xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 #include <set>
38 
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "iv-descriptors"
43 
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45                                         SmallPtrSetImpl<Instruction *> &Set) {
46   for (const Use &Use : I->operands())
47     if (!Set.count(dyn_cast<Instruction>(Use)))
48       return false;
49   return true;
50 }
51 
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
53   switch (Kind) {
54   default:
55     break;
56   case RecurKind::Add:
57   case RecurKind::Mul:
58   case RecurKind::Or:
59   case RecurKind::And:
60   case RecurKind::Xor:
61   case RecurKind::SMax:
62   case RecurKind::SMin:
63   case RecurKind::UMax:
64   case RecurKind::UMin:
65   case RecurKind::SelectICmp:
66   case RecurKind::SelectFCmp:
67     return true;
68   }
69   return false;
70 }
71 
72 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
73   return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
74 }
75 
76 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) {
77   switch (Kind) {
78   default:
79     break;
80   case RecurKind::Add:
81   case RecurKind::Mul:
82   case RecurKind::FAdd:
83   case RecurKind::FMul:
84     return true;
85   }
86   return false;
87 }
88 
89 /// Determines if Phi may have been type-promoted. If Phi has a single user
90 /// that ANDs the Phi with a type mask, return the user. RT is updated to
91 /// account for the narrower bit width represented by the mask, and the AND
92 /// instruction is added to CI.
93 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
94                                    SmallPtrSetImpl<Instruction *> &Visited,
95                                    SmallPtrSetImpl<Instruction *> &CI) {
96   if (!Phi->hasOneUse())
97     return Phi;
98 
99   const APInt *M = nullptr;
100   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
101 
102   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
103   // with a new integer type of the corresponding bit width.
104   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
105     int32_t Bits = (*M + 1).exactLogBase2();
106     if (Bits > 0) {
107       RT = IntegerType::get(Phi->getContext(), Bits);
108       Visited.insert(Phi);
109       CI.insert(J);
110       return J;
111     }
112   }
113   return Phi;
114 }
115 
116 /// Compute the minimal bit width needed to represent a reduction whose exit
117 /// instruction is given by Exit.
118 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
119                                                      DemandedBits *DB,
120                                                      AssumptionCache *AC,
121                                                      DominatorTree *DT) {
122   bool IsSigned = false;
123   const DataLayout &DL = Exit->getModule()->getDataLayout();
124   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
125 
126   if (DB) {
127     // Use the demanded bits analysis to determine the bits that are live out
128     // of the exit instruction, rounding up to the nearest power of two. If the
129     // use of demanded bits results in a smaller bit width, we know the value
130     // must be positive (i.e., IsSigned = false), because if this were not the
131     // case, the sign bit would have been demanded.
132     auto Mask = DB->getDemandedBits(Exit);
133     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
134   }
135 
136   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
137     // If demanded bits wasn't able to limit the bit width, we can try to use
138     // value tracking instead. This can be the case, for example, if the value
139     // may be negative.
140     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
141     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
142     MaxBitWidth = NumTypeBits - NumSignBits;
143     KnownBits Bits = computeKnownBits(Exit, DL);
144     if (!Bits.isNonNegative()) {
145       // If the value is not known to be non-negative, we set IsSigned to true,
146       // meaning that we will use sext instructions instead of zext
147       // instructions to restore the original type.
148       IsSigned = true;
149       // Make sure at at least one sign bit is included in the result, so it
150       // will get properly sign-extended.
151       ++MaxBitWidth;
152     }
153   }
154   if (!isPowerOf2_64(MaxBitWidth))
155     MaxBitWidth = NextPowerOf2(MaxBitWidth);
156 
157   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
158                         IsSigned);
159 }
160 
161 /// Collect cast instructions that can be ignored in the vectorizer's cost
162 /// model, given a reduction exit value and the minimal type in which the
163 /// reduction can be represented.
164 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
165                                  Type *RecurrenceType,
166                                  SmallPtrSetImpl<Instruction *> &Casts) {
167 
168   SmallVector<Instruction *, 8> Worklist;
169   SmallPtrSet<Instruction *, 8> Visited;
170   Worklist.push_back(Exit);
171 
172   while (!Worklist.empty()) {
173     Instruction *Val = Worklist.pop_back_val();
174     Visited.insert(Val);
175     if (auto *Cast = dyn_cast<CastInst>(Val))
176       if (Cast->getSrcTy() == RecurrenceType) {
177         // If the source type of a cast instruction is equal to the recurrence
178         // type, it will be eliminated, and should be ignored in the vectorizer
179         // cost model.
180         Casts.insert(Cast);
181         continue;
182       }
183 
184     // Add all operands to the work list if they are loop-varying values that
185     // we haven't yet visited.
186     for (Value *O : cast<User>(Val)->operands())
187       if (auto *I = dyn_cast<Instruction>(O))
188         if (TheLoop->contains(I) && !Visited.count(I))
189           Worklist.push_back(I);
190   }
191 }
192 
193 // Check if a given Phi node can be recognized as an ordered reduction for
194 // vectorizing floating point operations without unsafe math.
195 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
196                                   Instruction *Exit, PHINode *Phi) {
197   // Currently only FAdd is supported
198   if (Kind != RecurKind::FAdd)
199     return false;
200 
201   // Ensure the exit instruction is an FAdd, and that it only has one user
202   // other than the reduction PHI
203   if (Exit->getOpcode() != Instruction::FAdd || Exit->hasNUsesOrMore(3) ||
204       Exit != ExactFPMathInst)
205     return false;
206 
207   // The only pattern accepted is the one in which the reduction PHI
208   // is used as one of the operands of the exit instruction
209   auto *LHS = Exit->getOperand(0);
210   auto *RHS = Exit->getOperand(1);
211   if (LHS != Phi && RHS != Phi)
212     return false;
213 
214   LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
215                     << ", ExitInst: " << *Exit << "\n");
216 
217   return true;
218 }
219 
220 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind,
221                                            Loop *TheLoop, FastMathFlags FuncFMF,
222                                            RecurrenceDescriptor &RedDes,
223                                            DemandedBits *DB,
224                                            AssumptionCache *AC,
225                                            DominatorTree *DT) {
226   if (Phi->getNumIncomingValues() != 2)
227     return false;
228 
229   // Reduction variables are only found in the loop header block.
230   if (Phi->getParent() != TheLoop->getHeader())
231     return false;
232 
233   // Obtain the reduction start value from the value that comes from the loop
234   // preheader.
235   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
236 
237   // ExitInstruction is the single value which is used outside the loop.
238   // We only allow for a single reduction value to be used outside the loop.
239   // This includes users of the reduction, variables (which form a cycle
240   // which ends in the phi node).
241   Instruction *ExitInstruction = nullptr;
242   // Indicates that we found a reduction operation in our scan.
243   bool FoundReduxOp = false;
244 
245   // We start with the PHI node and scan for all of the users of this
246   // instruction. All users must be instructions that can be used as reduction
247   // variables (such as ADD). We must have a single out-of-block user. The cycle
248   // must include the original PHI.
249   bool FoundStartPHI = false;
250 
251   // To recognize min/max patterns formed by a icmp select sequence, we store
252   // the number of instruction we saw from the recognized min/max pattern,
253   //  to make sure we only see exactly the two instructions.
254   unsigned NumCmpSelectPatternInst = 0;
255   InstDesc ReduxDesc(false, nullptr);
256 
257   // Data used for determining if the recurrence has been type-promoted.
258   Type *RecurrenceType = Phi->getType();
259   SmallPtrSet<Instruction *, 4> CastInsts;
260   Instruction *Start = Phi;
261   bool IsSigned = false;
262 
263   SmallPtrSet<Instruction *, 8> VisitedInsts;
264   SmallVector<Instruction *, 8> Worklist;
265 
266   // Return early if the recurrence kind does not match the type of Phi. If the
267   // recurrence kind is arithmetic, we attempt to look through AND operations
268   // resulting from the type promotion performed by InstCombine.  Vector
269   // operations are not limited to the legal integer widths, so we may be able
270   // to evaluate the reduction in the narrower width.
271   if (RecurrenceType->isFloatingPointTy()) {
272     if (!isFloatingPointRecurrenceKind(Kind))
273       return false;
274   } else if (RecurrenceType->isIntegerTy()) {
275     if (!isIntegerRecurrenceKind(Kind))
276       return false;
277     if (!isMinMaxRecurrenceKind(Kind))
278       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
279   } else {
280     // Pointer min/max may exist, but it is not supported as a reduction op.
281     return false;
282   }
283 
284   Worklist.push_back(Start);
285   VisitedInsts.insert(Start);
286 
287   // Start with all flags set because we will intersect this with the reduction
288   // flags from all the reduction operations.
289   FastMathFlags FMF = FastMathFlags::getFast();
290 
291   // A value in the reduction can be used:
292   //  - By the reduction:
293   //      - Reduction operation:
294   //        - One use of reduction value (safe).
295   //        - Multiple use of reduction value (not safe).
296   //      - PHI:
297   //        - All uses of the PHI must be the reduction (safe).
298   //        - Otherwise, not safe.
299   //  - By instructions outside of the loop (safe).
300   //      * One value may have several outside users, but all outside
301   //        uses must be of the same value.
302   //  - By an instruction that is not part of the reduction (not safe).
303   //    This is either:
304   //      * An instruction type other than PHI or the reduction operation.
305   //      * A PHI in the header other than the initial PHI.
306   while (!Worklist.empty()) {
307     Instruction *Cur = Worklist.pop_back_val();
308 
309     // No Users.
310     // If the instruction has no users then this is a broken chain and can't be
311     // a reduction variable.
312     if (Cur->use_empty())
313       return false;
314 
315     bool IsAPhi = isa<PHINode>(Cur);
316 
317     // A header PHI use other than the original PHI.
318     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
319       return false;
320 
321     // Reductions of instructions such as Div, and Sub is only possible if the
322     // LHS is the reduction variable.
323     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
324         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
325         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
326       return false;
327 
328     // Any reduction instruction must be of one of the allowed kinds. We ignore
329     // the starting value (the Phi or an AND instruction if the Phi has been
330     // type-promoted).
331     if (Cur != Start) {
332       ReduxDesc =
333           isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
334       if (!ReduxDesc.isRecurrence())
335         return false;
336       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
337       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
338         FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
339         if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
340           // Accept FMF on either fcmp or select of a min/max idiom.
341           // TODO: This is a hack to work-around the fact that FMF may not be
342           //       assigned/propagated correctly. If that problem is fixed or we
343           //       standardize on fmin/fmax via intrinsics, this can be removed.
344           if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
345             CurFMF |= FCmp->getFastMathFlags();
346         }
347         FMF &= CurFMF;
348       }
349       // Update this reduction kind if we matched a new instruction.
350       // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
351       //       state accurate while processing the worklist?
352       if (ReduxDesc.getRecKind() != RecurKind::None)
353         Kind = ReduxDesc.getRecKind();
354     }
355 
356     bool IsASelect = isa<SelectInst>(Cur);
357 
358     // A conditional reduction operation must only have 2 or less uses in
359     // VisitedInsts.
360     if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
361         hasMultipleUsesOf(Cur, VisitedInsts, 2))
362       return false;
363 
364     // A reduction operation must only have one use of the reduction value.
365     if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
366         !isSelectCmpRecurrenceKind(Kind) &&
367         hasMultipleUsesOf(Cur, VisitedInsts, 1))
368       return false;
369 
370     // All inputs to a PHI node must be a reduction value.
371     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
372       return false;
373 
374     if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectICmp) &&
375         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
376       ++NumCmpSelectPatternInst;
377     if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectFCmp) &&
378         (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
379       ++NumCmpSelectPatternInst;
380 
381     // Check  whether we found a reduction operator.
382     FoundReduxOp |= !IsAPhi && Cur != Start;
383 
384     // Process users of current instruction. Push non-PHI nodes after PHI nodes
385     // onto the stack. This way we are going to have seen all inputs to PHI
386     // nodes once we get to them.
387     SmallVector<Instruction *, 8> NonPHIs;
388     SmallVector<Instruction *, 8> PHIs;
389     for (User *U : Cur->users()) {
390       Instruction *UI = cast<Instruction>(U);
391 
392       // Check if we found the exit user.
393       BasicBlock *Parent = UI->getParent();
394       if (!TheLoop->contains(Parent)) {
395         // If we already know this instruction is used externally, move on to
396         // the next user.
397         if (ExitInstruction == Cur)
398           continue;
399 
400         // Exit if you find multiple values used outside or if the header phi
401         // node is being used. In this case the user uses the value of the
402         // previous iteration, in which case we would loose "VF-1" iterations of
403         // the reduction operation if we vectorize.
404         if (ExitInstruction != nullptr || Cur == Phi)
405           return false;
406 
407         // The instruction used by an outside user must be the last instruction
408         // before we feed back to the reduction phi. Otherwise, we loose VF-1
409         // operations on the value.
410         if (!is_contained(Phi->operands(), Cur))
411           return false;
412 
413         ExitInstruction = Cur;
414         continue;
415       }
416 
417       // Process instructions only once (termination). Each reduction cycle
418       // value must only be used once, except by phi nodes and min/max
419       // reductions which are represented as a cmp followed by a select.
420       InstDesc IgnoredVal(false, nullptr);
421       if (VisitedInsts.insert(UI).second) {
422         if (isa<PHINode>(UI))
423           PHIs.push_back(UI);
424         else
425           NonPHIs.push_back(UI);
426       } else if (!isa<PHINode>(UI) &&
427                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
428                    !isa<SelectInst>(UI)) ||
429                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
430                    !isSelectCmpPattern(TheLoop, Phi, UI, IgnoredVal)
431                         .isRecurrence() &&
432                    !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
433         return false;
434 
435       // Remember that we completed the cycle.
436       if (UI == Phi)
437         FoundStartPHI = true;
438     }
439     Worklist.append(PHIs.begin(), PHIs.end());
440     Worklist.append(NonPHIs.begin(), NonPHIs.end());
441   }
442 
443   // This means we have seen one but not the other instruction of the
444   // pattern or more than just a select and cmp. Zero implies that we saw a
445   // llvm.min/max instrinsic, which is always OK.
446   if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
447       NumCmpSelectPatternInst != 0)
448     return false;
449 
450   if (isSelectCmpRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
451     return false;
452 
453   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
454     return false;
455 
456   const bool IsOrdered = checkOrderedReduction(
457       Kind, ReduxDesc.getExactFPMathInst(), ExitInstruction, Phi);
458 
459   if (Start != Phi) {
460     // If the starting value is not the same as the phi node, we speculatively
461     // looked through an 'and' instruction when evaluating a potential
462     // arithmetic reduction to determine if it may have been type-promoted.
463     //
464     // We now compute the minimal bit width that is required to represent the
465     // reduction. If this is the same width that was indicated by the 'and', we
466     // can represent the reduction in the smaller type. The 'and' instruction
467     // will be eliminated since it will essentially be a cast instruction that
468     // can be ignore in the cost model. If we compute a different type than we
469     // did when evaluating the 'and', the 'and' will not be eliminated, and we
470     // will end up with different kinds of operations in the recurrence
471     // expression (e.g., IntegerAND, IntegerADD). We give up if this is
472     // the case.
473     //
474     // The vectorizer relies on InstCombine to perform the actual
475     // type-shrinking. It does this by inserting instructions to truncate the
476     // exit value of the reduction to the width indicated by RecurrenceType and
477     // then extend this value back to the original width. If IsSigned is false,
478     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
479     // used.
480     //
481     // TODO: We should not rely on InstCombine to rewrite the reduction in the
482     //       smaller type. We should just generate a correctly typed expression
483     //       to begin with.
484     Type *ComputedType;
485     std::tie(ComputedType, IsSigned) =
486         computeRecurrenceType(ExitInstruction, DB, AC, DT);
487     if (ComputedType != RecurrenceType)
488       return false;
489 
490     // The recurrence expression will be represented in a narrower type. If
491     // there are any cast instructions that will be unnecessary, collect them
492     // in CastInsts. Note that the 'and' instruction was already included in
493     // this list.
494     //
495     // TODO: A better way to represent this may be to tag in some way all the
496     //       instructions that are a part of the reduction. The vectorizer cost
497     //       model could then apply the recurrence type to these instructions,
498     //       without needing a white list of instructions to ignore.
499     //       This may also be useful for the inloop reductions, if it can be
500     //       kept simple enough.
501     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
502   }
503 
504   // We found a reduction var if we have reached the original phi node and we
505   // only have a single instruction with out-of-loop users.
506 
507   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
508   // is saved as part of the RecurrenceDescriptor.
509 
510   // Save the description of this reduction variable.
511   RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF,
512                           ReduxDesc.getExactFPMathInst(), RecurrenceType,
513                           IsSigned, IsOrdered, CastInsts);
514   RedDes = RD;
515 
516   return true;
517 }
518 
519 // We are looking for loops that do something like this:
520 //   int r = 0;
521 //   for (int i = 0; i < n; i++) {
522 //     if (src[i] > 3)
523 //       r = 3;
524 //   }
525 // where the reduction value (r) only has two states, in this example 0 or 3.
526 // The generated LLVM IR for this type of loop will be like this:
527 //   for.body:
528 //     %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
529 //     ...
530 //     %cmp = icmp sgt i32 %5, 3
531 //     %spec.select = select i1 %cmp, i32 3, i32 %r
532 //     ...
533 // In general we can support vectorization of loops where 'r' flips between
534 // any two non-constants, provided they are loop invariant. The only thing
535 // we actually care about at the end of the loop is whether or not any lane
536 // in the selected vector is different from the start value. The final
537 // across-vector reduction after the loop simply involves choosing the start
538 // value if nothing changed (0 in the example above) or the other selected
539 // value (3 in the example above).
540 RecurrenceDescriptor::InstDesc
541 RecurrenceDescriptor::isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
542                                          Instruction *I, InstDesc &Prev) {
543   // We must handle the select(cmp(),x,y) as a single instruction. Advance to
544   // the select.
545   CmpInst::Predicate Pred;
546   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
547     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
548       return InstDesc(Select, Prev.getRecKind());
549   }
550 
551   // Only match select with single use cmp condition.
552   if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
553                          m_Value())))
554     return InstDesc(false, I);
555 
556   SelectInst *SI = cast<SelectInst>(I);
557   Value *NonPhi = nullptr;
558 
559   if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
560     NonPhi = SI->getFalseValue();
561   else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
562     NonPhi = SI->getTrueValue();
563   else
564     return InstDesc(false, I);
565 
566   // We are looking for selects of the form:
567   //   select(cmp(), phi, loop_invariant) or
568   //   select(cmp(), loop_invariant, phi)
569   if (!Loop->isLoopInvariant(NonPhi))
570     return InstDesc(false, I);
571 
572   return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::SelectICmp
573                                                      : RecurKind::SelectFCmp);
574 }
575 
576 RecurrenceDescriptor::InstDesc
577 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
578                                       const InstDesc &Prev) {
579   assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
580          "Expected a cmp or select or call instruction");
581   if (!isMinMaxRecurrenceKind(Kind))
582     return InstDesc(false, I);
583 
584   // We must handle the select(cmp()) as a single instruction. Advance to the
585   // select.
586   CmpInst::Predicate Pred;
587   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
588     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
589       return InstDesc(Select, Prev.getRecKind());
590   }
591 
592   // Only match select with single use cmp condition, or a min/max intrinsic.
593   if (!isa<IntrinsicInst>(I) &&
594       !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
595                          m_Value())))
596     return InstDesc(false, I);
597 
598   // Look for a min/max pattern.
599   if (match(I, m_UMin(m_Value(), m_Value())))
600     return InstDesc(Kind == RecurKind::UMin, I);
601   if (match(I, m_UMax(m_Value(), m_Value())))
602     return InstDesc(Kind == RecurKind::UMax, I);
603   if (match(I, m_SMax(m_Value(), m_Value())))
604     return InstDesc(Kind == RecurKind::SMax, I);
605   if (match(I, m_SMin(m_Value(), m_Value())))
606     return InstDesc(Kind == RecurKind::SMin, I);
607   if (match(I, m_OrdFMin(m_Value(), m_Value())))
608     return InstDesc(Kind == RecurKind::FMin, I);
609   if (match(I, m_OrdFMax(m_Value(), m_Value())))
610     return InstDesc(Kind == RecurKind::FMax, I);
611   if (match(I, m_UnordFMin(m_Value(), m_Value())))
612     return InstDesc(Kind == RecurKind::FMin, I);
613   if (match(I, m_UnordFMax(m_Value(), m_Value())))
614     return InstDesc(Kind == RecurKind::FMax, I);
615   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
616     return InstDesc(Kind == RecurKind::FMin, I);
617   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
618     return InstDesc(Kind == RecurKind::FMax, I);
619 
620   return InstDesc(false, I);
621 }
622 
623 /// Returns true if the select instruction has users in the compare-and-add
624 /// reduction pattern below. The select instruction argument is the last one
625 /// in the sequence.
626 ///
627 /// %sum.1 = phi ...
628 /// ...
629 /// %cmp = fcmp pred %0, %CFP
630 /// %add = fadd %0, %sum.1
631 /// %sum.2 = select %cmp, %add, %sum.1
632 RecurrenceDescriptor::InstDesc
633 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
634   SelectInst *SI = dyn_cast<SelectInst>(I);
635   if (!SI)
636     return InstDesc(false, I);
637 
638   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
639   // Only handle single use cases for now.
640   if (!CI || !CI->hasOneUse())
641     return InstDesc(false, I);
642 
643   Value *TrueVal = SI->getTrueValue();
644   Value *FalseVal = SI->getFalseValue();
645   // Handle only when either of operands of select instruction is a PHI
646   // node for now.
647   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
648       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
649     return InstDesc(false, I);
650 
651   Instruction *I1 =
652       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
653                              : dyn_cast<Instruction>(TrueVal);
654   if (!I1 || !I1->isBinaryOp())
655     return InstDesc(false, I);
656 
657   Value *Op1, *Op2;
658   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
659        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
660       I1->isFast())
661     return InstDesc(Kind == RecurKind::FAdd, SI);
662 
663   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
664     return InstDesc(Kind == RecurKind::FMul, SI);
665 
666   return InstDesc(false, I);
667 }
668 
669 RecurrenceDescriptor::InstDesc
670 RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
671                                         Instruction *I, RecurKind Kind,
672                                         InstDesc &Prev, FastMathFlags FuncFMF) {
673   assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
674   switch (I->getOpcode()) {
675   default:
676     return InstDesc(false, I);
677   case Instruction::PHI:
678     return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
679   case Instruction::Sub:
680   case Instruction::Add:
681     return InstDesc(Kind == RecurKind::Add, I);
682   case Instruction::Mul:
683     return InstDesc(Kind == RecurKind::Mul, I);
684   case Instruction::And:
685     return InstDesc(Kind == RecurKind::And, I);
686   case Instruction::Or:
687     return InstDesc(Kind == RecurKind::Or, I);
688   case Instruction::Xor:
689     return InstDesc(Kind == RecurKind::Xor, I);
690   case Instruction::FDiv:
691   case Instruction::FMul:
692     return InstDesc(Kind == RecurKind::FMul, I,
693                     I->hasAllowReassoc() ? nullptr : I);
694   case Instruction::FSub:
695   case Instruction::FAdd:
696     return InstDesc(Kind == RecurKind::FAdd, I,
697                     I->hasAllowReassoc() ? nullptr : I);
698   case Instruction::Select:
699     if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
700       return isConditionalRdxPattern(Kind, I);
701     LLVM_FALLTHROUGH;
702   case Instruction::FCmp:
703   case Instruction::ICmp:
704   case Instruction::Call:
705     if (isSelectCmpRecurrenceKind(Kind))
706       return isSelectCmpPattern(L, OrigPhi, I, Prev);
707     if (isIntMinMaxRecurrenceKind(Kind) ||
708         (((FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) ||
709           (isa<FPMathOperator>(I) && I->hasNoNaNs() &&
710            I->hasNoSignedZeros())) &&
711          isFPMinMaxRecurrenceKind(Kind)))
712       return isMinMaxPattern(I, Kind, Prev);
713     return InstDesc(false, I);
714   }
715 }
716 
717 bool RecurrenceDescriptor::hasMultipleUsesOf(
718     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
719     unsigned MaxNumUses) {
720   unsigned NumUses = 0;
721   for (const Use &U : I->operands()) {
722     if (Insts.count(dyn_cast<Instruction>(U)))
723       ++NumUses;
724     if (NumUses > MaxNumUses)
725       return true;
726   }
727 
728   return false;
729 }
730 
731 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
732                                           RecurrenceDescriptor &RedDes,
733                                           DemandedBits *DB, AssumptionCache *AC,
734                                           DominatorTree *DT) {
735   BasicBlock *Header = TheLoop->getHeader();
736   Function &F = *Header->getParent();
737   FastMathFlags FMF;
738   FMF.setNoNaNs(
739       F.getFnAttribute("no-nans-fp-math").getValueAsBool());
740   FMF.setNoSignedZeros(
741       F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
742 
743   if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) {
744     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
745     return true;
746   }
747   if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) {
748     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
749     return true;
750   }
751   if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) {
752     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
753     return true;
754   }
755   if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) {
756     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
757     return true;
758   }
759   if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) {
760     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
761     return true;
762   }
763   if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
764     LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
765     return true;
766   }
767   if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
768     LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
769     return true;
770   }
771   if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
772     LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
773     return true;
774   }
775   if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
776     LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
777     return true;
778   }
779   if (AddReductionVar(Phi, RecurKind::SelectICmp, TheLoop, FMF, RedDes, DB, AC,
780                       DT)) {
781     LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
782                       << *Phi << "\n");
783     return true;
784   }
785   if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) {
786     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
787     return true;
788   }
789   if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) {
790     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
791     return true;
792   }
793   if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
794     LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
795     return true;
796   }
797   if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
798     LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
799     return true;
800   }
801   if (AddReductionVar(Phi, RecurKind::SelectFCmp, TheLoop, FMF, RedDes, DB, AC,
802                       DT)) {
803     LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
804                       << " PHI." << *Phi << "\n");
805     return true;
806   }
807   // Not a reduction of known type.
808   return false;
809 }
810 
811 bool RecurrenceDescriptor::isFirstOrderRecurrence(
812     PHINode *Phi, Loop *TheLoop,
813     MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
814 
815   // Ensure the phi node is in the loop header and has two incoming values.
816   if (Phi->getParent() != TheLoop->getHeader() ||
817       Phi->getNumIncomingValues() != 2)
818     return false;
819 
820   // Ensure the loop has a preheader and a single latch block. The loop
821   // vectorizer will need the latch to set up the next iteration of the loop.
822   auto *Preheader = TheLoop->getLoopPreheader();
823   auto *Latch = TheLoop->getLoopLatch();
824   if (!Preheader || !Latch)
825     return false;
826 
827   // Ensure the phi node's incoming blocks are the loop preheader and latch.
828   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
829       Phi->getBasicBlockIndex(Latch) < 0)
830     return false;
831 
832   // Get the previous value. The previous value comes from the latch edge while
833   // the initial value comes form the preheader edge.
834   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
835   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
836       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
837     return false;
838 
839   // Ensure every user of the phi node (recursively) is dominated by the
840   // previous value. The dominance requirement ensures the loop vectorizer will
841   // not need to vectorize the initial value prior to the first iteration of the
842   // loop.
843   // TODO: Consider extending this sinking to handle memory instructions.
844 
845   // We optimistically assume we can sink all users after Previous. Keep a set
846   // of instructions to sink after Previous ordered by dominance in the common
847   // basic block. It will be applied to SinkAfter if all users can be sunk.
848   auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) {
849     return A->comesBefore(B);
850   };
851   std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink(
852       CompareByComesBefore);
853 
854   BasicBlock *PhiBB = Phi->getParent();
855   SmallVector<Instruction *, 8> WorkList;
856   auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
857     // Already sunk SinkCandidate.
858     if (SinkCandidate->getParent() == PhiBB &&
859         InstrsToSink.find(SinkCandidate) != InstrsToSink.end())
860       return true;
861 
862     // Cyclic dependence.
863     if (Previous == SinkCandidate)
864       return false;
865 
866     if (DT->dominates(Previous,
867                       SinkCandidate)) // We already are good w/o sinking.
868       return true;
869 
870     if (SinkCandidate->getParent() != PhiBB ||
871         SinkCandidate->mayHaveSideEffects() ||
872         SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
873       return false;
874 
875     // Do not try to sink an instruction multiple times (if multiple operands
876     // are first order recurrences).
877     // TODO: We can support this case, by sinking the instruction after the
878     // 'deepest' previous instruction.
879     if (SinkAfter.find(SinkCandidate) != SinkAfter.end())
880       return false;
881 
882     // If we reach a PHI node that is not dominated by Previous, we reached a
883     // header PHI. No need for sinking.
884     if (isa<PHINode>(SinkCandidate))
885       return true;
886 
887     // Sink User tentatively and check its users
888     InstrsToSink.insert(SinkCandidate);
889     WorkList.push_back(SinkCandidate);
890     return true;
891   };
892 
893   WorkList.push_back(Phi);
894   // Try to recursively sink instructions and their users after Previous.
895   while (!WorkList.empty()) {
896     Instruction *Current = WorkList.pop_back_val();
897     for (User *User : Current->users()) {
898       if (!TryToPushSinkCandidate(cast<Instruction>(User)))
899         return false;
900     }
901   }
902 
903   // We can sink all users of Phi. Update the mapping.
904   for (Instruction *I : InstrsToSink) {
905     SinkAfter[I] = Previous;
906     Previous = I;
907   }
908   return true;
909 }
910 
911 /// This function returns the identity element (or neutral element) for
912 /// the operation K.
913 Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
914                                                    FastMathFlags FMF) {
915   switch (K) {
916   case RecurKind::Xor:
917   case RecurKind::Add:
918   case RecurKind::Or:
919     // Adding, Xoring, Oring zero to a number does not change it.
920     return ConstantInt::get(Tp, 0);
921   case RecurKind::Mul:
922     // Multiplying a number by 1 does not change it.
923     return ConstantInt::get(Tp, 1);
924   case RecurKind::And:
925     // AND-ing a number with an all-1 value does not change it.
926     return ConstantInt::get(Tp, -1, true);
927   case RecurKind::FMul:
928     // Multiplying a number by 1 does not change it.
929     return ConstantFP::get(Tp, 1.0L);
930   case RecurKind::FAdd:
931     // Adding zero to a number does not change it.
932     // FIXME: Ideally we should not need to check FMF for FAdd and should always
933     // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
934     // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
935     // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
936     // mean we can then remove the check for noSignedZeros() below (see D98963).
937     if (FMF.noSignedZeros())
938       return ConstantFP::get(Tp, 0.0L);
939     return ConstantFP::get(Tp, -0.0L);
940   case RecurKind::UMin:
941     return ConstantInt::get(Tp, -1);
942   case RecurKind::UMax:
943     return ConstantInt::get(Tp, 0);
944   case RecurKind::SMin:
945     return ConstantInt::get(Tp,
946                             APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
947   case RecurKind::SMax:
948     return ConstantInt::get(Tp,
949                             APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
950   case RecurKind::FMin:
951     return ConstantFP::getInfinity(Tp, true);
952   case RecurKind::FMax:
953     return ConstantFP::getInfinity(Tp, false);
954   case RecurKind::SelectICmp:
955   case RecurKind::SelectFCmp:
956     return getRecurrenceStartValue();
957     break;
958   default:
959     llvm_unreachable("Unknown recurrence kind");
960   }
961 }
962 
963 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
964   switch (Kind) {
965   case RecurKind::Add:
966     return Instruction::Add;
967   case RecurKind::Mul:
968     return Instruction::Mul;
969   case RecurKind::Or:
970     return Instruction::Or;
971   case RecurKind::And:
972     return Instruction::And;
973   case RecurKind::Xor:
974     return Instruction::Xor;
975   case RecurKind::FMul:
976     return Instruction::FMul;
977   case RecurKind::FAdd:
978     return Instruction::FAdd;
979   case RecurKind::SMax:
980   case RecurKind::SMin:
981   case RecurKind::UMax:
982   case RecurKind::UMin:
983   case RecurKind::SelectICmp:
984     return Instruction::ICmp;
985   case RecurKind::FMax:
986   case RecurKind::FMin:
987   case RecurKind::SelectFCmp:
988     return Instruction::FCmp;
989   default:
990     llvm_unreachable("Unknown recurrence operation");
991   }
992 }
993 
994 SmallVector<Instruction *, 4>
995 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
996   SmallVector<Instruction *, 4> ReductionOperations;
997   unsigned RedOp = getOpcode(Kind);
998 
999   // Search down from the Phi to the LoopExitInstr, looking for instructions
1000   // with a single user of the correct type for the reduction.
1001 
1002   // Note that we check that the type of the operand is correct for each item in
1003   // the chain, including the last (the loop exit value). This can come up from
1004   // sub, which would otherwise be treated as an add reduction. MinMax also need
1005   // to check for a pair of icmp/select, for which we use getNextInstruction and
1006   // isCorrectOpcode functions to step the right number of instruction, and
1007   // check the icmp/select pair.
1008   // FIXME: We also do not attempt to look through Phi/Select's yet, which might
1009   // be part of the reduction chain, or attempt to looks through And's to find a
1010   // smaller bitwidth. Subs are also currently not allowed (which are usually
1011   // treated as part of a add reduction) as they are expected to generally be
1012   // more expensive than out-of-loop reductions, and need to be costed more
1013   // carefully.
1014   unsigned ExpectedUses = 1;
1015   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1016     ExpectedUses = 2;
1017 
1018   auto getNextInstruction = [&](Instruction *Cur) {
1019     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1020       // We are expecting a icmp/select pair, which we go to the next select
1021       // instruction if we can. We already know that Cur has 2 uses.
1022       if (isa<SelectInst>(*Cur->user_begin()))
1023         return cast<Instruction>(*Cur->user_begin());
1024       else
1025         return cast<Instruction>(*std::next(Cur->user_begin()));
1026     }
1027     return cast<Instruction>(*Cur->user_begin());
1028   };
1029   auto isCorrectOpcode = [&](Instruction *Cur) {
1030     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1031       Value *LHS, *RHS;
1032       return SelectPatternResult::isMinOrMax(
1033           matchSelectPattern(Cur, LHS, RHS).Flavor);
1034     }
1035     return Cur->getOpcode() == RedOp;
1036   };
1037 
1038   // The loop exit instruction we check first (as a quick test) but add last. We
1039   // check the opcode is correct (and dont allow them to be Subs) and that they
1040   // have expected to have the expected number of uses. They will have one use
1041   // from the phi and one from a LCSSA value, no matter the type.
1042   if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
1043     return {};
1044 
1045   // Check that the Phi has one (or two for min/max) uses.
1046   if (!Phi->hasNUses(ExpectedUses))
1047     return {};
1048   Instruction *Cur = getNextInstruction(Phi);
1049 
1050   // Each other instruction in the chain should have the expected number of uses
1051   // and be the correct opcode.
1052   while (Cur != LoopExitInstr) {
1053     if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1054       return {};
1055 
1056     ReductionOperations.push_back(Cur);
1057     Cur = getNextInstruction(Cur);
1058   }
1059 
1060   ReductionOperations.push_back(Cur);
1061   return ReductionOperations;
1062 }
1063 
1064 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1065                                          const SCEV *Step, BinaryOperator *BOp,
1066                                          Type *ElementType,
1067                                          SmallVectorImpl<Instruction *> *Casts)
1068     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp),
1069       ElementType(ElementType) {
1070   assert(IK != IK_NoInduction && "Not an induction");
1071 
1072   // Start value type should match the induction kind and the value
1073   // itself should not be null.
1074   assert(StartValue && "StartValue is null");
1075   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1076          "StartValue is not a pointer for pointer induction");
1077   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1078          "StartValue is not an integer for integer induction");
1079 
1080   // Check the Step Value. It should be non-zero integer value.
1081   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1082          "Step value is zero");
1083 
1084   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
1085          "Step value should be constant for pointer induction");
1086   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1087          "StepValue is not an integer");
1088 
1089   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1090          "StepValue is not FP for FpInduction");
1091   assert((IK != IK_FpInduction ||
1092           (InductionBinOp &&
1093            (InductionBinOp->getOpcode() == Instruction::FAdd ||
1094             InductionBinOp->getOpcode() == Instruction::FSub))) &&
1095          "Binary opcode should be specified for FP induction");
1096 
1097   if (IK == IK_PtrInduction)
1098     assert(ElementType && "Pointer induction must have element type");
1099   else
1100     assert(!ElementType && "Non-pointer induction cannot have element type");
1101 
1102   if (Casts) {
1103     for (auto &Inst : *Casts) {
1104       RedundantCasts.push_back(Inst);
1105     }
1106   }
1107 }
1108 
1109 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1110   if (isa<SCEVConstant>(Step))
1111     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1112   return nullptr;
1113 }
1114 
1115 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1116                                            ScalarEvolution *SE,
1117                                            InductionDescriptor &D) {
1118 
1119   // Here we only handle FP induction variables.
1120   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1121 
1122   if (TheLoop->getHeader() != Phi->getParent())
1123     return false;
1124 
1125   // The loop may have multiple entrances or multiple exits; we can analyze
1126   // this phi if it has a unique entry value and a unique backedge value.
1127   if (Phi->getNumIncomingValues() != 2)
1128     return false;
1129   Value *BEValue = nullptr, *StartValue = nullptr;
1130   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1131     BEValue = Phi->getIncomingValue(0);
1132     StartValue = Phi->getIncomingValue(1);
1133   } else {
1134     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1135            "Unexpected Phi node in the loop");
1136     BEValue = Phi->getIncomingValue(1);
1137     StartValue = Phi->getIncomingValue(0);
1138   }
1139 
1140   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1141   if (!BOp)
1142     return false;
1143 
1144   Value *Addend = nullptr;
1145   if (BOp->getOpcode() == Instruction::FAdd) {
1146     if (BOp->getOperand(0) == Phi)
1147       Addend = BOp->getOperand(1);
1148     else if (BOp->getOperand(1) == Phi)
1149       Addend = BOp->getOperand(0);
1150   } else if (BOp->getOpcode() == Instruction::FSub)
1151     if (BOp->getOperand(0) == Phi)
1152       Addend = BOp->getOperand(1);
1153 
1154   if (!Addend)
1155     return false;
1156 
1157   // The addend should be loop invariant
1158   if (auto *I = dyn_cast<Instruction>(Addend))
1159     if (TheLoop->contains(I))
1160       return false;
1161 
1162   // FP Step has unknown SCEV
1163   const SCEV *Step = SE->getUnknown(Addend);
1164   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1165   return true;
1166 }
1167 
1168 /// This function is called when we suspect that the update-chain of a phi node
1169 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1170 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1171 /// predicate P under which the SCEV expression for the phi can be the
1172 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1173 /// cast instructions that are involved in the update-chain of this induction.
1174 /// A caller that adds the required runtime predicate can be free to drop these
1175 /// cast instructions, and compute the phi using \p AR (instead of some scev
1176 /// expression with casts).
1177 ///
1178 /// For example, without a predicate the scev expression can take the following
1179 /// form:
1180 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1181 ///
1182 /// It corresponds to the following IR sequence:
1183 /// %for.body:
1184 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1185 ///   %casted_phi = "ExtTrunc i64 %x"
1186 ///   %add = add i64 %casted_phi, %step
1187 ///
1188 /// where %x is given in \p PN,
1189 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1190 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1191 /// several forms, for example, such as:
1192 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1193 /// or:
1194 ///   ExtTrunc2:    %t = shl %x, m
1195 ///                 %casted_phi = ashr %t, m
1196 ///
1197 /// If we are able to find such sequence, we return the instructions
1198 /// we found, namely %casted_phi and the instructions on its use-def chain up
1199 /// to the phi (not including the phi).
1200 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1201                                     const SCEVUnknown *PhiScev,
1202                                     const SCEVAddRecExpr *AR,
1203                                     SmallVectorImpl<Instruction *> &CastInsts) {
1204 
1205   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1206   auto *PN = cast<PHINode>(PhiScev->getValue());
1207   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1208   const Loop *L = AR->getLoop();
1209 
1210   // Find any cast instructions that participate in the def-use chain of
1211   // PhiScev in the loop.
1212   // FORNOW/TODO: We currently expect the def-use chain to include only
1213   // two-operand instructions, where one of the operands is an invariant.
1214   // createAddRecFromPHIWithCasts() currently does not support anything more
1215   // involved than that, so we keep the search simple. This can be
1216   // extended/generalized as needed.
1217 
1218   auto getDef = [&](const Value *Val) -> Value * {
1219     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1220     if (!BinOp)
1221       return nullptr;
1222     Value *Op0 = BinOp->getOperand(0);
1223     Value *Op1 = BinOp->getOperand(1);
1224     Value *Def = nullptr;
1225     if (L->isLoopInvariant(Op0))
1226       Def = Op1;
1227     else if (L->isLoopInvariant(Op1))
1228       Def = Op0;
1229     return Def;
1230   };
1231 
1232   // Look for the instruction that defines the induction via the
1233   // loop backedge.
1234   BasicBlock *Latch = L->getLoopLatch();
1235   if (!Latch)
1236     return false;
1237   Value *Val = PN->getIncomingValueForBlock(Latch);
1238   if (!Val)
1239     return false;
1240 
1241   // Follow the def-use chain until the induction phi is reached.
1242   // If on the way we encounter a Value that has the same SCEV Expr as the
1243   // phi node, we can consider the instructions we visit from that point
1244   // as part of the cast-sequence that can be ignored.
1245   bool InCastSequence = false;
1246   auto *Inst = dyn_cast<Instruction>(Val);
1247   while (Val != PN) {
1248     // If we encountered a phi node other than PN, or if we left the loop,
1249     // we bail out.
1250     if (!Inst || !L->contains(Inst)) {
1251       return false;
1252     }
1253     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1254     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1255       InCastSequence = true;
1256     if (InCastSequence) {
1257       // Only the last instruction in the cast sequence is expected to have
1258       // uses outside the induction def-use chain.
1259       if (!CastInsts.empty())
1260         if (!Inst->hasOneUse())
1261           return false;
1262       CastInsts.push_back(Inst);
1263     }
1264     Val = getDef(Val);
1265     if (!Val)
1266       return false;
1267     Inst = dyn_cast<Instruction>(Val);
1268   }
1269 
1270   return InCastSequence;
1271 }
1272 
1273 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1274                                          PredicatedScalarEvolution &PSE,
1275                                          InductionDescriptor &D, bool Assume) {
1276   Type *PhiTy = Phi->getType();
1277 
1278   // Handle integer and pointer inductions variables.
1279   // Now we handle also FP induction but not trying to make a
1280   // recurrent expression from the PHI node in-place.
1281 
1282   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1283       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1284     return false;
1285 
1286   if (PhiTy->isFloatingPointTy())
1287     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1288 
1289   const SCEV *PhiScev = PSE.getSCEV(Phi);
1290   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1291 
1292   // We need this expression to be an AddRecExpr.
1293   if (Assume && !AR)
1294     AR = PSE.getAsAddRec(Phi);
1295 
1296   if (!AR) {
1297     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1298     return false;
1299   }
1300 
1301   // Record any Cast instructions that participate in the induction update
1302   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1303   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1304   // only after enabling Assume with PSCEV, this means we may have encountered
1305   // cast instructions that required adding a runtime check in order to
1306   // guarantee the correctness of the AddRecurrence respresentation of the
1307   // induction.
1308   if (PhiScev != AR && SymbolicPhi) {
1309     SmallVector<Instruction *, 2> Casts;
1310     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1311       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1312   }
1313 
1314   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1315 }
1316 
1317 bool InductionDescriptor::isInductionPHI(
1318     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1319     InductionDescriptor &D, const SCEV *Expr,
1320     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1321   Type *PhiTy = Phi->getType();
1322   // We only handle integer and pointer inductions variables.
1323   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1324     return false;
1325 
1326   // Check that the PHI is consecutive.
1327   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1328   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1329 
1330   if (!AR) {
1331     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1332     return false;
1333   }
1334 
1335   if (AR->getLoop() != TheLoop) {
1336     // FIXME: We should treat this as a uniform. Unfortunately, we
1337     // don't currently know how to handled uniform PHIs.
1338     LLVM_DEBUG(
1339         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1340     return false;
1341   }
1342 
1343   Value *StartValue =
1344       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1345 
1346   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1347   if (!Latch)
1348     return false;
1349 
1350   const SCEV *Step = AR->getStepRecurrence(*SE);
1351   // Calculate the pointer stride and check if it is consecutive.
1352   // The stride may be a constant or a loop invariant integer value.
1353   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1354   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1355     return false;
1356 
1357   if (PhiTy->isIntegerTy()) {
1358     BinaryOperator *BOp =
1359         dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1360     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1361                             /* ElementType */ nullptr, CastsToIgnore);
1362     return true;
1363   }
1364 
1365   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1366   // Pointer induction should be a constant.
1367   if (!ConstStep)
1368     return false;
1369 
1370   // Always use i8 element type for opaque pointer inductions.
1371   PointerType *PtrTy = cast<PointerType>(PhiTy);
1372   Type *ElementType = PtrTy->isOpaque() ? Type::getInt8Ty(PtrTy->getContext())
1373                                         : PtrTy->getElementType();
1374   if (!ElementType->isSized())
1375     return false;
1376 
1377   ConstantInt *CV = ConstStep->getValue();
1378   const DataLayout &DL = Phi->getModule()->getDataLayout();
1379   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(ElementType));
1380   if (!Size)
1381     return false;
1382 
1383   int64_t CVSize = CV->getSExtValue();
1384   if (CVSize % Size)
1385     return false;
1386   auto *StepValue =
1387       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1388   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue,
1389                           /* BinOp */ nullptr, ElementType);
1390   return true;
1391 }
1392