xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 #include <set>
38 
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "iv-descriptors"
43 
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45                                         SmallPtrSetImpl<Instruction *> &Set) {
46   for (const Use &Use : I->operands())
47     if (!Set.count(dyn_cast<Instruction>(Use)))
48       return false;
49   return true;
50 }
51 
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
53   switch (Kind) {
54   default:
55     break;
56   case RecurKind::Add:
57   case RecurKind::Mul:
58   case RecurKind::Or:
59   case RecurKind::And:
60   case RecurKind::Xor:
61   case RecurKind::SMax:
62   case RecurKind::SMin:
63   case RecurKind::UMax:
64   case RecurKind::UMin:
65   case RecurKind::SelectICmp:
66   case RecurKind::SelectFCmp:
67     return true;
68   }
69   return false;
70 }
71 
72 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
73   return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
74 }
75 
76 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) {
77   switch (Kind) {
78   default:
79     break;
80   case RecurKind::Add:
81   case RecurKind::Mul:
82   case RecurKind::FAdd:
83   case RecurKind::FMul:
84   case RecurKind::FMulAdd:
85     return true;
86   }
87   return false;
88 }
89 
90 /// Determines if Phi may have been type-promoted. If Phi has a single user
91 /// that ANDs the Phi with a type mask, return the user. RT is updated to
92 /// account for the narrower bit width represented by the mask, and the AND
93 /// instruction is added to CI.
94 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
95                                    SmallPtrSetImpl<Instruction *> &Visited,
96                                    SmallPtrSetImpl<Instruction *> &CI) {
97   if (!Phi->hasOneUse())
98     return Phi;
99 
100   const APInt *M = nullptr;
101   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
102 
103   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
104   // with a new integer type of the corresponding bit width.
105   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
106     int32_t Bits = (*M + 1).exactLogBase2();
107     if (Bits > 0) {
108       RT = IntegerType::get(Phi->getContext(), Bits);
109       Visited.insert(Phi);
110       CI.insert(J);
111       return J;
112     }
113   }
114   return Phi;
115 }
116 
117 /// Compute the minimal bit width needed to represent a reduction whose exit
118 /// instruction is given by Exit.
119 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
120                                                      DemandedBits *DB,
121                                                      AssumptionCache *AC,
122                                                      DominatorTree *DT) {
123   bool IsSigned = false;
124   const DataLayout &DL = Exit->getModule()->getDataLayout();
125   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
126 
127   if (DB) {
128     // Use the demanded bits analysis to determine the bits that are live out
129     // of the exit instruction, rounding up to the nearest power of two. If the
130     // use of demanded bits results in a smaller bit width, we know the value
131     // must be positive (i.e., IsSigned = false), because if this were not the
132     // case, the sign bit would have been demanded.
133     auto Mask = DB->getDemandedBits(Exit);
134     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
135   }
136 
137   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
138     // If demanded bits wasn't able to limit the bit width, we can try to use
139     // value tracking instead. This can be the case, for example, if the value
140     // may be negative.
141     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
142     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
143     MaxBitWidth = NumTypeBits - NumSignBits;
144     KnownBits Bits = computeKnownBits(Exit, DL);
145     if (!Bits.isNonNegative()) {
146       // If the value is not known to be non-negative, we set IsSigned to true,
147       // meaning that we will use sext instructions instead of zext
148       // instructions to restore the original type.
149       IsSigned = true;
150       // Make sure at at least one sign bit is included in the result, so it
151       // will get properly sign-extended.
152       ++MaxBitWidth;
153     }
154   }
155   if (!isPowerOf2_64(MaxBitWidth))
156     MaxBitWidth = NextPowerOf2(MaxBitWidth);
157 
158   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
159                         IsSigned);
160 }
161 
162 /// Collect cast instructions that can be ignored in the vectorizer's cost
163 /// model, given a reduction exit value and the minimal type in which the
164 // reduction can be represented. Also search casts to the recurrence type
165 // to find the minimum width used by the recurrence.
166 static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
167                               Type *RecurrenceType,
168                               SmallPtrSetImpl<Instruction *> &Casts,
169                               unsigned &MinWidthCastToRecurTy) {
170 
171   SmallVector<Instruction *, 8> Worklist;
172   SmallPtrSet<Instruction *, 8> Visited;
173   Worklist.push_back(Exit);
174   MinWidthCastToRecurTy = -1U;
175 
176   while (!Worklist.empty()) {
177     Instruction *Val = Worklist.pop_back_val();
178     Visited.insert(Val);
179     if (auto *Cast = dyn_cast<CastInst>(Val)) {
180       if (Cast->getSrcTy() == RecurrenceType) {
181         // If the source type of a cast instruction is equal to the recurrence
182         // type, it will be eliminated, and should be ignored in the vectorizer
183         // cost model.
184         Casts.insert(Cast);
185         continue;
186       }
187       if (Cast->getDestTy() == RecurrenceType) {
188         // The minimum width used by the recurrence is found by checking for
189         // casts on its operands. The minimum width is used by the vectorizer
190         // when finding the widest type for in-loop reductions without any
191         // loads/stores.
192         MinWidthCastToRecurTy = std::min<unsigned>(
193             MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
194         continue;
195       }
196     }
197     // Add all operands to the work list if they are loop-varying values that
198     // we haven't yet visited.
199     for (Value *O : cast<User>(Val)->operands())
200       if (auto *I = dyn_cast<Instruction>(O))
201         if (TheLoop->contains(I) && !Visited.count(I))
202           Worklist.push_back(I);
203   }
204 }
205 
206 // Check if a given Phi node can be recognized as an ordered reduction for
207 // vectorizing floating point operations without unsafe math.
208 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
209                                   Instruction *Exit, PHINode *Phi) {
210   // Currently only FAdd and FMulAdd are supported.
211   if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
212     return false;
213 
214   if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
215     return false;
216 
217   if (Kind == RecurKind::FMulAdd &&
218       !RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
219     return false;
220 
221   // Ensure the exit instruction has only one user other than the reduction PHI
222   if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
223     return false;
224 
225   // The only pattern accepted is the one in which the reduction PHI
226   // is used as one of the operands of the exit instruction
227   auto *Op0 = Exit->getOperand(0);
228   auto *Op1 = Exit->getOperand(1);
229   if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
230     return false;
231   if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
232     return false;
233 
234   LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
235                     << ", ExitInst: " << *Exit << "\n");
236 
237   return true;
238 }
239 
240 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind,
241                                            Loop *TheLoop, FastMathFlags FuncFMF,
242                                            RecurrenceDescriptor &RedDes,
243                                            DemandedBits *DB,
244                                            AssumptionCache *AC,
245                                            DominatorTree *DT) {
246   if (Phi->getNumIncomingValues() != 2)
247     return false;
248 
249   // Reduction variables are only found in the loop header block.
250   if (Phi->getParent() != TheLoop->getHeader())
251     return false;
252 
253   // Obtain the reduction start value from the value that comes from the loop
254   // preheader.
255   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
256 
257   // ExitInstruction is the single value which is used outside the loop.
258   // We only allow for a single reduction value to be used outside the loop.
259   // This includes users of the reduction, variables (which form a cycle
260   // which ends in the phi node).
261   Instruction *ExitInstruction = nullptr;
262   // Indicates that we found a reduction operation in our scan.
263   bool FoundReduxOp = false;
264 
265   // We start with the PHI node and scan for all of the users of this
266   // instruction. All users must be instructions that can be used as reduction
267   // variables (such as ADD). We must have a single out-of-block user. The cycle
268   // must include the original PHI.
269   bool FoundStartPHI = false;
270 
271   // To recognize min/max patterns formed by a icmp select sequence, we store
272   // the number of instruction we saw from the recognized min/max pattern,
273   //  to make sure we only see exactly the two instructions.
274   unsigned NumCmpSelectPatternInst = 0;
275   InstDesc ReduxDesc(false, nullptr);
276 
277   // Data used for determining if the recurrence has been type-promoted.
278   Type *RecurrenceType = Phi->getType();
279   SmallPtrSet<Instruction *, 4> CastInsts;
280   unsigned MinWidthCastToRecurrenceType;
281   Instruction *Start = Phi;
282   bool IsSigned = false;
283 
284   SmallPtrSet<Instruction *, 8> VisitedInsts;
285   SmallVector<Instruction *, 8> Worklist;
286 
287   // Return early if the recurrence kind does not match the type of Phi. If the
288   // recurrence kind is arithmetic, we attempt to look through AND operations
289   // resulting from the type promotion performed by InstCombine.  Vector
290   // operations are not limited to the legal integer widths, so we may be able
291   // to evaluate the reduction in the narrower width.
292   if (RecurrenceType->isFloatingPointTy()) {
293     if (!isFloatingPointRecurrenceKind(Kind))
294       return false;
295   } else if (RecurrenceType->isIntegerTy()) {
296     if (!isIntegerRecurrenceKind(Kind))
297       return false;
298     if (!isMinMaxRecurrenceKind(Kind))
299       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
300   } else {
301     // Pointer min/max may exist, but it is not supported as a reduction op.
302     return false;
303   }
304 
305   Worklist.push_back(Start);
306   VisitedInsts.insert(Start);
307 
308   // Start with all flags set because we will intersect this with the reduction
309   // flags from all the reduction operations.
310   FastMathFlags FMF = FastMathFlags::getFast();
311 
312   // The first instruction in the use-def chain of the Phi node that requires
313   // exact floating point operations.
314   Instruction *ExactFPMathInst = nullptr;
315 
316   // A value in the reduction can be used:
317   //  - By the reduction:
318   //      - Reduction operation:
319   //        - One use of reduction value (safe).
320   //        - Multiple use of reduction value (not safe).
321   //      - PHI:
322   //        - All uses of the PHI must be the reduction (safe).
323   //        - Otherwise, not safe.
324   //  - By instructions outside of the loop (safe).
325   //      * One value may have several outside users, but all outside
326   //        uses must be of the same value.
327   //  - By an instruction that is not part of the reduction (not safe).
328   //    This is either:
329   //      * An instruction type other than PHI or the reduction operation.
330   //      * A PHI in the header other than the initial PHI.
331   while (!Worklist.empty()) {
332     Instruction *Cur = Worklist.pop_back_val();
333 
334     // No Users.
335     // If the instruction has no users then this is a broken chain and can't be
336     // a reduction variable.
337     if (Cur->use_empty())
338       return false;
339 
340     bool IsAPhi = isa<PHINode>(Cur);
341 
342     // A header PHI use other than the original PHI.
343     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
344       return false;
345 
346     // Reductions of instructions such as Div, and Sub is only possible if the
347     // LHS is the reduction variable.
348     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
349         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
350         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
351       return false;
352 
353     // Any reduction instruction must be of one of the allowed kinds. We ignore
354     // the starting value (the Phi or an AND instruction if the Phi has been
355     // type-promoted).
356     if (Cur != Start) {
357       ReduxDesc =
358           isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
359       ExactFPMathInst = ExactFPMathInst == nullptr
360                             ? ReduxDesc.getExactFPMathInst()
361                             : ExactFPMathInst;
362       if (!ReduxDesc.isRecurrence())
363         return false;
364       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
365       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
366         FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
367         if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
368           // Accept FMF on either fcmp or select of a min/max idiom.
369           // TODO: This is a hack to work-around the fact that FMF may not be
370           //       assigned/propagated correctly. If that problem is fixed or we
371           //       standardize on fmin/fmax via intrinsics, this can be removed.
372           if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
373             CurFMF |= FCmp->getFastMathFlags();
374         }
375         FMF &= CurFMF;
376       }
377       // Update this reduction kind if we matched a new instruction.
378       // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
379       //       state accurate while processing the worklist?
380       if (ReduxDesc.getRecKind() != RecurKind::None)
381         Kind = ReduxDesc.getRecKind();
382     }
383 
384     bool IsASelect = isa<SelectInst>(Cur);
385 
386     // A conditional reduction operation must only have 2 or less uses in
387     // VisitedInsts.
388     if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
389         hasMultipleUsesOf(Cur, VisitedInsts, 2))
390       return false;
391 
392     // A reduction operation must only have one use of the reduction value.
393     if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
394         !isSelectCmpRecurrenceKind(Kind) &&
395         hasMultipleUsesOf(Cur, VisitedInsts, 1))
396       return false;
397 
398     // All inputs to a PHI node must be a reduction value.
399     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
400       return false;
401 
402     if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectICmp) &&
403         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
404       ++NumCmpSelectPatternInst;
405     if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectFCmp) &&
406         (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
407       ++NumCmpSelectPatternInst;
408 
409     // Check  whether we found a reduction operator.
410     FoundReduxOp |= !IsAPhi && Cur != Start;
411 
412     // Process users of current instruction. Push non-PHI nodes after PHI nodes
413     // onto the stack. This way we are going to have seen all inputs to PHI
414     // nodes once we get to them.
415     SmallVector<Instruction *, 8> NonPHIs;
416     SmallVector<Instruction *, 8> PHIs;
417     for (User *U : Cur->users()) {
418       Instruction *UI = cast<Instruction>(U);
419 
420       // If the user is a call to llvm.fmuladd then the instruction can only be
421       // the final operand.
422       if (isFMulAddIntrinsic(UI))
423         if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
424           return false;
425 
426       // Check if we found the exit user.
427       BasicBlock *Parent = UI->getParent();
428       if (!TheLoop->contains(Parent)) {
429         // If we already know this instruction is used externally, move on to
430         // the next user.
431         if (ExitInstruction == Cur)
432           continue;
433 
434         // Exit if you find multiple values used outside or if the header phi
435         // node is being used. In this case the user uses the value of the
436         // previous iteration, in which case we would loose "VF-1" iterations of
437         // the reduction operation if we vectorize.
438         if (ExitInstruction != nullptr || Cur == Phi)
439           return false;
440 
441         // The instruction used by an outside user must be the last instruction
442         // before we feed back to the reduction phi. Otherwise, we loose VF-1
443         // operations on the value.
444         if (!is_contained(Phi->operands(), Cur))
445           return false;
446 
447         ExitInstruction = Cur;
448         continue;
449       }
450 
451       // Process instructions only once (termination). Each reduction cycle
452       // value must only be used once, except by phi nodes and min/max
453       // reductions which are represented as a cmp followed by a select.
454       InstDesc IgnoredVal(false, nullptr);
455       if (VisitedInsts.insert(UI).second) {
456         if (isa<PHINode>(UI))
457           PHIs.push_back(UI);
458         else
459           NonPHIs.push_back(UI);
460       } else if (!isa<PHINode>(UI) &&
461                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
462                    !isa<SelectInst>(UI)) ||
463                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
464                    !isSelectCmpPattern(TheLoop, Phi, UI, IgnoredVal)
465                         .isRecurrence() &&
466                    !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
467         return false;
468 
469       // Remember that we completed the cycle.
470       if (UI == Phi)
471         FoundStartPHI = true;
472     }
473     Worklist.append(PHIs.begin(), PHIs.end());
474     Worklist.append(NonPHIs.begin(), NonPHIs.end());
475   }
476 
477   // This means we have seen one but not the other instruction of the
478   // pattern or more than just a select and cmp. Zero implies that we saw a
479   // llvm.min/max instrinsic, which is always OK.
480   if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
481       NumCmpSelectPatternInst != 0)
482     return false;
483 
484   if (isSelectCmpRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
485     return false;
486 
487   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
488     return false;
489 
490   const bool IsOrdered =
491       checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
492 
493   if (Start != Phi) {
494     // If the starting value is not the same as the phi node, we speculatively
495     // looked through an 'and' instruction when evaluating a potential
496     // arithmetic reduction to determine if it may have been type-promoted.
497     //
498     // We now compute the minimal bit width that is required to represent the
499     // reduction. If this is the same width that was indicated by the 'and', we
500     // can represent the reduction in the smaller type. The 'and' instruction
501     // will be eliminated since it will essentially be a cast instruction that
502     // can be ignore in the cost model. If we compute a different type than we
503     // did when evaluating the 'and', the 'and' will not be eliminated, and we
504     // will end up with different kinds of operations in the recurrence
505     // expression (e.g., IntegerAND, IntegerADD). We give up if this is
506     // the case.
507     //
508     // The vectorizer relies on InstCombine to perform the actual
509     // type-shrinking. It does this by inserting instructions to truncate the
510     // exit value of the reduction to the width indicated by RecurrenceType and
511     // then extend this value back to the original width. If IsSigned is false,
512     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
513     // used.
514     //
515     // TODO: We should not rely on InstCombine to rewrite the reduction in the
516     //       smaller type. We should just generate a correctly typed expression
517     //       to begin with.
518     Type *ComputedType;
519     std::tie(ComputedType, IsSigned) =
520         computeRecurrenceType(ExitInstruction, DB, AC, DT);
521     if (ComputedType != RecurrenceType)
522       return false;
523   }
524 
525   // Collect cast instructions and the minimum width used by the recurrence.
526   // If the starting value is not the same as the phi node and the computed
527   // recurrence type is equal to the recurrence type, the recurrence expression
528   // will be represented in a narrower or wider type. If there are any cast
529   // instructions that will be unnecessary, collect them in CastsFromRecurTy.
530   // Note that the 'and' instruction was already included in this list.
531   //
532   // TODO: A better way to represent this may be to tag in some way all the
533   //       instructions that are a part of the reduction. The vectorizer cost
534   //       model could then apply the recurrence type to these instructions,
535   //       without needing a white list of instructions to ignore.
536   //       This may also be useful for the inloop reductions, if it can be
537   //       kept simple enough.
538   collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
539                     MinWidthCastToRecurrenceType);
540 
541   // We found a reduction var if we have reached the original phi node and we
542   // only have a single instruction with out-of-loop users.
543 
544   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
545   // is saved as part of the RecurrenceDescriptor.
546 
547   // Save the description of this reduction variable.
548   RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, ExactFPMathInst,
549                           RecurrenceType, IsSigned, IsOrdered, CastInsts,
550                           MinWidthCastToRecurrenceType);
551   RedDes = RD;
552 
553   return true;
554 }
555 
556 // We are looking for loops that do something like this:
557 //   int r = 0;
558 //   for (int i = 0; i < n; i++) {
559 //     if (src[i] > 3)
560 //       r = 3;
561 //   }
562 // where the reduction value (r) only has two states, in this example 0 or 3.
563 // The generated LLVM IR for this type of loop will be like this:
564 //   for.body:
565 //     %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
566 //     ...
567 //     %cmp = icmp sgt i32 %5, 3
568 //     %spec.select = select i1 %cmp, i32 3, i32 %r
569 //     ...
570 // In general we can support vectorization of loops where 'r' flips between
571 // any two non-constants, provided they are loop invariant. The only thing
572 // we actually care about at the end of the loop is whether or not any lane
573 // in the selected vector is different from the start value. The final
574 // across-vector reduction after the loop simply involves choosing the start
575 // value if nothing changed (0 in the example above) or the other selected
576 // value (3 in the example above).
577 RecurrenceDescriptor::InstDesc
578 RecurrenceDescriptor::isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
579                                          Instruction *I, InstDesc &Prev) {
580   // We must handle the select(cmp(),x,y) as a single instruction. Advance to
581   // the select.
582   CmpInst::Predicate Pred;
583   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
584     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
585       return InstDesc(Select, Prev.getRecKind());
586   }
587 
588   // Only match select with single use cmp condition.
589   if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
590                          m_Value())))
591     return InstDesc(false, I);
592 
593   SelectInst *SI = cast<SelectInst>(I);
594   Value *NonPhi = nullptr;
595 
596   if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
597     NonPhi = SI->getFalseValue();
598   else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
599     NonPhi = SI->getTrueValue();
600   else
601     return InstDesc(false, I);
602 
603   // We are looking for selects of the form:
604   //   select(cmp(), phi, loop_invariant) or
605   //   select(cmp(), loop_invariant, phi)
606   if (!Loop->isLoopInvariant(NonPhi))
607     return InstDesc(false, I);
608 
609   return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::SelectICmp
610                                                      : RecurKind::SelectFCmp);
611 }
612 
613 RecurrenceDescriptor::InstDesc
614 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
615                                       const InstDesc &Prev) {
616   assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
617          "Expected a cmp or select or call instruction");
618   if (!isMinMaxRecurrenceKind(Kind))
619     return InstDesc(false, I);
620 
621   // We must handle the select(cmp()) as a single instruction. Advance to the
622   // select.
623   CmpInst::Predicate Pred;
624   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
625     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
626       return InstDesc(Select, Prev.getRecKind());
627   }
628 
629   // Only match select with single use cmp condition, or a min/max intrinsic.
630   if (!isa<IntrinsicInst>(I) &&
631       !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
632                          m_Value())))
633     return InstDesc(false, I);
634 
635   // Look for a min/max pattern.
636   if (match(I, m_UMin(m_Value(), m_Value())))
637     return InstDesc(Kind == RecurKind::UMin, I);
638   if (match(I, m_UMax(m_Value(), m_Value())))
639     return InstDesc(Kind == RecurKind::UMax, I);
640   if (match(I, m_SMax(m_Value(), m_Value())))
641     return InstDesc(Kind == RecurKind::SMax, I);
642   if (match(I, m_SMin(m_Value(), m_Value())))
643     return InstDesc(Kind == RecurKind::SMin, I);
644   if (match(I, m_OrdFMin(m_Value(), m_Value())))
645     return InstDesc(Kind == RecurKind::FMin, I);
646   if (match(I, m_OrdFMax(m_Value(), m_Value())))
647     return InstDesc(Kind == RecurKind::FMax, I);
648   if (match(I, m_UnordFMin(m_Value(), m_Value())))
649     return InstDesc(Kind == RecurKind::FMin, I);
650   if (match(I, m_UnordFMax(m_Value(), m_Value())))
651     return InstDesc(Kind == RecurKind::FMax, I);
652   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
653     return InstDesc(Kind == RecurKind::FMin, I);
654   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
655     return InstDesc(Kind == RecurKind::FMax, I);
656 
657   return InstDesc(false, I);
658 }
659 
660 /// Returns true if the select instruction has users in the compare-and-add
661 /// reduction pattern below. The select instruction argument is the last one
662 /// in the sequence.
663 ///
664 /// %sum.1 = phi ...
665 /// ...
666 /// %cmp = fcmp pred %0, %CFP
667 /// %add = fadd %0, %sum.1
668 /// %sum.2 = select %cmp, %add, %sum.1
669 RecurrenceDescriptor::InstDesc
670 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
671   SelectInst *SI = dyn_cast<SelectInst>(I);
672   if (!SI)
673     return InstDesc(false, I);
674 
675   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
676   // Only handle single use cases for now.
677   if (!CI || !CI->hasOneUse())
678     return InstDesc(false, I);
679 
680   Value *TrueVal = SI->getTrueValue();
681   Value *FalseVal = SI->getFalseValue();
682   // Handle only when either of operands of select instruction is a PHI
683   // node for now.
684   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
685       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
686     return InstDesc(false, I);
687 
688   Instruction *I1 =
689       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
690                              : dyn_cast<Instruction>(TrueVal);
691   if (!I1 || !I1->isBinaryOp())
692     return InstDesc(false, I);
693 
694   Value *Op1, *Op2;
695   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
696        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
697       I1->isFast())
698     return InstDesc(Kind == RecurKind::FAdd, SI);
699 
700   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
701     return InstDesc(Kind == RecurKind::FMul, SI);
702 
703   return InstDesc(false, I);
704 }
705 
706 RecurrenceDescriptor::InstDesc
707 RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
708                                         Instruction *I, RecurKind Kind,
709                                         InstDesc &Prev, FastMathFlags FuncFMF) {
710   assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
711   switch (I->getOpcode()) {
712   default:
713     return InstDesc(false, I);
714   case Instruction::PHI:
715     return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
716   case Instruction::Sub:
717   case Instruction::Add:
718     return InstDesc(Kind == RecurKind::Add, I);
719   case Instruction::Mul:
720     return InstDesc(Kind == RecurKind::Mul, I);
721   case Instruction::And:
722     return InstDesc(Kind == RecurKind::And, I);
723   case Instruction::Or:
724     return InstDesc(Kind == RecurKind::Or, I);
725   case Instruction::Xor:
726     return InstDesc(Kind == RecurKind::Xor, I);
727   case Instruction::FDiv:
728   case Instruction::FMul:
729     return InstDesc(Kind == RecurKind::FMul, I,
730                     I->hasAllowReassoc() ? nullptr : I);
731   case Instruction::FSub:
732   case Instruction::FAdd:
733     return InstDesc(Kind == RecurKind::FAdd, I,
734                     I->hasAllowReassoc() ? nullptr : I);
735   case Instruction::Select:
736     if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
737       return isConditionalRdxPattern(Kind, I);
738     LLVM_FALLTHROUGH;
739   case Instruction::FCmp:
740   case Instruction::ICmp:
741   case Instruction::Call:
742     if (isSelectCmpRecurrenceKind(Kind))
743       return isSelectCmpPattern(L, OrigPhi, I, Prev);
744     if (isIntMinMaxRecurrenceKind(Kind) ||
745         (((FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) ||
746           (isa<FPMathOperator>(I) && I->hasNoNaNs() &&
747            I->hasNoSignedZeros())) &&
748          isFPMinMaxRecurrenceKind(Kind)))
749       return isMinMaxPattern(I, Kind, Prev);
750     else if (isFMulAddIntrinsic(I))
751       return InstDesc(Kind == RecurKind::FMulAdd, I,
752                       I->hasAllowReassoc() ? nullptr : I);
753     return InstDesc(false, I);
754   }
755 }
756 
757 bool RecurrenceDescriptor::hasMultipleUsesOf(
758     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
759     unsigned MaxNumUses) {
760   unsigned NumUses = 0;
761   for (const Use &U : I->operands()) {
762     if (Insts.count(dyn_cast<Instruction>(U)))
763       ++NumUses;
764     if (NumUses > MaxNumUses)
765       return true;
766   }
767 
768   return false;
769 }
770 
771 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
772                                           RecurrenceDescriptor &RedDes,
773                                           DemandedBits *DB, AssumptionCache *AC,
774                                           DominatorTree *DT) {
775   BasicBlock *Header = TheLoop->getHeader();
776   Function &F = *Header->getParent();
777   FastMathFlags FMF;
778   FMF.setNoNaNs(
779       F.getFnAttribute("no-nans-fp-math").getValueAsBool());
780   FMF.setNoSignedZeros(
781       F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
782 
783   if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) {
784     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
785     return true;
786   }
787   if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) {
788     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
789     return true;
790   }
791   if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) {
792     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
793     return true;
794   }
795   if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) {
796     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
797     return true;
798   }
799   if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) {
800     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
801     return true;
802   }
803   if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
804     LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
805     return true;
806   }
807   if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
808     LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
809     return true;
810   }
811   if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
812     LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
813     return true;
814   }
815   if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
816     LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
817     return true;
818   }
819   if (AddReductionVar(Phi, RecurKind::SelectICmp, TheLoop, FMF, RedDes, DB, AC,
820                       DT)) {
821     LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
822                       << *Phi << "\n");
823     return true;
824   }
825   if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) {
826     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
827     return true;
828   }
829   if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) {
830     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
831     return true;
832   }
833   if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
834     LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
835     return true;
836   }
837   if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
838     LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
839     return true;
840   }
841   if (AddReductionVar(Phi, RecurKind::SelectFCmp, TheLoop, FMF, RedDes, DB, AC,
842                       DT)) {
843     LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
844                       << " PHI." << *Phi << "\n");
845     return true;
846   }
847   if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC,
848                       DT)) {
849     LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
850     return true;
851   }
852   // Not a reduction of known type.
853   return false;
854 }
855 
856 bool RecurrenceDescriptor::isFirstOrderRecurrence(
857     PHINode *Phi, Loop *TheLoop,
858     MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
859 
860   // Ensure the phi node is in the loop header and has two incoming values.
861   if (Phi->getParent() != TheLoop->getHeader() ||
862       Phi->getNumIncomingValues() != 2)
863     return false;
864 
865   // Ensure the loop has a preheader and a single latch block. The loop
866   // vectorizer will need the latch to set up the next iteration of the loop.
867   auto *Preheader = TheLoop->getLoopPreheader();
868   auto *Latch = TheLoop->getLoopLatch();
869   if (!Preheader || !Latch)
870     return false;
871 
872   // Ensure the phi node's incoming blocks are the loop preheader and latch.
873   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
874       Phi->getBasicBlockIndex(Latch) < 0)
875     return false;
876 
877   // Get the previous value. The previous value comes from the latch edge while
878   // the initial value comes form the preheader edge.
879   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
880   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
881       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
882     return false;
883 
884   // Ensure every user of the phi node (recursively) is dominated by the
885   // previous value. The dominance requirement ensures the loop vectorizer will
886   // not need to vectorize the initial value prior to the first iteration of the
887   // loop.
888   // TODO: Consider extending this sinking to handle memory instructions.
889 
890   // We optimistically assume we can sink all users after Previous. Keep a set
891   // of instructions to sink after Previous ordered by dominance in the common
892   // basic block. It will be applied to SinkAfter if all users can be sunk.
893   auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) {
894     return A->comesBefore(B);
895   };
896   std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink(
897       CompareByComesBefore);
898 
899   BasicBlock *PhiBB = Phi->getParent();
900   SmallVector<Instruction *, 8> WorkList;
901   auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
902     // Already sunk SinkCandidate.
903     if (SinkCandidate->getParent() == PhiBB &&
904         InstrsToSink.find(SinkCandidate) != InstrsToSink.end())
905       return true;
906 
907     // Cyclic dependence.
908     if (Previous == SinkCandidate)
909       return false;
910 
911     if (DT->dominates(Previous,
912                       SinkCandidate)) // We already are good w/o sinking.
913       return true;
914 
915     if (SinkCandidate->getParent() != PhiBB ||
916         SinkCandidate->mayHaveSideEffects() ||
917         SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
918       return false;
919 
920     // Do not try to sink an instruction multiple times (if multiple operands
921     // are first order recurrences).
922     // TODO: We can support this case, by sinking the instruction after the
923     // 'deepest' previous instruction.
924     if (SinkAfter.find(SinkCandidate) != SinkAfter.end())
925       return false;
926 
927     // If we reach a PHI node that is not dominated by Previous, we reached a
928     // header PHI. No need for sinking.
929     if (isa<PHINode>(SinkCandidate))
930       return true;
931 
932     // Sink User tentatively and check its users
933     InstrsToSink.insert(SinkCandidate);
934     WorkList.push_back(SinkCandidate);
935     return true;
936   };
937 
938   WorkList.push_back(Phi);
939   // Try to recursively sink instructions and their users after Previous.
940   while (!WorkList.empty()) {
941     Instruction *Current = WorkList.pop_back_val();
942     for (User *User : Current->users()) {
943       if (!TryToPushSinkCandidate(cast<Instruction>(User)))
944         return false;
945     }
946   }
947 
948   // We can sink all users of Phi. Update the mapping.
949   for (Instruction *I : InstrsToSink) {
950     SinkAfter[I] = Previous;
951     Previous = I;
952   }
953   return true;
954 }
955 
956 /// This function returns the identity element (or neutral element) for
957 /// the operation K.
958 Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
959                                                    FastMathFlags FMF) const {
960   switch (K) {
961   case RecurKind::Xor:
962   case RecurKind::Add:
963   case RecurKind::Or:
964     // Adding, Xoring, Oring zero to a number does not change it.
965     return ConstantInt::get(Tp, 0);
966   case RecurKind::Mul:
967     // Multiplying a number by 1 does not change it.
968     return ConstantInt::get(Tp, 1);
969   case RecurKind::And:
970     // AND-ing a number with an all-1 value does not change it.
971     return ConstantInt::get(Tp, -1, true);
972   case RecurKind::FMul:
973     // Multiplying a number by 1 does not change it.
974     return ConstantFP::get(Tp, 1.0L);
975   case RecurKind::FMulAdd:
976   case RecurKind::FAdd:
977     // Adding zero to a number does not change it.
978     // FIXME: Ideally we should not need to check FMF for FAdd and should always
979     // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
980     // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
981     // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
982     // mean we can then remove the check for noSignedZeros() below (see D98963).
983     if (FMF.noSignedZeros())
984       return ConstantFP::get(Tp, 0.0L);
985     return ConstantFP::get(Tp, -0.0L);
986   case RecurKind::UMin:
987     return ConstantInt::get(Tp, -1);
988   case RecurKind::UMax:
989     return ConstantInt::get(Tp, 0);
990   case RecurKind::SMin:
991     return ConstantInt::get(Tp,
992                             APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
993   case RecurKind::SMax:
994     return ConstantInt::get(Tp,
995                             APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
996   case RecurKind::FMin:
997     return ConstantFP::getInfinity(Tp, true);
998   case RecurKind::FMax:
999     return ConstantFP::getInfinity(Tp, false);
1000   case RecurKind::SelectICmp:
1001   case RecurKind::SelectFCmp:
1002     return getRecurrenceStartValue();
1003     break;
1004   default:
1005     llvm_unreachable("Unknown recurrence kind");
1006   }
1007 }
1008 
1009 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
1010   switch (Kind) {
1011   case RecurKind::Add:
1012     return Instruction::Add;
1013   case RecurKind::Mul:
1014     return Instruction::Mul;
1015   case RecurKind::Or:
1016     return Instruction::Or;
1017   case RecurKind::And:
1018     return Instruction::And;
1019   case RecurKind::Xor:
1020     return Instruction::Xor;
1021   case RecurKind::FMul:
1022     return Instruction::FMul;
1023   case RecurKind::FMulAdd:
1024   case RecurKind::FAdd:
1025     return Instruction::FAdd;
1026   case RecurKind::SMax:
1027   case RecurKind::SMin:
1028   case RecurKind::UMax:
1029   case RecurKind::UMin:
1030   case RecurKind::SelectICmp:
1031     return Instruction::ICmp;
1032   case RecurKind::FMax:
1033   case RecurKind::FMin:
1034   case RecurKind::SelectFCmp:
1035     return Instruction::FCmp;
1036   default:
1037     llvm_unreachable("Unknown recurrence operation");
1038   }
1039 }
1040 
1041 SmallVector<Instruction *, 4>
1042 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
1043   SmallVector<Instruction *, 4> ReductionOperations;
1044   unsigned RedOp = getOpcode(Kind);
1045 
1046   // Search down from the Phi to the LoopExitInstr, looking for instructions
1047   // with a single user of the correct type for the reduction.
1048 
1049   // Note that we check that the type of the operand is correct for each item in
1050   // the chain, including the last (the loop exit value). This can come up from
1051   // sub, which would otherwise be treated as an add reduction. MinMax also need
1052   // to check for a pair of icmp/select, for which we use getNextInstruction and
1053   // isCorrectOpcode functions to step the right number of instruction, and
1054   // check the icmp/select pair.
1055   // FIXME: We also do not attempt to look through Phi/Select's yet, which might
1056   // be part of the reduction chain, or attempt to looks through And's to find a
1057   // smaller bitwidth. Subs are also currently not allowed (which are usually
1058   // treated as part of a add reduction) as they are expected to generally be
1059   // more expensive than out-of-loop reductions, and need to be costed more
1060   // carefully.
1061   unsigned ExpectedUses = 1;
1062   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1063     ExpectedUses = 2;
1064 
1065   auto getNextInstruction = [&](Instruction *Cur) {
1066     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1067       // We are expecting a icmp/select pair, which we go to the next select
1068       // instruction if we can. We already know that Cur has 2 uses.
1069       if (isa<SelectInst>(*Cur->user_begin()))
1070         return cast<Instruction>(*Cur->user_begin());
1071       else
1072         return cast<Instruction>(*std::next(Cur->user_begin()));
1073     }
1074     return cast<Instruction>(*Cur->user_begin());
1075   };
1076   auto isCorrectOpcode = [&](Instruction *Cur) {
1077     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1078       Value *LHS, *RHS;
1079       return SelectPatternResult::isMinOrMax(
1080           matchSelectPattern(Cur, LHS, RHS).Flavor);
1081     }
1082     // Recognize a call to the llvm.fmuladd intrinsic.
1083     if (isFMulAddIntrinsic(Cur))
1084       return true;
1085 
1086     return Cur->getOpcode() == RedOp;
1087   };
1088 
1089   // The loop exit instruction we check first (as a quick test) but add last. We
1090   // check the opcode is correct (and dont allow them to be Subs) and that they
1091   // have expected to have the expected number of uses. They will have one use
1092   // from the phi and one from a LCSSA value, no matter the type.
1093   if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
1094     return {};
1095 
1096   // Check that the Phi has one (or two for min/max) uses.
1097   if (!Phi->hasNUses(ExpectedUses))
1098     return {};
1099   Instruction *Cur = getNextInstruction(Phi);
1100 
1101   // Each other instruction in the chain should have the expected number of uses
1102   // and be the correct opcode.
1103   while (Cur != LoopExitInstr) {
1104     if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1105       return {};
1106 
1107     ReductionOperations.push_back(Cur);
1108     Cur = getNextInstruction(Cur);
1109   }
1110 
1111   ReductionOperations.push_back(Cur);
1112   return ReductionOperations;
1113 }
1114 
1115 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1116                                          const SCEV *Step, BinaryOperator *BOp,
1117                                          Type *ElementType,
1118                                          SmallVectorImpl<Instruction *> *Casts)
1119     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp),
1120       ElementType(ElementType) {
1121   assert(IK != IK_NoInduction && "Not an induction");
1122 
1123   // Start value type should match the induction kind and the value
1124   // itself should not be null.
1125   assert(StartValue && "StartValue is null");
1126   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1127          "StartValue is not a pointer for pointer induction");
1128   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1129          "StartValue is not an integer for integer induction");
1130 
1131   // Check the Step Value. It should be non-zero integer value.
1132   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1133          "Step value is zero");
1134 
1135   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
1136          "Step value should be constant for pointer induction");
1137   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1138          "StepValue is not an integer");
1139 
1140   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1141          "StepValue is not FP for FpInduction");
1142   assert((IK != IK_FpInduction ||
1143           (InductionBinOp &&
1144            (InductionBinOp->getOpcode() == Instruction::FAdd ||
1145             InductionBinOp->getOpcode() == Instruction::FSub))) &&
1146          "Binary opcode should be specified for FP induction");
1147 
1148   if (IK == IK_PtrInduction)
1149     assert(ElementType && "Pointer induction must have element type");
1150   else
1151     assert(!ElementType && "Non-pointer induction cannot have element type");
1152 
1153   if (Casts) {
1154     for (auto &Inst : *Casts) {
1155       RedundantCasts.push_back(Inst);
1156     }
1157   }
1158 }
1159 
1160 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1161   if (isa<SCEVConstant>(Step))
1162     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1163   return nullptr;
1164 }
1165 
1166 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1167                                            ScalarEvolution *SE,
1168                                            InductionDescriptor &D) {
1169 
1170   // Here we only handle FP induction variables.
1171   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1172 
1173   if (TheLoop->getHeader() != Phi->getParent())
1174     return false;
1175 
1176   // The loop may have multiple entrances or multiple exits; we can analyze
1177   // this phi if it has a unique entry value and a unique backedge value.
1178   if (Phi->getNumIncomingValues() != 2)
1179     return false;
1180   Value *BEValue = nullptr, *StartValue = nullptr;
1181   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1182     BEValue = Phi->getIncomingValue(0);
1183     StartValue = Phi->getIncomingValue(1);
1184   } else {
1185     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1186            "Unexpected Phi node in the loop");
1187     BEValue = Phi->getIncomingValue(1);
1188     StartValue = Phi->getIncomingValue(0);
1189   }
1190 
1191   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1192   if (!BOp)
1193     return false;
1194 
1195   Value *Addend = nullptr;
1196   if (BOp->getOpcode() == Instruction::FAdd) {
1197     if (BOp->getOperand(0) == Phi)
1198       Addend = BOp->getOperand(1);
1199     else if (BOp->getOperand(1) == Phi)
1200       Addend = BOp->getOperand(0);
1201   } else if (BOp->getOpcode() == Instruction::FSub)
1202     if (BOp->getOperand(0) == Phi)
1203       Addend = BOp->getOperand(1);
1204 
1205   if (!Addend)
1206     return false;
1207 
1208   // The addend should be loop invariant
1209   if (auto *I = dyn_cast<Instruction>(Addend))
1210     if (TheLoop->contains(I))
1211       return false;
1212 
1213   // FP Step has unknown SCEV
1214   const SCEV *Step = SE->getUnknown(Addend);
1215   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1216   return true;
1217 }
1218 
1219 /// This function is called when we suspect that the update-chain of a phi node
1220 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1221 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1222 /// predicate P under which the SCEV expression for the phi can be the
1223 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1224 /// cast instructions that are involved in the update-chain of this induction.
1225 /// A caller that adds the required runtime predicate can be free to drop these
1226 /// cast instructions, and compute the phi using \p AR (instead of some scev
1227 /// expression with casts).
1228 ///
1229 /// For example, without a predicate the scev expression can take the following
1230 /// form:
1231 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1232 ///
1233 /// It corresponds to the following IR sequence:
1234 /// %for.body:
1235 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1236 ///   %casted_phi = "ExtTrunc i64 %x"
1237 ///   %add = add i64 %casted_phi, %step
1238 ///
1239 /// where %x is given in \p PN,
1240 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1241 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1242 /// several forms, for example, such as:
1243 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1244 /// or:
1245 ///   ExtTrunc2:    %t = shl %x, m
1246 ///                 %casted_phi = ashr %t, m
1247 ///
1248 /// If we are able to find such sequence, we return the instructions
1249 /// we found, namely %casted_phi and the instructions on its use-def chain up
1250 /// to the phi (not including the phi).
1251 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1252                                     const SCEVUnknown *PhiScev,
1253                                     const SCEVAddRecExpr *AR,
1254                                     SmallVectorImpl<Instruction *> &CastInsts) {
1255 
1256   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1257   auto *PN = cast<PHINode>(PhiScev->getValue());
1258   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1259   const Loop *L = AR->getLoop();
1260 
1261   // Find any cast instructions that participate in the def-use chain of
1262   // PhiScev in the loop.
1263   // FORNOW/TODO: We currently expect the def-use chain to include only
1264   // two-operand instructions, where one of the operands is an invariant.
1265   // createAddRecFromPHIWithCasts() currently does not support anything more
1266   // involved than that, so we keep the search simple. This can be
1267   // extended/generalized as needed.
1268 
1269   auto getDef = [&](const Value *Val) -> Value * {
1270     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1271     if (!BinOp)
1272       return nullptr;
1273     Value *Op0 = BinOp->getOperand(0);
1274     Value *Op1 = BinOp->getOperand(1);
1275     Value *Def = nullptr;
1276     if (L->isLoopInvariant(Op0))
1277       Def = Op1;
1278     else if (L->isLoopInvariant(Op1))
1279       Def = Op0;
1280     return Def;
1281   };
1282 
1283   // Look for the instruction that defines the induction via the
1284   // loop backedge.
1285   BasicBlock *Latch = L->getLoopLatch();
1286   if (!Latch)
1287     return false;
1288   Value *Val = PN->getIncomingValueForBlock(Latch);
1289   if (!Val)
1290     return false;
1291 
1292   // Follow the def-use chain until the induction phi is reached.
1293   // If on the way we encounter a Value that has the same SCEV Expr as the
1294   // phi node, we can consider the instructions we visit from that point
1295   // as part of the cast-sequence that can be ignored.
1296   bool InCastSequence = false;
1297   auto *Inst = dyn_cast<Instruction>(Val);
1298   while (Val != PN) {
1299     // If we encountered a phi node other than PN, or if we left the loop,
1300     // we bail out.
1301     if (!Inst || !L->contains(Inst)) {
1302       return false;
1303     }
1304     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1305     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1306       InCastSequence = true;
1307     if (InCastSequence) {
1308       // Only the last instruction in the cast sequence is expected to have
1309       // uses outside the induction def-use chain.
1310       if (!CastInsts.empty())
1311         if (!Inst->hasOneUse())
1312           return false;
1313       CastInsts.push_back(Inst);
1314     }
1315     Val = getDef(Val);
1316     if (!Val)
1317       return false;
1318     Inst = dyn_cast<Instruction>(Val);
1319   }
1320 
1321   return InCastSequence;
1322 }
1323 
1324 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1325                                          PredicatedScalarEvolution &PSE,
1326                                          InductionDescriptor &D, bool Assume) {
1327   Type *PhiTy = Phi->getType();
1328 
1329   // Handle integer and pointer inductions variables.
1330   // Now we handle also FP induction but not trying to make a
1331   // recurrent expression from the PHI node in-place.
1332 
1333   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1334       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1335     return false;
1336 
1337   if (PhiTy->isFloatingPointTy())
1338     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1339 
1340   const SCEV *PhiScev = PSE.getSCEV(Phi);
1341   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1342 
1343   // We need this expression to be an AddRecExpr.
1344   if (Assume && !AR)
1345     AR = PSE.getAsAddRec(Phi);
1346 
1347   if (!AR) {
1348     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1349     return false;
1350   }
1351 
1352   // Record any Cast instructions that participate in the induction update
1353   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1354   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1355   // only after enabling Assume with PSCEV, this means we may have encountered
1356   // cast instructions that required adding a runtime check in order to
1357   // guarantee the correctness of the AddRecurrence respresentation of the
1358   // induction.
1359   if (PhiScev != AR && SymbolicPhi) {
1360     SmallVector<Instruction *, 2> Casts;
1361     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1362       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1363   }
1364 
1365   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1366 }
1367 
1368 bool InductionDescriptor::isInductionPHI(
1369     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1370     InductionDescriptor &D, const SCEV *Expr,
1371     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1372   Type *PhiTy = Phi->getType();
1373   // We only handle integer and pointer inductions variables.
1374   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1375     return false;
1376 
1377   // Check that the PHI is consecutive.
1378   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1379   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1380 
1381   if (!AR) {
1382     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1383     return false;
1384   }
1385 
1386   if (AR->getLoop() != TheLoop) {
1387     // FIXME: We should treat this as a uniform. Unfortunately, we
1388     // don't currently know how to handled uniform PHIs.
1389     LLVM_DEBUG(
1390         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1391     return false;
1392   }
1393 
1394   Value *StartValue =
1395       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1396 
1397   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1398   if (!Latch)
1399     return false;
1400 
1401   const SCEV *Step = AR->getStepRecurrence(*SE);
1402   // Calculate the pointer stride and check if it is consecutive.
1403   // The stride may be a constant or a loop invariant integer value.
1404   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1405   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1406     return false;
1407 
1408   if (PhiTy->isIntegerTy()) {
1409     BinaryOperator *BOp =
1410         dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1411     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1412                             /* ElementType */ nullptr, CastsToIgnore);
1413     return true;
1414   }
1415 
1416   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1417   // Pointer induction should be a constant.
1418   if (!ConstStep)
1419     return false;
1420 
1421   // Always use i8 element type for opaque pointer inductions.
1422   PointerType *PtrTy = cast<PointerType>(PhiTy);
1423   Type *ElementType = PtrTy->isOpaque()
1424                           ? Type::getInt8Ty(PtrTy->getContext())
1425                           : PtrTy->getNonOpaquePointerElementType();
1426   if (!ElementType->isSized())
1427     return false;
1428 
1429   ConstantInt *CV = ConstStep->getValue();
1430   const DataLayout &DL = Phi->getModule()->getDataLayout();
1431   TypeSize TySize = DL.getTypeAllocSize(ElementType);
1432   // TODO: We could potentially support this for scalable vectors if we can
1433   // prove at compile time that the constant step is always a multiple of
1434   // the scalable type.
1435   if (TySize.isZero() || TySize.isScalable())
1436     return false;
1437 
1438   int64_t Size = static_cast<int64_t>(TySize.getFixedSize());
1439   int64_t CVSize = CV->getSExtValue();
1440   if (CVSize % Size)
1441     return false;
1442   auto *StepValue =
1443       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1444   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue,
1445                           /* BinOp */ nullptr, ElementType);
1446   return true;
1447 }
1448