1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpander.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/ValueHandle.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/KnownBits.h" 37 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "iv-descriptors" 42 43 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 44 SmallPtrSetImpl<Instruction *> &Set) { 45 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 46 if (!Set.count(dyn_cast<Instruction>(*Use))) 47 return false; 48 return true; 49 } 50 51 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 52 switch (Kind) { 53 default: 54 break; 55 case RK_IntegerAdd: 56 case RK_IntegerMult: 57 case RK_IntegerOr: 58 case RK_IntegerAnd: 59 case RK_IntegerXor: 60 case RK_IntegerMinMax: 61 return true; 62 } 63 return false; 64 } 65 66 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 67 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 68 } 69 70 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 71 switch (Kind) { 72 default: 73 break; 74 case RK_IntegerAdd: 75 case RK_IntegerMult: 76 case RK_FloatAdd: 77 case RK_FloatMult: 78 return true; 79 } 80 return false; 81 } 82 83 /// Determines if Phi may have been type-promoted. If Phi has a single user 84 /// that ANDs the Phi with a type mask, return the user. RT is updated to 85 /// account for the narrower bit width represented by the mask, and the AND 86 /// instruction is added to CI. 87 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 88 SmallPtrSetImpl<Instruction *> &Visited, 89 SmallPtrSetImpl<Instruction *> &CI) { 90 if (!Phi->hasOneUse()) 91 return Phi; 92 93 const APInt *M = nullptr; 94 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 95 96 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 97 // with a new integer type of the corresponding bit width. 98 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 99 int32_t Bits = (*M + 1).exactLogBase2(); 100 if (Bits > 0) { 101 RT = IntegerType::get(Phi->getContext(), Bits); 102 Visited.insert(Phi); 103 CI.insert(J); 104 return J; 105 } 106 } 107 return Phi; 108 } 109 110 /// Compute the minimal bit width needed to represent a reduction whose exit 111 /// instruction is given by Exit. 112 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 113 DemandedBits *DB, 114 AssumptionCache *AC, 115 DominatorTree *DT) { 116 bool IsSigned = false; 117 const DataLayout &DL = Exit->getModule()->getDataLayout(); 118 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 119 120 if (DB) { 121 // Use the demanded bits analysis to determine the bits that are live out 122 // of the exit instruction, rounding up to the nearest power of two. If the 123 // use of demanded bits results in a smaller bit width, we know the value 124 // must be positive (i.e., IsSigned = false), because if this were not the 125 // case, the sign bit would have been demanded. 126 auto Mask = DB->getDemandedBits(Exit); 127 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 128 } 129 130 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 131 // If demanded bits wasn't able to limit the bit width, we can try to use 132 // value tracking instead. This can be the case, for example, if the value 133 // may be negative. 134 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 135 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 136 MaxBitWidth = NumTypeBits - NumSignBits; 137 KnownBits Bits = computeKnownBits(Exit, DL); 138 if (!Bits.isNonNegative()) { 139 // If the value is not known to be non-negative, we set IsSigned to true, 140 // meaning that we will use sext instructions instead of zext 141 // instructions to restore the original type. 142 IsSigned = true; 143 if (!Bits.isNegative()) 144 // If the value is not known to be negative, we don't known what the 145 // upper bit is, and therefore, we don't know what kind of extend we 146 // will need. In this case, just increase the bit width by one bit and 147 // use sext. 148 ++MaxBitWidth; 149 } 150 } 151 if (!isPowerOf2_64(MaxBitWidth)) 152 MaxBitWidth = NextPowerOf2(MaxBitWidth); 153 154 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 155 IsSigned); 156 } 157 158 /// Collect cast instructions that can be ignored in the vectorizer's cost 159 /// model, given a reduction exit value and the minimal type in which the 160 /// reduction can be represented. 161 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 162 Type *RecurrenceType, 163 SmallPtrSetImpl<Instruction *> &Casts) { 164 165 SmallVector<Instruction *, 8> Worklist; 166 SmallPtrSet<Instruction *, 8> Visited; 167 Worklist.push_back(Exit); 168 169 while (!Worklist.empty()) { 170 Instruction *Val = Worklist.pop_back_val(); 171 Visited.insert(Val); 172 if (auto *Cast = dyn_cast<CastInst>(Val)) 173 if (Cast->getSrcTy() == RecurrenceType) { 174 // If the source type of a cast instruction is equal to the recurrence 175 // type, it will be eliminated, and should be ignored in the vectorizer 176 // cost model. 177 Casts.insert(Cast); 178 continue; 179 } 180 181 // Add all operands to the work list if they are loop-varying values that 182 // we haven't yet visited. 183 for (Value *O : cast<User>(Val)->operands()) 184 if (auto *I = dyn_cast<Instruction>(O)) 185 if (TheLoop->contains(I) && !Visited.count(I)) 186 Worklist.push_back(I); 187 } 188 } 189 190 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 191 Loop *TheLoop, bool HasFunNoNaNAttr, 192 RecurrenceDescriptor &RedDes, 193 DemandedBits *DB, 194 AssumptionCache *AC, 195 DominatorTree *DT) { 196 if (Phi->getNumIncomingValues() != 2) 197 return false; 198 199 // Reduction variables are only found in the loop header block. 200 if (Phi->getParent() != TheLoop->getHeader()) 201 return false; 202 203 // Obtain the reduction start value from the value that comes from the loop 204 // preheader. 205 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 206 207 // ExitInstruction is the single value which is used outside the loop. 208 // We only allow for a single reduction value to be used outside the loop. 209 // This includes users of the reduction, variables (which form a cycle 210 // which ends in the phi node). 211 Instruction *ExitInstruction = nullptr; 212 // Indicates that we found a reduction operation in our scan. 213 bool FoundReduxOp = false; 214 215 // We start with the PHI node and scan for all of the users of this 216 // instruction. All users must be instructions that can be used as reduction 217 // variables (such as ADD). We must have a single out-of-block user. The cycle 218 // must include the original PHI. 219 bool FoundStartPHI = false; 220 221 // To recognize min/max patterns formed by a icmp select sequence, we store 222 // the number of instruction we saw from the recognized min/max pattern, 223 // to make sure we only see exactly the two instructions. 224 unsigned NumCmpSelectPatternInst = 0; 225 InstDesc ReduxDesc(false, nullptr); 226 227 // Data used for determining if the recurrence has been type-promoted. 228 Type *RecurrenceType = Phi->getType(); 229 SmallPtrSet<Instruction *, 4> CastInsts; 230 Instruction *Start = Phi; 231 bool IsSigned = false; 232 233 SmallPtrSet<Instruction *, 8> VisitedInsts; 234 SmallVector<Instruction *, 8> Worklist; 235 236 // Return early if the recurrence kind does not match the type of Phi. If the 237 // recurrence kind is arithmetic, we attempt to look through AND operations 238 // resulting from the type promotion performed by InstCombine. Vector 239 // operations are not limited to the legal integer widths, so we may be able 240 // to evaluate the reduction in the narrower width. 241 if (RecurrenceType->isFloatingPointTy()) { 242 if (!isFloatingPointRecurrenceKind(Kind)) 243 return false; 244 } else { 245 if (!isIntegerRecurrenceKind(Kind)) 246 return false; 247 if (isArithmeticRecurrenceKind(Kind)) 248 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 249 } 250 251 Worklist.push_back(Start); 252 VisitedInsts.insert(Start); 253 254 // Start with all flags set because we will intersect this with the reduction 255 // flags from all the reduction operations. 256 FastMathFlags FMF = FastMathFlags::getFast(); 257 258 // A value in the reduction can be used: 259 // - By the reduction: 260 // - Reduction operation: 261 // - One use of reduction value (safe). 262 // - Multiple use of reduction value (not safe). 263 // - PHI: 264 // - All uses of the PHI must be the reduction (safe). 265 // - Otherwise, not safe. 266 // - By instructions outside of the loop (safe). 267 // * One value may have several outside users, but all outside 268 // uses must be of the same value. 269 // - By an instruction that is not part of the reduction (not safe). 270 // This is either: 271 // * An instruction type other than PHI or the reduction operation. 272 // * A PHI in the header other than the initial PHI. 273 while (!Worklist.empty()) { 274 Instruction *Cur = Worklist.back(); 275 Worklist.pop_back(); 276 277 // No Users. 278 // If the instruction has no users then this is a broken chain and can't be 279 // a reduction variable. 280 if (Cur->use_empty()) 281 return false; 282 283 bool IsAPhi = isa<PHINode>(Cur); 284 285 // A header PHI use other than the original PHI. 286 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 287 return false; 288 289 // Reductions of instructions such as Div, and Sub is only possible if the 290 // LHS is the reduction variable. 291 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 292 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 293 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 294 return false; 295 296 // Any reduction instruction must be of one of the allowed kinds. We ignore 297 // the starting value (the Phi or an AND instruction if the Phi has been 298 // type-promoted). 299 if (Cur != Start) { 300 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 301 if (!ReduxDesc.isRecurrence()) 302 return false; 303 if (isa<FPMathOperator>(ReduxDesc.getPatternInst())) 304 FMF &= ReduxDesc.getPatternInst()->getFastMathFlags(); 305 } 306 307 bool IsASelect = isa<SelectInst>(Cur); 308 309 // A conditional reduction operation must only have 2 or less uses in 310 // VisitedInsts. 311 if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) && 312 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 313 return false; 314 315 // A reduction operation must only have one use of the reduction value. 316 if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax && 317 Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1)) 318 return false; 319 320 // All inputs to a PHI node must be a reduction value. 321 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 322 return false; 323 324 if (Kind == RK_IntegerMinMax && 325 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 326 ++NumCmpSelectPatternInst; 327 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 328 ++NumCmpSelectPatternInst; 329 330 // Check whether we found a reduction operator. 331 FoundReduxOp |= !IsAPhi && Cur != Start; 332 333 // Process users of current instruction. Push non-PHI nodes after PHI nodes 334 // onto the stack. This way we are going to have seen all inputs to PHI 335 // nodes once we get to them. 336 SmallVector<Instruction *, 8> NonPHIs; 337 SmallVector<Instruction *, 8> PHIs; 338 for (User *U : Cur->users()) { 339 Instruction *UI = cast<Instruction>(U); 340 341 // Check if we found the exit user. 342 BasicBlock *Parent = UI->getParent(); 343 if (!TheLoop->contains(Parent)) { 344 // If we already know this instruction is used externally, move on to 345 // the next user. 346 if (ExitInstruction == Cur) 347 continue; 348 349 // Exit if you find multiple values used outside or if the header phi 350 // node is being used. In this case the user uses the value of the 351 // previous iteration, in which case we would loose "VF-1" iterations of 352 // the reduction operation if we vectorize. 353 if (ExitInstruction != nullptr || Cur == Phi) 354 return false; 355 356 // The instruction used by an outside user must be the last instruction 357 // before we feed back to the reduction phi. Otherwise, we loose VF-1 358 // operations on the value. 359 if (!is_contained(Phi->operands(), Cur)) 360 return false; 361 362 ExitInstruction = Cur; 363 continue; 364 } 365 366 // Process instructions only once (termination). Each reduction cycle 367 // value must only be used once, except by phi nodes and min/max 368 // reductions which are represented as a cmp followed by a select. 369 InstDesc IgnoredVal(false, nullptr); 370 if (VisitedInsts.insert(UI).second) { 371 if (isa<PHINode>(UI)) 372 PHIs.push_back(UI); 373 else 374 NonPHIs.push_back(UI); 375 } else if (!isa<PHINode>(UI) && 376 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 377 !isa<SelectInst>(UI)) || 378 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 379 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) 380 return false; 381 382 // Remember that we completed the cycle. 383 if (UI == Phi) 384 FoundStartPHI = true; 385 } 386 Worklist.append(PHIs.begin(), PHIs.end()); 387 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 388 } 389 390 // This means we have seen one but not the other instruction of the 391 // pattern or more than just a select and cmp. 392 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 393 NumCmpSelectPatternInst != 2) 394 return false; 395 396 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 397 return false; 398 399 if (Start != Phi) { 400 // If the starting value is not the same as the phi node, we speculatively 401 // looked through an 'and' instruction when evaluating a potential 402 // arithmetic reduction to determine if it may have been type-promoted. 403 // 404 // We now compute the minimal bit width that is required to represent the 405 // reduction. If this is the same width that was indicated by the 'and', we 406 // can represent the reduction in the smaller type. The 'and' instruction 407 // will be eliminated since it will essentially be a cast instruction that 408 // can be ignore in the cost model. If we compute a different type than we 409 // did when evaluating the 'and', the 'and' will not be eliminated, and we 410 // will end up with different kinds of operations in the recurrence 411 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is 412 // the case. 413 // 414 // The vectorizer relies on InstCombine to perform the actual 415 // type-shrinking. It does this by inserting instructions to truncate the 416 // exit value of the reduction to the width indicated by RecurrenceType and 417 // then extend this value back to the original width. If IsSigned is false, 418 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 419 // used. 420 // 421 // TODO: We should not rely on InstCombine to rewrite the reduction in the 422 // smaller type. We should just generate a correctly typed expression 423 // to begin with. 424 Type *ComputedType; 425 std::tie(ComputedType, IsSigned) = 426 computeRecurrenceType(ExitInstruction, DB, AC, DT); 427 if (ComputedType != RecurrenceType) 428 return false; 429 430 // The recurrence expression will be represented in a narrower type. If 431 // there are any cast instructions that will be unnecessary, collect them 432 // in CastInsts. Note that the 'and' instruction was already included in 433 // this list. 434 // 435 // TODO: A better way to represent this may be to tag in some way all the 436 // instructions that are a part of the reduction. The vectorizer cost 437 // model could then apply the recurrence type to these instructions, 438 // without needing a white list of instructions to ignore. 439 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 440 } 441 442 // We found a reduction var if we have reached the original phi node and we 443 // only have a single instruction with out-of-loop users. 444 445 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 446 // is saved as part of the RecurrenceDescriptor. 447 448 // Save the description of this reduction variable. 449 RecurrenceDescriptor RD( 450 RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(), 451 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 452 RedDes = RD; 453 454 return true; 455 } 456 457 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 458 /// pattern corresponding to a min(X, Y) or max(X, Y). 459 RecurrenceDescriptor::InstDesc 460 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 461 462 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 463 "Expect a select instruction"); 464 Instruction *Cmp = nullptr; 465 SelectInst *Select = nullptr; 466 467 // We must handle the select(cmp()) as a single instruction. Advance to the 468 // select. 469 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 470 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 471 return InstDesc(false, I); 472 return InstDesc(Select, Prev.getMinMaxKind()); 473 } 474 475 // Only handle single use cases for now. 476 if (!(Select = dyn_cast<SelectInst>(I))) 477 return InstDesc(false, I); 478 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 479 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 480 return InstDesc(false, I); 481 if (!Cmp->hasOneUse()) 482 return InstDesc(false, I); 483 484 Value *CmpLeft; 485 Value *CmpRight; 486 487 // Look for a min/max pattern. 488 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 489 return InstDesc(Select, MRK_UIntMin); 490 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 491 return InstDesc(Select, MRK_UIntMax); 492 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 493 return InstDesc(Select, MRK_SIntMax); 494 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 495 return InstDesc(Select, MRK_SIntMin); 496 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 497 return InstDesc(Select, MRK_FloatMin); 498 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 499 return InstDesc(Select, MRK_FloatMax); 500 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 501 return InstDesc(Select, MRK_FloatMin); 502 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 503 return InstDesc(Select, MRK_FloatMax); 504 505 return InstDesc(false, I); 506 } 507 508 /// Returns true if the select instruction has users in the compare-and-add 509 /// reduction pattern below. The select instruction argument is the last one 510 /// in the sequence. 511 /// 512 /// %sum.1 = phi ... 513 /// ... 514 /// %cmp = fcmp pred %0, %CFP 515 /// %add = fadd %0, %sum.1 516 /// %sum.2 = select %cmp, %add, %sum.1 517 RecurrenceDescriptor::InstDesc 518 RecurrenceDescriptor::isConditionalRdxPattern( 519 RecurrenceKind Kind, Instruction *I) { 520 SelectInst *SI = dyn_cast<SelectInst>(I); 521 if (!SI) 522 return InstDesc(false, I); 523 524 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 525 // Only handle single use cases for now. 526 if (!CI || !CI->hasOneUse()) 527 return InstDesc(false, I); 528 529 Value *TrueVal = SI->getTrueValue(); 530 Value *FalseVal = SI->getFalseValue(); 531 // Handle only when either of operands of select instruction is a PHI 532 // node for now. 533 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 534 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 535 return InstDesc(false, I); 536 537 Instruction *I1 = 538 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 539 : dyn_cast<Instruction>(TrueVal); 540 if (!I1 || !I1->isBinaryOp()) 541 return InstDesc(false, I); 542 543 Value *Op1, *Op2; 544 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 545 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 546 I1->isFast()) 547 return InstDesc(Kind == RK_FloatAdd, SI); 548 549 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 550 return InstDesc(Kind == RK_FloatMult, SI); 551 552 return InstDesc(false, I); 553 } 554 555 RecurrenceDescriptor::InstDesc 556 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 557 InstDesc &Prev, bool HasFunNoNaNAttr) { 558 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 559 if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc()) 560 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 561 562 switch (I->getOpcode()) { 563 default: 564 return InstDesc(false, I); 565 case Instruction::PHI: 566 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 567 case Instruction::Sub: 568 case Instruction::Add: 569 return InstDesc(Kind == RK_IntegerAdd, I); 570 case Instruction::Mul: 571 return InstDesc(Kind == RK_IntegerMult, I); 572 case Instruction::And: 573 return InstDesc(Kind == RK_IntegerAnd, I); 574 case Instruction::Or: 575 return InstDesc(Kind == RK_IntegerOr, I); 576 case Instruction::Xor: 577 return InstDesc(Kind == RK_IntegerXor, I); 578 case Instruction::FMul: 579 return InstDesc(Kind == RK_FloatMult, I, UAI); 580 case Instruction::FSub: 581 case Instruction::FAdd: 582 return InstDesc(Kind == RK_FloatAdd, I, UAI); 583 case Instruction::Select: 584 if (Kind == RK_FloatAdd || Kind == RK_FloatMult) 585 return isConditionalRdxPattern(Kind, I); 586 LLVM_FALLTHROUGH; 587 case Instruction::FCmp: 588 case Instruction::ICmp: 589 if (Kind != RK_IntegerMinMax && 590 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 591 return InstDesc(false, I); 592 return isMinMaxSelectCmpPattern(I, Prev); 593 } 594 } 595 596 bool RecurrenceDescriptor::hasMultipleUsesOf( 597 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 598 unsigned MaxNumUses) { 599 unsigned NumUses = 0; 600 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 601 ++Use) { 602 if (Insts.count(dyn_cast<Instruction>(*Use))) 603 ++NumUses; 604 if (NumUses > MaxNumUses) 605 return true; 606 } 607 608 return false; 609 } 610 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 611 RecurrenceDescriptor &RedDes, 612 DemandedBits *DB, AssumptionCache *AC, 613 DominatorTree *DT) { 614 615 BasicBlock *Header = TheLoop->getHeader(); 616 Function &F = *Header->getParent(); 617 bool HasFunNoNaNAttr = 618 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 619 620 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 621 AC, DT)) { 622 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 623 return true; 624 } 625 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 626 AC, DT)) { 627 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 628 return true; 629 } 630 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB, 631 AC, DT)) { 632 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 633 return true; 634 } 635 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 636 AC, DT)) { 637 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 638 return true; 639 } 640 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB, 641 AC, DT)) { 642 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 643 return true; 644 } 645 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes, 646 DB, AC, DT)) { 647 LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 648 return true; 649 } 650 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 651 AC, DT)) { 652 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 653 return true; 654 } 655 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 656 AC, DT)) { 657 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 658 return true; 659 } 660 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, 661 AC, DT)) { 662 LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi 663 << "\n"); 664 return true; 665 } 666 // Not a reduction of known type. 667 return false; 668 } 669 670 bool RecurrenceDescriptor::isFirstOrderRecurrence( 671 PHINode *Phi, Loop *TheLoop, 672 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 673 674 // Ensure the phi node is in the loop header and has two incoming values. 675 if (Phi->getParent() != TheLoop->getHeader() || 676 Phi->getNumIncomingValues() != 2) 677 return false; 678 679 // Ensure the loop has a preheader and a single latch block. The loop 680 // vectorizer will need the latch to set up the next iteration of the loop. 681 auto *Preheader = TheLoop->getLoopPreheader(); 682 auto *Latch = TheLoop->getLoopLatch(); 683 if (!Preheader || !Latch) 684 return false; 685 686 // Ensure the phi node's incoming blocks are the loop preheader and latch. 687 if (Phi->getBasicBlockIndex(Preheader) < 0 || 688 Phi->getBasicBlockIndex(Latch) < 0) 689 return false; 690 691 // Get the previous value. The previous value comes from the latch edge while 692 // the initial value comes form the preheader edge. 693 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 694 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 695 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 696 return false; 697 698 // Ensure every user of the phi node is dominated by the previous value. 699 // The dominance requirement ensures the loop vectorizer will not need to 700 // vectorize the initial value prior to the first iteration of the loop. 701 // TODO: Consider extending this sinking to handle other kinds of instructions 702 // and expressions, beyond sinking a single cast past Previous. 703 if (Phi->hasOneUse()) { 704 auto *I = Phi->user_back(); 705 if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() && 706 DT->dominates(Previous, I->user_back())) { 707 if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking. 708 SinkAfter[I] = Previous; 709 return true; 710 } 711 } 712 713 for (User *U : Phi->users()) 714 if (auto *I = dyn_cast<Instruction>(U)) { 715 if (!DT->dominates(Previous, I)) 716 return false; 717 } 718 719 return true; 720 } 721 722 /// This function returns the identity element (or neutral element) for 723 /// the operation K. 724 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 725 Type *Tp) { 726 switch (K) { 727 case RK_IntegerXor: 728 case RK_IntegerAdd: 729 case RK_IntegerOr: 730 // Adding, Xoring, Oring zero to a number does not change it. 731 return ConstantInt::get(Tp, 0); 732 case RK_IntegerMult: 733 // Multiplying a number by 1 does not change it. 734 return ConstantInt::get(Tp, 1); 735 case RK_IntegerAnd: 736 // AND-ing a number with an all-1 value does not change it. 737 return ConstantInt::get(Tp, -1, true); 738 case RK_FloatMult: 739 // Multiplying a number by 1 does not change it. 740 return ConstantFP::get(Tp, 1.0L); 741 case RK_FloatAdd: 742 // Adding zero to a number does not change it. 743 return ConstantFP::get(Tp, 0.0L); 744 default: 745 llvm_unreachable("Unknown recurrence kind"); 746 } 747 } 748 749 /// This function translates the recurrence kind to an LLVM binary operator. 750 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 751 switch (Kind) { 752 case RK_IntegerAdd: 753 return Instruction::Add; 754 case RK_IntegerMult: 755 return Instruction::Mul; 756 case RK_IntegerOr: 757 return Instruction::Or; 758 case RK_IntegerAnd: 759 return Instruction::And; 760 case RK_IntegerXor: 761 return Instruction::Xor; 762 case RK_FloatMult: 763 return Instruction::FMul; 764 case RK_FloatAdd: 765 return Instruction::FAdd; 766 case RK_IntegerMinMax: 767 return Instruction::ICmp; 768 case RK_FloatMinMax: 769 return Instruction::FCmp; 770 default: 771 llvm_unreachable("Unknown recurrence operation"); 772 } 773 } 774 775 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 776 const SCEV *Step, BinaryOperator *BOp, 777 SmallVectorImpl<Instruction *> *Casts) 778 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 779 assert(IK != IK_NoInduction && "Not an induction"); 780 781 // Start value type should match the induction kind and the value 782 // itself should not be null. 783 assert(StartValue && "StartValue is null"); 784 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 785 "StartValue is not a pointer for pointer induction"); 786 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 787 "StartValue is not an integer for integer induction"); 788 789 // Check the Step Value. It should be non-zero integer value. 790 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 791 "Step value is zero"); 792 793 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 794 "Step value should be constant for pointer induction"); 795 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 796 "StepValue is not an integer"); 797 798 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 799 "StepValue is not FP for FpInduction"); 800 assert((IK != IK_FpInduction || 801 (InductionBinOp && 802 (InductionBinOp->getOpcode() == Instruction::FAdd || 803 InductionBinOp->getOpcode() == Instruction::FSub))) && 804 "Binary opcode should be specified for FP induction"); 805 806 if (Casts) { 807 for (auto &Inst : *Casts) { 808 RedundantCasts.push_back(Inst); 809 } 810 } 811 } 812 813 int InductionDescriptor::getConsecutiveDirection() const { 814 ConstantInt *ConstStep = getConstIntStepValue(); 815 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 816 return ConstStep->getSExtValue(); 817 return 0; 818 } 819 820 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 821 if (isa<SCEVConstant>(Step)) 822 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 823 return nullptr; 824 } 825 826 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 827 ScalarEvolution *SE, 828 InductionDescriptor &D) { 829 830 // Here we only handle FP induction variables. 831 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 832 833 if (TheLoop->getHeader() != Phi->getParent()) 834 return false; 835 836 // The loop may have multiple entrances or multiple exits; we can analyze 837 // this phi if it has a unique entry value and a unique backedge value. 838 if (Phi->getNumIncomingValues() != 2) 839 return false; 840 Value *BEValue = nullptr, *StartValue = nullptr; 841 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 842 BEValue = Phi->getIncomingValue(0); 843 StartValue = Phi->getIncomingValue(1); 844 } else { 845 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 846 "Unexpected Phi node in the loop"); 847 BEValue = Phi->getIncomingValue(1); 848 StartValue = Phi->getIncomingValue(0); 849 } 850 851 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 852 if (!BOp) 853 return false; 854 855 Value *Addend = nullptr; 856 if (BOp->getOpcode() == Instruction::FAdd) { 857 if (BOp->getOperand(0) == Phi) 858 Addend = BOp->getOperand(1); 859 else if (BOp->getOperand(1) == Phi) 860 Addend = BOp->getOperand(0); 861 } else if (BOp->getOpcode() == Instruction::FSub) 862 if (BOp->getOperand(0) == Phi) 863 Addend = BOp->getOperand(1); 864 865 if (!Addend) 866 return false; 867 868 // The addend should be loop invariant 869 if (auto *I = dyn_cast<Instruction>(Addend)) 870 if (TheLoop->contains(I)) 871 return false; 872 873 // FP Step has unknown SCEV 874 const SCEV *Step = SE->getUnknown(Addend); 875 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 876 return true; 877 } 878 879 /// This function is called when we suspect that the update-chain of a phi node 880 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 881 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 882 /// predicate P under which the SCEV expression for the phi can be the 883 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 884 /// cast instructions that are involved in the update-chain of this induction. 885 /// A caller that adds the required runtime predicate can be free to drop these 886 /// cast instructions, and compute the phi using \p AR (instead of some scev 887 /// expression with casts). 888 /// 889 /// For example, without a predicate the scev expression can take the following 890 /// form: 891 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 892 /// 893 /// It corresponds to the following IR sequence: 894 /// %for.body: 895 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 896 /// %casted_phi = "ExtTrunc i64 %x" 897 /// %add = add i64 %casted_phi, %step 898 /// 899 /// where %x is given in \p PN, 900 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 901 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 902 /// several forms, for example, such as: 903 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 904 /// or: 905 /// ExtTrunc2: %t = shl %x, m 906 /// %casted_phi = ashr %t, m 907 /// 908 /// If we are able to find such sequence, we return the instructions 909 /// we found, namely %casted_phi and the instructions on its use-def chain up 910 /// to the phi (not including the phi). 911 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 912 const SCEVUnknown *PhiScev, 913 const SCEVAddRecExpr *AR, 914 SmallVectorImpl<Instruction *> &CastInsts) { 915 916 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 917 auto *PN = cast<PHINode>(PhiScev->getValue()); 918 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 919 const Loop *L = AR->getLoop(); 920 921 // Find any cast instructions that participate in the def-use chain of 922 // PhiScev in the loop. 923 // FORNOW/TODO: We currently expect the def-use chain to include only 924 // two-operand instructions, where one of the operands is an invariant. 925 // createAddRecFromPHIWithCasts() currently does not support anything more 926 // involved than that, so we keep the search simple. This can be 927 // extended/generalized as needed. 928 929 auto getDef = [&](const Value *Val) -> Value * { 930 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 931 if (!BinOp) 932 return nullptr; 933 Value *Op0 = BinOp->getOperand(0); 934 Value *Op1 = BinOp->getOperand(1); 935 Value *Def = nullptr; 936 if (L->isLoopInvariant(Op0)) 937 Def = Op1; 938 else if (L->isLoopInvariant(Op1)) 939 Def = Op0; 940 return Def; 941 }; 942 943 // Look for the instruction that defines the induction via the 944 // loop backedge. 945 BasicBlock *Latch = L->getLoopLatch(); 946 if (!Latch) 947 return false; 948 Value *Val = PN->getIncomingValueForBlock(Latch); 949 if (!Val) 950 return false; 951 952 // Follow the def-use chain until the induction phi is reached. 953 // If on the way we encounter a Value that has the same SCEV Expr as the 954 // phi node, we can consider the instructions we visit from that point 955 // as part of the cast-sequence that can be ignored. 956 bool InCastSequence = false; 957 auto *Inst = dyn_cast<Instruction>(Val); 958 while (Val != PN) { 959 // If we encountered a phi node other than PN, or if we left the loop, 960 // we bail out. 961 if (!Inst || !L->contains(Inst)) { 962 return false; 963 } 964 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 965 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 966 InCastSequence = true; 967 if (InCastSequence) { 968 // Only the last instruction in the cast sequence is expected to have 969 // uses outside the induction def-use chain. 970 if (!CastInsts.empty()) 971 if (!Inst->hasOneUse()) 972 return false; 973 CastInsts.push_back(Inst); 974 } 975 Val = getDef(Val); 976 if (!Val) 977 return false; 978 Inst = dyn_cast<Instruction>(Val); 979 } 980 981 return InCastSequence; 982 } 983 984 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 985 PredicatedScalarEvolution &PSE, 986 InductionDescriptor &D, bool Assume) { 987 Type *PhiTy = Phi->getType(); 988 989 // Handle integer and pointer inductions variables. 990 // Now we handle also FP induction but not trying to make a 991 // recurrent expression from the PHI node in-place. 992 993 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 994 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 995 return false; 996 997 if (PhiTy->isFloatingPointTy()) 998 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 999 1000 const SCEV *PhiScev = PSE.getSCEV(Phi); 1001 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1002 1003 // We need this expression to be an AddRecExpr. 1004 if (Assume && !AR) 1005 AR = PSE.getAsAddRec(Phi); 1006 1007 if (!AR) { 1008 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1009 return false; 1010 } 1011 1012 // Record any Cast instructions that participate in the induction update 1013 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1014 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1015 // only after enabling Assume with PSCEV, this means we may have encountered 1016 // cast instructions that required adding a runtime check in order to 1017 // guarantee the correctness of the AddRecurrence respresentation of the 1018 // induction. 1019 if (PhiScev != AR && SymbolicPhi) { 1020 SmallVector<Instruction *, 2> Casts; 1021 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1022 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1023 } 1024 1025 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1026 } 1027 1028 bool InductionDescriptor::isInductionPHI( 1029 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1030 InductionDescriptor &D, const SCEV *Expr, 1031 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1032 Type *PhiTy = Phi->getType(); 1033 // We only handle integer and pointer inductions variables. 1034 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1035 return false; 1036 1037 // Check that the PHI is consecutive. 1038 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1039 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1040 1041 if (!AR) { 1042 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1043 return false; 1044 } 1045 1046 if (AR->getLoop() != TheLoop) { 1047 // FIXME: We should treat this as a uniform. Unfortunately, we 1048 // don't currently know how to handled uniform PHIs. 1049 LLVM_DEBUG( 1050 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1051 return false; 1052 } 1053 1054 Value *StartValue = 1055 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1056 1057 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1058 if (!Latch) 1059 return false; 1060 BinaryOperator *BOp = 1061 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1062 1063 const SCEV *Step = AR->getStepRecurrence(*SE); 1064 // Calculate the pointer stride and check if it is consecutive. 1065 // The stride may be a constant or a loop invariant integer value. 1066 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1067 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1068 return false; 1069 1070 if (PhiTy->isIntegerTy()) { 1071 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1072 CastsToIgnore); 1073 return true; 1074 } 1075 1076 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1077 // Pointer induction should be a constant. 1078 if (!ConstStep) 1079 return false; 1080 1081 ConstantInt *CV = ConstStep->getValue(); 1082 Type *PointerElementType = PhiTy->getPointerElementType(); 1083 // The pointer stride cannot be determined if the pointer element type is not 1084 // sized. 1085 if (!PointerElementType->isSized()) 1086 return false; 1087 1088 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1089 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1090 if (!Size) 1091 return false; 1092 1093 int64_t CVSize = CV->getSExtValue(); 1094 if (CVSize % Size) 1095 return false; 1096 auto *StepValue = 1097 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1098 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp); 1099 return true; 1100 } 1101