xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/Analysis/DemandedBits.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/KnownBits.h"
26 
27 using namespace llvm;
28 using namespace llvm::PatternMatch;
29 
30 #define DEBUG_TYPE "iv-descriptors"
31 
32 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
33                                         SmallPtrSetImpl<Instruction *> &Set) {
34   for (const Use &Use : I->operands())
35     if (!Set.count(dyn_cast<Instruction>(Use)))
36       return false;
37   return true;
38 }
39 
40 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
41   switch (Kind) {
42   default:
43     break;
44   case RecurKind::Add:
45   case RecurKind::Mul:
46   case RecurKind::Or:
47   case RecurKind::And:
48   case RecurKind::Xor:
49   case RecurKind::SMax:
50   case RecurKind::SMin:
51   case RecurKind::UMax:
52   case RecurKind::UMin:
53   case RecurKind::IAnyOf:
54   case RecurKind::FAnyOf:
55     return true;
56   }
57   return false;
58 }
59 
60 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
61   return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
62 }
63 
64 /// Determines if Phi may have been type-promoted. If Phi has a single user
65 /// that ANDs the Phi with a type mask, return the user. RT is updated to
66 /// account for the narrower bit width represented by the mask, and the AND
67 /// instruction is added to CI.
68 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
69                                    SmallPtrSetImpl<Instruction *> &Visited,
70                                    SmallPtrSetImpl<Instruction *> &CI) {
71   if (!Phi->hasOneUse())
72     return Phi;
73 
74   const APInt *M = nullptr;
75   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
76 
77   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
78   // with a new integer type of the corresponding bit width.
79   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
80     int32_t Bits = (*M + 1).exactLogBase2();
81     if (Bits > 0) {
82       RT = IntegerType::get(Phi->getContext(), Bits);
83       Visited.insert(Phi);
84       CI.insert(J);
85       return J;
86     }
87   }
88   return Phi;
89 }
90 
91 /// Compute the minimal bit width needed to represent a reduction whose exit
92 /// instruction is given by Exit.
93 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
94                                                      DemandedBits *DB,
95                                                      AssumptionCache *AC,
96                                                      DominatorTree *DT) {
97   bool IsSigned = false;
98   const DataLayout &DL = Exit->getModule()->getDataLayout();
99   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
100 
101   if (DB) {
102     // Use the demanded bits analysis to determine the bits that are live out
103     // of the exit instruction, rounding up to the nearest power of two. If the
104     // use of demanded bits results in a smaller bit width, we know the value
105     // must be positive (i.e., IsSigned = false), because if this were not the
106     // case, the sign bit would have been demanded.
107     auto Mask = DB->getDemandedBits(Exit);
108     MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero();
109   }
110 
111   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
112     // If demanded bits wasn't able to limit the bit width, we can try to use
113     // value tracking instead. This can be the case, for example, if the value
114     // may be negative.
115     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
116     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
117     MaxBitWidth = NumTypeBits - NumSignBits;
118     KnownBits Bits = computeKnownBits(Exit, DL);
119     if (!Bits.isNonNegative()) {
120       // If the value is not known to be non-negative, we set IsSigned to true,
121       // meaning that we will use sext instructions instead of zext
122       // instructions to restore the original type.
123       IsSigned = true;
124       // Make sure at least one sign bit is included in the result, so it
125       // will get properly sign-extended.
126       ++MaxBitWidth;
127     }
128   }
129   MaxBitWidth = llvm::bit_ceil(MaxBitWidth);
130 
131   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
132                         IsSigned);
133 }
134 
135 /// Collect cast instructions that can be ignored in the vectorizer's cost
136 /// model, given a reduction exit value and the minimal type in which the
137 // reduction can be represented. Also search casts to the recurrence type
138 // to find the minimum width used by the recurrence.
139 static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
140                               Type *RecurrenceType,
141                               SmallPtrSetImpl<Instruction *> &Casts,
142                               unsigned &MinWidthCastToRecurTy) {
143 
144   SmallVector<Instruction *, 8> Worklist;
145   SmallPtrSet<Instruction *, 8> Visited;
146   Worklist.push_back(Exit);
147   MinWidthCastToRecurTy = -1U;
148 
149   while (!Worklist.empty()) {
150     Instruction *Val = Worklist.pop_back_val();
151     Visited.insert(Val);
152     if (auto *Cast = dyn_cast<CastInst>(Val)) {
153       if (Cast->getSrcTy() == RecurrenceType) {
154         // If the source type of a cast instruction is equal to the recurrence
155         // type, it will be eliminated, and should be ignored in the vectorizer
156         // cost model.
157         Casts.insert(Cast);
158         continue;
159       }
160       if (Cast->getDestTy() == RecurrenceType) {
161         // The minimum width used by the recurrence is found by checking for
162         // casts on its operands. The minimum width is used by the vectorizer
163         // when finding the widest type for in-loop reductions without any
164         // loads/stores.
165         MinWidthCastToRecurTy = std::min<unsigned>(
166             MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
167         continue;
168       }
169     }
170     // Add all operands to the work list if they are loop-varying values that
171     // we haven't yet visited.
172     for (Value *O : cast<User>(Val)->operands())
173       if (auto *I = dyn_cast<Instruction>(O))
174         if (TheLoop->contains(I) && !Visited.count(I))
175           Worklist.push_back(I);
176   }
177 }
178 
179 // Check if a given Phi node can be recognized as an ordered reduction for
180 // vectorizing floating point operations without unsafe math.
181 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
182                                   Instruction *Exit, PHINode *Phi) {
183   // Currently only FAdd and FMulAdd are supported.
184   if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
185     return false;
186 
187   if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
188     return false;
189 
190   if (Kind == RecurKind::FMulAdd &&
191       !RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
192     return false;
193 
194   // Ensure the exit instruction has only one user other than the reduction PHI
195   if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
196     return false;
197 
198   // The only pattern accepted is the one in which the reduction PHI
199   // is used as one of the operands of the exit instruction
200   auto *Op0 = Exit->getOperand(0);
201   auto *Op1 = Exit->getOperand(1);
202   if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
203     return false;
204   if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
205     return false;
206 
207   LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
208                     << ", ExitInst: " << *Exit << "\n");
209 
210   return true;
211 }
212 
213 bool RecurrenceDescriptor::AddReductionVar(
214     PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF,
215     RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC,
216     DominatorTree *DT, ScalarEvolution *SE) {
217   if (Phi->getNumIncomingValues() != 2)
218     return false;
219 
220   // Reduction variables are only found in the loop header block.
221   if (Phi->getParent() != TheLoop->getHeader())
222     return false;
223 
224   // Obtain the reduction start value from the value that comes from the loop
225   // preheader.
226   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
227 
228   // ExitInstruction is the single value which is used outside the loop.
229   // We only allow for a single reduction value to be used outside the loop.
230   // This includes users of the reduction, variables (which form a cycle
231   // which ends in the phi node).
232   Instruction *ExitInstruction = nullptr;
233 
234   // Variable to keep last visited store instruction. By the end of the
235   // algorithm this variable will be either empty or having intermediate
236   // reduction value stored in invariant address.
237   StoreInst *IntermediateStore = nullptr;
238 
239   // Indicates that we found a reduction operation in our scan.
240   bool FoundReduxOp = false;
241 
242   // We start with the PHI node and scan for all of the users of this
243   // instruction. All users must be instructions that can be used as reduction
244   // variables (such as ADD). We must have a single out-of-block user. The cycle
245   // must include the original PHI.
246   bool FoundStartPHI = false;
247 
248   // To recognize min/max patterns formed by a icmp select sequence, we store
249   // the number of instruction we saw from the recognized min/max pattern,
250   //  to make sure we only see exactly the two instructions.
251   unsigned NumCmpSelectPatternInst = 0;
252   InstDesc ReduxDesc(false, nullptr);
253 
254   // Data used for determining if the recurrence has been type-promoted.
255   Type *RecurrenceType = Phi->getType();
256   SmallPtrSet<Instruction *, 4> CastInsts;
257   unsigned MinWidthCastToRecurrenceType;
258   Instruction *Start = Phi;
259   bool IsSigned = false;
260 
261   SmallPtrSet<Instruction *, 8> VisitedInsts;
262   SmallVector<Instruction *, 8> Worklist;
263 
264   // Return early if the recurrence kind does not match the type of Phi. If the
265   // recurrence kind is arithmetic, we attempt to look through AND operations
266   // resulting from the type promotion performed by InstCombine.  Vector
267   // operations are not limited to the legal integer widths, so we may be able
268   // to evaluate the reduction in the narrower width.
269   if (RecurrenceType->isFloatingPointTy()) {
270     if (!isFloatingPointRecurrenceKind(Kind))
271       return false;
272   } else if (RecurrenceType->isIntegerTy()) {
273     if (!isIntegerRecurrenceKind(Kind))
274       return false;
275     if (!isMinMaxRecurrenceKind(Kind))
276       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
277   } else {
278     // Pointer min/max may exist, but it is not supported as a reduction op.
279     return false;
280   }
281 
282   Worklist.push_back(Start);
283   VisitedInsts.insert(Start);
284 
285   // Start with all flags set because we will intersect this with the reduction
286   // flags from all the reduction operations.
287   FastMathFlags FMF = FastMathFlags::getFast();
288 
289   // The first instruction in the use-def chain of the Phi node that requires
290   // exact floating point operations.
291   Instruction *ExactFPMathInst = nullptr;
292 
293   // A value in the reduction can be used:
294   //  - By the reduction:
295   //      - Reduction operation:
296   //        - One use of reduction value (safe).
297   //        - Multiple use of reduction value (not safe).
298   //      - PHI:
299   //        - All uses of the PHI must be the reduction (safe).
300   //        - Otherwise, not safe.
301   //  - By instructions outside of the loop (safe).
302   //      * One value may have several outside users, but all outside
303   //        uses must be of the same value.
304   //  - By store instructions with a loop invariant address (safe with
305   //    the following restrictions):
306   //      * If there are several stores, all must have the same address.
307   //      * Final value should be stored in that loop invariant address.
308   //  - By an instruction that is not part of the reduction (not safe).
309   //    This is either:
310   //      * An instruction type other than PHI or the reduction operation.
311   //      * A PHI in the header other than the initial PHI.
312   while (!Worklist.empty()) {
313     Instruction *Cur = Worklist.pop_back_val();
314 
315     // Store instructions are allowed iff it is the store of the reduction
316     // value to the same loop invariant memory location.
317     if (auto *SI = dyn_cast<StoreInst>(Cur)) {
318       if (!SE) {
319         LLVM_DEBUG(dbgs() << "Store instructions are not processed without "
320                           << "Scalar Evolution Analysis\n");
321         return false;
322       }
323 
324       const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand());
325       // Check it is the same address as previous stores
326       if (IntermediateStore) {
327         const SCEV *OtherScev =
328             SE->getSCEV(IntermediateStore->getPointerOperand());
329 
330         if (OtherScev != PtrScev) {
331           LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses "
332                             << "inside the loop: " << *SI->getPointerOperand()
333                             << " and "
334                             << *IntermediateStore->getPointerOperand() << '\n');
335           return false;
336         }
337       }
338 
339       // Check the pointer is loop invariant
340       if (!SE->isLoopInvariant(PtrScev, TheLoop)) {
341         LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address "
342                           << "inside the loop: " << *SI->getPointerOperand()
343                           << '\n');
344         return false;
345       }
346 
347       // IntermediateStore is always the last store in the loop.
348       IntermediateStore = SI;
349       continue;
350     }
351 
352     // No Users.
353     // If the instruction has no users then this is a broken chain and can't be
354     // a reduction variable.
355     if (Cur->use_empty())
356       return false;
357 
358     bool IsAPhi = isa<PHINode>(Cur);
359 
360     // A header PHI use other than the original PHI.
361     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
362       return false;
363 
364     // Reductions of instructions such as Div, and Sub is only possible if the
365     // LHS is the reduction variable.
366     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
367         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
368         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
369       return false;
370 
371     // Any reduction instruction must be of one of the allowed kinds. We ignore
372     // the starting value (the Phi or an AND instruction if the Phi has been
373     // type-promoted).
374     if (Cur != Start) {
375       ReduxDesc =
376           isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
377       ExactFPMathInst = ExactFPMathInst == nullptr
378                             ? ReduxDesc.getExactFPMathInst()
379                             : ExactFPMathInst;
380       if (!ReduxDesc.isRecurrence())
381         return false;
382       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
383       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
384         FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
385         if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
386           // Accept FMF on either fcmp or select of a min/max idiom.
387           // TODO: This is a hack to work-around the fact that FMF may not be
388           //       assigned/propagated correctly. If that problem is fixed or we
389           //       standardize on fmin/fmax via intrinsics, this can be removed.
390           if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
391             CurFMF |= FCmp->getFastMathFlags();
392         }
393         FMF &= CurFMF;
394       }
395       // Update this reduction kind if we matched a new instruction.
396       // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
397       //       state accurate while processing the worklist?
398       if (ReduxDesc.getRecKind() != RecurKind::None)
399         Kind = ReduxDesc.getRecKind();
400     }
401 
402     bool IsASelect = isa<SelectInst>(Cur);
403 
404     // A conditional reduction operation must only have 2 or less uses in
405     // VisitedInsts.
406     if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
407         hasMultipleUsesOf(Cur, VisitedInsts, 2))
408       return false;
409 
410     // A reduction operation must only have one use of the reduction value.
411     if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
412         !isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(Cur, VisitedInsts, 1))
413       return false;
414 
415     // All inputs to a PHI node must be a reduction value.
416     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
417       return false;
418 
419     if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::IAnyOf) &&
420         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
421       ++NumCmpSelectPatternInst;
422     if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::FAnyOf) &&
423         (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
424       ++NumCmpSelectPatternInst;
425 
426     // Check  whether we found a reduction operator.
427     FoundReduxOp |= !IsAPhi && Cur != Start;
428 
429     // Process users of current instruction. Push non-PHI nodes after PHI nodes
430     // onto the stack. This way we are going to have seen all inputs to PHI
431     // nodes once we get to them.
432     SmallVector<Instruction *, 8> NonPHIs;
433     SmallVector<Instruction *, 8> PHIs;
434     for (User *U : Cur->users()) {
435       Instruction *UI = cast<Instruction>(U);
436 
437       // If the user is a call to llvm.fmuladd then the instruction can only be
438       // the final operand.
439       if (isFMulAddIntrinsic(UI))
440         if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
441           return false;
442 
443       // Check if we found the exit user.
444       BasicBlock *Parent = UI->getParent();
445       if (!TheLoop->contains(Parent)) {
446         // If we already know this instruction is used externally, move on to
447         // the next user.
448         if (ExitInstruction == Cur)
449           continue;
450 
451         // Exit if you find multiple values used outside or if the header phi
452         // node is being used. In this case the user uses the value of the
453         // previous iteration, in which case we would loose "VF-1" iterations of
454         // the reduction operation if we vectorize.
455         if (ExitInstruction != nullptr || Cur == Phi)
456           return false;
457 
458         // The instruction used by an outside user must be the last instruction
459         // before we feed back to the reduction phi. Otherwise, we loose VF-1
460         // operations on the value.
461         if (!is_contained(Phi->operands(), Cur))
462           return false;
463 
464         ExitInstruction = Cur;
465         continue;
466       }
467 
468       // Process instructions only once (termination). Each reduction cycle
469       // value must only be used once, except by phi nodes and min/max
470       // reductions which are represented as a cmp followed by a select.
471       InstDesc IgnoredVal(false, nullptr);
472       if (VisitedInsts.insert(UI).second) {
473         if (isa<PHINode>(UI)) {
474           PHIs.push_back(UI);
475         } else {
476           StoreInst *SI = dyn_cast<StoreInst>(UI);
477           if (SI && SI->getPointerOperand() == Cur) {
478             // Reduction variable chain can only be stored somewhere but it
479             // can't be used as an address.
480             return false;
481           }
482           NonPHIs.push_back(UI);
483         }
484       } else if (!isa<PHINode>(UI) &&
485                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
486                    !isa<SelectInst>(UI)) ||
487                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
488                    !isAnyOfPattern(TheLoop, Phi, UI, IgnoredVal)
489                         .isRecurrence() &&
490                    !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
491         return false;
492 
493       // Remember that we completed the cycle.
494       if (UI == Phi)
495         FoundStartPHI = true;
496     }
497     Worklist.append(PHIs.begin(), PHIs.end());
498     Worklist.append(NonPHIs.begin(), NonPHIs.end());
499   }
500 
501   // This means we have seen one but not the other instruction of the
502   // pattern or more than just a select and cmp. Zero implies that we saw a
503   // llvm.min/max intrinsic, which is always OK.
504   if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
505       NumCmpSelectPatternInst != 0)
506     return false;
507 
508   if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
509     return false;
510 
511   if (IntermediateStore) {
512     // Check that stored value goes to the phi node again. This way we make sure
513     // that the value stored in IntermediateStore is indeed the final reduction
514     // value.
515     if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) {
516       LLVM_DEBUG(dbgs() << "Not a final reduction value stored: "
517                         << *IntermediateStore << '\n');
518       return false;
519     }
520 
521     // If there is an exit instruction it's value should be stored in
522     // IntermediateStore
523     if (ExitInstruction &&
524         IntermediateStore->getValueOperand() != ExitInstruction) {
525       LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not "
526                            "store last calculated value of the reduction: "
527                         << *IntermediateStore << '\n');
528       return false;
529     }
530 
531     // If all uses are inside the loop (intermediate stores), then the
532     // reduction value after the loop will be the one used in the last store.
533     if (!ExitInstruction)
534       ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand());
535   }
536 
537   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
538     return false;
539 
540   const bool IsOrdered =
541       checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
542 
543   if (Start != Phi) {
544     // If the starting value is not the same as the phi node, we speculatively
545     // looked through an 'and' instruction when evaluating a potential
546     // arithmetic reduction to determine if it may have been type-promoted.
547     //
548     // We now compute the minimal bit width that is required to represent the
549     // reduction. If this is the same width that was indicated by the 'and', we
550     // can represent the reduction in the smaller type. The 'and' instruction
551     // will be eliminated since it will essentially be a cast instruction that
552     // can be ignore in the cost model. If we compute a different type than we
553     // did when evaluating the 'and', the 'and' will not be eliminated, and we
554     // will end up with different kinds of operations in the recurrence
555     // expression (e.g., IntegerAND, IntegerADD). We give up if this is
556     // the case.
557     //
558     // The vectorizer relies on InstCombine to perform the actual
559     // type-shrinking. It does this by inserting instructions to truncate the
560     // exit value of the reduction to the width indicated by RecurrenceType and
561     // then extend this value back to the original width. If IsSigned is false,
562     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
563     // used.
564     //
565     // TODO: We should not rely on InstCombine to rewrite the reduction in the
566     //       smaller type. We should just generate a correctly typed expression
567     //       to begin with.
568     Type *ComputedType;
569     std::tie(ComputedType, IsSigned) =
570         computeRecurrenceType(ExitInstruction, DB, AC, DT);
571     if (ComputedType != RecurrenceType)
572       return false;
573   }
574 
575   // Collect cast instructions and the minimum width used by the recurrence.
576   // If the starting value is not the same as the phi node and the computed
577   // recurrence type is equal to the recurrence type, the recurrence expression
578   // will be represented in a narrower or wider type. If there are any cast
579   // instructions that will be unnecessary, collect them in CastsFromRecurTy.
580   // Note that the 'and' instruction was already included in this list.
581   //
582   // TODO: A better way to represent this may be to tag in some way all the
583   //       instructions that are a part of the reduction. The vectorizer cost
584   //       model could then apply the recurrence type to these instructions,
585   //       without needing a white list of instructions to ignore.
586   //       This may also be useful for the inloop reductions, if it can be
587   //       kept simple enough.
588   collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
589                     MinWidthCastToRecurrenceType);
590 
591   // We found a reduction var if we have reached the original phi node and we
592   // only have a single instruction with out-of-loop users.
593 
594   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
595   // is saved as part of the RecurrenceDescriptor.
596 
597   // Save the description of this reduction variable.
598   RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind,
599                           FMF, ExactFPMathInst, RecurrenceType, IsSigned,
600                           IsOrdered, CastInsts, MinWidthCastToRecurrenceType);
601   RedDes = RD;
602 
603   return true;
604 }
605 
606 // We are looking for loops that do something like this:
607 //   int r = 0;
608 //   for (int i = 0; i < n; i++) {
609 //     if (src[i] > 3)
610 //       r = 3;
611 //   }
612 // where the reduction value (r) only has two states, in this example 0 or 3.
613 // The generated LLVM IR for this type of loop will be like this:
614 //   for.body:
615 //     %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
616 //     ...
617 //     %cmp = icmp sgt i32 %5, 3
618 //     %spec.select = select i1 %cmp, i32 3, i32 %r
619 //     ...
620 // In general we can support vectorization of loops where 'r' flips between
621 // any two non-constants, provided they are loop invariant. The only thing
622 // we actually care about at the end of the loop is whether or not any lane
623 // in the selected vector is different from the start value. The final
624 // across-vector reduction after the loop simply involves choosing the start
625 // value if nothing changed (0 in the example above) or the other selected
626 // value (3 in the example above).
627 RecurrenceDescriptor::InstDesc
628 RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi,
629                                      Instruction *I, InstDesc &Prev) {
630   // We must handle the select(cmp(),x,y) as a single instruction. Advance to
631   // the select.
632   CmpInst::Predicate Pred;
633   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
634     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
635       return InstDesc(Select, Prev.getRecKind());
636   }
637 
638   // Only match select with single use cmp condition.
639   if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
640                          m_Value())))
641     return InstDesc(false, I);
642 
643   SelectInst *SI = cast<SelectInst>(I);
644   Value *NonPhi = nullptr;
645 
646   if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
647     NonPhi = SI->getFalseValue();
648   else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
649     NonPhi = SI->getTrueValue();
650   else
651     return InstDesc(false, I);
652 
653   // We are looking for selects of the form:
654   //   select(cmp(), phi, loop_invariant) or
655   //   select(cmp(), loop_invariant, phi)
656   if (!Loop->isLoopInvariant(NonPhi))
657     return InstDesc(false, I);
658 
659   return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::IAnyOf
660                                                      : RecurKind::FAnyOf);
661 }
662 
663 RecurrenceDescriptor::InstDesc
664 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
665                                       const InstDesc &Prev) {
666   assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
667          "Expected a cmp or select or call instruction");
668   if (!isMinMaxRecurrenceKind(Kind))
669     return InstDesc(false, I);
670 
671   // We must handle the select(cmp()) as a single instruction. Advance to the
672   // select.
673   CmpInst::Predicate Pred;
674   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
675     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
676       return InstDesc(Select, Prev.getRecKind());
677   }
678 
679   // Only match select with single use cmp condition, or a min/max intrinsic.
680   if (!isa<IntrinsicInst>(I) &&
681       !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
682                          m_Value())))
683     return InstDesc(false, I);
684 
685   // Look for a min/max pattern.
686   if (match(I, m_UMin(m_Value(), m_Value())))
687     return InstDesc(Kind == RecurKind::UMin, I);
688   if (match(I, m_UMax(m_Value(), m_Value())))
689     return InstDesc(Kind == RecurKind::UMax, I);
690   if (match(I, m_SMax(m_Value(), m_Value())))
691     return InstDesc(Kind == RecurKind::SMax, I);
692   if (match(I, m_SMin(m_Value(), m_Value())))
693     return InstDesc(Kind == RecurKind::SMin, I);
694   if (match(I, m_OrdFMin(m_Value(), m_Value())))
695     return InstDesc(Kind == RecurKind::FMin, I);
696   if (match(I, m_OrdFMax(m_Value(), m_Value())))
697     return InstDesc(Kind == RecurKind::FMax, I);
698   if (match(I, m_UnordFMin(m_Value(), m_Value())))
699     return InstDesc(Kind == RecurKind::FMin, I);
700   if (match(I, m_UnordFMax(m_Value(), m_Value())))
701     return InstDesc(Kind == RecurKind::FMax, I);
702   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
703     return InstDesc(Kind == RecurKind::FMin, I);
704   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
705     return InstDesc(Kind == RecurKind::FMax, I);
706   if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())))
707     return InstDesc(Kind == RecurKind::FMinimum, I);
708   if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value())))
709     return InstDesc(Kind == RecurKind::FMaximum, I);
710 
711   return InstDesc(false, I);
712 }
713 
714 /// Returns true if the select instruction has users in the compare-and-add
715 /// reduction pattern below. The select instruction argument is the last one
716 /// in the sequence.
717 ///
718 /// %sum.1 = phi ...
719 /// ...
720 /// %cmp = fcmp pred %0, %CFP
721 /// %add = fadd %0, %sum.1
722 /// %sum.2 = select %cmp, %add, %sum.1
723 RecurrenceDescriptor::InstDesc
724 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
725   SelectInst *SI = dyn_cast<SelectInst>(I);
726   if (!SI)
727     return InstDesc(false, I);
728 
729   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
730   // Only handle single use cases for now.
731   if (!CI || !CI->hasOneUse())
732     return InstDesc(false, I);
733 
734   Value *TrueVal = SI->getTrueValue();
735   Value *FalseVal = SI->getFalseValue();
736   // Handle only when either of operands of select instruction is a PHI
737   // node for now.
738   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
739       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
740     return InstDesc(false, I);
741 
742   Instruction *I1 =
743       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
744                              : dyn_cast<Instruction>(TrueVal);
745   if (!I1 || !I1->isBinaryOp())
746     return InstDesc(false, I);
747 
748   Value *Op1, *Op2;
749   if (!(((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
750           m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
751          I1->isFast()) ||
752         (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) ||
753         ((m_Add(m_Value(Op1), m_Value(Op2)).match(I1) ||
754           m_Sub(m_Value(Op1), m_Value(Op2)).match(I1))) ||
755         (m_Mul(m_Value(Op1), m_Value(Op2)).match(I1))))
756     return InstDesc(false, I);
757 
758   Instruction *IPhi = isa<PHINode>(*Op1) ? dyn_cast<Instruction>(Op1)
759                                          : dyn_cast<Instruction>(Op2);
760   if (!IPhi || IPhi != FalseVal)
761     return InstDesc(false, I);
762 
763   return InstDesc(true, SI);
764 }
765 
766 RecurrenceDescriptor::InstDesc
767 RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
768                                         Instruction *I, RecurKind Kind,
769                                         InstDesc &Prev, FastMathFlags FuncFMF) {
770   assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
771   switch (I->getOpcode()) {
772   default:
773     return InstDesc(false, I);
774   case Instruction::PHI:
775     return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
776   case Instruction::Sub:
777   case Instruction::Add:
778     return InstDesc(Kind == RecurKind::Add, I);
779   case Instruction::Mul:
780     return InstDesc(Kind == RecurKind::Mul, I);
781   case Instruction::And:
782     return InstDesc(Kind == RecurKind::And, I);
783   case Instruction::Or:
784     return InstDesc(Kind == RecurKind::Or, I);
785   case Instruction::Xor:
786     return InstDesc(Kind == RecurKind::Xor, I);
787   case Instruction::FDiv:
788   case Instruction::FMul:
789     return InstDesc(Kind == RecurKind::FMul, I,
790                     I->hasAllowReassoc() ? nullptr : I);
791   case Instruction::FSub:
792   case Instruction::FAdd:
793     return InstDesc(Kind == RecurKind::FAdd, I,
794                     I->hasAllowReassoc() ? nullptr : I);
795   case Instruction::Select:
796     if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul ||
797         Kind == RecurKind::Add || Kind == RecurKind::Mul)
798       return isConditionalRdxPattern(Kind, I);
799     [[fallthrough]];
800   case Instruction::FCmp:
801   case Instruction::ICmp:
802   case Instruction::Call:
803     if (isAnyOfRecurrenceKind(Kind))
804       return isAnyOfPattern(L, OrigPhi, I, Prev);
805     auto HasRequiredFMF = [&]() {
806      if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros())
807        return true;
808      if (isa<FPMathOperator>(I) && I->hasNoNaNs() && I->hasNoSignedZeros())
809        return true;
810      // minimum and maximum intrinsics do not require nsz and nnan flags since
811      // NaN and signed zeroes are propagated in the intrinsic implementation.
812      return match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())) ||
813             match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value()));
814     };
815     if (isIntMinMaxRecurrenceKind(Kind) ||
816         (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind)))
817       return isMinMaxPattern(I, Kind, Prev);
818     else if (isFMulAddIntrinsic(I))
819       return InstDesc(Kind == RecurKind::FMulAdd, I,
820                       I->hasAllowReassoc() ? nullptr : I);
821     return InstDesc(false, I);
822   }
823 }
824 
825 bool RecurrenceDescriptor::hasMultipleUsesOf(
826     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
827     unsigned MaxNumUses) {
828   unsigned NumUses = 0;
829   for (const Use &U : I->operands()) {
830     if (Insts.count(dyn_cast<Instruction>(U)))
831       ++NumUses;
832     if (NumUses > MaxNumUses)
833       return true;
834   }
835 
836   return false;
837 }
838 
839 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
840                                           RecurrenceDescriptor &RedDes,
841                                           DemandedBits *DB, AssumptionCache *AC,
842                                           DominatorTree *DT,
843                                           ScalarEvolution *SE) {
844   BasicBlock *Header = TheLoop->getHeader();
845   Function &F = *Header->getParent();
846   FastMathFlags FMF;
847   FMF.setNoNaNs(
848       F.getFnAttribute("no-nans-fp-math").getValueAsBool());
849   FMF.setNoSignedZeros(
850       F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
851 
852   if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT,
853                       SE)) {
854     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
855     return true;
856   }
857   if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT,
858                       SE)) {
859     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
860     return true;
861   }
862   if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT,
863                       SE)) {
864     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
865     return true;
866   }
867   if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT,
868                       SE)) {
869     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
870     return true;
871   }
872   if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT,
873                       SE)) {
874     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
875     return true;
876   }
877   if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT,
878                       SE)) {
879     LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
880     return true;
881   }
882   if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT,
883                       SE)) {
884     LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
885     return true;
886   }
887   if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT,
888                       SE)) {
889     LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
890     return true;
891   }
892   if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT,
893                       SE)) {
894     LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
895     return true;
896   }
897   if (AddReductionVar(Phi, RecurKind::IAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
898                       SE)) {
899     LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
900                       << *Phi << "\n");
901     return true;
902   }
903   if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT,
904                       SE)) {
905     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
906     return true;
907   }
908   if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT,
909                       SE)) {
910     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
911     return true;
912   }
913   if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT,
914                       SE)) {
915     LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
916     return true;
917   }
918   if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT,
919                       SE)) {
920     LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
921     return true;
922   }
923   if (AddReductionVar(Phi, RecurKind::FAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
924                       SE)) {
925     LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
926                       << " PHI." << *Phi << "\n");
927     return true;
928   }
929   if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT,
930                       SE)) {
931     LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
932     return true;
933   }
934   if (AddReductionVar(Phi, RecurKind::FMaximum, TheLoop, FMF, RedDes, DB, AC, DT,
935                       SE)) {
936     LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n");
937     return true;
938   }
939   if (AddReductionVar(Phi, RecurKind::FMinimum, TheLoop, FMF, RedDes, DB, AC, DT,
940                       SE)) {
941     LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n");
942     return true;
943   }
944   // Not a reduction of known type.
945   return false;
946 }
947 
948 bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop,
949                                                   DominatorTree *DT) {
950 
951   // Ensure the phi node is in the loop header and has two incoming values.
952   if (Phi->getParent() != TheLoop->getHeader() ||
953       Phi->getNumIncomingValues() != 2)
954     return false;
955 
956   // Ensure the loop has a preheader and a single latch block. The loop
957   // vectorizer will need the latch to set up the next iteration of the loop.
958   auto *Preheader = TheLoop->getLoopPreheader();
959   auto *Latch = TheLoop->getLoopLatch();
960   if (!Preheader || !Latch)
961     return false;
962 
963   // Ensure the phi node's incoming blocks are the loop preheader and latch.
964   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
965       Phi->getBasicBlockIndex(Latch) < 0)
966     return false;
967 
968   // Get the previous value. The previous value comes from the latch edge while
969   // the initial value comes from the preheader edge.
970   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
971 
972   // If Previous is a phi in the header, go through incoming values from the
973   // latch until we find a non-phi value. Use this as the new Previous, all uses
974   // in the header will be dominated by the original phi, but need to be moved
975   // after the non-phi previous value.
976   SmallPtrSet<PHINode *, 4> SeenPhis;
977   while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Previous)) {
978     if (PrevPhi->getParent() != Phi->getParent())
979       return false;
980     if (!SeenPhis.insert(PrevPhi).second)
981       return false;
982     Previous = dyn_cast<Instruction>(PrevPhi->getIncomingValueForBlock(Latch));
983   }
984 
985   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
986     return false;
987 
988   // Ensure every user of the phi node (recursively) is dominated by the
989   // previous value. The dominance requirement ensures the loop vectorizer will
990   // not need to vectorize the initial value prior to the first iteration of the
991   // loop.
992   // TODO: Consider extending this sinking to handle memory instructions.
993 
994   SmallPtrSet<Value *, 8> Seen;
995   BasicBlock *PhiBB = Phi->getParent();
996   SmallVector<Instruction *, 8> WorkList;
997   auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
998     // Cyclic dependence.
999     if (Previous == SinkCandidate)
1000       return false;
1001 
1002     if (!Seen.insert(SinkCandidate).second)
1003       return true;
1004     if (DT->dominates(Previous,
1005                       SinkCandidate)) // We already are good w/o sinking.
1006       return true;
1007 
1008     if (SinkCandidate->getParent() != PhiBB ||
1009         SinkCandidate->mayHaveSideEffects() ||
1010         SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
1011       return false;
1012 
1013     // If we reach a PHI node that is not dominated by Previous, we reached a
1014     // header PHI. No need for sinking.
1015     if (isa<PHINode>(SinkCandidate))
1016       return true;
1017 
1018     // Sink User tentatively and check its users
1019     WorkList.push_back(SinkCandidate);
1020     return true;
1021   };
1022 
1023   WorkList.push_back(Phi);
1024   // Try to recursively sink instructions and their users after Previous.
1025   while (!WorkList.empty()) {
1026     Instruction *Current = WorkList.pop_back_val();
1027     for (User *User : Current->users()) {
1028       if (!TryToPushSinkCandidate(cast<Instruction>(User)))
1029         return false;
1030     }
1031   }
1032 
1033   return true;
1034 }
1035 
1036 /// This function returns the identity element (or neutral element) for
1037 /// the operation K.
1038 Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
1039                                                    FastMathFlags FMF) const {
1040   switch (K) {
1041   case RecurKind::Xor:
1042   case RecurKind::Add:
1043   case RecurKind::Or:
1044     // Adding, Xoring, Oring zero to a number does not change it.
1045     return ConstantInt::get(Tp, 0);
1046   case RecurKind::Mul:
1047     // Multiplying a number by 1 does not change it.
1048     return ConstantInt::get(Tp, 1);
1049   case RecurKind::And:
1050     // AND-ing a number with an all-1 value does not change it.
1051     return ConstantInt::get(Tp, -1, true);
1052   case RecurKind::FMul:
1053     // Multiplying a number by 1 does not change it.
1054     return ConstantFP::get(Tp, 1.0L);
1055   case RecurKind::FMulAdd:
1056   case RecurKind::FAdd:
1057     // Adding zero to a number does not change it.
1058     // FIXME: Ideally we should not need to check FMF for FAdd and should always
1059     // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
1060     // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
1061     // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
1062     // mean we can then remove the check for noSignedZeros() below (see D98963).
1063     if (FMF.noSignedZeros())
1064       return ConstantFP::get(Tp, 0.0L);
1065     return ConstantFP::get(Tp, -0.0L);
1066   case RecurKind::UMin:
1067     return ConstantInt::get(Tp, -1, true);
1068   case RecurKind::UMax:
1069     return ConstantInt::get(Tp, 0);
1070   case RecurKind::SMin:
1071     return ConstantInt::get(Tp,
1072                             APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
1073   case RecurKind::SMax:
1074     return ConstantInt::get(Tp,
1075                             APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
1076   case RecurKind::FMin:
1077     assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1078            "nnan, nsz is expected to be set for FP min reduction.");
1079     return ConstantFP::getInfinity(Tp, false /*Negative*/);
1080   case RecurKind::FMax:
1081     assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1082            "nnan, nsz is expected to be set for FP max reduction.");
1083     return ConstantFP::getInfinity(Tp, true /*Negative*/);
1084   case RecurKind::FMinimum:
1085     return ConstantFP::getInfinity(Tp, false /*Negative*/);
1086   case RecurKind::FMaximum:
1087     return ConstantFP::getInfinity(Tp, true /*Negative*/);
1088   case RecurKind::IAnyOf:
1089   case RecurKind::FAnyOf:
1090     return getRecurrenceStartValue();
1091     break;
1092   default:
1093     llvm_unreachable("Unknown recurrence kind");
1094   }
1095 }
1096 
1097 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
1098   switch (Kind) {
1099   case RecurKind::Add:
1100     return Instruction::Add;
1101   case RecurKind::Mul:
1102     return Instruction::Mul;
1103   case RecurKind::Or:
1104     return Instruction::Or;
1105   case RecurKind::And:
1106     return Instruction::And;
1107   case RecurKind::Xor:
1108     return Instruction::Xor;
1109   case RecurKind::FMul:
1110     return Instruction::FMul;
1111   case RecurKind::FMulAdd:
1112   case RecurKind::FAdd:
1113     return Instruction::FAdd;
1114   case RecurKind::SMax:
1115   case RecurKind::SMin:
1116   case RecurKind::UMax:
1117   case RecurKind::UMin:
1118   case RecurKind::IAnyOf:
1119     return Instruction::ICmp;
1120   case RecurKind::FMax:
1121   case RecurKind::FMin:
1122   case RecurKind::FMaximum:
1123   case RecurKind::FMinimum:
1124   case RecurKind::FAnyOf:
1125     return Instruction::FCmp;
1126   default:
1127     llvm_unreachable("Unknown recurrence operation");
1128   }
1129 }
1130 
1131 SmallVector<Instruction *, 4>
1132 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
1133   SmallVector<Instruction *, 4> ReductionOperations;
1134   unsigned RedOp = getOpcode(Kind);
1135 
1136   // Search down from the Phi to the LoopExitInstr, looking for instructions
1137   // with a single user of the correct type for the reduction.
1138 
1139   // Note that we check that the type of the operand is correct for each item in
1140   // the chain, including the last (the loop exit value). This can come up from
1141   // sub, which would otherwise be treated as an add reduction. MinMax also need
1142   // to check for a pair of icmp/select, for which we use getNextInstruction and
1143   // isCorrectOpcode functions to step the right number of instruction, and
1144   // check the icmp/select pair.
1145   // FIXME: We also do not attempt to look through Select's yet, which might
1146   // be part of the reduction chain, or attempt to looks through And's to find a
1147   // smaller bitwidth. Subs are also currently not allowed (which are usually
1148   // treated as part of a add reduction) as they are expected to generally be
1149   // more expensive than out-of-loop reductions, and need to be costed more
1150   // carefully.
1151   unsigned ExpectedUses = 1;
1152   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1153     ExpectedUses = 2;
1154 
1155   auto getNextInstruction = [&](Instruction *Cur) -> Instruction * {
1156     for (auto *User : Cur->users()) {
1157       Instruction *UI = cast<Instruction>(User);
1158       if (isa<PHINode>(UI))
1159         continue;
1160       if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1161         // We are expecting a icmp/select pair, which we go to the next select
1162         // instruction if we can. We already know that Cur has 2 uses.
1163         if (isa<SelectInst>(UI))
1164           return UI;
1165         continue;
1166       }
1167       return UI;
1168     }
1169     return nullptr;
1170   };
1171   auto isCorrectOpcode = [&](Instruction *Cur) {
1172     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1173       Value *LHS, *RHS;
1174       return SelectPatternResult::isMinOrMax(
1175           matchSelectPattern(Cur, LHS, RHS).Flavor);
1176     }
1177     // Recognize a call to the llvm.fmuladd intrinsic.
1178     if (isFMulAddIntrinsic(Cur))
1179       return true;
1180 
1181     return Cur->getOpcode() == RedOp;
1182   };
1183 
1184   // Attempt to look through Phis which are part of the reduction chain
1185   unsigned ExtraPhiUses = 0;
1186   Instruction *RdxInstr = LoopExitInstr;
1187   if (auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) {
1188     if (ExitPhi->getNumIncomingValues() != 2)
1189       return {};
1190 
1191     Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0));
1192     Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1));
1193 
1194     Instruction *Chain = nullptr;
1195     if (Inc0 == Phi)
1196       Chain = Inc1;
1197     else if (Inc1 == Phi)
1198       Chain = Inc0;
1199     else
1200       return {};
1201 
1202     RdxInstr = Chain;
1203     ExtraPhiUses = 1;
1204   }
1205 
1206   // The loop exit instruction we check first (as a quick test) but add last. We
1207   // check the opcode is correct (and dont allow them to be Subs) and that they
1208   // have expected to have the expected number of uses. They will have one use
1209   // from the phi and one from a LCSSA value, no matter the type.
1210   if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2))
1211     return {};
1212 
1213   // Check that the Phi has one (or two for min/max) uses, plus an extra use
1214   // for conditional reductions.
1215   if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses))
1216     return {};
1217 
1218   Instruction *Cur = getNextInstruction(Phi);
1219 
1220   // Each other instruction in the chain should have the expected number of uses
1221   // and be the correct opcode.
1222   while (Cur != RdxInstr) {
1223     if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1224       return {};
1225 
1226     ReductionOperations.push_back(Cur);
1227     Cur = getNextInstruction(Cur);
1228   }
1229 
1230   ReductionOperations.push_back(Cur);
1231   return ReductionOperations;
1232 }
1233 
1234 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1235                                          const SCEV *Step, BinaryOperator *BOp,
1236                                          SmallVectorImpl<Instruction *> *Casts)
1237     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
1238   assert(IK != IK_NoInduction && "Not an induction");
1239 
1240   // Start value type should match the induction kind and the value
1241   // itself should not be null.
1242   assert(StartValue && "StartValue is null");
1243   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1244          "StartValue is not a pointer for pointer induction");
1245   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1246          "StartValue is not an integer for integer induction");
1247 
1248   // Check the Step Value. It should be non-zero integer value.
1249   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1250          "Step value is zero");
1251 
1252   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1253          "StepValue is not an integer");
1254 
1255   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1256          "StepValue is not FP for FpInduction");
1257   assert((IK != IK_FpInduction ||
1258           (InductionBinOp &&
1259            (InductionBinOp->getOpcode() == Instruction::FAdd ||
1260             InductionBinOp->getOpcode() == Instruction::FSub))) &&
1261          "Binary opcode should be specified for FP induction");
1262 
1263   if (Casts) {
1264     for (auto &Inst : *Casts) {
1265       RedundantCasts.push_back(Inst);
1266     }
1267   }
1268 }
1269 
1270 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1271   if (isa<SCEVConstant>(Step))
1272     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1273   return nullptr;
1274 }
1275 
1276 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1277                                            ScalarEvolution *SE,
1278                                            InductionDescriptor &D) {
1279 
1280   // Here we only handle FP induction variables.
1281   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1282 
1283   if (TheLoop->getHeader() != Phi->getParent())
1284     return false;
1285 
1286   // The loop may have multiple entrances or multiple exits; we can analyze
1287   // this phi if it has a unique entry value and a unique backedge value.
1288   if (Phi->getNumIncomingValues() != 2)
1289     return false;
1290   Value *BEValue = nullptr, *StartValue = nullptr;
1291   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1292     BEValue = Phi->getIncomingValue(0);
1293     StartValue = Phi->getIncomingValue(1);
1294   } else {
1295     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1296            "Unexpected Phi node in the loop");
1297     BEValue = Phi->getIncomingValue(1);
1298     StartValue = Phi->getIncomingValue(0);
1299   }
1300 
1301   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1302   if (!BOp)
1303     return false;
1304 
1305   Value *Addend = nullptr;
1306   if (BOp->getOpcode() == Instruction::FAdd) {
1307     if (BOp->getOperand(0) == Phi)
1308       Addend = BOp->getOperand(1);
1309     else if (BOp->getOperand(1) == Phi)
1310       Addend = BOp->getOperand(0);
1311   } else if (BOp->getOpcode() == Instruction::FSub)
1312     if (BOp->getOperand(0) == Phi)
1313       Addend = BOp->getOperand(1);
1314 
1315   if (!Addend)
1316     return false;
1317 
1318   // The addend should be loop invariant
1319   if (auto *I = dyn_cast<Instruction>(Addend))
1320     if (TheLoop->contains(I))
1321       return false;
1322 
1323   // FP Step has unknown SCEV
1324   const SCEV *Step = SE->getUnknown(Addend);
1325   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1326   return true;
1327 }
1328 
1329 /// This function is called when we suspect that the update-chain of a phi node
1330 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1331 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1332 /// predicate P under which the SCEV expression for the phi can be the
1333 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1334 /// cast instructions that are involved in the update-chain of this induction.
1335 /// A caller that adds the required runtime predicate can be free to drop these
1336 /// cast instructions, and compute the phi using \p AR (instead of some scev
1337 /// expression with casts).
1338 ///
1339 /// For example, without a predicate the scev expression can take the following
1340 /// form:
1341 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1342 ///
1343 /// It corresponds to the following IR sequence:
1344 /// %for.body:
1345 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1346 ///   %casted_phi = "ExtTrunc i64 %x"
1347 ///   %add = add i64 %casted_phi, %step
1348 ///
1349 /// where %x is given in \p PN,
1350 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1351 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1352 /// several forms, for example, such as:
1353 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1354 /// or:
1355 ///   ExtTrunc2:    %t = shl %x, m
1356 ///                 %casted_phi = ashr %t, m
1357 ///
1358 /// If we are able to find such sequence, we return the instructions
1359 /// we found, namely %casted_phi and the instructions on its use-def chain up
1360 /// to the phi (not including the phi).
1361 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1362                                     const SCEVUnknown *PhiScev,
1363                                     const SCEVAddRecExpr *AR,
1364                                     SmallVectorImpl<Instruction *> &CastInsts) {
1365 
1366   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1367   auto *PN = cast<PHINode>(PhiScev->getValue());
1368   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1369   const Loop *L = AR->getLoop();
1370 
1371   // Find any cast instructions that participate in the def-use chain of
1372   // PhiScev in the loop.
1373   // FORNOW/TODO: We currently expect the def-use chain to include only
1374   // two-operand instructions, where one of the operands is an invariant.
1375   // createAddRecFromPHIWithCasts() currently does not support anything more
1376   // involved than that, so we keep the search simple. This can be
1377   // extended/generalized as needed.
1378 
1379   auto getDef = [&](const Value *Val) -> Value * {
1380     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1381     if (!BinOp)
1382       return nullptr;
1383     Value *Op0 = BinOp->getOperand(0);
1384     Value *Op1 = BinOp->getOperand(1);
1385     Value *Def = nullptr;
1386     if (L->isLoopInvariant(Op0))
1387       Def = Op1;
1388     else if (L->isLoopInvariant(Op1))
1389       Def = Op0;
1390     return Def;
1391   };
1392 
1393   // Look for the instruction that defines the induction via the
1394   // loop backedge.
1395   BasicBlock *Latch = L->getLoopLatch();
1396   if (!Latch)
1397     return false;
1398   Value *Val = PN->getIncomingValueForBlock(Latch);
1399   if (!Val)
1400     return false;
1401 
1402   // Follow the def-use chain until the induction phi is reached.
1403   // If on the way we encounter a Value that has the same SCEV Expr as the
1404   // phi node, we can consider the instructions we visit from that point
1405   // as part of the cast-sequence that can be ignored.
1406   bool InCastSequence = false;
1407   auto *Inst = dyn_cast<Instruction>(Val);
1408   while (Val != PN) {
1409     // If we encountered a phi node other than PN, or if we left the loop,
1410     // we bail out.
1411     if (!Inst || !L->contains(Inst)) {
1412       return false;
1413     }
1414     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1415     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1416       InCastSequence = true;
1417     if (InCastSequence) {
1418       // Only the last instruction in the cast sequence is expected to have
1419       // uses outside the induction def-use chain.
1420       if (!CastInsts.empty())
1421         if (!Inst->hasOneUse())
1422           return false;
1423       CastInsts.push_back(Inst);
1424     }
1425     Val = getDef(Val);
1426     if (!Val)
1427       return false;
1428     Inst = dyn_cast<Instruction>(Val);
1429   }
1430 
1431   return InCastSequence;
1432 }
1433 
1434 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1435                                          PredicatedScalarEvolution &PSE,
1436                                          InductionDescriptor &D, bool Assume) {
1437   Type *PhiTy = Phi->getType();
1438 
1439   // Handle integer and pointer inductions variables.
1440   // Now we handle also FP induction but not trying to make a
1441   // recurrent expression from the PHI node in-place.
1442 
1443   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1444       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1445     return false;
1446 
1447   if (PhiTy->isFloatingPointTy())
1448     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1449 
1450   const SCEV *PhiScev = PSE.getSCEV(Phi);
1451   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1452 
1453   // We need this expression to be an AddRecExpr.
1454   if (Assume && !AR)
1455     AR = PSE.getAsAddRec(Phi);
1456 
1457   if (!AR) {
1458     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1459     return false;
1460   }
1461 
1462   // Record any Cast instructions that participate in the induction update
1463   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1464   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1465   // only after enabling Assume with PSCEV, this means we may have encountered
1466   // cast instructions that required adding a runtime check in order to
1467   // guarantee the correctness of the AddRecurrence respresentation of the
1468   // induction.
1469   if (PhiScev != AR && SymbolicPhi) {
1470     SmallVector<Instruction *, 2> Casts;
1471     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1472       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1473   }
1474 
1475   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1476 }
1477 
1478 bool InductionDescriptor::isInductionPHI(
1479     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1480     InductionDescriptor &D, const SCEV *Expr,
1481     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1482   Type *PhiTy = Phi->getType();
1483   // We only handle integer and pointer inductions variables.
1484   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1485     return false;
1486 
1487   // Check that the PHI is consecutive.
1488   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1489   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1490 
1491   if (!AR) {
1492     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1493     return false;
1494   }
1495 
1496   if (AR->getLoop() != TheLoop) {
1497     // FIXME: We should treat this as a uniform. Unfortunately, we
1498     // don't currently know how to handled uniform PHIs.
1499     LLVM_DEBUG(
1500         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1501     return false;
1502   }
1503 
1504   // This function assumes that InductionPhi is called only on Phi nodes
1505   // present inside loop headers. Check for the same, and throw an assert if
1506   // the current Phi is not present inside the loop header.
1507   assert(Phi->getParent() == AR->getLoop()->getHeader()
1508     && "Invalid Phi node, not present in loop header");
1509 
1510   Value *StartValue =
1511       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1512 
1513   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1514   if (!Latch)
1515     return false;
1516 
1517   const SCEV *Step = AR->getStepRecurrence(*SE);
1518   // Calculate the pointer stride and check if it is consecutive.
1519   // The stride may be a constant or a loop invariant integer value.
1520   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1521   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1522     return false;
1523 
1524   if (PhiTy->isIntegerTy()) {
1525     BinaryOperator *BOp =
1526         dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1527     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1528                             CastsToIgnore);
1529     return true;
1530   }
1531 
1532   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1533 
1534   // This allows induction variables w/non-constant steps.
1535   D = InductionDescriptor(StartValue, IK_PtrInduction, Step);
1536   return true;
1537 }
1538