xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 #include <set>
38 
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "iv-descriptors"
43 
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45                                         SmallPtrSetImpl<Instruction *> &Set) {
46   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
47     if (!Set.count(dyn_cast<Instruction>(*Use)))
48       return false;
49   return true;
50 }
51 
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
53   switch (Kind) {
54   default:
55     break;
56   case RecurKind::Add:
57   case RecurKind::Mul:
58   case RecurKind::Or:
59   case RecurKind::And:
60   case RecurKind::Xor:
61   case RecurKind::SMax:
62   case RecurKind::SMin:
63   case RecurKind::UMax:
64   case RecurKind::UMin:
65     return true;
66   }
67   return false;
68 }
69 
70 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
71   return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
72 }
73 
74 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) {
75   switch (Kind) {
76   default:
77     break;
78   case RecurKind::Add:
79   case RecurKind::Mul:
80   case RecurKind::FAdd:
81   case RecurKind::FMul:
82     return true;
83   }
84   return false;
85 }
86 
87 /// Determines if Phi may have been type-promoted. If Phi has a single user
88 /// that ANDs the Phi with a type mask, return the user. RT is updated to
89 /// account for the narrower bit width represented by the mask, and the AND
90 /// instruction is added to CI.
91 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
92                                    SmallPtrSetImpl<Instruction *> &Visited,
93                                    SmallPtrSetImpl<Instruction *> &CI) {
94   if (!Phi->hasOneUse())
95     return Phi;
96 
97   const APInt *M = nullptr;
98   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
99 
100   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
101   // with a new integer type of the corresponding bit width.
102   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
103     int32_t Bits = (*M + 1).exactLogBase2();
104     if (Bits > 0) {
105       RT = IntegerType::get(Phi->getContext(), Bits);
106       Visited.insert(Phi);
107       CI.insert(J);
108       return J;
109     }
110   }
111   return Phi;
112 }
113 
114 /// Compute the minimal bit width needed to represent a reduction whose exit
115 /// instruction is given by Exit.
116 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
117                                                      DemandedBits *DB,
118                                                      AssumptionCache *AC,
119                                                      DominatorTree *DT) {
120   bool IsSigned = false;
121   const DataLayout &DL = Exit->getModule()->getDataLayout();
122   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
123 
124   if (DB) {
125     // Use the demanded bits analysis to determine the bits that are live out
126     // of the exit instruction, rounding up to the nearest power of two. If the
127     // use of demanded bits results in a smaller bit width, we know the value
128     // must be positive (i.e., IsSigned = false), because if this were not the
129     // case, the sign bit would have been demanded.
130     auto Mask = DB->getDemandedBits(Exit);
131     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
132   }
133 
134   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
135     // If demanded bits wasn't able to limit the bit width, we can try to use
136     // value tracking instead. This can be the case, for example, if the value
137     // may be negative.
138     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
139     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
140     MaxBitWidth = NumTypeBits - NumSignBits;
141     KnownBits Bits = computeKnownBits(Exit, DL);
142     if (!Bits.isNonNegative()) {
143       // If the value is not known to be non-negative, we set IsSigned to true,
144       // meaning that we will use sext instructions instead of zext
145       // instructions to restore the original type.
146       IsSigned = true;
147       if (!Bits.isNegative())
148         // If the value is not known to be negative, we don't known what the
149         // upper bit is, and therefore, we don't know what kind of extend we
150         // will need. In this case, just increase the bit width by one bit and
151         // use sext.
152         ++MaxBitWidth;
153     }
154   }
155   if (!isPowerOf2_64(MaxBitWidth))
156     MaxBitWidth = NextPowerOf2(MaxBitWidth);
157 
158   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
159                         IsSigned);
160 }
161 
162 /// Collect cast instructions that can be ignored in the vectorizer's cost
163 /// model, given a reduction exit value and the minimal type in which the
164 /// reduction can be represented.
165 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
166                                  Type *RecurrenceType,
167                                  SmallPtrSetImpl<Instruction *> &Casts) {
168 
169   SmallVector<Instruction *, 8> Worklist;
170   SmallPtrSet<Instruction *, 8> Visited;
171   Worklist.push_back(Exit);
172 
173   while (!Worklist.empty()) {
174     Instruction *Val = Worklist.pop_back_val();
175     Visited.insert(Val);
176     if (auto *Cast = dyn_cast<CastInst>(Val))
177       if (Cast->getSrcTy() == RecurrenceType) {
178         // If the source type of a cast instruction is equal to the recurrence
179         // type, it will be eliminated, and should be ignored in the vectorizer
180         // cost model.
181         Casts.insert(Cast);
182         continue;
183       }
184 
185     // Add all operands to the work list if they are loop-varying values that
186     // we haven't yet visited.
187     for (Value *O : cast<User>(Val)->operands())
188       if (auto *I = dyn_cast<Instruction>(O))
189         if (TheLoop->contains(I) && !Visited.count(I))
190           Worklist.push_back(I);
191   }
192 }
193 
194 // Check if a given Phi node can be recognized as an ordered reduction for
195 // vectorizing floating point operations without unsafe math.
196 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
197                                   Instruction *Exit, PHINode *Phi) {
198   // Currently only FAdd is supported
199   if (Kind != RecurKind::FAdd)
200     return false;
201 
202   if (Exit->getOpcode() != Instruction::FAdd || Exit != ExactFPMathInst)
203     return false;
204 
205   // The only pattern accepted is the one in which the reduction PHI
206   // is used as one of the operands of the exit instruction
207   auto *LHS = Exit->getOperand(0);
208   auto *RHS = Exit->getOperand(1);
209   if (LHS != Phi && RHS != Phi)
210     return false;
211 
212   LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
213                     << ", ExitInst: " << *Exit << "\n");
214 
215   return true;
216 }
217 
218 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind,
219                                            Loop *TheLoop, FastMathFlags FuncFMF,
220                                            RecurrenceDescriptor &RedDes,
221                                            DemandedBits *DB,
222                                            AssumptionCache *AC,
223                                            DominatorTree *DT) {
224   if (Phi->getNumIncomingValues() != 2)
225     return false;
226 
227   // Reduction variables are only found in the loop header block.
228   if (Phi->getParent() != TheLoop->getHeader())
229     return false;
230 
231   // Obtain the reduction start value from the value that comes from the loop
232   // preheader.
233   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
234 
235   // ExitInstruction is the single value which is used outside the loop.
236   // We only allow for a single reduction value to be used outside the loop.
237   // This includes users of the reduction, variables (which form a cycle
238   // which ends in the phi node).
239   Instruction *ExitInstruction = nullptr;
240   // Indicates that we found a reduction operation in our scan.
241   bool FoundReduxOp = false;
242 
243   // We start with the PHI node and scan for all of the users of this
244   // instruction. All users must be instructions that can be used as reduction
245   // variables (such as ADD). We must have a single out-of-block user. The cycle
246   // must include the original PHI.
247   bool FoundStartPHI = false;
248 
249   // To recognize min/max patterns formed by a icmp select sequence, we store
250   // the number of instruction we saw from the recognized min/max pattern,
251   //  to make sure we only see exactly the two instructions.
252   unsigned NumCmpSelectPatternInst = 0;
253   InstDesc ReduxDesc(false, nullptr);
254 
255   // Data used for determining if the recurrence has been type-promoted.
256   Type *RecurrenceType = Phi->getType();
257   SmallPtrSet<Instruction *, 4> CastInsts;
258   Instruction *Start = Phi;
259   bool IsSigned = false;
260 
261   SmallPtrSet<Instruction *, 8> VisitedInsts;
262   SmallVector<Instruction *, 8> Worklist;
263 
264   // Return early if the recurrence kind does not match the type of Phi. If the
265   // recurrence kind is arithmetic, we attempt to look through AND operations
266   // resulting from the type promotion performed by InstCombine.  Vector
267   // operations are not limited to the legal integer widths, so we may be able
268   // to evaluate the reduction in the narrower width.
269   if (RecurrenceType->isFloatingPointTy()) {
270     if (!isFloatingPointRecurrenceKind(Kind))
271       return false;
272   } else if (RecurrenceType->isIntegerTy()) {
273     if (!isIntegerRecurrenceKind(Kind))
274       return false;
275     if (isArithmeticRecurrenceKind(Kind))
276       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
277   } else {
278     // Pointer min/max may exist, but it is not supported as a reduction op.
279     return false;
280   }
281 
282   Worklist.push_back(Start);
283   VisitedInsts.insert(Start);
284 
285   // Start with all flags set because we will intersect this with the reduction
286   // flags from all the reduction operations.
287   FastMathFlags FMF = FastMathFlags::getFast();
288 
289   // A value in the reduction can be used:
290   //  - By the reduction:
291   //      - Reduction operation:
292   //        - One use of reduction value (safe).
293   //        - Multiple use of reduction value (not safe).
294   //      - PHI:
295   //        - All uses of the PHI must be the reduction (safe).
296   //        - Otherwise, not safe.
297   //  - By instructions outside of the loop (safe).
298   //      * One value may have several outside users, but all outside
299   //        uses must be of the same value.
300   //  - By an instruction that is not part of the reduction (not safe).
301   //    This is either:
302   //      * An instruction type other than PHI or the reduction operation.
303   //      * A PHI in the header other than the initial PHI.
304   while (!Worklist.empty()) {
305     Instruction *Cur = Worklist.pop_back_val();
306 
307     // No Users.
308     // If the instruction has no users then this is a broken chain and can't be
309     // a reduction variable.
310     if (Cur->use_empty())
311       return false;
312 
313     bool IsAPhi = isa<PHINode>(Cur);
314 
315     // A header PHI use other than the original PHI.
316     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
317       return false;
318 
319     // Reductions of instructions such as Div, and Sub is only possible if the
320     // LHS is the reduction variable.
321     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
322         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
323         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
324       return false;
325 
326     // Any reduction instruction must be of one of the allowed kinds. We ignore
327     // the starting value (the Phi or an AND instruction if the Phi has been
328     // type-promoted).
329     if (Cur != Start) {
330       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, FuncFMF);
331       if (!ReduxDesc.isRecurrence())
332         return false;
333       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
334       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
335         FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
336         if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
337           // Accept FMF on either fcmp or select of a min/max idiom.
338           // TODO: This is a hack to work-around the fact that FMF may not be
339           //       assigned/propagated correctly. If that problem is fixed or we
340           //       standardize on fmin/fmax via intrinsics, this can be removed.
341           if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
342             CurFMF |= FCmp->getFastMathFlags();
343         }
344         FMF &= CurFMF;
345       }
346       // Update this reduction kind if we matched a new instruction.
347       // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
348       //       state accurate while processing the worklist?
349       if (ReduxDesc.getRecKind() != RecurKind::None)
350         Kind = ReduxDesc.getRecKind();
351     }
352 
353     bool IsASelect = isa<SelectInst>(Cur);
354 
355     // A conditional reduction operation must only have 2 or less uses in
356     // VisitedInsts.
357     if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
358         hasMultipleUsesOf(Cur, VisitedInsts, 2))
359       return false;
360 
361     // A reduction operation must only have one use of the reduction value.
362     if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
363         hasMultipleUsesOf(Cur, VisitedInsts, 1))
364       return false;
365 
366     // All inputs to a PHI node must be a reduction value.
367     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
368       return false;
369 
370     if (isIntMinMaxRecurrenceKind(Kind) &&
371         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
372       ++NumCmpSelectPatternInst;
373     if (isFPMinMaxRecurrenceKind(Kind) &&
374         (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
375       ++NumCmpSelectPatternInst;
376 
377     // Check  whether we found a reduction operator.
378     FoundReduxOp |= !IsAPhi && Cur != Start;
379 
380     // Process users of current instruction. Push non-PHI nodes after PHI nodes
381     // onto the stack. This way we are going to have seen all inputs to PHI
382     // nodes once we get to them.
383     SmallVector<Instruction *, 8> NonPHIs;
384     SmallVector<Instruction *, 8> PHIs;
385     for (User *U : Cur->users()) {
386       Instruction *UI = cast<Instruction>(U);
387 
388       // Check if we found the exit user.
389       BasicBlock *Parent = UI->getParent();
390       if (!TheLoop->contains(Parent)) {
391         // If we already know this instruction is used externally, move on to
392         // the next user.
393         if (ExitInstruction == Cur)
394           continue;
395 
396         // Exit if you find multiple values used outside or if the header phi
397         // node is being used. In this case the user uses the value of the
398         // previous iteration, in which case we would loose "VF-1" iterations of
399         // the reduction operation if we vectorize.
400         if (ExitInstruction != nullptr || Cur == Phi)
401           return false;
402 
403         // The instruction used by an outside user must be the last instruction
404         // before we feed back to the reduction phi. Otherwise, we loose VF-1
405         // operations on the value.
406         if (!is_contained(Phi->operands(), Cur))
407           return false;
408 
409         ExitInstruction = Cur;
410         continue;
411       }
412 
413       // Process instructions only once (termination). Each reduction cycle
414       // value must only be used once, except by phi nodes and min/max
415       // reductions which are represented as a cmp followed by a select.
416       InstDesc IgnoredVal(false, nullptr);
417       if (VisitedInsts.insert(UI).second) {
418         if (isa<PHINode>(UI))
419           PHIs.push_back(UI);
420         else
421           NonPHIs.push_back(UI);
422       } else if (!isa<PHINode>(UI) &&
423                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
424                    !isa<SelectInst>(UI)) ||
425                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
426                    !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
427         return false;
428 
429       // Remember that we completed the cycle.
430       if (UI == Phi)
431         FoundStartPHI = true;
432     }
433     Worklist.append(PHIs.begin(), PHIs.end());
434     Worklist.append(NonPHIs.begin(), NonPHIs.end());
435   }
436 
437   // This means we have seen one but not the other instruction of the
438   // pattern or more than just a select and cmp.
439   if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2)
440     return false;
441 
442   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
443     return false;
444 
445   const bool IsOrdered = checkOrderedReduction(
446       Kind, ReduxDesc.getExactFPMathInst(), ExitInstruction, Phi);
447 
448   if (Start != Phi) {
449     // If the starting value is not the same as the phi node, we speculatively
450     // looked through an 'and' instruction when evaluating a potential
451     // arithmetic reduction to determine if it may have been type-promoted.
452     //
453     // We now compute the minimal bit width that is required to represent the
454     // reduction. If this is the same width that was indicated by the 'and', we
455     // can represent the reduction in the smaller type. The 'and' instruction
456     // will be eliminated since it will essentially be a cast instruction that
457     // can be ignore in the cost model. If we compute a different type than we
458     // did when evaluating the 'and', the 'and' will not be eliminated, and we
459     // will end up with different kinds of operations in the recurrence
460     // expression (e.g., IntegerAND, IntegerADD). We give up if this is
461     // the case.
462     //
463     // The vectorizer relies on InstCombine to perform the actual
464     // type-shrinking. It does this by inserting instructions to truncate the
465     // exit value of the reduction to the width indicated by RecurrenceType and
466     // then extend this value back to the original width. If IsSigned is false,
467     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
468     // used.
469     //
470     // TODO: We should not rely on InstCombine to rewrite the reduction in the
471     //       smaller type. We should just generate a correctly typed expression
472     //       to begin with.
473     Type *ComputedType;
474     std::tie(ComputedType, IsSigned) =
475         computeRecurrenceType(ExitInstruction, DB, AC, DT);
476     if (ComputedType != RecurrenceType)
477       return false;
478 
479     // The recurrence expression will be represented in a narrower type. If
480     // there are any cast instructions that will be unnecessary, collect them
481     // in CastInsts. Note that the 'and' instruction was already included in
482     // this list.
483     //
484     // TODO: A better way to represent this may be to tag in some way all the
485     //       instructions that are a part of the reduction. The vectorizer cost
486     //       model could then apply the recurrence type to these instructions,
487     //       without needing a white list of instructions to ignore.
488     //       This may also be useful for the inloop reductions, if it can be
489     //       kept simple enough.
490     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
491   }
492 
493   // We found a reduction var if we have reached the original phi node and we
494   // only have a single instruction with out-of-loop users.
495 
496   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
497   // is saved as part of the RecurrenceDescriptor.
498 
499   // Save the description of this reduction variable.
500   RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF,
501                           ReduxDesc.getExactFPMathInst(), RecurrenceType,
502                           IsSigned, IsOrdered, CastInsts);
503   RedDes = RD;
504 
505   return true;
506 }
507 
508 RecurrenceDescriptor::InstDesc
509 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
510                                                const InstDesc &Prev) {
511   assert((isa<CmpInst>(I) || isa<SelectInst>(I)) &&
512          "Expected a cmp or select instruction");
513 
514   // We must handle the select(cmp()) as a single instruction. Advance to the
515   // select.
516   CmpInst::Predicate Pred;
517   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
518     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
519       return InstDesc(Select, Prev.getRecKind());
520   }
521 
522   // Only match select with single use cmp condition.
523   if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
524                          m_Value())))
525     return InstDesc(false, I);
526 
527   // Look for a min/max pattern.
528   if (match(I, m_UMin(m_Value(), m_Value())))
529     return InstDesc(I, RecurKind::UMin);
530   if (match(I, m_UMax(m_Value(), m_Value())))
531     return InstDesc(I, RecurKind::UMax);
532   if (match(I, m_SMax(m_Value(), m_Value())))
533     return InstDesc(I, RecurKind::SMax);
534   if (match(I, m_SMin(m_Value(), m_Value())))
535     return InstDesc(I, RecurKind::SMin);
536   if (match(I, m_OrdFMin(m_Value(), m_Value())))
537     return InstDesc(I, RecurKind::FMin);
538   if (match(I, m_OrdFMax(m_Value(), m_Value())))
539     return InstDesc(I, RecurKind::FMax);
540   if (match(I, m_UnordFMin(m_Value(), m_Value())))
541     return InstDesc(I, RecurKind::FMin);
542   if (match(I, m_UnordFMax(m_Value(), m_Value())))
543     return InstDesc(I, RecurKind::FMax);
544 
545   return InstDesc(false, I);
546 }
547 
548 /// Returns true if the select instruction has users in the compare-and-add
549 /// reduction pattern below. The select instruction argument is the last one
550 /// in the sequence.
551 ///
552 /// %sum.1 = phi ...
553 /// ...
554 /// %cmp = fcmp pred %0, %CFP
555 /// %add = fadd %0, %sum.1
556 /// %sum.2 = select %cmp, %add, %sum.1
557 RecurrenceDescriptor::InstDesc
558 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
559   SelectInst *SI = dyn_cast<SelectInst>(I);
560   if (!SI)
561     return InstDesc(false, I);
562 
563   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
564   // Only handle single use cases for now.
565   if (!CI || !CI->hasOneUse())
566     return InstDesc(false, I);
567 
568   Value *TrueVal = SI->getTrueValue();
569   Value *FalseVal = SI->getFalseValue();
570   // Handle only when either of operands of select instruction is a PHI
571   // node for now.
572   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
573       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
574     return InstDesc(false, I);
575 
576   Instruction *I1 =
577       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
578                              : dyn_cast<Instruction>(TrueVal);
579   if (!I1 || !I1->isBinaryOp())
580     return InstDesc(false, I);
581 
582   Value *Op1, *Op2;
583   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
584        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
585       I1->isFast())
586     return InstDesc(Kind == RecurKind::FAdd, SI);
587 
588   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
589     return InstDesc(Kind == RecurKind::FMul, SI);
590 
591   return InstDesc(false, I);
592 }
593 
594 RecurrenceDescriptor::InstDesc
595 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurKind Kind,
596                                         InstDesc &Prev, FastMathFlags FMF) {
597   switch (I->getOpcode()) {
598   default:
599     return InstDesc(false, I);
600   case Instruction::PHI:
601     return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
602   case Instruction::Sub:
603   case Instruction::Add:
604     return InstDesc(Kind == RecurKind::Add, I);
605   case Instruction::Mul:
606     return InstDesc(Kind == RecurKind::Mul, I);
607   case Instruction::And:
608     return InstDesc(Kind == RecurKind::And, I);
609   case Instruction::Or:
610     return InstDesc(Kind == RecurKind::Or, I);
611   case Instruction::Xor:
612     return InstDesc(Kind == RecurKind::Xor, I);
613   case Instruction::FDiv:
614   case Instruction::FMul:
615     return InstDesc(Kind == RecurKind::FMul, I,
616                     I->hasAllowReassoc() ? nullptr : I);
617   case Instruction::FSub:
618   case Instruction::FAdd:
619     return InstDesc(Kind == RecurKind::FAdd, I,
620                     I->hasAllowReassoc() ? nullptr : I);
621   case Instruction::Select:
622     if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
623       return isConditionalRdxPattern(Kind, I);
624     LLVM_FALLTHROUGH;
625   case Instruction::FCmp:
626   case Instruction::ICmp:
627     if (isIntMinMaxRecurrenceKind(Kind) ||
628         (FMF.noNaNs() && FMF.noSignedZeros() && isFPMinMaxRecurrenceKind(Kind)))
629       return isMinMaxSelectCmpPattern(I, Prev);
630     return InstDesc(false, I);
631   }
632 }
633 
634 bool RecurrenceDescriptor::hasMultipleUsesOf(
635     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
636     unsigned MaxNumUses) {
637   unsigned NumUses = 0;
638   for (const Use &U : I->operands()) {
639     if (Insts.count(dyn_cast<Instruction>(U)))
640       ++NumUses;
641     if (NumUses > MaxNumUses)
642       return true;
643   }
644 
645   return false;
646 }
647 
648 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
649                                           RecurrenceDescriptor &RedDes,
650                                           DemandedBits *DB, AssumptionCache *AC,
651                                           DominatorTree *DT) {
652 
653   BasicBlock *Header = TheLoop->getHeader();
654   Function &F = *Header->getParent();
655   FastMathFlags FMF;
656   FMF.setNoNaNs(
657       F.getFnAttribute("no-nans-fp-math").getValueAsBool());
658   FMF.setNoSignedZeros(
659       F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
660 
661   if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) {
662     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
663     return true;
664   }
665   if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) {
666     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
667     return true;
668   }
669   if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) {
670     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
671     return true;
672   }
673   if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) {
674     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
675     return true;
676   }
677   if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) {
678     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
679     return true;
680   }
681   if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
682     LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
683     return true;
684   }
685   if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
686     LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
687     return true;
688   }
689   if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
690     LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
691     return true;
692   }
693   if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
694     LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
695     return true;
696   }
697   if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) {
698     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
699     return true;
700   }
701   if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) {
702     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
703     return true;
704   }
705   if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
706     LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
707     return true;
708   }
709   if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
710     LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
711     return true;
712   }
713   // Not a reduction of known type.
714   return false;
715 }
716 
717 bool RecurrenceDescriptor::isFirstOrderRecurrence(
718     PHINode *Phi, Loop *TheLoop,
719     MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
720 
721   // Ensure the phi node is in the loop header and has two incoming values.
722   if (Phi->getParent() != TheLoop->getHeader() ||
723       Phi->getNumIncomingValues() != 2)
724     return false;
725 
726   // Ensure the loop has a preheader and a single latch block. The loop
727   // vectorizer will need the latch to set up the next iteration of the loop.
728   auto *Preheader = TheLoop->getLoopPreheader();
729   auto *Latch = TheLoop->getLoopLatch();
730   if (!Preheader || !Latch)
731     return false;
732 
733   // Ensure the phi node's incoming blocks are the loop preheader and latch.
734   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
735       Phi->getBasicBlockIndex(Latch) < 0)
736     return false;
737 
738   // Get the previous value. The previous value comes from the latch edge while
739   // the initial value comes form the preheader edge.
740   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
741   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
742       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
743     return false;
744 
745   // Ensure every user of the phi node (recursively) is dominated by the
746   // previous value. The dominance requirement ensures the loop vectorizer will
747   // not need to vectorize the initial value prior to the first iteration of the
748   // loop.
749   // TODO: Consider extending this sinking to handle memory instructions.
750 
751   // We optimistically assume we can sink all users after Previous. Keep a set
752   // of instructions to sink after Previous ordered by dominance in the common
753   // basic block. It will be applied to SinkAfter if all users can be sunk.
754   auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) {
755     return A->comesBefore(B);
756   };
757   std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink(
758       CompareByComesBefore);
759 
760   BasicBlock *PhiBB = Phi->getParent();
761   SmallVector<Instruction *, 8> WorkList;
762   auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
763     // Already sunk SinkCandidate.
764     if (SinkCandidate->getParent() == PhiBB &&
765         InstrsToSink.find(SinkCandidate) != InstrsToSink.end())
766       return true;
767 
768     // Cyclic dependence.
769     if (Previous == SinkCandidate)
770       return false;
771 
772     if (DT->dominates(Previous,
773                       SinkCandidate)) // We already are good w/o sinking.
774       return true;
775 
776     if (SinkCandidate->getParent() != PhiBB ||
777         SinkCandidate->mayHaveSideEffects() ||
778         SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
779       return false;
780 
781     // Do not try to sink an instruction multiple times (if multiple operands
782     // are first order recurrences).
783     // TODO: We can support this case, by sinking the instruction after the
784     // 'deepest' previous instruction.
785     if (SinkAfter.find(SinkCandidate) != SinkAfter.end())
786       return false;
787 
788     // If we reach a PHI node that is not dominated by Previous, we reached a
789     // header PHI. No need for sinking.
790     if (isa<PHINode>(SinkCandidate))
791       return true;
792 
793     // Sink User tentatively and check its users
794     InstrsToSink.insert(SinkCandidate);
795     WorkList.push_back(SinkCandidate);
796     return true;
797   };
798 
799   WorkList.push_back(Phi);
800   // Try to recursively sink instructions and their users after Previous.
801   while (!WorkList.empty()) {
802     Instruction *Current = WorkList.pop_back_val();
803     for (User *User : Current->users()) {
804       if (!TryToPushSinkCandidate(cast<Instruction>(User)))
805         return false;
806     }
807   }
808 
809   // We can sink all users of Phi. Update the mapping.
810   for (Instruction *I : InstrsToSink) {
811     SinkAfter[I] = Previous;
812     Previous = I;
813   }
814   return true;
815 }
816 
817 /// This function returns the identity element (or neutral element) for
818 /// the operation K.
819 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
820                                                       FastMathFlags FMF) {
821   switch (K) {
822   case RecurKind::Xor:
823   case RecurKind::Add:
824   case RecurKind::Or:
825     // Adding, Xoring, Oring zero to a number does not change it.
826     return ConstantInt::get(Tp, 0);
827   case RecurKind::Mul:
828     // Multiplying a number by 1 does not change it.
829     return ConstantInt::get(Tp, 1);
830   case RecurKind::And:
831     // AND-ing a number with an all-1 value does not change it.
832     return ConstantInt::get(Tp, -1, true);
833   case RecurKind::FMul:
834     // Multiplying a number by 1 does not change it.
835     return ConstantFP::get(Tp, 1.0L);
836   case RecurKind::FAdd:
837     // Adding zero to a number does not change it.
838     // FIXME: Ideally we should not need to check FMF for FAdd and should always
839     // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
840     // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
841     // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
842     // mean we can then remove the check for noSignedZeros() below (see D98963).
843     if (FMF.noSignedZeros())
844       return ConstantFP::get(Tp, 0.0L);
845     return ConstantFP::get(Tp, -0.0L);
846   case RecurKind::UMin:
847     return ConstantInt::get(Tp, -1);
848   case RecurKind::UMax:
849     return ConstantInt::get(Tp, 0);
850   case RecurKind::SMin:
851     return ConstantInt::get(Tp,
852                             APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
853   case RecurKind::SMax:
854     return ConstantInt::get(Tp,
855                             APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
856   case RecurKind::FMin:
857     return ConstantFP::getInfinity(Tp, true);
858   case RecurKind::FMax:
859     return ConstantFP::getInfinity(Tp, false);
860   default:
861     llvm_unreachable("Unknown recurrence kind");
862   }
863 }
864 
865 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
866   switch (Kind) {
867   case RecurKind::Add:
868     return Instruction::Add;
869   case RecurKind::Mul:
870     return Instruction::Mul;
871   case RecurKind::Or:
872     return Instruction::Or;
873   case RecurKind::And:
874     return Instruction::And;
875   case RecurKind::Xor:
876     return Instruction::Xor;
877   case RecurKind::FMul:
878     return Instruction::FMul;
879   case RecurKind::FAdd:
880     return Instruction::FAdd;
881   case RecurKind::SMax:
882   case RecurKind::SMin:
883   case RecurKind::UMax:
884   case RecurKind::UMin:
885     return Instruction::ICmp;
886   case RecurKind::FMax:
887   case RecurKind::FMin:
888     return Instruction::FCmp;
889   default:
890     llvm_unreachable("Unknown recurrence operation");
891   }
892 }
893 
894 SmallVector<Instruction *, 4>
895 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
896   SmallVector<Instruction *, 4> ReductionOperations;
897   unsigned RedOp = getOpcode(Kind);
898 
899   // Search down from the Phi to the LoopExitInstr, looking for instructions
900   // with a single user of the correct type for the reduction.
901 
902   // Note that we check that the type of the operand is correct for each item in
903   // the chain, including the last (the loop exit value). This can come up from
904   // sub, which would otherwise be treated as an add reduction. MinMax also need
905   // to check for a pair of icmp/select, for which we use getNextInstruction and
906   // isCorrectOpcode functions to step the right number of instruction, and
907   // check the icmp/select pair.
908   // FIXME: We also do not attempt to look through Phi/Select's yet, which might
909   // be part of the reduction chain, or attempt to looks through And's to find a
910   // smaller bitwidth. Subs are also currently not allowed (which are usually
911   // treated as part of a add reduction) as they are expected to generally be
912   // more expensive than out-of-loop reductions, and need to be costed more
913   // carefully.
914   unsigned ExpectedUses = 1;
915   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
916     ExpectedUses = 2;
917 
918   auto getNextInstruction = [&](Instruction *Cur) {
919     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
920       // We are expecting a icmp/select pair, which we go to the next select
921       // instruction if we can. We already know that Cur has 2 uses.
922       if (isa<SelectInst>(*Cur->user_begin()))
923         return cast<Instruction>(*Cur->user_begin());
924       else
925         return cast<Instruction>(*std::next(Cur->user_begin()));
926     }
927     return cast<Instruction>(*Cur->user_begin());
928   };
929   auto isCorrectOpcode = [&](Instruction *Cur) {
930     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
931       Value *LHS, *RHS;
932       return SelectPatternResult::isMinOrMax(
933           matchSelectPattern(Cur, LHS, RHS).Flavor);
934     }
935     return Cur->getOpcode() == RedOp;
936   };
937 
938   // The loop exit instruction we check first (as a quick test) but add last. We
939   // check the opcode is correct (and dont allow them to be Subs) and that they
940   // have expected to have the expected number of uses. They will have one use
941   // from the phi and one from a LCSSA value, no matter the type.
942   if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
943     return {};
944 
945   // Check that the Phi has one (or two for min/max) uses.
946   if (!Phi->hasNUses(ExpectedUses))
947     return {};
948   Instruction *Cur = getNextInstruction(Phi);
949 
950   // Each other instruction in the chain should have the expected number of uses
951   // and be the correct opcode.
952   while (Cur != LoopExitInstr) {
953     if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
954       return {};
955 
956     ReductionOperations.push_back(Cur);
957     Cur = getNextInstruction(Cur);
958   }
959 
960   ReductionOperations.push_back(Cur);
961   return ReductionOperations;
962 }
963 
964 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
965                                          const SCEV *Step, BinaryOperator *BOp,
966                                          SmallVectorImpl<Instruction *> *Casts)
967     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
968   assert(IK != IK_NoInduction && "Not an induction");
969 
970   // Start value type should match the induction kind and the value
971   // itself should not be null.
972   assert(StartValue && "StartValue is null");
973   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
974          "StartValue is not a pointer for pointer induction");
975   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
976          "StartValue is not an integer for integer induction");
977 
978   // Check the Step Value. It should be non-zero integer value.
979   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
980          "Step value is zero");
981 
982   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
983          "Step value should be constant for pointer induction");
984   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
985          "StepValue is not an integer");
986 
987   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
988          "StepValue is not FP for FpInduction");
989   assert((IK != IK_FpInduction ||
990           (InductionBinOp &&
991            (InductionBinOp->getOpcode() == Instruction::FAdd ||
992             InductionBinOp->getOpcode() == Instruction::FSub))) &&
993          "Binary opcode should be specified for FP induction");
994 
995   if (Casts) {
996     for (auto &Inst : *Casts) {
997       RedundantCasts.push_back(Inst);
998     }
999   }
1000 }
1001 
1002 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1003   if (isa<SCEVConstant>(Step))
1004     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1005   return nullptr;
1006 }
1007 
1008 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1009                                            ScalarEvolution *SE,
1010                                            InductionDescriptor &D) {
1011 
1012   // Here we only handle FP induction variables.
1013   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1014 
1015   if (TheLoop->getHeader() != Phi->getParent())
1016     return false;
1017 
1018   // The loop may have multiple entrances or multiple exits; we can analyze
1019   // this phi if it has a unique entry value and a unique backedge value.
1020   if (Phi->getNumIncomingValues() != 2)
1021     return false;
1022   Value *BEValue = nullptr, *StartValue = nullptr;
1023   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1024     BEValue = Phi->getIncomingValue(0);
1025     StartValue = Phi->getIncomingValue(1);
1026   } else {
1027     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1028            "Unexpected Phi node in the loop");
1029     BEValue = Phi->getIncomingValue(1);
1030     StartValue = Phi->getIncomingValue(0);
1031   }
1032 
1033   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1034   if (!BOp)
1035     return false;
1036 
1037   Value *Addend = nullptr;
1038   if (BOp->getOpcode() == Instruction::FAdd) {
1039     if (BOp->getOperand(0) == Phi)
1040       Addend = BOp->getOperand(1);
1041     else if (BOp->getOperand(1) == Phi)
1042       Addend = BOp->getOperand(0);
1043   } else if (BOp->getOpcode() == Instruction::FSub)
1044     if (BOp->getOperand(0) == Phi)
1045       Addend = BOp->getOperand(1);
1046 
1047   if (!Addend)
1048     return false;
1049 
1050   // The addend should be loop invariant
1051   if (auto *I = dyn_cast<Instruction>(Addend))
1052     if (TheLoop->contains(I))
1053       return false;
1054 
1055   // FP Step has unknown SCEV
1056   const SCEV *Step = SE->getUnknown(Addend);
1057   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1058   return true;
1059 }
1060 
1061 /// This function is called when we suspect that the update-chain of a phi node
1062 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1063 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1064 /// predicate P under which the SCEV expression for the phi can be the
1065 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1066 /// cast instructions that are involved in the update-chain of this induction.
1067 /// A caller that adds the required runtime predicate can be free to drop these
1068 /// cast instructions, and compute the phi using \p AR (instead of some scev
1069 /// expression with casts).
1070 ///
1071 /// For example, without a predicate the scev expression can take the following
1072 /// form:
1073 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1074 ///
1075 /// It corresponds to the following IR sequence:
1076 /// %for.body:
1077 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1078 ///   %casted_phi = "ExtTrunc i64 %x"
1079 ///   %add = add i64 %casted_phi, %step
1080 ///
1081 /// where %x is given in \p PN,
1082 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1083 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1084 /// several forms, for example, such as:
1085 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1086 /// or:
1087 ///   ExtTrunc2:    %t = shl %x, m
1088 ///                 %casted_phi = ashr %t, m
1089 ///
1090 /// If we are able to find such sequence, we return the instructions
1091 /// we found, namely %casted_phi and the instructions on its use-def chain up
1092 /// to the phi (not including the phi).
1093 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1094                                     const SCEVUnknown *PhiScev,
1095                                     const SCEVAddRecExpr *AR,
1096                                     SmallVectorImpl<Instruction *> &CastInsts) {
1097 
1098   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1099   auto *PN = cast<PHINode>(PhiScev->getValue());
1100   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1101   const Loop *L = AR->getLoop();
1102 
1103   // Find any cast instructions that participate in the def-use chain of
1104   // PhiScev in the loop.
1105   // FORNOW/TODO: We currently expect the def-use chain to include only
1106   // two-operand instructions, where one of the operands is an invariant.
1107   // createAddRecFromPHIWithCasts() currently does not support anything more
1108   // involved than that, so we keep the search simple. This can be
1109   // extended/generalized as needed.
1110 
1111   auto getDef = [&](const Value *Val) -> Value * {
1112     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1113     if (!BinOp)
1114       return nullptr;
1115     Value *Op0 = BinOp->getOperand(0);
1116     Value *Op1 = BinOp->getOperand(1);
1117     Value *Def = nullptr;
1118     if (L->isLoopInvariant(Op0))
1119       Def = Op1;
1120     else if (L->isLoopInvariant(Op1))
1121       Def = Op0;
1122     return Def;
1123   };
1124 
1125   // Look for the instruction that defines the induction via the
1126   // loop backedge.
1127   BasicBlock *Latch = L->getLoopLatch();
1128   if (!Latch)
1129     return false;
1130   Value *Val = PN->getIncomingValueForBlock(Latch);
1131   if (!Val)
1132     return false;
1133 
1134   // Follow the def-use chain until the induction phi is reached.
1135   // If on the way we encounter a Value that has the same SCEV Expr as the
1136   // phi node, we can consider the instructions we visit from that point
1137   // as part of the cast-sequence that can be ignored.
1138   bool InCastSequence = false;
1139   auto *Inst = dyn_cast<Instruction>(Val);
1140   while (Val != PN) {
1141     // If we encountered a phi node other than PN, or if we left the loop,
1142     // we bail out.
1143     if (!Inst || !L->contains(Inst)) {
1144       return false;
1145     }
1146     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1147     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1148       InCastSequence = true;
1149     if (InCastSequence) {
1150       // Only the last instruction in the cast sequence is expected to have
1151       // uses outside the induction def-use chain.
1152       if (!CastInsts.empty())
1153         if (!Inst->hasOneUse())
1154           return false;
1155       CastInsts.push_back(Inst);
1156     }
1157     Val = getDef(Val);
1158     if (!Val)
1159       return false;
1160     Inst = dyn_cast<Instruction>(Val);
1161   }
1162 
1163   return InCastSequence;
1164 }
1165 
1166 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1167                                          PredicatedScalarEvolution &PSE,
1168                                          InductionDescriptor &D, bool Assume) {
1169   Type *PhiTy = Phi->getType();
1170 
1171   // Handle integer and pointer inductions variables.
1172   // Now we handle also FP induction but not trying to make a
1173   // recurrent expression from the PHI node in-place.
1174 
1175   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1176       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1177     return false;
1178 
1179   if (PhiTy->isFloatingPointTy())
1180     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1181 
1182   const SCEV *PhiScev = PSE.getSCEV(Phi);
1183   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1184 
1185   // We need this expression to be an AddRecExpr.
1186   if (Assume && !AR)
1187     AR = PSE.getAsAddRec(Phi);
1188 
1189   if (!AR) {
1190     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1191     return false;
1192   }
1193 
1194   // Record any Cast instructions that participate in the induction update
1195   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1196   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1197   // only after enabling Assume with PSCEV, this means we may have encountered
1198   // cast instructions that required adding a runtime check in order to
1199   // guarantee the correctness of the AddRecurrence respresentation of the
1200   // induction.
1201   if (PhiScev != AR && SymbolicPhi) {
1202     SmallVector<Instruction *, 2> Casts;
1203     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1204       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1205   }
1206 
1207   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1208 }
1209 
1210 bool InductionDescriptor::isInductionPHI(
1211     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1212     InductionDescriptor &D, const SCEV *Expr,
1213     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1214   Type *PhiTy = Phi->getType();
1215   // We only handle integer and pointer inductions variables.
1216   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1217     return false;
1218 
1219   // Check that the PHI is consecutive.
1220   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1221   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1222 
1223   if (!AR) {
1224     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1225     return false;
1226   }
1227 
1228   if (AR->getLoop() != TheLoop) {
1229     // FIXME: We should treat this as a uniform. Unfortunately, we
1230     // don't currently know how to handled uniform PHIs.
1231     LLVM_DEBUG(
1232         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1233     return false;
1234   }
1235 
1236   Value *StartValue =
1237       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1238 
1239   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1240   if (!Latch)
1241     return false;
1242   BinaryOperator *BOp =
1243       dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1244 
1245   const SCEV *Step = AR->getStepRecurrence(*SE);
1246   // Calculate the pointer stride and check if it is consecutive.
1247   // The stride may be a constant or a loop invariant integer value.
1248   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1249   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1250     return false;
1251 
1252   if (PhiTy->isIntegerTy()) {
1253     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1254                             CastsToIgnore);
1255     return true;
1256   }
1257 
1258   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1259   // Pointer induction should be a constant.
1260   if (!ConstStep)
1261     return false;
1262 
1263   ConstantInt *CV = ConstStep->getValue();
1264   Type *PointerElementType = PhiTy->getPointerElementType();
1265   // The pointer stride cannot be determined if the pointer element type is not
1266   // sized.
1267   if (!PointerElementType->isSized())
1268     return false;
1269 
1270   const DataLayout &DL = Phi->getModule()->getDataLayout();
1271   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1272   if (!Size)
1273     return false;
1274 
1275   int64_t CVSize = CV->getSExtValue();
1276   if (CVSize % Size)
1277     return false;
1278   auto *StepValue =
1279       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1280   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
1281   return true;
1282 }
1283