xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/IVUsers.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements bookkeeping for "interesting" users of expressions
10 // computed from induction variables.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/IVUsers.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "iv-users"
37 
38 AnalysisKey IVUsersAnalysis::Key;
39 
40 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
41                              LoopStandardAnalysisResults &AR) {
42   return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
43 }
44 
45 char IVUsersWrapperPass::ID = 0;
46 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
47                       "Induction Variable Users", false, true)
48 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
49 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
50 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
51 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
52 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
53                     false, true)
54 
55 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
56 
57 /// isInteresting - Test whether the given expression is "interesting" when
58 /// used by the given expression, within the context of analyzing the
59 /// given loop.
60 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
61                           ScalarEvolution *SE, LoopInfo *LI) {
62   // An addrec is interesting if it's affine or if it has an interesting start.
63   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
64     // Keep things simple. Don't touch loop-variant strides unless they're
65     // only used outside the loop and we can simplify them.
66     if (AR->getLoop() == L)
67       return AR->isAffine() ||
68              (!L->contains(I) &&
69               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
70     // Otherwise recurse to see if the start value is interesting, and that
71     // the step value is not interesting, since we don't yet know how to
72     // do effective SCEV expansions for addrecs with interesting steps.
73     return isInteresting(AR->getStart(), I, L, SE, LI) &&
74           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
75   }
76 
77   // An add is interesting if exactly one of its operands is interesting.
78   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
79     bool AnyInterestingYet = false;
80     for (const auto *Op : Add->operands())
81       if (isInteresting(Op, I, L, SE, LI)) {
82         if (AnyInterestingYet)
83           return false;
84         AnyInterestingYet = true;
85       }
86     return AnyInterestingYet;
87   }
88 
89   // Nothing else is interesting here.
90   return false;
91 }
92 
93 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
94 /// and now we need to decide whether the user should use the preinc or post-inc
95 /// value.  If this user should use the post-inc version of the IV, return true.
96 ///
97 /// Choosing wrong here can break dominance properties (if we choose to use the
98 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
99 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
100 /// should use the post-inc value).
101 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
102                                        const Loop *L, DominatorTree *DT) {
103   // If the user is in the loop, use the preinc value.
104   if (L->contains(User))
105     return false;
106 
107   BasicBlock *LatchBlock = L->getLoopLatch();
108   if (!LatchBlock)
109     return false;
110 
111   // Ok, the user is outside of the loop.  If it is dominated by the latch
112   // block, use the post-inc value.
113   if (DT->dominates(LatchBlock, User->getParent()))
114     return true;
115 
116   // There is one case we have to be careful of: PHI nodes.  These little guys
117   // can live in blocks that are not dominated by the latch block, but (since
118   // their uses occur in the predecessor block, not the block the PHI lives in)
119   // should still use the post-inc value.  Check for this case now.
120   PHINode *PN = dyn_cast<PHINode>(User);
121   if (!PN || !Operand)
122     return false; // not a phi, not dominated by latch block.
123 
124   // Look at all of the uses of Operand by the PHI node.  If any use corresponds
125   // to a block that is not dominated by the latch block, give up and use the
126   // preincremented value.
127   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
128     if (PN->getIncomingValue(i) == Operand &&
129         !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
130       return false;
131 
132   // Okay, all uses of Operand by PN are in predecessor blocks that really are
133   // dominated by the latch block.  Use the post-incremented value.
134   return true;
135 }
136 
137 /// Inspect the specified instruction.  If it is a reducible SCEV, recursively
138 /// add its users to the IVUsesByStride set and return true.  Otherwise, return
139 /// false.
140 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
141   const DataLayout &DL = I->getModule()->getDataLayout();
142 
143   // Add this IV user to the Processed set before returning false to ensure that
144   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
145   if (!Processed.insert(I).second)
146     return true;    // Instruction already handled.
147 
148   if (!SE->isSCEVable(I->getType()))
149     return false;   // Void and FP expressions cannot be reduced.
150 
151   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
152   // pass to SCEVExpander. Expressions are not safe to expand if they represent
153   // operations that are not safe to speculate, namely integer division.
154   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
155     return false;
156 
157   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
158   // Also avoid creating IVs of non-native types. For example, we don't want a
159   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
160   uint64_t Width = SE->getTypeSizeInBits(I->getType());
161   if (Width > 64 || !DL.isLegalInteger(Width))
162     return false;
163 
164   // Don't attempt to promote ephemeral values to indvars. They will be removed
165   // later anyway.
166   if (EphValues.count(I))
167     return false;
168 
169   // Get the symbolic expression for this instruction.
170   const SCEV *ISE = SE->getSCEV(I);
171 
172   // If we've come to an uninteresting expression, stop the traversal and
173   // call this a user.
174   if (!isInteresting(ISE, I, L, SE, LI))
175     return false;
176 
177   SmallPtrSet<Instruction *, 4> UniqueUsers;
178   for (Use &U : I->uses()) {
179     Instruction *User = cast<Instruction>(U.getUser());
180     if (!UniqueUsers.insert(User).second)
181       continue;
182 
183     // Do not infinitely recurse on PHI nodes.
184     if (isa<PHINode>(User) && Processed.count(User))
185       continue;
186 
187     // Descend recursively, but not into PHI nodes outside the current loop.
188     // It's important to see the entire expression outside the loop to get
189     // choices that depend on addressing mode use right, although we won't
190     // consider references outside the loop in all cases.
191     // If User is already in Processed, we don't want to recurse into it again,
192     // but do want to record a second reference in the same instruction.
193     bool AddUserToIVUsers = false;
194     if (LI->getLoopFor(User->getParent()) != L) {
195       if (isa<PHINode>(User) || Processed.count(User) ||
196           !AddUsersIfInteresting(User)) {
197         LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
198                           << "   OF SCEV: " << *ISE << '\n');
199         AddUserToIVUsers = true;
200       }
201     } else if (Processed.count(User) || !AddUsersIfInteresting(User)) {
202       LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
203                         << "   OF SCEV: " << *ISE << '\n');
204       AddUserToIVUsers = true;
205     }
206 
207     if (AddUserToIVUsers) {
208       // Okay, we found a user that we cannot reduce.
209       IVStrideUse &NewUse = AddUser(User, I);
210       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
211       // The regular return value here is discarded; instead of recording
212       // it, we just recompute it when we need it.
213       const SCEV *OriginalISE = ISE;
214 
215       auto NormalizePred = [&](const SCEVAddRecExpr *AR) {
216         auto *L = AR->getLoop();
217         bool Result = IVUseShouldUsePostIncValue(User, I, L, DT);
218         if (Result)
219           NewUse.PostIncLoops.insert(L);
220         return Result;
221       };
222 
223       ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE);
224 
225       // PostIncNormalization effectively simplifies the expression under
226       // pre-increment assumptions. Those assumptions (no wrapping) might not
227       // hold for the post-inc value. Catch such cases by making sure the
228       // transformation is invertible.
229       if (OriginalISE != ISE) {
230         const SCEV *DenormalizedISE =
231             denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE);
232 
233         // If we normalized the expression, but denormalization doesn't give the
234         // original one, discard this user.
235         if (OriginalISE != DenormalizedISE) {
236           LLVM_DEBUG(dbgs()
237                      << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
238                      << *ISE << '\n');
239           IVUses.pop_back();
240           return false;
241         }
242       }
243       LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs()
244                  << "   NORMALIZED TO: " << *ISE << '\n');
245     }
246   }
247   return true;
248 }
249 
250 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
251   IVUses.push_back(new IVStrideUse(this, User, Operand));
252   return IVUses.back();
253 }
254 
255 IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
256                  ScalarEvolution *SE)
257     : L(L), AC(AC), LI(LI), DT(DT), SE(SE) {
258   // Collect ephemeral values so that AddUsersIfInteresting skips them.
259   EphValues.clear();
260   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
261 
262   // Find all uses of induction variables in this loop, and categorize
263   // them by stride.  Start by finding all of the PHI nodes in the header for
264   // this loop.  If they are induction variables, inspect their uses.
265   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
266     (void)AddUsersIfInteresting(&*I);
267 }
268 
269 void IVUsers::print(raw_ostream &OS, const Module *M) const {
270   OS << "IV Users for loop ";
271   L->getHeader()->printAsOperand(OS, false);
272   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
273     OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
274   }
275   OS << ":\n";
276 
277   for (const IVStrideUse &IVUse : IVUses) {
278     OS << "  ";
279     IVUse.getOperandValToReplace()->printAsOperand(OS, false);
280     OS << " = " << *getReplacementExpr(IVUse);
281     for (auto PostIncLoop : IVUse.PostIncLoops) {
282       OS << " (post-inc with loop ";
283       PostIncLoop->getHeader()->printAsOperand(OS, false);
284       OS << ")";
285     }
286     OS << " in  ";
287     if (IVUse.getUser())
288       IVUse.getUser()->print(OS);
289     else
290       OS << "Printing <null> User";
291     OS << '\n';
292   }
293 }
294 
295 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
296 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
297 #endif
298 
299 void IVUsers::releaseMemory() {
300   Processed.clear();
301   IVUses.clear();
302 }
303 
304 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
305   initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
306 }
307 
308 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
309   AU.addRequired<AssumptionCacheTracker>();
310   AU.addRequired<LoopInfoWrapperPass>();
311   AU.addRequired<DominatorTreeWrapperPass>();
312   AU.addRequired<ScalarEvolutionWrapperPass>();
313   AU.setPreservesAll();
314 }
315 
316 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
317   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
318       *L->getHeader()->getParent());
319   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
320   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
321   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
322 
323   IU.reset(new IVUsers(L, AC, LI, DT, SE));
324   return false;
325 }
326 
327 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
328   IU->print(OS, M);
329 }
330 
331 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
332 
333 /// getReplacementExpr - Return a SCEV expression which computes the
334 /// value of the OperandValToReplace.
335 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
336   return SE->getSCEV(IU.getOperandValToReplace());
337 }
338 
339 /// getExpr - Return the expression for the use.
340 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
341   return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(),
342                                 *SE);
343 }
344 
345 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
346   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
347     if (AR->getLoop() == L)
348       return AR;
349     return findAddRecForLoop(AR->getStart(), L);
350   }
351 
352   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
353     for (const auto *Op : Add->operands())
354       if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L))
355         return AR;
356     return nullptr;
357   }
358 
359   return nullptr;
360 }
361 
362 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
363   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
364     return AR->getStepRecurrence(*SE);
365   return nullptr;
366 }
367 
368 void IVStrideUse::transformToPostInc(const Loop *L) {
369   PostIncLoops.insert(L);
370 }
371 
372 void IVStrideUse::deleted() {
373   // Remove this user from the list.
374   Parent->Processed.erase(this->getUser());
375   Parent->IVUses.erase(this);
376   // this now dangles!
377 }
378