xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/IVUsers.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements bookkeeping for "interesting" users of expressions
10 // computed from induction variables.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/IVUsers.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "iv-users"
36 
37 AnalysisKey IVUsersAnalysis::Key;
38 
39 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
40                              LoopStandardAnalysisResults &AR) {
41   return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
42 }
43 
44 char IVUsersWrapperPass::ID = 0;
45 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
46                       "Induction Variable Users", false, true)
47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
48 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
49 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
50 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
51 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
52                     false, true)
53 
54 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
55 
56 /// isInteresting - Test whether the given expression is "interesting" when
57 /// used by the given expression, within the context of analyzing the
58 /// given loop.
59 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
60                           ScalarEvolution *SE, LoopInfo *LI) {
61   // An addrec is interesting if it's affine or if it has an interesting start.
62   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
63     // Keep things simple. Don't touch loop-variant strides unless they're
64     // only used outside the loop and we can simplify them.
65     if (AR->getLoop() == L)
66       return AR->isAffine() ||
67              (!L->contains(I) &&
68               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
69     // Otherwise recurse to see if the start value is interesting, and that
70     // the step value is not interesting, since we don't yet know how to
71     // do effective SCEV expansions for addrecs with interesting steps.
72     return isInteresting(AR->getStart(), I, L, SE, LI) &&
73           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
74   }
75 
76   // An add is interesting if exactly one of its operands is interesting.
77   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
78     bool AnyInterestingYet = false;
79     for (const auto *Op : Add->operands())
80       if (isInteresting(Op, I, L, SE, LI)) {
81         if (AnyInterestingYet)
82           return false;
83         AnyInterestingYet = true;
84       }
85     return AnyInterestingYet;
86   }
87 
88   // Nothing else is interesting here.
89   return false;
90 }
91 
92 /// Return true if all loop headers that dominate this block are in simplified
93 /// form.
94 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
95                                  const LoopInfo *LI,
96                                  SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
97   Loop *NearestLoop = nullptr;
98   for (DomTreeNode *Rung = DT->getNode(BB);
99        Rung; Rung = Rung->getIDom()) {
100     BasicBlock *DomBB = Rung->getBlock();
101     Loop *DomLoop = LI->getLoopFor(DomBB);
102     if (DomLoop && DomLoop->getHeader() == DomBB) {
103       // If the domtree walk reaches a loop with no preheader, return false.
104       if (!DomLoop->isLoopSimplifyForm())
105         return false;
106       // If we have already checked this loop nest, stop checking.
107       if (SimpleLoopNests.count(DomLoop))
108         break;
109       // If we have not already checked this loop nest, remember the loop
110       // header nearest to BB. The nearest loop may not contain BB.
111       if (!NearestLoop)
112         NearestLoop = DomLoop;
113     }
114   }
115   if (NearestLoop)
116     SimpleLoopNests.insert(NearestLoop);
117   return true;
118 }
119 
120 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
121 /// and now we need to decide whether the user should use the preinc or post-inc
122 /// value.  If this user should use the post-inc version of the IV, return true.
123 ///
124 /// Choosing wrong here can break dominance properties (if we choose to use the
125 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
126 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
127 /// should use the post-inc value).
128 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
129                                        const Loop *L, DominatorTree *DT) {
130   // If the user is in the loop, use the preinc value.
131   if (L->contains(User))
132     return false;
133 
134   BasicBlock *LatchBlock = L->getLoopLatch();
135   if (!LatchBlock)
136     return false;
137 
138   // Ok, the user is outside of the loop.  If it is dominated by the latch
139   // block, use the post-inc value.
140   if (DT->dominates(LatchBlock, User->getParent()))
141     return true;
142 
143   // There is one case we have to be careful of: PHI nodes.  These little guys
144   // can live in blocks that are not dominated by the latch block, but (since
145   // their uses occur in the predecessor block, not the block the PHI lives in)
146   // should still use the post-inc value.  Check for this case now.
147   PHINode *PN = dyn_cast<PHINode>(User);
148   if (!PN || !Operand)
149     return false; // not a phi, not dominated by latch block.
150 
151   // Look at all of the uses of Operand by the PHI node.  If any use corresponds
152   // to a block that is not dominated by the latch block, give up and use the
153   // preincremented value.
154   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
155     if (PN->getIncomingValue(i) == Operand &&
156         !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
157       return false;
158 
159   // Okay, all uses of Operand by PN are in predecessor blocks that really are
160   // dominated by the latch block.  Use the post-incremented value.
161   return true;
162 }
163 
164 /// AddUsersImpl - Inspect the specified instruction.  If it is a
165 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
166 /// return true.  Otherwise, return false.
167 bool IVUsers::AddUsersImpl(Instruction *I,
168                            SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
169   const DataLayout &DL = I->getModule()->getDataLayout();
170 
171   // Add this IV user to the Processed set before returning false to ensure that
172   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
173   if (!Processed.insert(I).second)
174     return true;    // Instruction already handled.
175 
176   if (!SE->isSCEVable(I->getType()))
177     return false;   // Void and FP expressions cannot be reduced.
178 
179   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
180   // pass to SCEVExpander. Expressions are not safe to expand if they represent
181   // operations that are not safe to speculate, namely integer division.
182   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
183     return false;
184 
185   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
186   // Also avoid creating IVs of non-native types. For example, we don't want a
187   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
188   uint64_t Width = SE->getTypeSizeInBits(I->getType());
189   if (Width > 64 || !DL.isLegalInteger(Width))
190     return false;
191 
192   // Don't attempt to promote ephemeral values to indvars. They will be removed
193   // later anyway.
194   if (EphValues.count(I))
195     return false;
196 
197   // Get the symbolic expression for this instruction.
198   const SCEV *ISE = SE->getSCEV(I);
199 
200   // If we've come to an uninteresting expression, stop the traversal and
201   // call this a user.
202   if (!isInteresting(ISE, I, L, SE, LI))
203     return false;
204 
205   SmallPtrSet<Instruction *, 4> UniqueUsers;
206   for (Use &U : I->uses()) {
207     Instruction *User = cast<Instruction>(U.getUser());
208     if (!UniqueUsers.insert(User).second)
209       continue;
210 
211     // Do not infinitely recurse on PHI nodes.
212     if (isa<PHINode>(User) && Processed.count(User))
213       continue;
214 
215     // Only consider IVUsers that are dominated by simplified loop
216     // headers. Otherwise, SCEVExpander will crash.
217     BasicBlock *UseBB = User->getParent();
218     // A phi's use is live out of its predecessor block.
219     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
220       unsigned OperandNo = U.getOperandNo();
221       unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
222       UseBB = PHI->getIncomingBlock(ValNo);
223     }
224     if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
225       return false;
226 
227     // Descend recursively, but not into PHI nodes outside the current loop.
228     // It's important to see the entire expression outside the loop to get
229     // choices that depend on addressing mode use right, although we won't
230     // consider references outside the loop in all cases.
231     // If User is already in Processed, we don't want to recurse into it again,
232     // but do want to record a second reference in the same instruction.
233     bool AddUserToIVUsers = false;
234     if (LI->getLoopFor(User->getParent()) != L) {
235       if (isa<PHINode>(User) || Processed.count(User) ||
236           !AddUsersImpl(User, SimpleLoopNests)) {
237         LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
238                           << "   OF SCEV: " << *ISE << '\n');
239         AddUserToIVUsers = true;
240       }
241     } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
242       LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
243                         << "   OF SCEV: " << *ISE << '\n');
244       AddUserToIVUsers = true;
245     }
246 
247     if (AddUserToIVUsers) {
248       // Okay, we found a user that we cannot reduce.
249       IVStrideUse &NewUse = AddUser(User, I);
250       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
251       // The regular return value here is discarded; instead of recording
252       // it, we just recompute it when we need it.
253       const SCEV *OriginalISE = ISE;
254 
255       auto NormalizePred = [&](const SCEVAddRecExpr *AR) {
256         auto *L = AR->getLoop();
257         bool Result = IVUseShouldUsePostIncValue(User, I, L, DT);
258         if (Result)
259           NewUse.PostIncLoops.insert(L);
260         return Result;
261       };
262 
263       ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE);
264 
265       // PostIncNormalization effectively simplifies the expression under
266       // pre-increment assumptions. Those assumptions (no wrapping) might not
267       // hold for the post-inc value. Catch such cases by making sure the
268       // transformation is invertible.
269       if (OriginalISE != ISE) {
270         const SCEV *DenormalizedISE =
271             denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE);
272 
273         // If we normalized the expression, but denormalization doesn't give the
274         // original one, discard this user.
275         if (OriginalISE != DenormalizedISE) {
276           LLVM_DEBUG(dbgs()
277                      << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
278                      << *ISE << '\n');
279           IVUses.pop_back();
280           return false;
281         }
282       }
283       LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs()
284                  << "   NORMALIZED TO: " << *ISE << '\n');
285     }
286   }
287   return true;
288 }
289 
290 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
291   // SCEVExpander can only handle users that are dominated by simplified loop
292   // entries. Keep track of all loops that are only dominated by other simple
293   // loops so we don't traverse the domtree for each user.
294   SmallPtrSet<Loop*,16> SimpleLoopNests;
295 
296   return AddUsersImpl(I, SimpleLoopNests);
297 }
298 
299 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
300   IVUses.push_back(new IVStrideUse(this, User, Operand));
301   return IVUses.back();
302 }
303 
304 IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
305                  ScalarEvolution *SE)
306     : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() {
307   // Collect ephemeral values so that AddUsersIfInteresting skips them.
308   EphValues.clear();
309   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
310 
311   // Find all uses of induction variables in this loop, and categorize
312   // them by stride.  Start by finding all of the PHI nodes in the header for
313   // this loop.  If they are induction variables, inspect their uses.
314   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
315     (void)AddUsersIfInteresting(&*I);
316 }
317 
318 void IVUsers::print(raw_ostream &OS, const Module *M) const {
319   OS << "IV Users for loop ";
320   L->getHeader()->printAsOperand(OS, false);
321   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
322     OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
323   }
324   OS << ":\n";
325 
326   for (const IVStrideUse &IVUse : IVUses) {
327     OS << "  ";
328     IVUse.getOperandValToReplace()->printAsOperand(OS, false);
329     OS << " = " << *getReplacementExpr(IVUse);
330     for (auto PostIncLoop : IVUse.PostIncLoops) {
331       OS << " (post-inc with loop ";
332       PostIncLoop->getHeader()->printAsOperand(OS, false);
333       OS << ")";
334     }
335     OS << " in  ";
336     if (IVUse.getUser())
337       IVUse.getUser()->print(OS);
338     else
339       OS << "Printing <null> User";
340     OS << '\n';
341   }
342 }
343 
344 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
345 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
346 #endif
347 
348 void IVUsers::releaseMemory() {
349   Processed.clear();
350   IVUses.clear();
351 }
352 
353 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
354   initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
355 }
356 
357 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
358   AU.addRequired<AssumptionCacheTracker>();
359   AU.addRequired<LoopInfoWrapperPass>();
360   AU.addRequired<DominatorTreeWrapperPass>();
361   AU.addRequired<ScalarEvolutionWrapperPass>();
362   AU.setPreservesAll();
363 }
364 
365 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
366   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
367       *L->getHeader()->getParent());
368   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
369   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
370   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
371 
372   IU.reset(new IVUsers(L, AC, LI, DT, SE));
373   return false;
374 }
375 
376 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
377   IU->print(OS, M);
378 }
379 
380 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
381 
382 /// getReplacementExpr - Return a SCEV expression which computes the
383 /// value of the OperandValToReplace.
384 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
385   return SE->getSCEV(IU.getOperandValToReplace());
386 }
387 
388 /// getExpr - Return the expression for the use.
389 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
390   return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(),
391                                 *SE);
392 }
393 
394 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
395   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
396     if (AR->getLoop() == L)
397       return AR;
398     return findAddRecForLoop(AR->getStart(), L);
399   }
400 
401   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
402     for (const auto *Op : Add->operands())
403       if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L))
404         return AR;
405     return nullptr;
406   }
407 
408   return nullptr;
409 }
410 
411 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
412   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
413     return AR->getStepRecurrence(*SE);
414   return nullptr;
415 }
416 
417 void IVStrideUse::transformToPostInc(const Loop *L) {
418   PostIncLoops.insert(L);
419 }
420 
421 void IVStrideUse::deleted() {
422   // Remove this user from the list.
423   Parent->Processed.erase(this->getUser());
424   Parent->IVUses.erase(this);
425   // this now dangles!
426 }
427