1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements bookkeeping for "interesting" users of expressions 10 // computed from induction variables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/IVUsers.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/LoopAnalysisManager.h" 19 #include "llvm/Analysis/LoopPass.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 using namespace llvm; 35 36 #define DEBUG_TYPE "iv-users" 37 38 AnalysisKey IVUsersAnalysis::Key; 39 40 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, 41 LoopStandardAnalysisResults &AR) { 42 return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); 43 } 44 45 char IVUsersWrapperPass::ID = 0; 46 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users", 47 "Induction Variable Users", false, true) 48 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 49 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 50 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 51 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 52 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users", 53 false, true) 54 55 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } 56 57 /// isInteresting - Test whether the given expression is "interesting" when 58 /// used by the given expression, within the context of analyzing the 59 /// given loop. 60 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, 61 ScalarEvolution *SE, LoopInfo *LI) { 62 // An addrec is interesting if it's affine or if it has an interesting start. 63 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 64 // Keep things simple. Don't touch loop-variant strides unless they're 65 // only used outside the loop and we can simplify them. 66 if (AR->getLoop() == L) 67 return AR->isAffine() || 68 (!L->contains(I) && 69 SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); 70 // Otherwise recurse to see if the start value is interesting, and that 71 // the step value is not interesting, since we don't yet know how to 72 // do effective SCEV expansions for addrecs with interesting steps. 73 return isInteresting(AR->getStart(), I, L, SE, LI) && 74 !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); 75 } 76 77 // An add is interesting if exactly one of its operands is interesting. 78 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 79 bool AnyInterestingYet = false; 80 for (const auto *Op : Add->operands()) 81 if (isInteresting(Op, I, L, SE, LI)) { 82 if (AnyInterestingYet) 83 return false; 84 AnyInterestingYet = true; 85 } 86 return AnyInterestingYet; 87 } 88 89 // Nothing else is interesting here. 90 return false; 91 } 92 93 /// Return true if all loop headers that dominate this block are in simplified 94 /// form. 95 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT, 96 const LoopInfo *LI, 97 SmallPtrSetImpl<Loop*> &SimpleLoopNests) { 98 Loop *NearestLoop = nullptr; 99 for (DomTreeNode *Rung = DT->getNode(BB); 100 Rung; Rung = Rung->getIDom()) { 101 BasicBlock *DomBB = Rung->getBlock(); 102 Loop *DomLoop = LI->getLoopFor(DomBB); 103 if (DomLoop && DomLoop->getHeader() == DomBB) { 104 // If we have already checked this loop nest, stop checking. 105 if (SimpleLoopNests.count(DomLoop)) 106 break; 107 // If the domtree walk reaches a loop with no preheader, return false. 108 if (!DomLoop->isLoopSimplifyForm()) 109 return false; 110 // If we have not already checked this loop nest, remember the loop 111 // header nearest to BB. The nearest loop may not contain BB. 112 if (!NearestLoop) 113 NearestLoop = DomLoop; 114 } 115 } 116 if (NearestLoop) 117 SimpleLoopNests.insert(NearestLoop); 118 return true; 119 } 120 121 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression 122 /// and now we need to decide whether the user should use the preinc or post-inc 123 /// value. If this user should use the post-inc version of the IV, return true. 124 /// 125 /// Choosing wrong here can break dominance properties (if we choose to use the 126 /// post-inc value when we cannot) or it can end up adding extra live-ranges to 127 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we 128 /// should use the post-inc value). 129 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, 130 const Loop *L, DominatorTree *DT) { 131 // If the user is in the loop, use the preinc value. 132 if (L->contains(User)) 133 return false; 134 135 BasicBlock *LatchBlock = L->getLoopLatch(); 136 if (!LatchBlock) 137 return false; 138 139 // Ok, the user is outside of the loop. If it is dominated by the latch 140 // block, use the post-inc value. 141 if (DT->dominates(LatchBlock, User->getParent())) 142 return true; 143 144 // There is one case we have to be careful of: PHI nodes. These little guys 145 // can live in blocks that are not dominated by the latch block, but (since 146 // their uses occur in the predecessor block, not the block the PHI lives in) 147 // should still use the post-inc value. Check for this case now. 148 PHINode *PN = dyn_cast<PHINode>(User); 149 if (!PN || !Operand) 150 return false; // not a phi, not dominated by latch block. 151 152 // Look at all of the uses of Operand by the PHI node. If any use corresponds 153 // to a block that is not dominated by the latch block, give up and use the 154 // preincremented value. 155 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 156 if (PN->getIncomingValue(i) == Operand && 157 !DT->dominates(LatchBlock, PN->getIncomingBlock(i))) 158 return false; 159 160 // Okay, all uses of Operand by PN are in predecessor blocks that really are 161 // dominated by the latch block. Use the post-incremented value. 162 return true; 163 } 164 165 /// AddUsersImpl - Inspect the specified instruction. If it is a 166 /// reducible SCEV, recursively add its users to the IVUsesByStride set and 167 /// return true. Otherwise, return false. 168 bool IVUsers::AddUsersImpl(Instruction *I, 169 SmallPtrSetImpl<Loop*> &SimpleLoopNests) { 170 const DataLayout &DL = I->getModule()->getDataLayout(); 171 172 // Add this IV user to the Processed set before returning false to ensure that 173 // all IV users are members of the set. See IVUsers::isIVUserOrOperand. 174 if (!Processed.insert(I).second) 175 return true; // Instruction already handled. 176 177 if (!SE->isSCEVable(I->getType())) 178 return false; // Void and FP expressions cannot be reduced. 179 180 // IVUsers is used by LSR which assumes that all SCEV expressions are safe to 181 // pass to SCEVExpander. Expressions are not safe to expand if they represent 182 // operations that are not safe to speculate, namely integer division. 183 if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I)) 184 return false; 185 186 // LSR is not APInt clean, do not touch integers bigger than 64-bits. 187 // Also avoid creating IVs of non-native types. For example, we don't want a 188 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. 189 uint64_t Width = SE->getTypeSizeInBits(I->getType()); 190 if (Width > 64 || !DL.isLegalInteger(Width)) 191 return false; 192 193 // Don't attempt to promote ephemeral values to indvars. They will be removed 194 // later anyway. 195 if (EphValues.count(I)) 196 return false; 197 198 // Get the symbolic expression for this instruction. 199 const SCEV *ISE = SE->getSCEV(I); 200 201 // If we've come to an uninteresting expression, stop the traversal and 202 // call this a user. 203 if (!isInteresting(ISE, I, L, SE, LI)) 204 return false; 205 206 SmallPtrSet<Instruction *, 4> UniqueUsers; 207 for (Use &U : I->uses()) { 208 Instruction *User = cast<Instruction>(U.getUser()); 209 if (!UniqueUsers.insert(User).second) 210 continue; 211 212 // Do not infinitely recurse on PHI nodes. 213 if (isa<PHINode>(User) && Processed.count(User)) 214 continue; 215 216 // Only consider IVUsers that are dominated by simplified loop 217 // headers. Otherwise, SCEVExpander will crash. 218 BasicBlock *UseBB = User->getParent(); 219 // A phi's use is live out of its predecessor block. 220 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 221 unsigned OperandNo = U.getOperandNo(); 222 unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo); 223 UseBB = PHI->getIncomingBlock(ValNo); 224 } 225 if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests)) 226 return false; 227 228 // Descend recursively, but not into PHI nodes outside the current loop. 229 // It's important to see the entire expression outside the loop to get 230 // choices that depend on addressing mode use right, although we won't 231 // consider references outside the loop in all cases. 232 // If User is already in Processed, we don't want to recurse into it again, 233 // but do want to record a second reference in the same instruction. 234 bool AddUserToIVUsers = false; 235 if (LI->getLoopFor(User->getParent()) != L) { 236 if (isa<PHINode>(User) || Processed.count(User) || 237 !AddUsersImpl(User, SimpleLoopNests)) { 238 LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' 239 << " OF SCEV: " << *ISE << '\n'); 240 AddUserToIVUsers = true; 241 } 242 } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { 243 LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n' 244 << " OF SCEV: " << *ISE << '\n'); 245 AddUserToIVUsers = true; 246 } 247 248 if (AddUserToIVUsers) { 249 // Okay, we found a user that we cannot reduce. 250 IVStrideUse &NewUse = AddUser(User, I); 251 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. 252 // The regular return value here is discarded; instead of recording 253 // it, we just recompute it when we need it. 254 const SCEV *OriginalISE = ISE; 255 256 auto NormalizePred = [&](const SCEVAddRecExpr *AR) { 257 auto *L = AR->getLoop(); 258 bool Result = IVUseShouldUsePostIncValue(User, I, L, DT); 259 if (Result) 260 NewUse.PostIncLoops.insert(L); 261 return Result; 262 }; 263 264 ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE); 265 266 // PostIncNormalization effectively simplifies the expression under 267 // pre-increment assumptions. Those assumptions (no wrapping) might not 268 // hold for the post-inc value. Catch such cases by making sure the 269 // transformation is invertible. 270 if (OriginalISE != ISE) { 271 const SCEV *DenormalizedISE = 272 denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE); 273 274 // If we normalized the expression, but denormalization doesn't give the 275 // original one, discard this user. 276 if (OriginalISE != DenormalizedISE) { 277 LLVM_DEBUG(dbgs() 278 << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " 279 << *ISE << '\n'); 280 IVUses.pop_back(); 281 return false; 282 } 283 } 284 LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs() 285 << " NORMALIZED TO: " << *ISE << '\n'); 286 } 287 } 288 return true; 289 } 290 291 bool IVUsers::AddUsersIfInteresting(Instruction *I) { 292 // SCEVExpander can only handle users that are dominated by simplified loop 293 // entries. Keep track of all loops that are only dominated by other simple 294 // loops so we don't traverse the domtree for each user. 295 SmallPtrSet<Loop*,16> SimpleLoopNests; 296 297 return AddUsersImpl(I, SimpleLoopNests); 298 } 299 300 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { 301 IVUses.push_back(new IVStrideUse(this, User, Operand)); 302 return IVUses.back(); 303 } 304 305 IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, 306 ScalarEvolution *SE) 307 : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() { 308 // Collect ephemeral values so that AddUsersIfInteresting skips them. 309 EphValues.clear(); 310 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 311 312 // Find all uses of induction variables in this loop, and categorize 313 // them by stride. Start by finding all of the PHI nodes in the header for 314 // this loop. If they are induction variables, inspect their uses. 315 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) 316 (void)AddUsersIfInteresting(&*I); 317 } 318 319 void IVUsers::print(raw_ostream &OS, const Module *M) const { 320 OS << "IV Users for loop "; 321 L->getHeader()->printAsOperand(OS, false); 322 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 323 OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); 324 } 325 OS << ":\n"; 326 327 for (const IVStrideUse &IVUse : IVUses) { 328 OS << " "; 329 IVUse.getOperandValToReplace()->printAsOperand(OS, false); 330 OS << " = " << *getReplacementExpr(IVUse); 331 for (auto PostIncLoop : IVUse.PostIncLoops) { 332 OS << " (post-inc with loop "; 333 PostIncLoop->getHeader()->printAsOperand(OS, false); 334 OS << ")"; 335 } 336 OS << " in "; 337 if (IVUse.getUser()) 338 IVUse.getUser()->print(OS); 339 else 340 OS << "Printing <null> User"; 341 OS << '\n'; 342 } 343 } 344 345 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 346 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } 347 #endif 348 349 void IVUsers::releaseMemory() { 350 Processed.clear(); 351 IVUses.clear(); 352 } 353 354 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { 355 initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry()); 356 } 357 358 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 359 AU.addRequired<AssumptionCacheTracker>(); 360 AU.addRequired<LoopInfoWrapperPass>(); 361 AU.addRequired<DominatorTreeWrapperPass>(); 362 AU.addRequired<ScalarEvolutionWrapperPass>(); 363 AU.setPreservesAll(); 364 } 365 366 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { 367 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 368 *L->getHeader()->getParent()); 369 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 370 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 371 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 372 373 IU.reset(new IVUsers(L, AC, LI, DT, SE)); 374 return false; 375 } 376 377 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { 378 IU->print(OS, M); 379 } 380 381 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } 382 383 /// getReplacementExpr - Return a SCEV expression which computes the 384 /// value of the OperandValToReplace. 385 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { 386 return SE->getSCEV(IU.getOperandValToReplace()); 387 } 388 389 /// getExpr - Return the expression for the use. 390 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { 391 return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(), 392 *SE); 393 } 394 395 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { 396 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 397 if (AR->getLoop() == L) 398 return AR; 399 return findAddRecForLoop(AR->getStart(), L); 400 } 401 402 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 403 for (const auto *Op : Add->operands()) 404 if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L)) 405 return AR; 406 return nullptr; 407 } 408 409 return nullptr; 410 } 411 412 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { 413 if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) 414 return AR->getStepRecurrence(*SE); 415 return nullptr; 416 } 417 418 void IVStrideUse::transformToPostInc(const Loop *L) { 419 PostIncLoops.insert(L); 420 } 421 422 void IVStrideUse::deleted() { 423 // Remove this user from the list. 424 Parent->Processed.erase(this->getUser()); 425 Parent->IVUses.erase(this); 426 // this now dangles! 427 } 428