1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements bookkeeping for "interesting" users of expressions 10 // computed from induction variables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/IVUsers.h" 15 #include "llvm/Analysis/AssumptionCache.h" 16 #include "llvm/Analysis/CodeMetrics.h" 17 #include "llvm/Analysis/LoopAnalysisManager.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/LoopPass.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "iv-users" 33 34 AnalysisKey IVUsersAnalysis::Key; 35 36 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, 37 LoopStandardAnalysisResults &AR) { 38 return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); 39 } 40 41 char IVUsersWrapperPass::ID = 0; 42 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users", 43 "Induction Variable Users", false, true) 44 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 45 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 47 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 48 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users", 49 false, true) 50 51 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } 52 53 /// isInteresting - Test whether the given expression is "interesting" when 54 /// used by the given expression, within the context of analyzing the 55 /// given loop. 56 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, 57 ScalarEvolution *SE, LoopInfo *LI) { 58 // An addrec is interesting if it's affine or if it has an interesting start. 59 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 60 // Keep things simple. Don't touch loop-variant strides unless they're 61 // only used outside the loop and we can simplify them. 62 if (AR->getLoop() == L) 63 return AR->isAffine() || 64 (!L->contains(I) && 65 SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); 66 // Otherwise recurse to see if the start value is interesting, and that 67 // the step value is not interesting, since we don't yet know how to 68 // do effective SCEV expansions for addrecs with interesting steps. 69 return isInteresting(AR->getStart(), I, L, SE, LI) && 70 !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); 71 } 72 73 // An add is interesting if exactly one of its operands is interesting. 74 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 75 bool AnyInterestingYet = false; 76 for (const auto *Op : Add->operands()) 77 if (isInteresting(Op, I, L, SE, LI)) { 78 if (AnyInterestingYet) 79 return false; 80 AnyInterestingYet = true; 81 } 82 return AnyInterestingYet; 83 } 84 85 // Nothing else is interesting here. 86 return false; 87 } 88 89 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression 90 /// and now we need to decide whether the user should use the preinc or post-inc 91 /// value. If this user should use the post-inc version of the IV, return true. 92 /// 93 /// Choosing wrong here can break dominance properties (if we choose to use the 94 /// post-inc value when we cannot) or it can end up adding extra live-ranges to 95 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we 96 /// should use the post-inc value). 97 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, 98 const Loop *L, DominatorTree *DT) { 99 // If the user is in the loop, use the preinc value. 100 if (L->contains(User)) 101 return false; 102 103 BasicBlock *LatchBlock = L->getLoopLatch(); 104 if (!LatchBlock) 105 return false; 106 107 // Ok, the user is outside of the loop. If it is dominated by the latch 108 // block, use the post-inc value. 109 if (DT->dominates(LatchBlock, User->getParent())) 110 return true; 111 112 // There is one case we have to be careful of: PHI nodes. These little guys 113 // can live in blocks that are not dominated by the latch block, but (since 114 // their uses occur in the predecessor block, not the block the PHI lives in) 115 // should still use the post-inc value. Check for this case now. 116 PHINode *PN = dyn_cast<PHINode>(User); 117 if (!PN || !Operand) 118 return false; // not a phi, not dominated by latch block. 119 120 // Look at all of the uses of Operand by the PHI node. If any use corresponds 121 // to a block that is not dominated by the latch block, give up and use the 122 // preincremented value. 123 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 124 if (PN->getIncomingValue(i) == Operand && 125 !DT->dominates(LatchBlock, PN->getIncomingBlock(i))) 126 return false; 127 128 // Okay, all uses of Operand by PN are in predecessor blocks that really are 129 // dominated by the latch block. Use the post-incremented value. 130 return true; 131 } 132 133 /// Inspect the specified instruction. If it is a reducible SCEV, recursively 134 /// add its users to the IVUsesByStride set and return true. Otherwise, return 135 /// false. 136 bool IVUsers::AddUsersIfInteresting(Instruction *I) { 137 const DataLayout &DL = I->getModule()->getDataLayout(); 138 139 // Add this IV user to the Processed set before returning false to ensure that 140 // all IV users are members of the set. See IVUsers::isIVUserOrOperand. 141 if (!Processed.insert(I).second) 142 return true; // Instruction already handled. 143 144 if (!SE->isSCEVable(I->getType())) 145 return false; // Void and FP expressions cannot be reduced. 146 147 // IVUsers is used by LSR which assumes that all SCEV expressions are safe to 148 // pass to SCEVExpander. Expressions are not safe to expand if they represent 149 // operations that are not safe to speculate, namely integer division. 150 if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I)) 151 return false; 152 153 // LSR is not APInt clean, do not touch integers bigger than 64-bits. 154 // Also avoid creating IVs of non-native types. For example, we don't want a 155 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. 156 uint64_t Width = SE->getTypeSizeInBits(I->getType()); 157 if (Width > 64 || !DL.isLegalInteger(Width)) 158 return false; 159 160 // Don't attempt to promote ephemeral values to indvars. They will be removed 161 // later anyway. 162 if (EphValues.count(I)) 163 return false; 164 165 // Get the symbolic expression for this instruction. 166 const SCEV *ISE = SE->getSCEV(I); 167 168 // If we've come to an uninteresting expression, stop the traversal and 169 // call this a user. 170 if (!isInteresting(ISE, I, L, SE, LI)) 171 return false; 172 173 SmallPtrSet<Instruction *, 4> UniqueUsers; 174 for (Use &U : I->uses()) { 175 Instruction *User = cast<Instruction>(U.getUser()); 176 if (!UniqueUsers.insert(User).second) 177 continue; 178 179 // Do not infinitely recurse on PHI nodes. 180 if (isa<PHINode>(User) && Processed.count(User)) 181 continue; 182 183 // Descend recursively, but not into PHI nodes outside the current loop. 184 // It's important to see the entire expression outside the loop to get 185 // choices that depend on addressing mode use right, although we won't 186 // consider references outside the loop in all cases. 187 // If User is already in Processed, we don't want to recurse into it again, 188 // but do want to record a second reference in the same instruction. 189 bool AddUserToIVUsers = false; 190 if (LI->getLoopFor(User->getParent()) != L) { 191 if (isa<PHINode>(User) || Processed.count(User) || 192 !AddUsersIfInteresting(User)) { 193 LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' 194 << " OF SCEV: " << *ISE << '\n'); 195 AddUserToIVUsers = true; 196 } 197 } else if (Processed.count(User) || !AddUsersIfInteresting(User)) { 198 LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n' 199 << " OF SCEV: " << *ISE << '\n'); 200 AddUserToIVUsers = true; 201 } 202 203 if (AddUserToIVUsers) { 204 // Okay, we found a user that we cannot reduce. 205 IVStrideUse &NewUse = AddUser(User, I); 206 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. 207 // The regular return value here is discarded; instead of recording 208 // it, we just recompute it when we need it. 209 const SCEV *OriginalISE = ISE; 210 211 auto NormalizePred = [&](const SCEVAddRecExpr *AR) { 212 auto *L = AR->getLoop(); 213 bool Result = IVUseShouldUsePostIncValue(User, I, L, DT); 214 if (Result) 215 NewUse.PostIncLoops.insert(L); 216 return Result; 217 }; 218 219 ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE); 220 221 // PostIncNormalization effectively simplifies the expression under 222 // pre-increment assumptions. Those assumptions (no wrapping) might not 223 // hold for the post-inc value. Catch such cases by making sure the 224 // transformation is invertible. 225 if (OriginalISE != ISE) { 226 const SCEV *DenormalizedISE = 227 denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE); 228 229 // If we normalized the expression, but denormalization doesn't give the 230 // original one, discard this user. 231 if (OriginalISE != DenormalizedISE) { 232 LLVM_DEBUG(dbgs() 233 << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " 234 << *ISE << '\n'); 235 IVUses.pop_back(); 236 return false; 237 } 238 } 239 LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs() 240 << " NORMALIZED TO: " << *ISE << '\n'); 241 } 242 } 243 return true; 244 } 245 246 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { 247 IVUses.push_back(new IVStrideUse(this, User, Operand)); 248 return IVUses.back(); 249 } 250 251 IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, 252 ScalarEvolution *SE) 253 : L(L), AC(AC), LI(LI), DT(DT), SE(SE) { 254 // Collect ephemeral values so that AddUsersIfInteresting skips them. 255 EphValues.clear(); 256 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 257 258 // Find all uses of induction variables in this loop, and categorize 259 // them by stride. Start by finding all of the PHI nodes in the header for 260 // this loop. If they are induction variables, inspect their uses. 261 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) 262 (void)AddUsersIfInteresting(&*I); 263 } 264 265 void IVUsers::print(raw_ostream &OS, const Module *M) const { 266 OS << "IV Users for loop "; 267 L->getHeader()->printAsOperand(OS, false); 268 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 269 OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); 270 } 271 OS << ":\n"; 272 273 for (const IVStrideUse &IVUse : IVUses) { 274 OS << " "; 275 IVUse.getOperandValToReplace()->printAsOperand(OS, false); 276 OS << " = " << *getReplacementExpr(IVUse); 277 for (const auto *PostIncLoop : IVUse.PostIncLoops) { 278 OS << " (post-inc with loop "; 279 PostIncLoop->getHeader()->printAsOperand(OS, false); 280 OS << ")"; 281 } 282 OS << " in "; 283 if (IVUse.getUser()) 284 IVUse.getUser()->print(OS); 285 else 286 OS << "Printing <null> User"; 287 OS << '\n'; 288 } 289 } 290 291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 292 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } 293 #endif 294 295 void IVUsers::releaseMemory() { 296 Processed.clear(); 297 IVUses.clear(); 298 } 299 300 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { 301 initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry()); 302 } 303 304 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 305 AU.addRequired<AssumptionCacheTracker>(); 306 AU.addRequired<LoopInfoWrapperPass>(); 307 AU.addRequired<DominatorTreeWrapperPass>(); 308 AU.addRequired<ScalarEvolutionWrapperPass>(); 309 AU.setPreservesAll(); 310 } 311 312 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { 313 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 314 *L->getHeader()->getParent()); 315 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 316 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 317 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 318 319 IU.reset(new IVUsers(L, AC, LI, DT, SE)); 320 return false; 321 } 322 323 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { 324 IU->print(OS, M); 325 } 326 327 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } 328 329 /// getReplacementExpr - Return a SCEV expression which computes the 330 /// value of the OperandValToReplace. 331 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { 332 return SE->getSCEV(IU.getOperandValToReplace()); 333 } 334 335 /// getExpr - Return the expression for the use. 336 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { 337 const SCEV *Replacement = getReplacementExpr(IU); 338 return normalizeForPostIncUse(Replacement, IU.getPostIncLoops(), *SE); 339 } 340 341 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { 342 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 343 if (AR->getLoop() == L) 344 return AR; 345 return findAddRecForLoop(AR->getStart(), L); 346 } 347 348 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 349 for (const auto *Op : Add->operands()) 350 if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L)) 351 return AR; 352 return nullptr; 353 } 354 355 return nullptr; 356 } 357 358 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { 359 const SCEV *Expr = getExpr(IU); 360 if (!Expr) 361 return nullptr; 362 if (const SCEVAddRecExpr *AR = findAddRecForLoop(Expr, L)) 363 return AR->getStepRecurrence(*SE); 364 return nullptr; 365 } 366 367 void IVStrideUse::transformToPostInc(const Loop *L) { 368 PostIncLoops.insert(L); 369 } 370 371 void IVStrideUse::deleted() { 372 // Remove this user from the list. 373 Parent->Processed.erase(this->getUser()); 374 Parent->IVUses.erase(this); 375 // this now dangles! 376 } 377