2118 2119 // The store can potentially clobber loads and prevent repeated loads from 2120 // being eliminated. 2121 // FIXME: 2122 // 1. We can probably keep an initial set of eliminatable loads substracted 2123 // from the cost even when we finally see a store. We just need to disable 2124 // *further* accumulation of elimination savings. 2125 // 2. We should probably at some point thread MemorySSA for the callee into 2126 // this and then use that to actually compute *really* precise savings. 2127 disableLoadElimination(); 2128 2129 onMemAccess(); 2130 return false; 2131 } 2132 2133 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2134 // Constant folding for extract value is trivial. 2135 if (simplifyInstruction(I)) 2136 return true; 2137 2138 // SROA can't look through these, but they may be free. 2139 return Base::visitExtractValue(I); 2140 } 2141 2142 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2143 // Constant folding for insert value is trivial. 2144 if (simplifyInstruction(I)) 2145 return true; 2146 2147 // SROA can't look through these, but they may be free. 2148 return Base::visitInsertValue(I); 2149 } 2150 2151 /// Try to simplify a call site. 2152 /// 2153 /// Takes a concrete function and callsite and tries to actually simplify it by 2154 /// analyzing the arguments and call itself with instsimplify. Returns true if 2155 /// it has simplified the callsite to some other entity (a constant), making it 2156 /// free. 2157 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2158 // FIXME: Using the instsimplify logic directly for this is inefficient 2159 // because we have to continually rebuild the argument list even when no 2160 // simplifications can be performed. Until that is fixed with remapping 2161 // inside of instsimplify, directly constant fold calls here. 2162 if (!canConstantFoldCallTo(&Call, F)) 2163 return false; 2164 2165 // Try to re-map the arguments to constants. 2166 SmallVector<Constant *, 4> ConstantArgs; 2167 ConstantArgs.reserve(Call.arg_size()); 2168 for (Value *I : Call.args()) { 2169 Constant *C = dyn_cast<Constant>(I); 2170 if (!C) 2171 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2172 if (!C) 2173 return false; // This argument doesn't map to a constant. 2174 2175 ConstantArgs.push_back(C); 2176 } 2177 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2178 SimplifiedValues[&Call] = C; 2179 return true; 2180 } 2181 2182 return false; 2183 } 2184 2185 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2186 if (!onCallBaseVisitStart(Call)) 2187 return true; 2188 2189 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2190 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2191 // This aborts the entire analysis. 2192 ExposesReturnsTwice = true; 2193 return false; 2194 } 2195 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2196 ContainsNoDuplicateCall = true; 2197 2198 Function *F = Call.getCalledFunction(); 2199 bool IsIndirectCall = !F; 2200 if (IsIndirectCall) { 2201 // Check if this happens to be an indirect function call to a known function 2202 // in this inline context. If not, we've done all we can. 2203 Value *Callee = Call.getCalledOperand(); 2204 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2205 if (!F || F->getFunctionType() != Call.getFunctionType()) { 2206 onCallArgumentSetup(Call); 2207 2208 if (!Call.onlyReadsMemory()) 2209 disableLoadElimination(); 2210 return Base::visitCallBase(Call); 2211 } 2212 } 2213 2214 assert(F && "Expected a call to a known function"); 2215 2216 // When we have a concrete function, first try to simplify it directly. 2217 if (simplifyCallSite(F, Call)) 2218 return true; 2219 2220 // Next check if it is an intrinsic we know about. 2221 // FIXME: Lift this into part of the InstVisitor. 2222 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2223 switch (II->getIntrinsicID()) { 2224 default: 2225 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2226 disableLoadElimination(); 2227 return Base::visitCallBase(Call); 2228 2229 case Intrinsic::load_relative: 2230 onLoadRelativeIntrinsic(); 2231 return false; 2232 2233 case Intrinsic::memset: 2234 case Intrinsic::memcpy: 2235 case Intrinsic::memmove: 2236 disableLoadElimination(); 2237 // SROA can usually chew through these intrinsics, but they aren't free. 2238 return false; 2239 case Intrinsic::icall_branch_funnel: 2240 case Intrinsic::localescape: 2241 HasUninlineableIntrinsic = true; 2242 return false; 2243 case Intrinsic::vastart: 2244 InitsVargArgs = true; 2245 return false; 2246 case Intrinsic::launder_invariant_group: 2247 case Intrinsic::strip_invariant_group: 2248 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2249 SROAArgValues[II] = SROAArg; 2250 return true; 2251 case Intrinsic::is_constant: 2252 return simplifyIntrinsicCallIsConstant(Call); 2253 case Intrinsic::objectsize: 2254 return simplifyIntrinsicCallObjectSize(Call); 2255 } 2256 } 2257 2258 if (F == Call.getFunction()) { 2259 // This flag will fully abort the analysis, so don't bother with anything 2260 // else. 2261 IsRecursiveCall = true; 2262 if (!AllowRecursiveCall) 2263 return false; 2264 } 2265 2266 if (TTI.isLoweredToCall(F)) { 2267 onLoweredCall(F, Call, IsIndirectCall); 2268 } 2269 2270 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2271 disableLoadElimination(); 2272 return Base::visitCallBase(Call); 2273 } 2274 2275 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2276 // At least one return instruction will be free after inlining. 2277 bool Free = !HasReturn; 2278 HasReturn = true; 2279 return Free; 2280 } 2281 2282 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2283 // We model unconditional branches as essentially free -- they really 2284 // shouldn't exist at all, but handling them makes the behavior of the 2285 // inliner more regular and predictable. Interestingly, conditional branches 2286 // which will fold away are also free. 2287 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2288 BI.getMetadata(LLVMContext::MD_make_implicit) || 2289 isa_and_nonnull<ConstantInt>( 2290 SimplifiedValues.lookup(BI.getCondition())); 2291 } 2292 2293 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2294 bool CheckSROA = SI.getType()->isPointerTy(); 2295 Value *TrueVal = SI.getTrueValue(); 2296 Value *FalseVal = SI.getFalseValue(); 2297 2298 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2299 if (!TrueC) 2300 TrueC = SimplifiedValues.lookup(TrueVal); 2301 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2302 if (!FalseC) 2303 FalseC = SimplifiedValues.lookup(FalseVal); 2304 Constant *CondC = 2305 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2306 2307 if (!CondC) { 2308 // Select C, X, X => X 2309 if (TrueC == FalseC && TrueC) { 2310 SimplifiedValues[&SI] = TrueC; 2311 return true; 2312 } 2313 2314 if (!CheckSROA) 2315 return Base::visitSelectInst(SI); 2316 2317 std::pair<Value *, APInt> TrueBaseAndOffset = 2318 ConstantOffsetPtrs.lookup(TrueVal); 2319 std::pair<Value *, APInt> FalseBaseAndOffset = 2320 ConstantOffsetPtrs.lookup(FalseVal); 2321 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2322 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2323 2324 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2325 SROAArgValues[&SI] = SROAArg; 2326 return true; 2327 } 2328 2329 return Base::visitSelectInst(SI); 2330 } 2331 2332 // Select condition is a constant. 2333 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2334 : (CondC->isNullValue()) ? FalseVal 2335 : nullptr; 2336 if (!SelectedV) { 2337 // Condition is a vector constant that is not all 1s or all 0s. If all 2338 // operands are constants, ConstantFoldSelectInstruction() can handle the 2339 // cases such as select vectors. 2340 if (TrueC && FalseC) { 2341 if (auto *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) { 2342 SimplifiedValues[&SI] = C; 2343 return true; 2344 } 2345 } 2346 return Base::visitSelectInst(SI); 2347 } 2348 2349 // Condition is either all 1s or all 0s. SI can be simplified. 2350 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2351 SimplifiedValues[&SI] = SelectedC; 2352 return true; 2353 } 2354 2355 if (!CheckSROA) 2356 return true; 2357 2358 std::pair<Value *, APInt> BaseAndOffset = 2359 ConstantOffsetPtrs.lookup(SelectedV); 2360 if (BaseAndOffset.first) { 2361 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2362 2363 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2364 SROAArgValues[&SI] = SROAArg; 2365 } 2366 2367 return true; 2368 } 2369 2370 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2371 // We model unconditional switches as free, see the comments on handling 2372 // branches. 2373 if (isa<ConstantInt>(SI.getCondition())) 2374 return true; 2375 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2376 if (isa<ConstantInt>(V)) 2377 return true; 2378 2379 // Assume the most general case where the switch is lowered into 2380 // either a jump table, bit test, or a balanced binary tree consisting of 2381 // case clusters without merging adjacent clusters with the same 2382 // destination. We do not consider the switches that are lowered with a mix 2383 // of jump table/bit test/binary search tree. The cost of the switch is 2384 // proportional to the size of the tree or the size of jump table range. 2385 // 2386 // NB: We convert large switches which are just used to initialize large phi 2387 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2388 // inlining those. It will prevent inlining in cases where the optimization 2389 // does not (yet) fire. 2390 2391 unsigned JumpTableSize = 0; 2392 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2393 unsigned NumCaseCluster = 2394 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2395 2396 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2397 return false; 2398 } 2399 2400 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2401 // We never want to inline functions that contain an indirectbr. This is 2402 // incorrect because all the blockaddress's (in static global initializers 2403 // for example) would be referring to the original function, and this 2404 // indirect jump would jump from the inlined copy of the function into the 2405 // original function which is extremely undefined behavior. 2406 // FIXME: This logic isn't really right; we can safely inline functions with 2407 // indirectbr's as long as no other function or global references the 2408 // blockaddress of a block within the current function. 2409 HasIndirectBr = true; 2410 return false; 2411 } 2412 2413 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2414 // FIXME: It's not clear that a single instruction is an accurate model for 2415 // the inline cost of a resume instruction. 2416 return false; 2417 } 2418 2419 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2420 // FIXME: It's not clear that a single instruction is an accurate model for 2421 // the inline cost of a cleanupret instruction. 2422 return false; 2423 } 2424 2425 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2426 // FIXME: It's not clear that a single instruction is an accurate model for 2427 // the inline cost of a catchret instruction. 2428 return false; 2429 } 2430 2431 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2432 // FIXME: It might be reasonably to discount the cost of instructions leading 2433 // to unreachable as they have the lowest possible impact on both runtime and 2434 // code size. 2435 return true; // No actual code is needed for unreachable. 2436 } 2437 2438 bool CallAnalyzer::visitInstruction(Instruction &I) { 2439 // Some instructions are free. All of the free intrinsics can also be 2440 // handled by SROA, etc. 2441 if (TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2442 TargetTransformInfo::TCC_Free) 2443 return true; 2444 2445 // We found something we don't understand or can't handle. Mark any SROA-able 2446 // values in the operand list as no longer viable. 2447 for (const Use &Op : I.operands()) 2448 disableSROA(Op); 2449 2450 return false; 2451 } 2452 2453 /// Analyze a basic block for its contribution to the inline cost. 2454 /// 2455 /// This method walks the analyzer over every instruction in the given basic 2456 /// block and accounts for their cost during inlining at this callsite. It 2457 /// aborts early if the threshold has been exceeded or an impossible to inline 2458 /// construct has been detected. It returns false if inlining is no longer 2459 /// viable, and true if inlining remains viable. 2460 InlineResult 2461 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2462 SmallPtrSetImpl<const Value *> &EphValues) { 2463 for (Instruction &I : *BB) { 2464 // FIXME: Currently, the number of instructions in a function regardless of 2465 // our ability to simplify them during inline to constants or dead code, 2466 // are actually used by the vector bonus heuristic. As long as that's true, 2467 // we have to special case debug intrinsics here to prevent differences in 2468 // inlining due to debug symbols. Eventually, the number of unsimplified 2469 // instructions shouldn't factor into the cost computation, but until then, 2470 // hack around it here. 2471 // Similarly, skip pseudo-probes. 2472 if (I.isDebugOrPseudoInst()) 2473 continue; 2474 2475 // Skip ephemeral values. 2476 if (EphValues.count(&I)) 2477 continue; 2478 2479 ++NumInstructions; 2480 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2481 ++NumVectorInstructions; 2482 2483 // If the instruction simplified to a constant, there is no cost to this 2484 // instruction. Visit the instructions using our InstVisitor to account for 2485 // all of the per-instruction logic. The visit tree returns true if we 2486 // consumed the instruction in any way, and false if the instruction's base 2487 // cost should count against inlining. 2488 onInstructionAnalysisStart(&I); 2489 2490 if (Base::visit(&I)) 2491 ++NumInstructionsSimplified; 2492 else 2493 onMissedSimplification(); 2494 2495 onInstructionAnalysisFinish(&I); 2496 using namespace ore; 2497 // If the visit this instruction detected an uninlinable pattern, abort. 2498 InlineResult IR = InlineResult::success(); 2499 if (IsRecursiveCall && !AllowRecursiveCall) 2500 IR = InlineResult::failure("recursive"); 2501 else if (ExposesReturnsTwice) 2502 IR = InlineResult::failure("exposes returns twice"); 2503 else if (HasDynamicAlloca) 2504 IR = InlineResult::failure("dynamic alloca"); 2505 else if (HasIndirectBr) 2506 IR = InlineResult::failure("indirect branch"); 2507 else if (HasUninlineableIntrinsic) 2508 IR = InlineResult::failure("uninlinable intrinsic"); 2509 else if (InitsVargArgs) 2510 IR = InlineResult::failure("varargs"); 2511 if (!IR.isSuccess()) { 2512 if (ORE) 2513 ORE->emit([&]() { 2514 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2515 &CandidateCall) 2516 << NV("Callee", &F) << " has uninlinable pattern (" 2517 << NV("InlineResult", IR.getFailureReason()) 2518 << ") and cost is not fully computed"; 2519 }); 2520 return IR; 2521 } 2522 2523 // If the caller is a recursive function then we don't want to inline 2524 // functions which allocate a lot of stack space because it would increase 2525 // the caller stack usage dramatically. 2526 if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) { 2527 auto IR = 2528 InlineResult::failure("recursive and allocates too much stack space"); 2529 if (ORE) 2530 ORE->emit([&]() { 2531 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2532 &CandidateCall) 2533 << NV("Callee", &F) << " is " 2534 << NV("InlineResult", IR.getFailureReason()) 2535 << ". Cost is not fully computed"; 2536 }); 2537 return IR; 2538 } 2539 2540 if (shouldStop()) 2541 return InlineResult::failure( 2542 "Call site analysis is not favorable to inlining."); 2543 } 2544 2545 return InlineResult::success(); 2546 } 2547 2548 /// Compute the base pointer and cumulative constant offsets for V. 2549 /// 2550 /// This strips all constant offsets off of V, leaving it the base pointer, and 2551 /// accumulates the total constant offset applied in the returned constant. It 2552 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2553 /// no constant offsets applied. 2554 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2555 if (!V->getType()->isPointerTy()) 2556 return nullptr; 2557 2558 unsigned AS = V->getType()->getPointerAddressSpace(); 2559 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2560 APInt Offset = APInt::getZero(IntPtrWidth); 2561 2562 // Even though we don't look through PHI nodes, we could be called on an 2563 // instruction in an unreachable block, which may be on a cycle. 2564 SmallPtrSet<Value *, 4> Visited; 2565 Visited.insert(V); 2566 do { 2567 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2568 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2569 return nullptr; 2570 V = GEP->getPointerOperand(); 2571 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2572 V = cast<Operator>(V)->getOperand(0); 2573 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2574 if (GA->isInterposable()) 2575 break; 2576 V = GA->getAliasee(); 2577 } else { 2578 break; 2579 } 2580 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2581 } while (Visited.insert(V).second); 2582 2583 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2584 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2585 } 2586 2587 /// Find dead blocks due to deleted CFG edges during inlining. 2588 /// 2589 /// If we know the successor of the current block, \p CurrBB, has to be \p 2590 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2591 /// no live incoming CFG edges. If one block is found to be dead, we can 2592 /// continue growing the dead block list by checking the successors of the dead 2593 /// blocks to see if all their incoming edges are dead or not. 2594 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2595 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2596 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2597 // known successor which is not the one under exam. 2598 return (DeadBlocks.count(Pred) || 2599 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2600 }; 2601 2602 auto IsNewlyDead = [&](BasicBlock *BB) { 2603 // If all the edges to a block are dead, the block is also dead. 2604 return (!DeadBlocks.count(BB) && 2605 llvm::all_of(predecessors(BB), 2606 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2607 }; 2608 2609 for (BasicBlock *Succ : successors(CurrBB)) { 2610 if (Succ == NextBB || !IsNewlyDead(Succ)) 2611 continue; 2612 SmallVector<BasicBlock *, 4> NewDead; 2613 NewDead.push_back(Succ); 2614 while (!NewDead.empty()) { 2615 BasicBlock *Dead = NewDead.pop_back_val(); 2616 if (DeadBlocks.insert(Dead).second) 2617 // Continue growing the dead block lists. 2618 for (BasicBlock *S : successors(Dead)) 2619 if (IsNewlyDead(S)) 2620 NewDead.push_back(S); 2621 } 2622 } 2623 } 2624 2625 /// Analyze a call site for potential inlining. 2626 /// 2627 /// Returns true if inlining this call is viable, and false if it is not 2628 /// viable. It computes the cost and adjusts the threshold based on numerous 2629 /// factors and heuristics. If this method returns false but the computed cost 2630 /// is below the computed threshold, then inlining was forcibly disabled by 2631 /// some artifact of the routine. 2632 InlineResult CallAnalyzer::analyze() { 2633 ++NumCallsAnalyzed; 2634 2635 auto Result = onAnalysisStart(); 2636 if (!Result.isSuccess()) 2637 return Result; 2638 2639 if (F.empty()) 2640 return InlineResult::success(); 2641 2642 Function *Caller = CandidateCall.getFunction(); 2643 // Check if the caller function is recursive itself. 2644 for (User *U : Caller->users()) { 2645 CallBase *Call = dyn_cast<CallBase>(U); 2646 if (Call && Call->getFunction() == Caller) { 2647 IsCallerRecursive = true; 2648 break; 2649 } 2650 } 2651 2652 // Populate our simplified values by mapping from function arguments to call 2653 // arguments with known important simplifications. 2654 auto CAI = CandidateCall.arg_begin(); 2655 for (Argument &FAI : F.args()) { 2656 assert(CAI != CandidateCall.arg_end()); 2657 if (Constant *C = dyn_cast<Constant>(CAI)) 2658 SimplifiedValues[&FAI] = C; 2659 2660 Value *PtrArg = *CAI; 2661 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2662 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2663 2664 // We can SROA any pointer arguments derived from alloca instructions. 2665 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2666 SROAArgValues[&FAI] = SROAArg; 2667 onInitializeSROAArg(SROAArg); 2668 EnabledSROAAllocas.insert(SROAArg); 2669 } 2670 } 2671 ++CAI; 2672 } 2673 NumConstantArgs = SimplifiedValues.size(); 2674 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2675 NumAllocaArgs = SROAArgValues.size(); 2676 2677 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2678 // the ephemeral values multiple times (and they're completely determined by 2679 // the callee, so this is purely duplicate work). 2680 SmallPtrSet<const Value *, 32> EphValues; 2681 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2682 2683 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2684 // adding basic blocks of the callee which can be proven to be dead for this 2685 // particular call site in order to get more accurate cost estimates. This 2686 // requires a somewhat heavyweight iteration pattern: we need to walk the 2687 // basic blocks in a breadth-first order as we insert live successors. To 2688 // accomplish this, prioritizing for small iterations because we exit after 2689 // crossing our threshold, we use a small-size optimized SetVector. 2690 typedef SmallSetVector<BasicBlock *, 16> BBSetVector; 2691 BBSetVector BBWorklist; 2692 BBWorklist.insert(&F.getEntryBlock()); 2693 2694 // Note that we *must not* cache the size, this loop grows the worklist. 2695 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2696 if (shouldStop()) 2697 break; 2698 2699 BasicBlock *BB = BBWorklist[Idx]; 2700 if (BB->empty()) 2701 continue; 2702 2703 onBlockStart(BB); 2704 2705 // Disallow inlining a blockaddress with uses other than strictly callbr. 2706 // A blockaddress only has defined behavior for an indirect branch in the 2707 // same function, and we do not currently support inlining indirect 2708 // branches. But, the inliner may not see an indirect branch that ends up 2709 // being dead code at a particular call site. If the blockaddress escapes 2710 // the function, e.g., via a global variable, inlining may lead to an 2711 // invalid cross-function reference. 2712 // FIXME: pr/39560: continue relaxing this overt restriction. 2713 if (BB->hasAddressTaken()) 2714 for (User *U : BlockAddress::get(&*BB)->users()) 2715 if (!isa<CallBrInst>(*U)) 2716 return InlineResult::failure("blockaddress used outside of callbr"); 2717 2718 // Analyze the cost of this block. If we blow through the threshold, this 2719 // returns false, and we can bail on out. 2720 InlineResult IR = analyzeBlock(BB, EphValues); 2721 if (!IR.isSuccess()) 2722 return IR; 2723 2724 Instruction *TI = BB->getTerminator(); 2725 2726 // Add in the live successors by first checking whether we have terminator 2727 // that may be simplified based on the values simplified by this call. 2728 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2729 if (BI->isConditional()) { 2730 Value *Cond = BI->getCondition(); 2731 if (ConstantInt *SimpleCond = 2732 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2733 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2734 BBWorklist.insert(NextBB); 2735 KnownSuccessors[BB] = NextBB; 2736 findDeadBlocks(BB, NextBB); 2737 continue; 2738 } 2739 } 2740 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2741 Value *Cond = SI->getCondition(); 2742 if (ConstantInt *SimpleCond = 2743 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2744 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2745 BBWorklist.insert(NextBB); 2746 KnownSuccessors[BB] = NextBB; 2747 findDeadBlocks(BB, NextBB); 2748 continue; 2749 } 2750 } 2751 2752 // If we're unable to select a particular successor, just count all of 2753 // them. 2754 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2755 ++TIdx) 2756 BBWorklist.insert(TI->getSuccessor(TIdx)); 2757 2758 onBlockAnalyzed(BB); 2759 } 2760 2761 // If this is a noduplicate call, we can still inline as long as 2762 // inlining this would cause the removal of the caller (so the instruction 2763 // is not actually duplicated, just moved). 2764 if (!isSoleCallToLocalFunction(CandidateCall, F) && ContainsNoDuplicateCall) 2765 return InlineResult::failure("noduplicate"); 2766 2767 // If the callee's stack size exceeds the user-specified threshold, 2768 // do not let it be inlined. 2769 // The command line option overrides a limit set in the function attributes. 2770 size_t FinalStackSizeThreshold = StackSizeThreshold; 2771 if (!StackSizeThreshold.getNumOccurrences()) 2772 if (std::optional<int> AttrMaxStackSize = getStringFnAttrAsInt( 2773 Caller, InlineConstants::MaxInlineStackSizeAttributeName)) 2774 FinalStackSizeThreshold = *AttrMaxStackSize; 2775 if (AllocatedSize > FinalStackSizeThreshold) 2776 return InlineResult::failure("stacksize"); 2777 2778 return finalizeAnalysis(); 2779 } 2780 2781 void InlineCostCallAnalyzer::print(raw_ostream &OS) { 2782 #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n" 2783 if (PrintInstructionComments) 2784 F.print(OS, &Writer); 2785 DEBUG_PRINT_STAT(NumConstantArgs); 2786 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2787 DEBUG_PRINT_STAT(NumAllocaArgs); 2788 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2789 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2790 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2791 DEBUG_PRINT_STAT(NumInstructions); 2792 DEBUG_PRINT_STAT(SROACostSavings); 2793 DEBUG_PRINT_STAT(SROACostSavingsLost); 2794 DEBUG_PRINT_STAT(LoadEliminationCost); 2795 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2796 DEBUG_PRINT_STAT(Cost); 2797 DEBUG_PRINT_STAT(Threshold); 2798 #undef DEBUG_PRINT_STAT 2799 } 2800 2801 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2802 /// Dump stats about this call's analysis. 2803 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); } 2804 #endif 2805 2806 /// Test that there are no attribute conflicts between Caller and Callee 2807 /// that prevent inlining. 2808 static bool functionsHaveCompatibleAttributes( 2809 Function *Caller, Function *Callee, 2810 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2811 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2812 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2813 // object, and always returns the same object (which is overwritten on each 2814 // GetTLI call). Therefore we copy the first result. 2815 auto CalleeTLI = GetTLI(*Callee); 2816 return GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2817 InlineCallerSupersetNoBuiltin) && 2818 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2819 } 2820 2821 int llvm::getCallsiteCost(const CallBase &Call, const DataLayout &DL) { 2822 int64_t Cost = 0; 2823 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2824 if (Call.isByValArgument(I)) { 2825 // We approximate the number of loads and stores needed by dividing the 2826 // size of the byval type by the target's pointer size. 2827 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2828 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2829 unsigned AS = PTy->getAddressSpace(); 2830 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2831 // Ceiling division. 2832 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2833 2834 // If it generates more than 8 stores it is likely to be expanded as an 2835 // inline memcpy so we take that as an upper bound. Otherwise we assume 2836 // one load and one store per word copied. 2837 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2838 // here instead of a magic number of 8, but it's not available via 2839 // DataLayout. 2840 NumStores = std::min(NumStores, 8U); 2841 2842 Cost += 2 * NumStores * InstrCost; 2843 } else { 2844 // For non-byval arguments subtract off one instruction per call 2845 // argument. 2846 Cost += InstrCost; 2847 } 2848 } 2849 // The call instruction also disappears after inlining. 2850 Cost += InstrCost; 2851 Cost += CallPenalty; 2852 return std::min<int64_t>(Cost, INT_MAX); 2853 } 2854 2855 InlineCost llvm::getInlineCost( 2856 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2857 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2858 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2859 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2860 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2861 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2862 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2863 } 2864 2865 std::optional<int> llvm::getInliningCostEstimate( 2866 CallBase &Call, TargetTransformInfo &CalleeTTI, 2867 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2868 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2869 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2870 const InlineParams Params = {/* DefaultThreshold*/ 0, 2871 /*HintThreshold*/ {}, 2872 /*ColdThreshold*/ {}, 2873 /*OptSizeThreshold*/ {}, 2874 /*OptMinSizeThreshold*/ {}, 2875 /*HotCallSiteThreshold*/ {}, 2876 /*LocallyHotCallSiteThreshold*/ {}, 2877 /*ColdCallSiteThreshold*/ {}, 2878 /*ComputeFullInlineCost*/ true, 2879 /*EnableDeferral*/ true}; 2880 2881 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2882 GetAssumptionCache, GetBFI, PSI, ORE, true, 2883 /*IgnoreThreshold*/ true); 2884 auto R = CA.analyze(); 2885 if (!R.isSuccess()) 2886 return std::nullopt; 2887 return CA.getCost(); 2888 } 2889 2890 std::optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2891 CallBase &Call, TargetTransformInfo &CalleeTTI, 2892 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2893 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2894 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2895 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2896 ORE, *Call.getCalledFunction(), Call); 2897 auto R = CFA.analyze(); 2898 if (!R.isSuccess()) 2899 return std::nullopt; 2900 return CFA.features(); 2901 } 2902 2903 std::optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2904 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2905 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2906 2907 // Cannot inline indirect calls. 2908 if (!Callee) 2909 return InlineResult::failure("indirect call"); 2910 2911 // When callee coroutine function is inlined into caller coroutine function 2912 // before coro-split pass, 2913 // coro-early pass can not handle this quiet well. 2914 // So we won't inline the coroutine function if it have not been unsplited 2915 if (Callee->isPresplitCoroutine()) 2916 return InlineResult::failure("unsplited coroutine call"); 2917 2918 // Never inline calls with byval arguments that does not have the alloca 2919 // address space. Since byval arguments can be replaced with a copy to an 2920 // alloca, the inlined code would need to be adjusted to handle that the 2921 // argument is in the alloca address space (so it is a little bit complicated 2922 // to solve). 2923 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2924 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2925 if (Call.isByValArgument(I)) { 2926 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2927 if (PTy->getAddressSpace() != AllocaAS) 2928 return InlineResult::failure("byval arguments without alloca" 2929 " address space"); 2930 } 2931 2932 // Never inline functions with conflicting target attributes. 2933 Function *Caller = Call.getCaller(); 2934 if (!IgnoreTTIInlineCompatible && 2935 !CalleeTTI.areInlineCompatible(Caller, Callee)) 2936 return InlineResult::failure("conflicting target attributes"); 2937 2938 // Calls to functions with always-inline attributes should be inlined 2939 // whenever possible. 2940 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2941 if (Call.getAttributes().hasFnAttr(Attribute::NoInline)) 2942 return InlineResult::failure("noinline call site attribute"); 2943 2944 auto IsViable = isInlineViable(*Callee); 2945 if (IsViable.isSuccess()) 2946 return InlineResult::success(); 2947 return InlineResult::failure(IsViable.getFailureReason()); 2948 } 2949 2950 // Never inline functions with conflicting attributes (unless callee has 2951 // always-inline attribute). 2952 // FIXME: functionsHaveCompatibleAttributes below checks for compatibilities 2953 // of different kinds of function attributes -- sanitizer-related ones, 2954 // checkDenormMode, no-builtin-memcpy, etc. It's unclear if we really want 2955 // the always-inline attribute to take precedence over these different types 2956 // of function attributes. 2957 if (!functionsHaveCompatibleAttributes(Caller, Callee, GetTLI)) 2958 return InlineResult::failure("conflicting attributes"); 2959 2960 // Don't inline this call if the caller has the optnone attribute. 2961 if (Caller->hasOptNone()) 2962 return InlineResult::failure("optnone attribute"); 2963 2964 // Don't inline a function that treats null pointer as valid into a caller 2965 // that does not have this attribute. 2966 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2967 return InlineResult::failure("nullptr definitions incompatible"); 2968 2969 // Don't inline functions which can be interposed at link-time. 2970 if (Callee->isInterposable()) 2971 return InlineResult::failure("interposable"); 2972 2973 // Don't inline functions marked noinline. 2974 if (Callee->hasFnAttribute(Attribute::NoInline)) 2975 return InlineResult::failure("noinline function attribute"); 2976 2977 // Don't inline call sites marked noinline. 2978 if (Call.isNoInline()) 2979 return InlineResult::failure("noinline call site attribute"); 2980 2981 return std::nullopt; 2982 } 2983 2984 InlineCost llvm::getInlineCost( 2985 CallBase &Call, Function *Callee, const InlineParams &Params, 2986 TargetTransformInfo &CalleeTTI, 2987 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2988 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2989 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2990 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2991 2992 auto UserDecision = 2993 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2994 2995 if (UserDecision) { 2996 if (UserDecision->isSuccess()) 2997 return llvm::InlineCost::getAlways("always inline attribute"); 2998 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2999 } 3000 3001 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 3002 << "... (caller:" << Call.getCaller()->getName() 3003 << ")\n"); 3004 3005 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 3006 GetAssumptionCache, GetBFI, PSI, ORE); 3007 InlineResult ShouldInline = CA.analyze(); 3008 3009 LLVM_DEBUG(CA.dump()); 3010 3011 // Always make cost benefit based decision explicit. 3012 // We use always/never here since threshold is not meaningful, 3013 // as it's not what drives cost-benefit analysis. 3014 if (CA.wasDecidedByCostBenefit()) { 3015 if (ShouldInline.isSuccess()) 3016 return InlineCost::getAlways("benefit over cost", 3017 CA.getCostBenefitPair()); 3018 else 3019 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 3020 } 3021 3022 if (CA.wasDecidedByCostThreshold()) 3023 return InlineCost::get(CA.getCost(), CA.getThreshold(), 3024 CA.getStaticBonusApplied()); 3025 3026 // No details on how the decision was made, simply return always or never. 3027 return ShouldInline.isSuccess() 3028 ? InlineCost::getAlways("empty function") 3029 : InlineCost::getNever(ShouldInline.getFailureReason()); 3030 } 3031 3032 InlineResult llvm::isInlineViable(Function &F) { 3033 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 3034 for (BasicBlock &BB : F) { 3035 // Disallow inlining of functions which contain indirect branches. 3036 if (isa<IndirectBrInst>(BB.getTerminator())) 3037 return InlineResult::failure("contains indirect branches"); 3038 3039 // Disallow inlining of blockaddresses which are used by non-callbr 3040 // instructions. 3041 if (BB.hasAddressTaken()) 3042 for (User *U : BlockAddress::get(&BB)->users()) 3043 if (!isa<CallBrInst>(*U)) 3044 return InlineResult::failure("blockaddress used outside of callbr"); 3045 3046 for (auto &II : BB) { 3047 CallBase *Call = dyn_cast<CallBase>(&II); 3048 if (!Call) 3049 continue; 3050 3051 // Disallow recursive calls. 3052 Function *Callee = Call->getCalledFunction(); 3053 if (&F == Callee) 3054 return InlineResult::failure("recursive call"); 3055 3056 // Disallow calls which expose returns-twice to a function not previously 3057 // attributed as such. 3058 if (!ReturnsTwice && isa<CallInst>(Call) && 3059 cast<CallInst>(Call)->canReturnTwice()) 3060 return InlineResult::failure("exposes returns-twice attribute"); 3061 3062 if (Callee) 3063 switch (Callee->getIntrinsicID()) { 3064 default: 3065 break; 3066 case llvm::Intrinsic::icall_branch_funnel: 3067 // Disallow inlining of @llvm.icall.branch.funnel because current 3068 // backend can't separate call targets from call arguments. 3069 return InlineResult::failure( 3070 "disallowed inlining of @llvm.icall.branch.funnel"); 3071 case llvm::Intrinsic::localescape: 3072 // Disallow inlining functions that call @llvm.localescape. Doing this 3073 // correctly would require major changes to the inliner. 3074 return InlineResult::failure( 3075 "disallowed inlining of @llvm.localescape"); 3076 case llvm::Intrinsic::vastart: 3077 // Disallow inlining of functions that initialize VarArgs with 3078 // va_start. 3079 return InlineResult::failure( 3080 "contains VarArgs initialized with va_start"); 3081 } 3082 } 3083 } 3084 3085 return InlineResult::success(); 3086 } 3087 3088 // APIs to create InlineParams based on command line flags and/or other 3089 // parameters. 3090 3091 InlineParams llvm::getInlineParams(int Threshold) { 3092 InlineParams Params; 3093 3094 // This field is the threshold to use for a callee by default. This is 3095 // derived from one or more of: 3096 // * optimization or size-optimization levels, 3097 // * a value passed to createFunctionInliningPass function, or 3098 // * the -inline-threshold flag. 3099 // If the -inline-threshold flag is explicitly specified, that is used 3100 // irrespective of anything else. 3101 if (InlineThreshold.getNumOccurrences() > 0) 3102 Params.DefaultThreshold = InlineThreshold; 3103 else 3104 Params.DefaultThreshold = Threshold; 3105 3106 // Set the HintThreshold knob from the -inlinehint-threshold. 3107 Params.HintThreshold = HintThreshold; 3108 3109 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3110 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3111 3112 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3113 // populate LocallyHotCallSiteThreshold. Later, we populate 3114 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3115 // we know that optimization level is O3 (in the getInlineParams variant that 3116 // takes the opt and size levels). 3117 // FIXME: Remove this check (and make the assignment unconditional) after 3118 // addressing size regression issues at O2. 3119 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3120 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3121 3122 // Set the ColdCallSiteThreshold knob from the 3123 // -inline-cold-callsite-threshold. 3124 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3125 3126 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3127 // -inlinehint-threshold commandline option is not explicitly given. If that 3128 // option is present, then its value applies even for callees with size and 3129 // minsize attributes. 3130 // If the -inline-threshold is not specified, set the ColdThreshold from the 3131 // -inlinecold-threshold even if it is not explicitly passed. If 3132 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3133 // explicitly specified to set the ColdThreshold knob 3134 if (InlineThreshold.getNumOccurrences() == 0) { 3135 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3136 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3137 Params.ColdThreshold = ColdThreshold; 3138 } else if (ColdThreshold.getNumOccurrences() > 0) { 3139 Params.ColdThreshold = ColdThreshold; 3140 } 3141 return Params; 3142 } 3143 3144 InlineParams llvm::getInlineParams() { 3145 return getInlineParams(DefaultThreshold); 3146 } 3147 3148 // Compute the default threshold for inlining based on the opt level and the 3149 // size opt level. 3150 static int computeThresholdFromOptLevels(unsigned OptLevel, 3151 unsigned SizeOptLevel) { 3152 if (OptLevel > 2) 3153 return InlineConstants::OptAggressiveThreshold; 3154 if (SizeOptLevel == 1) // -Os 3155 return InlineConstants::OptSizeThreshold; 3156 if (SizeOptLevel == 2) // -Oz 3157 return InlineConstants::OptMinSizeThreshold; 3158 return DefaultThreshold; 3159 } 3160 3161 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3162 auto Params = 3163 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3164 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3165 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3166 // when it is specified explicitly. 3167 if (OptLevel > 2) 3168 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3169 return Params; 3170 } 3171 3172 PreservedAnalyses 3173 InlineCostAnnotationPrinterPass::run(Function &F, 3174 FunctionAnalysisManager &FAM) { 3175 PrintInstructionComments = true; 3176 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3177 [&](Function &F) -> AssumptionCache & { 3178 return FAM.getResult<AssumptionAnalysis>(F); 3179 }; 3180 Module *M = F.getParent(); 3181 ProfileSummaryInfo PSI(*M); 3182 DataLayout DL(M); 3183 TargetTransformInfo TTI(DL); 3184 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3185 // In the current implementation, the type of InlineParams doesn't matter as 3186 // the pass serves only for verification of inliner's decisions. 3187 // We can add a flag which determines InlineParams for this run. Right now, 3188 // the default InlineParams are used. 3189 const InlineParams Params = llvm::getInlineParams(); 3190 for (BasicBlock &BB : F) { 3191 for (Instruction &I : BB) { 3192 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3193 Function *CalledFunction = CI->getCalledFunction(); 3194 if (!CalledFunction || CalledFunction->isDeclaration()) 3195 continue; 3196 OptimizationRemarkEmitter ORE(CalledFunction); 3197 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3198 GetAssumptionCache, nullptr, &PSI, &ORE); 3199 ICCA.analyze(); 3200 OS << " Analyzing call of " << CalledFunction->getName() 3201 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3202 ICCA.print(OS); 3203 OS << "\n"; 3204 } 3205 } 3206 } 3207 return PreservedAnalyses::all(); 3208 } 3209