1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements bookkeeping for "interesting" users of expressions 10 // computed from induction variables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/IVUsers.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/LoopAnalysisManager.h" 19 #include "llvm/Analysis/LoopPass.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "iv-users" 36 37 AnalysisKey IVUsersAnalysis::Key; 38 39 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, 40 LoopStandardAnalysisResults &AR) { 41 return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); 42 } 43 44 char IVUsersWrapperPass::ID = 0; 45 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users", 46 "Induction Variable Users", false, true) 47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 48 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 49 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 50 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 51 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users", 52 false, true) 53 54 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } 55 56 /// isInteresting - Test whether the given expression is "interesting" when 57 /// used by the given expression, within the context of analyzing the 58 /// given loop. 59 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, 60 ScalarEvolution *SE, LoopInfo *LI) { 61 // An addrec is interesting if it's affine or if it has an interesting start. 62 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 63 // Keep things simple. Don't touch loop-variant strides unless they're 64 // only used outside the loop and we can simplify them. 65 if (AR->getLoop() == L) 66 return AR->isAffine() || 67 (!L->contains(I) && 68 SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); 69 // Otherwise recurse to see if the start value is interesting, and that 70 // the step value is not interesting, since we don't yet know how to 71 // do effective SCEV expansions for addrecs with interesting steps. 72 return isInteresting(AR->getStart(), I, L, SE, LI) && 73 !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); 74 } 75 76 // An add is interesting if exactly one of its operands is interesting. 77 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 78 bool AnyInterestingYet = false; 79 for (const auto *Op : Add->operands()) 80 if (isInteresting(Op, I, L, SE, LI)) { 81 if (AnyInterestingYet) 82 return false; 83 AnyInterestingYet = true; 84 } 85 return AnyInterestingYet; 86 } 87 88 // Nothing else is interesting here. 89 return false; 90 } 91 92 /// Return true if all loop headers that dominate this block are in simplified 93 /// form. 94 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT, 95 const LoopInfo *LI, 96 SmallPtrSetImpl<Loop*> &SimpleLoopNests) { 97 Loop *NearestLoop = nullptr; 98 for (DomTreeNode *Rung = DT->getNode(BB); 99 Rung; Rung = Rung->getIDom()) { 100 BasicBlock *DomBB = Rung->getBlock(); 101 Loop *DomLoop = LI->getLoopFor(DomBB); 102 if (DomLoop && DomLoop->getHeader() == DomBB) { 103 // If the domtree walk reaches a loop with no preheader, return false. 104 if (!DomLoop->isLoopSimplifyForm()) 105 return false; 106 // If we have already checked this loop nest, stop checking. 107 if (SimpleLoopNests.count(DomLoop)) 108 break; 109 // If we have not already checked this loop nest, remember the loop 110 // header nearest to BB. The nearest loop may not contain BB. 111 if (!NearestLoop) 112 NearestLoop = DomLoop; 113 } 114 } 115 if (NearestLoop) 116 SimpleLoopNests.insert(NearestLoop); 117 return true; 118 } 119 120 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression 121 /// and now we need to decide whether the user should use the preinc or post-inc 122 /// value. If this user should use the post-inc version of the IV, return true. 123 /// 124 /// Choosing wrong here can break dominance properties (if we choose to use the 125 /// post-inc value when we cannot) or it can end up adding extra live-ranges to 126 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we 127 /// should use the post-inc value). 128 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, 129 const Loop *L, DominatorTree *DT) { 130 // If the user is in the loop, use the preinc value. 131 if (L->contains(User)) 132 return false; 133 134 BasicBlock *LatchBlock = L->getLoopLatch(); 135 if (!LatchBlock) 136 return false; 137 138 // Ok, the user is outside of the loop. If it is dominated by the latch 139 // block, use the post-inc value. 140 if (DT->dominates(LatchBlock, User->getParent())) 141 return true; 142 143 // There is one case we have to be careful of: PHI nodes. These little guys 144 // can live in blocks that are not dominated by the latch block, but (since 145 // their uses occur in the predecessor block, not the block the PHI lives in) 146 // should still use the post-inc value. Check for this case now. 147 PHINode *PN = dyn_cast<PHINode>(User); 148 if (!PN || !Operand) 149 return false; // not a phi, not dominated by latch block. 150 151 // Look at all of the uses of Operand by the PHI node. If any use corresponds 152 // to a block that is not dominated by the latch block, give up and use the 153 // preincremented value. 154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 155 if (PN->getIncomingValue(i) == Operand && 156 !DT->dominates(LatchBlock, PN->getIncomingBlock(i))) 157 return false; 158 159 // Okay, all uses of Operand by PN are in predecessor blocks that really are 160 // dominated by the latch block. Use the post-incremented value. 161 return true; 162 } 163 164 /// AddUsersImpl - Inspect the specified instruction. If it is a 165 /// reducible SCEV, recursively add its users to the IVUsesByStride set and 166 /// return true. Otherwise, return false. 167 bool IVUsers::AddUsersImpl(Instruction *I, 168 SmallPtrSetImpl<Loop*> &SimpleLoopNests) { 169 const DataLayout &DL = I->getModule()->getDataLayout(); 170 171 // Add this IV user to the Processed set before returning false to ensure that 172 // all IV users are members of the set. See IVUsers::isIVUserOrOperand. 173 if (!Processed.insert(I).second) 174 return true; // Instruction already handled. 175 176 if (!SE->isSCEVable(I->getType())) 177 return false; // Void and FP expressions cannot be reduced. 178 179 // IVUsers is used by LSR which assumes that all SCEV expressions are safe to 180 // pass to SCEVExpander. Expressions are not safe to expand if they represent 181 // operations that are not safe to speculate, namely integer division. 182 if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I)) 183 return false; 184 185 // LSR is not APInt clean, do not touch integers bigger than 64-bits. 186 // Also avoid creating IVs of non-native types. For example, we don't want a 187 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. 188 uint64_t Width = SE->getTypeSizeInBits(I->getType()); 189 if (Width > 64 || !DL.isLegalInteger(Width)) 190 return false; 191 192 // Don't attempt to promote ephemeral values to indvars. They will be removed 193 // later anyway. 194 if (EphValues.count(I)) 195 return false; 196 197 // Get the symbolic expression for this instruction. 198 const SCEV *ISE = SE->getSCEV(I); 199 200 // If we've come to an uninteresting expression, stop the traversal and 201 // call this a user. 202 if (!isInteresting(ISE, I, L, SE, LI)) 203 return false; 204 205 SmallPtrSet<Instruction *, 4> UniqueUsers; 206 for (Use &U : I->uses()) { 207 Instruction *User = cast<Instruction>(U.getUser()); 208 if (!UniqueUsers.insert(User).second) 209 continue; 210 211 // Do not infinitely recurse on PHI nodes. 212 if (isa<PHINode>(User) && Processed.count(User)) 213 continue; 214 215 // Only consider IVUsers that are dominated by simplified loop 216 // headers. Otherwise, SCEVExpander will crash. 217 BasicBlock *UseBB = User->getParent(); 218 // A phi's use is live out of its predecessor block. 219 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 220 unsigned OperandNo = U.getOperandNo(); 221 unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo); 222 UseBB = PHI->getIncomingBlock(ValNo); 223 } 224 if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests)) 225 return false; 226 227 // Descend recursively, but not into PHI nodes outside the current loop. 228 // It's important to see the entire expression outside the loop to get 229 // choices that depend on addressing mode use right, although we won't 230 // consider references outside the loop in all cases. 231 // If User is already in Processed, we don't want to recurse into it again, 232 // but do want to record a second reference in the same instruction. 233 bool AddUserToIVUsers = false; 234 if (LI->getLoopFor(User->getParent()) != L) { 235 if (isa<PHINode>(User) || Processed.count(User) || 236 !AddUsersImpl(User, SimpleLoopNests)) { 237 LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' 238 << " OF SCEV: " << *ISE << '\n'); 239 AddUserToIVUsers = true; 240 } 241 } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { 242 LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n' 243 << " OF SCEV: " << *ISE << '\n'); 244 AddUserToIVUsers = true; 245 } 246 247 if (AddUserToIVUsers) { 248 // Okay, we found a user that we cannot reduce. 249 IVStrideUse &NewUse = AddUser(User, I); 250 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. 251 // The regular return value here is discarded; instead of recording 252 // it, we just recompute it when we need it. 253 const SCEV *OriginalISE = ISE; 254 255 auto NormalizePred = [&](const SCEVAddRecExpr *AR) { 256 auto *L = AR->getLoop(); 257 bool Result = IVUseShouldUsePostIncValue(User, I, L, DT); 258 if (Result) 259 NewUse.PostIncLoops.insert(L); 260 return Result; 261 }; 262 263 ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE); 264 265 // PostIncNormalization effectively simplifies the expression under 266 // pre-increment assumptions. Those assumptions (no wrapping) might not 267 // hold for the post-inc value. Catch such cases by making sure the 268 // transformation is invertible. 269 if (OriginalISE != ISE) { 270 const SCEV *DenormalizedISE = 271 denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE); 272 273 // If we normalized the expression, but denormalization doesn't give the 274 // original one, discard this user. 275 if (OriginalISE != DenormalizedISE) { 276 LLVM_DEBUG(dbgs() 277 << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " 278 << *ISE << '\n'); 279 IVUses.pop_back(); 280 return false; 281 } 282 } 283 LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs() 284 << " NORMALIZED TO: " << *ISE << '\n'); 285 } 286 } 287 return true; 288 } 289 290 bool IVUsers::AddUsersIfInteresting(Instruction *I) { 291 // SCEVExpander can only handle users that are dominated by simplified loop 292 // entries. Keep track of all loops that are only dominated by other simple 293 // loops so we don't traverse the domtree for each user. 294 SmallPtrSet<Loop*,16> SimpleLoopNests; 295 296 return AddUsersImpl(I, SimpleLoopNests); 297 } 298 299 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { 300 IVUses.push_back(new IVStrideUse(this, User, Operand)); 301 return IVUses.back(); 302 } 303 304 IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, 305 ScalarEvolution *SE) 306 : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() { 307 // Collect ephemeral values so that AddUsersIfInteresting skips them. 308 EphValues.clear(); 309 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 310 311 // Find all uses of induction variables in this loop, and categorize 312 // them by stride. Start by finding all of the PHI nodes in the header for 313 // this loop. If they are induction variables, inspect their uses. 314 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) 315 (void)AddUsersIfInteresting(&*I); 316 } 317 318 void IVUsers::print(raw_ostream &OS, const Module *M) const { 319 OS << "IV Users for loop "; 320 L->getHeader()->printAsOperand(OS, false); 321 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 322 OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); 323 } 324 OS << ":\n"; 325 326 for (const IVStrideUse &IVUse : IVUses) { 327 OS << " "; 328 IVUse.getOperandValToReplace()->printAsOperand(OS, false); 329 OS << " = " << *getReplacementExpr(IVUse); 330 for (auto PostIncLoop : IVUse.PostIncLoops) { 331 OS << " (post-inc with loop "; 332 PostIncLoop->getHeader()->printAsOperand(OS, false); 333 OS << ")"; 334 } 335 OS << " in "; 336 if (IVUse.getUser()) 337 IVUse.getUser()->print(OS); 338 else 339 OS << "Printing <null> User"; 340 OS << '\n'; 341 } 342 } 343 344 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 345 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } 346 #endif 347 348 void IVUsers::releaseMemory() { 349 Processed.clear(); 350 IVUses.clear(); 351 } 352 353 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { 354 initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry()); 355 } 356 357 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 358 AU.addRequired<AssumptionCacheTracker>(); 359 AU.addRequired<LoopInfoWrapperPass>(); 360 AU.addRequired<DominatorTreeWrapperPass>(); 361 AU.addRequired<ScalarEvolutionWrapperPass>(); 362 AU.setPreservesAll(); 363 } 364 365 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { 366 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 367 *L->getHeader()->getParent()); 368 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 369 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 370 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 371 372 IU.reset(new IVUsers(L, AC, LI, DT, SE)); 373 return false; 374 } 375 376 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { 377 IU->print(OS, M); 378 } 379 380 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } 381 382 /// getReplacementExpr - Return a SCEV expression which computes the 383 /// value of the OperandValToReplace. 384 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { 385 return SE->getSCEV(IU.getOperandValToReplace()); 386 } 387 388 /// getExpr - Return the expression for the use. 389 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { 390 return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(), 391 *SE); 392 } 393 394 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { 395 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 396 if (AR->getLoop() == L) 397 return AR; 398 return findAddRecForLoop(AR->getStart(), L); 399 } 400 401 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 402 for (const auto *Op : Add->operands()) 403 if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L)) 404 return AR; 405 return nullptr; 406 } 407 408 return nullptr; 409 } 410 411 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { 412 if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) 413 return AR->getStepRecurrence(*SE); 414 return nullptr; 415 } 416 417 void IVStrideUse::transformToPostInc(const Loop *L) { 418 PostIncLoops.insert(L); 419 } 420 421 void IVStrideUse::deleted() { 422 // Remove this user from the list. 423 Parent->Processed.erase(this->getUser()); 424 Parent->IVUses.erase(this); 425 // this now dangles! 426 } 427