1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/KnownBits.h" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 #define DEBUG_TYPE "iv-descriptors" 41 42 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 43 SmallPtrSetImpl<Instruction *> &Set) { 44 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 45 if (!Set.count(dyn_cast<Instruction>(*Use))) 46 return false; 47 return true; 48 } 49 50 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 51 switch (Kind) { 52 default: 53 break; 54 case RK_IntegerAdd: 55 case RK_IntegerMult: 56 case RK_IntegerOr: 57 case RK_IntegerAnd: 58 case RK_IntegerXor: 59 case RK_IntegerMinMax: 60 return true; 61 } 62 return false; 63 } 64 65 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 66 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 67 } 68 69 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 70 switch (Kind) { 71 default: 72 break; 73 case RK_IntegerAdd: 74 case RK_IntegerMult: 75 case RK_FloatAdd: 76 case RK_FloatMult: 77 return true; 78 } 79 return false; 80 } 81 82 /// Determines if Phi may have been type-promoted. If Phi has a single user 83 /// that ANDs the Phi with a type mask, return the user. RT is updated to 84 /// account for the narrower bit width represented by the mask, and the AND 85 /// instruction is added to CI. 86 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 87 SmallPtrSetImpl<Instruction *> &Visited, 88 SmallPtrSetImpl<Instruction *> &CI) { 89 if (!Phi->hasOneUse()) 90 return Phi; 91 92 const APInt *M = nullptr; 93 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 94 95 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 96 // with a new integer type of the corresponding bit width. 97 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 98 int32_t Bits = (*M + 1).exactLogBase2(); 99 if (Bits > 0) { 100 RT = IntegerType::get(Phi->getContext(), Bits); 101 Visited.insert(Phi); 102 CI.insert(J); 103 return J; 104 } 105 } 106 return Phi; 107 } 108 109 /// Compute the minimal bit width needed to represent a reduction whose exit 110 /// instruction is given by Exit. 111 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 112 DemandedBits *DB, 113 AssumptionCache *AC, 114 DominatorTree *DT) { 115 bool IsSigned = false; 116 const DataLayout &DL = Exit->getModule()->getDataLayout(); 117 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 118 119 if (DB) { 120 // Use the demanded bits analysis to determine the bits that are live out 121 // of the exit instruction, rounding up to the nearest power of two. If the 122 // use of demanded bits results in a smaller bit width, we know the value 123 // must be positive (i.e., IsSigned = false), because if this were not the 124 // case, the sign bit would have been demanded. 125 auto Mask = DB->getDemandedBits(Exit); 126 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 127 } 128 129 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 130 // If demanded bits wasn't able to limit the bit width, we can try to use 131 // value tracking instead. This can be the case, for example, if the value 132 // may be negative. 133 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 134 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 135 MaxBitWidth = NumTypeBits - NumSignBits; 136 KnownBits Bits = computeKnownBits(Exit, DL); 137 if (!Bits.isNonNegative()) { 138 // If the value is not known to be non-negative, we set IsSigned to true, 139 // meaning that we will use sext instructions instead of zext 140 // instructions to restore the original type. 141 IsSigned = true; 142 if (!Bits.isNegative()) 143 // If the value is not known to be negative, we don't known what the 144 // upper bit is, and therefore, we don't know what kind of extend we 145 // will need. In this case, just increase the bit width by one bit and 146 // use sext. 147 ++MaxBitWidth; 148 } 149 } 150 if (!isPowerOf2_64(MaxBitWidth)) 151 MaxBitWidth = NextPowerOf2(MaxBitWidth); 152 153 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 154 IsSigned); 155 } 156 157 /// Collect cast instructions that can be ignored in the vectorizer's cost 158 /// model, given a reduction exit value and the minimal type in which the 159 /// reduction can be represented. 160 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 161 Type *RecurrenceType, 162 SmallPtrSetImpl<Instruction *> &Casts) { 163 164 SmallVector<Instruction *, 8> Worklist; 165 SmallPtrSet<Instruction *, 8> Visited; 166 Worklist.push_back(Exit); 167 168 while (!Worklist.empty()) { 169 Instruction *Val = Worklist.pop_back_val(); 170 Visited.insert(Val); 171 if (auto *Cast = dyn_cast<CastInst>(Val)) 172 if (Cast->getSrcTy() == RecurrenceType) { 173 // If the source type of a cast instruction is equal to the recurrence 174 // type, it will be eliminated, and should be ignored in the vectorizer 175 // cost model. 176 Casts.insert(Cast); 177 continue; 178 } 179 180 // Add all operands to the work list if they are loop-varying values that 181 // we haven't yet visited. 182 for (Value *O : cast<User>(Val)->operands()) 183 if (auto *I = dyn_cast<Instruction>(O)) 184 if (TheLoop->contains(I) && !Visited.count(I)) 185 Worklist.push_back(I); 186 } 187 } 188 189 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 190 Loop *TheLoop, bool HasFunNoNaNAttr, 191 RecurrenceDescriptor &RedDes, 192 DemandedBits *DB, 193 AssumptionCache *AC, 194 DominatorTree *DT) { 195 if (Phi->getNumIncomingValues() != 2) 196 return false; 197 198 // Reduction variables are only found in the loop header block. 199 if (Phi->getParent() != TheLoop->getHeader()) 200 return false; 201 202 // Obtain the reduction start value from the value that comes from the loop 203 // preheader. 204 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 205 206 // ExitInstruction is the single value which is used outside the loop. 207 // We only allow for a single reduction value to be used outside the loop. 208 // This includes users of the reduction, variables (which form a cycle 209 // which ends in the phi node). 210 Instruction *ExitInstruction = nullptr; 211 // Indicates that we found a reduction operation in our scan. 212 bool FoundReduxOp = false; 213 214 // We start with the PHI node and scan for all of the users of this 215 // instruction. All users must be instructions that can be used as reduction 216 // variables (such as ADD). We must have a single out-of-block user. The cycle 217 // must include the original PHI. 218 bool FoundStartPHI = false; 219 220 // To recognize min/max patterns formed by a icmp select sequence, we store 221 // the number of instruction we saw from the recognized min/max pattern, 222 // to make sure we only see exactly the two instructions. 223 unsigned NumCmpSelectPatternInst = 0; 224 InstDesc ReduxDesc(false, nullptr); 225 226 // Data used for determining if the recurrence has been type-promoted. 227 Type *RecurrenceType = Phi->getType(); 228 SmallPtrSet<Instruction *, 4> CastInsts; 229 Instruction *Start = Phi; 230 bool IsSigned = false; 231 232 SmallPtrSet<Instruction *, 8> VisitedInsts; 233 SmallVector<Instruction *, 8> Worklist; 234 235 // Return early if the recurrence kind does not match the type of Phi. If the 236 // recurrence kind is arithmetic, we attempt to look through AND operations 237 // resulting from the type promotion performed by InstCombine. Vector 238 // operations are not limited to the legal integer widths, so we may be able 239 // to evaluate the reduction in the narrower width. 240 if (RecurrenceType->isFloatingPointTy()) { 241 if (!isFloatingPointRecurrenceKind(Kind)) 242 return false; 243 } else { 244 if (!isIntegerRecurrenceKind(Kind)) 245 return false; 246 if (isArithmeticRecurrenceKind(Kind)) 247 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 248 } 249 250 Worklist.push_back(Start); 251 VisitedInsts.insert(Start); 252 253 // Start with all flags set because we will intersect this with the reduction 254 // flags from all the reduction operations. 255 FastMathFlags FMF = FastMathFlags::getFast(); 256 257 // A value in the reduction can be used: 258 // - By the reduction: 259 // - Reduction operation: 260 // - One use of reduction value (safe). 261 // - Multiple use of reduction value (not safe). 262 // - PHI: 263 // - All uses of the PHI must be the reduction (safe). 264 // - Otherwise, not safe. 265 // - By instructions outside of the loop (safe). 266 // * One value may have several outside users, but all outside 267 // uses must be of the same value. 268 // - By an instruction that is not part of the reduction (not safe). 269 // This is either: 270 // * An instruction type other than PHI or the reduction operation. 271 // * A PHI in the header other than the initial PHI. 272 while (!Worklist.empty()) { 273 Instruction *Cur = Worklist.back(); 274 Worklist.pop_back(); 275 276 // No Users. 277 // If the instruction has no users then this is a broken chain and can't be 278 // a reduction variable. 279 if (Cur->use_empty()) 280 return false; 281 282 bool IsAPhi = isa<PHINode>(Cur); 283 284 // A header PHI use other than the original PHI. 285 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 286 return false; 287 288 // Reductions of instructions such as Div, and Sub is only possible if the 289 // LHS is the reduction variable. 290 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 291 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 292 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 293 return false; 294 295 // Any reduction instruction must be of one of the allowed kinds. We ignore 296 // the starting value (the Phi or an AND instruction if the Phi has been 297 // type-promoted). 298 if (Cur != Start) { 299 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 300 if (!ReduxDesc.isRecurrence()) 301 return false; 302 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 303 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) 304 FMF &= ReduxDesc.getPatternInst()->getFastMathFlags(); 305 } 306 307 bool IsASelect = isa<SelectInst>(Cur); 308 309 // A conditional reduction operation must only have 2 or less uses in 310 // VisitedInsts. 311 if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) && 312 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 313 return false; 314 315 // A reduction operation must only have one use of the reduction value. 316 if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax && 317 Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1)) 318 return false; 319 320 // All inputs to a PHI node must be a reduction value. 321 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 322 return false; 323 324 if (Kind == RK_IntegerMinMax && 325 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 326 ++NumCmpSelectPatternInst; 327 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 328 ++NumCmpSelectPatternInst; 329 330 // Check whether we found a reduction operator. 331 FoundReduxOp |= !IsAPhi && Cur != Start; 332 333 // Process users of current instruction. Push non-PHI nodes after PHI nodes 334 // onto the stack. This way we are going to have seen all inputs to PHI 335 // nodes once we get to them. 336 SmallVector<Instruction *, 8> NonPHIs; 337 SmallVector<Instruction *, 8> PHIs; 338 for (User *U : Cur->users()) { 339 Instruction *UI = cast<Instruction>(U); 340 341 // Check if we found the exit user. 342 BasicBlock *Parent = UI->getParent(); 343 if (!TheLoop->contains(Parent)) { 344 // If we already know this instruction is used externally, move on to 345 // the next user. 346 if (ExitInstruction == Cur) 347 continue; 348 349 // Exit if you find multiple values used outside or if the header phi 350 // node is being used. In this case the user uses the value of the 351 // previous iteration, in which case we would loose "VF-1" iterations of 352 // the reduction operation if we vectorize. 353 if (ExitInstruction != nullptr || Cur == Phi) 354 return false; 355 356 // The instruction used by an outside user must be the last instruction 357 // before we feed back to the reduction phi. Otherwise, we loose VF-1 358 // operations on the value. 359 if (!is_contained(Phi->operands(), Cur)) 360 return false; 361 362 ExitInstruction = Cur; 363 continue; 364 } 365 366 // Process instructions only once (termination). Each reduction cycle 367 // value must only be used once, except by phi nodes and min/max 368 // reductions which are represented as a cmp followed by a select. 369 InstDesc IgnoredVal(false, nullptr); 370 if (VisitedInsts.insert(UI).second) { 371 if (isa<PHINode>(UI)) 372 PHIs.push_back(UI); 373 else 374 NonPHIs.push_back(UI); 375 } else if (!isa<PHINode>(UI) && 376 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 377 !isa<SelectInst>(UI)) || 378 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 379 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) 380 return false; 381 382 // Remember that we completed the cycle. 383 if (UI == Phi) 384 FoundStartPHI = true; 385 } 386 Worklist.append(PHIs.begin(), PHIs.end()); 387 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 388 } 389 390 // This means we have seen one but not the other instruction of the 391 // pattern or more than just a select and cmp. 392 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 393 NumCmpSelectPatternInst != 2) 394 return false; 395 396 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 397 return false; 398 399 if (Start != Phi) { 400 // If the starting value is not the same as the phi node, we speculatively 401 // looked through an 'and' instruction when evaluating a potential 402 // arithmetic reduction to determine if it may have been type-promoted. 403 // 404 // We now compute the minimal bit width that is required to represent the 405 // reduction. If this is the same width that was indicated by the 'and', we 406 // can represent the reduction in the smaller type. The 'and' instruction 407 // will be eliminated since it will essentially be a cast instruction that 408 // can be ignore in the cost model. If we compute a different type than we 409 // did when evaluating the 'and', the 'and' will not be eliminated, and we 410 // will end up with different kinds of operations in the recurrence 411 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is 412 // the case. 413 // 414 // The vectorizer relies on InstCombine to perform the actual 415 // type-shrinking. It does this by inserting instructions to truncate the 416 // exit value of the reduction to the width indicated by RecurrenceType and 417 // then extend this value back to the original width. If IsSigned is false, 418 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 419 // used. 420 // 421 // TODO: We should not rely on InstCombine to rewrite the reduction in the 422 // smaller type. We should just generate a correctly typed expression 423 // to begin with. 424 Type *ComputedType; 425 std::tie(ComputedType, IsSigned) = 426 computeRecurrenceType(ExitInstruction, DB, AC, DT); 427 if (ComputedType != RecurrenceType) 428 return false; 429 430 // The recurrence expression will be represented in a narrower type. If 431 // there are any cast instructions that will be unnecessary, collect them 432 // in CastInsts. Note that the 'and' instruction was already included in 433 // this list. 434 // 435 // TODO: A better way to represent this may be to tag in some way all the 436 // instructions that are a part of the reduction. The vectorizer cost 437 // model could then apply the recurrence type to these instructions, 438 // without needing a white list of instructions to ignore. 439 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 440 } 441 442 // We found a reduction var if we have reached the original phi node and we 443 // only have a single instruction with out-of-loop users. 444 445 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 446 // is saved as part of the RecurrenceDescriptor. 447 448 // Save the description of this reduction variable. 449 RecurrenceDescriptor RD( 450 RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(), 451 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 452 RedDes = RD; 453 454 return true; 455 } 456 457 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 458 /// pattern corresponding to a min(X, Y) or max(X, Y). 459 RecurrenceDescriptor::InstDesc 460 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 461 462 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 463 "Expect a select instruction"); 464 Instruction *Cmp = nullptr; 465 SelectInst *Select = nullptr; 466 467 // We must handle the select(cmp()) as a single instruction. Advance to the 468 // select. 469 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 470 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 471 return InstDesc(false, I); 472 return InstDesc(Select, Prev.getMinMaxKind()); 473 } 474 475 // Only handle single use cases for now. 476 if (!(Select = dyn_cast<SelectInst>(I))) 477 return InstDesc(false, I); 478 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 479 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 480 return InstDesc(false, I); 481 if (!Cmp->hasOneUse()) 482 return InstDesc(false, I); 483 484 Value *CmpLeft; 485 Value *CmpRight; 486 487 // Look for a min/max pattern. 488 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 489 return InstDesc(Select, MRK_UIntMin); 490 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 491 return InstDesc(Select, MRK_UIntMax); 492 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 493 return InstDesc(Select, MRK_SIntMax); 494 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 495 return InstDesc(Select, MRK_SIntMin); 496 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 497 return InstDesc(Select, MRK_FloatMin); 498 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 499 return InstDesc(Select, MRK_FloatMax); 500 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 501 return InstDesc(Select, MRK_FloatMin); 502 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 503 return InstDesc(Select, MRK_FloatMax); 504 505 return InstDesc(false, I); 506 } 507 508 /// Returns true if the select instruction has users in the compare-and-add 509 /// reduction pattern below. The select instruction argument is the last one 510 /// in the sequence. 511 /// 512 /// %sum.1 = phi ... 513 /// ... 514 /// %cmp = fcmp pred %0, %CFP 515 /// %add = fadd %0, %sum.1 516 /// %sum.2 = select %cmp, %add, %sum.1 517 RecurrenceDescriptor::InstDesc 518 RecurrenceDescriptor::isConditionalRdxPattern( 519 RecurrenceKind Kind, Instruction *I) { 520 SelectInst *SI = dyn_cast<SelectInst>(I); 521 if (!SI) 522 return InstDesc(false, I); 523 524 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 525 // Only handle single use cases for now. 526 if (!CI || !CI->hasOneUse()) 527 return InstDesc(false, I); 528 529 Value *TrueVal = SI->getTrueValue(); 530 Value *FalseVal = SI->getFalseValue(); 531 // Handle only when either of operands of select instruction is a PHI 532 // node for now. 533 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 534 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 535 return InstDesc(false, I); 536 537 Instruction *I1 = 538 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 539 : dyn_cast<Instruction>(TrueVal); 540 if (!I1 || !I1->isBinaryOp()) 541 return InstDesc(false, I); 542 543 Value *Op1, *Op2; 544 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 545 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 546 I1->isFast()) 547 return InstDesc(Kind == RK_FloatAdd, SI); 548 549 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 550 return InstDesc(Kind == RK_FloatMult, SI); 551 552 return InstDesc(false, I); 553 } 554 555 RecurrenceDescriptor::InstDesc 556 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 557 InstDesc &Prev, bool HasFunNoNaNAttr) { 558 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 559 if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc()) 560 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 561 562 switch (I->getOpcode()) { 563 default: 564 return InstDesc(false, I); 565 case Instruction::PHI: 566 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 567 case Instruction::Sub: 568 case Instruction::Add: 569 return InstDesc(Kind == RK_IntegerAdd, I); 570 case Instruction::Mul: 571 return InstDesc(Kind == RK_IntegerMult, I); 572 case Instruction::And: 573 return InstDesc(Kind == RK_IntegerAnd, I); 574 case Instruction::Or: 575 return InstDesc(Kind == RK_IntegerOr, I); 576 case Instruction::Xor: 577 return InstDesc(Kind == RK_IntegerXor, I); 578 case Instruction::FMul: 579 return InstDesc(Kind == RK_FloatMult, I, UAI); 580 case Instruction::FSub: 581 case Instruction::FAdd: 582 return InstDesc(Kind == RK_FloatAdd, I, UAI); 583 case Instruction::Select: 584 if (Kind == RK_FloatAdd || Kind == RK_FloatMult) 585 return isConditionalRdxPattern(Kind, I); 586 LLVM_FALLTHROUGH; 587 case Instruction::FCmp: 588 case Instruction::ICmp: 589 if (Kind != RK_IntegerMinMax && 590 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 591 return InstDesc(false, I); 592 return isMinMaxSelectCmpPattern(I, Prev); 593 } 594 } 595 596 bool RecurrenceDescriptor::hasMultipleUsesOf( 597 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 598 unsigned MaxNumUses) { 599 unsigned NumUses = 0; 600 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 601 ++Use) { 602 if (Insts.count(dyn_cast<Instruction>(*Use))) 603 ++NumUses; 604 if (NumUses > MaxNumUses) 605 return true; 606 } 607 608 return false; 609 } 610 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 611 RecurrenceDescriptor &RedDes, 612 DemandedBits *DB, AssumptionCache *AC, 613 DominatorTree *DT) { 614 615 BasicBlock *Header = TheLoop->getHeader(); 616 Function &F = *Header->getParent(); 617 bool HasFunNoNaNAttr = 618 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 619 620 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 621 AC, DT)) { 622 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 623 return true; 624 } 625 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 626 AC, DT)) { 627 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 628 return true; 629 } 630 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB, 631 AC, DT)) { 632 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 633 return true; 634 } 635 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 636 AC, DT)) { 637 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 638 return true; 639 } 640 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB, 641 AC, DT)) { 642 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 643 return true; 644 } 645 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes, 646 DB, AC, DT)) { 647 LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 648 return true; 649 } 650 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 651 AC, DT)) { 652 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 653 return true; 654 } 655 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 656 AC, DT)) { 657 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 658 return true; 659 } 660 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, 661 AC, DT)) { 662 LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi 663 << "\n"); 664 return true; 665 } 666 // Not a reduction of known type. 667 return false; 668 } 669 670 bool RecurrenceDescriptor::isFirstOrderRecurrence( 671 PHINode *Phi, Loop *TheLoop, 672 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 673 674 // Ensure the phi node is in the loop header and has two incoming values. 675 if (Phi->getParent() != TheLoop->getHeader() || 676 Phi->getNumIncomingValues() != 2) 677 return false; 678 679 // Ensure the loop has a preheader and a single latch block. The loop 680 // vectorizer will need the latch to set up the next iteration of the loop. 681 auto *Preheader = TheLoop->getLoopPreheader(); 682 auto *Latch = TheLoop->getLoopLatch(); 683 if (!Preheader || !Latch) 684 return false; 685 686 // Ensure the phi node's incoming blocks are the loop preheader and latch. 687 if (Phi->getBasicBlockIndex(Preheader) < 0 || 688 Phi->getBasicBlockIndex(Latch) < 0) 689 return false; 690 691 // Get the previous value. The previous value comes from the latch edge while 692 // the initial value comes form the preheader edge. 693 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 694 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 695 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 696 return false; 697 698 // Ensure every user of the phi node is dominated by the previous value. 699 // The dominance requirement ensures the loop vectorizer will not need to 700 // vectorize the initial value prior to the first iteration of the loop. 701 // TODO: Consider extending this sinking to handle memory instructions and 702 // phis with multiple users. 703 704 // Returns true, if all users of I are dominated by DominatedBy. 705 auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) { 706 return all_of(I->uses(), [DT, DominatedBy](Use &U) { 707 return DT->dominates(DominatedBy, U); 708 }); 709 }; 710 711 if (Phi->hasOneUse()) { 712 Instruction *I = Phi->user_back(); 713 714 // If the user of the PHI is also the incoming value, we potentially have a 715 // reduction and which cannot be handled by sinking. 716 if (Previous == I) 717 return false; 718 719 // We cannot sink terminator instructions. 720 if (I->getParent()->getTerminator() == I) 721 return false; 722 723 // Do not try to sink an instruction multiple times (if multiple operands 724 // are first order recurrences). 725 // TODO: We can support this case, by sinking the instruction after the 726 // 'deepest' previous instruction. 727 if (SinkAfter.find(I) != SinkAfter.end()) 728 return false; 729 730 if (DT->dominates(Previous, I)) // We already are good w/o sinking. 731 return true; 732 733 // We can sink any instruction without side effects, as long as all users 734 // are dominated by the instruction we are sinking after. 735 if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() && 736 allUsesDominatedBy(I, Previous)) { 737 SinkAfter[I] = Previous; 738 return true; 739 } 740 } 741 742 return allUsesDominatedBy(Phi, Previous); 743 } 744 745 /// This function returns the identity element (or neutral element) for 746 /// the operation K. 747 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 748 Type *Tp) { 749 switch (K) { 750 case RK_IntegerXor: 751 case RK_IntegerAdd: 752 case RK_IntegerOr: 753 // Adding, Xoring, Oring zero to a number does not change it. 754 return ConstantInt::get(Tp, 0); 755 case RK_IntegerMult: 756 // Multiplying a number by 1 does not change it. 757 return ConstantInt::get(Tp, 1); 758 case RK_IntegerAnd: 759 // AND-ing a number with an all-1 value does not change it. 760 return ConstantInt::get(Tp, -1, true); 761 case RK_FloatMult: 762 // Multiplying a number by 1 does not change it. 763 return ConstantFP::get(Tp, 1.0L); 764 case RK_FloatAdd: 765 // Adding zero to a number does not change it. 766 return ConstantFP::get(Tp, 0.0L); 767 default: 768 llvm_unreachable("Unknown recurrence kind"); 769 } 770 } 771 772 /// This function translates the recurrence kind to an LLVM binary operator. 773 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 774 switch (Kind) { 775 case RK_IntegerAdd: 776 return Instruction::Add; 777 case RK_IntegerMult: 778 return Instruction::Mul; 779 case RK_IntegerOr: 780 return Instruction::Or; 781 case RK_IntegerAnd: 782 return Instruction::And; 783 case RK_IntegerXor: 784 return Instruction::Xor; 785 case RK_FloatMult: 786 return Instruction::FMul; 787 case RK_FloatAdd: 788 return Instruction::FAdd; 789 case RK_IntegerMinMax: 790 return Instruction::ICmp; 791 case RK_FloatMinMax: 792 return Instruction::FCmp; 793 default: 794 llvm_unreachable("Unknown recurrence operation"); 795 } 796 } 797 798 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 799 const SCEV *Step, BinaryOperator *BOp, 800 SmallVectorImpl<Instruction *> *Casts) 801 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 802 assert(IK != IK_NoInduction && "Not an induction"); 803 804 // Start value type should match the induction kind and the value 805 // itself should not be null. 806 assert(StartValue && "StartValue is null"); 807 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 808 "StartValue is not a pointer for pointer induction"); 809 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 810 "StartValue is not an integer for integer induction"); 811 812 // Check the Step Value. It should be non-zero integer value. 813 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 814 "Step value is zero"); 815 816 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 817 "Step value should be constant for pointer induction"); 818 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 819 "StepValue is not an integer"); 820 821 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 822 "StepValue is not FP for FpInduction"); 823 assert((IK != IK_FpInduction || 824 (InductionBinOp && 825 (InductionBinOp->getOpcode() == Instruction::FAdd || 826 InductionBinOp->getOpcode() == Instruction::FSub))) && 827 "Binary opcode should be specified for FP induction"); 828 829 if (Casts) { 830 for (auto &Inst : *Casts) { 831 RedundantCasts.push_back(Inst); 832 } 833 } 834 } 835 836 int InductionDescriptor::getConsecutiveDirection() const { 837 ConstantInt *ConstStep = getConstIntStepValue(); 838 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 839 return ConstStep->getSExtValue(); 840 return 0; 841 } 842 843 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 844 if (isa<SCEVConstant>(Step)) 845 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 846 return nullptr; 847 } 848 849 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 850 ScalarEvolution *SE, 851 InductionDescriptor &D) { 852 853 // Here we only handle FP induction variables. 854 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 855 856 if (TheLoop->getHeader() != Phi->getParent()) 857 return false; 858 859 // The loop may have multiple entrances or multiple exits; we can analyze 860 // this phi if it has a unique entry value and a unique backedge value. 861 if (Phi->getNumIncomingValues() != 2) 862 return false; 863 Value *BEValue = nullptr, *StartValue = nullptr; 864 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 865 BEValue = Phi->getIncomingValue(0); 866 StartValue = Phi->getIncomingValue(1); 867 } else { 868 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 869 "Unexpected Phi node in the loop"); 870 BEValue = Phi->getIncomingValue(1); 871 StartValue = Phi->getIncomingValue(0); 872 } 873 874 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 875 if (!BOp) 876 return false; 877 878 Value *Addend = nullptr; 879 if (BOp->getOpcode() == Instruction::FAdd) { 880 if (BOp->getOperand(0) == Phi) 881 Addend = BOp->getOperand(1); 882 else if (BOp->getOperand(1) == Phi) 883 Addend = BOp->getOperand(0); 884 } else if (BOp->getOpcode() == Instruction::FSub) 885 if (BOp->getOperand(0) == Phi) 886 Addend = BOp->getOperand(1); 887 888 if (!Addend) 889 return false; 890 891 // The addend should be loop invariant 892 if (auto *I = dyn_cast<Instruction>(Addend)) 893 if (TheLoop->contains(I)) 894 return false; 895 896 // FP Step has unknown SCEV 897 const SCEV *Step = SE->getUnknown(Addend); 898 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 899 return true; 900 } 901 902 /// This function is called when we suspect that the update-chain of a phi node 903 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 904 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 905 /// predicate P under which the SCEV expression for the phi can be the 906 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 907 /// cast instructions that are involved in the update-chain of this induction. 908 /// A caller that adds the required runtime predicate can be free to drop these 909 /// cast instructions, and compute the phi using \p AR (instead of some scev 910 /// expression with casts). 911 /// 912 /// For example, without a predicate the scev expression can take the following 913 /// form: 914 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 915 /// 916 /// It corresponds to the following IR sequence: 917 /// %for.body: 918 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 919 /// %casted_phi = "ExtTrunc i64 %x" 920 /// %add = add i64 %casted_phi, %step 921 /// 922 /// where %x is given in \p PN, 923 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 924 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 925 /// several forms, for example, such as: 926 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 927 /// or: 928 /// ExtTrunc2: %t = shl %x, m 929 /// %casted_phi = ashr %t, m 930 /// 931 /// If we are able to find such sequence, we return the instructions 932 /// we found, namely %casted_phi and the instructions on its use-def chain up 933 /// to the phi (not including the phi). 934 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 935 const SCEVUnknown *PhiScev, 936 const SCEVAddRecExpr *AR, 937 SmallVectorImpl<Instruction *> &CastInsts) { 938 939 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 940 auto *PN = cast<PHINode>(PhiScev->getValue()); 941 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 942 const Loop *L = AR->getLoop(); 943 944 // Find any cast instructions that participate in the def-use chain of 945 // PhiScev in the loop. 946 // FORNOW/TODO: We currently expect the def-use chain to include only 947 // two-operand instructions, where one of the operands is an invariant. 948 // createAddRecFromPHIWithCasts() currently does not support anything more 949 // involved than that, so we keep the search simple. This can be 950 // extended/generalized as needed. 951 952 auto getDef = [&](const Value *Val) -> Value * { 953 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 954 if (!BinOp) 955 return nullptr; 956 Value *Op0 = BinOp->getOperand(0); 957 Value *Op1 = BinOp->getOperand(1); 958 Value *Def = nullptr; 959 if (L->isLoopInvariant(Op0)) 960 Def = Op1; 961 else if (L->isLoopInvariant(Op1)) 962 Def = Op0; 963 return Def; 964 }; 965 966 // Look for the instruction that defines the induction via the 967 // loop backedge. 968 BasicBlock *Latch = L->getLoopLatch(); 969 if (!Latch) 970 return false; 971 Value *Val = PN->getIncomingValueForBlock(Latch); 972 if (!Val) 973 return false; 974 975 // Follow the def-use chain until the induction phi is reached. 976 // If on the way we encounter a Value that has the same SCEV Expr as the 977 // phi node, we can consider the instructions we visit from that point 978 // as part of the cast-sequence that can be ignored. 979 bool InCastSequence = false; 980 auto *Inst = dyn_cast<Instruction>(Val); 981 while (Val != PN) { 982 // If we encountered a phi node other than PN, or if we left the loop, 983 // we bail out. 984 if (!Inst || !L->contains(Inst)) { 985 return false; 986 } 987 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 988 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 989 InCastSequence = true; 990 if (InCastSequence) { 991 // Only the last instruction in the cast sequence is expected to have 992 // uses outside the induction def-use chain. 993 if (!CastInsts.empty()) 994 if (!Inst->hasOneUse()) 995 return false; 996 CastInsts.push_back(Inst); 997 } 998 Val = getDef(Val); 999 if (!Val) 1000 return false; 1001 Inst = dyn_cast<Instruction>(Val); 1002 } 1003 1004 return InCastSequence; 1005 } 1006 1007 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1008 PredicatedScalarEvolution &PSE, 1009 InductionDescriptor &D, bool Assume) { 1010 Type *PhiTy = Phi->getType(); 1011 1012 // Handle integer and pointer inductions variables. 1013 // Now we handle also FP induction but not trying to make a 1014 // recurrent expression from the PHI node in-place. 1015 1016 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1017 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1018 return false; 1019 1020 if (PhiTy->isFloatingPointTy()) 1021 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1022 1023 const SCEV *PhiScev = PSE.getSCEV(Phi); 1024 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1025 1026 // We need this expression to be an AddRecExpr. 1027 if (Assume && !AR) 1028 AR = PSE.getAsAddRec(Phi); 1029 1030 if (!AR) { 1031 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1032 return false; 1033 } 1034 1035 // Record any Cast instructions that participate in the induction update 1036 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1037 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1038 // only after enabling Assume with PSCEV, this means we may have encountered 1039 // cast instructions that required adding a runtime check in order to 1040 // guarantee the correctness of the AddRecurrence respresentation of the 1041 // induction. 1042 if (PhiScev != AR && SymbolicPhi) { 1043 SmallVector<Instruction *, 2> Casts; 1044 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1045 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1046 } 1047 1048 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1049 } 1050 1051 bool InductionDescriptor::isInductionPHI( 1052 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1053 InductionDescriptor &D, const SCEV *Expr, 1054 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1055 Type *PhiTy = Phi->getType(); 1056 // We only handle integer and pointer inductions variables. 1057 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1058 return false; 1059 1060 // Check that the PHI is consecutive. 1061 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1062 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1063 1064 if (!AR) { 1065 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1066 return false; 1067 } 1068 1069 if (AR->getLoop() != TheLoop) { 1070 // FIXME: We should treat this as a uniform. Unfortunately, we 1071 // don't currently know how to handled uniform PHIs. 1072 LLVM_DEBUG( 1073 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1074 return false; 1075 } 1076 1077 Value *StartValue = 1078 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1079 1080 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1081 if (!Latch) 1082 return false; 1083 BinaryOperator *BOp = 1084 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1085 1086 const SCEV *Step = AR->getStepRecurrence(*SE); 1087 // Calculate the pointer stride and check if it is consecutive. 1088 // The stride may be a constant or a loop invariant integer value. 1089 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1090 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1091 return false; 1092 1093 if (PhiTy->isIntegerTy()) { 1094 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1095 CastsToIgnore); 1096 return true; 1097 } 1098 1099 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1100 // Pointer induction should be a constant. 1101 if (!ConstStep) 1102 return false; 1103 1104 ConstantInt *CV = ConstStep->getValue(); 1105 Type *PointerElementType = PhiTy->getPointerElementType(); 1106 // The pointer stride cannot be determined if the pointer element type is not 1107 // sized. 1108 if (!PointerElementType->isSized()) 1109 return false; 1110 1111 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1112 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1113 if (!Size) 1114 return false; 1115 1116 int64_t CVSize = CV->getSExtValue(); 1117 if (CVSize % Size) 1118 return false; 1119 auto *StepValue = 1120 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1121 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp); 1122 return true; 1123 } 1124