1 //===- IRSimilarityIdentifier.cpp - Find similarity in a module -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // Implementation file for the IRSimilarityIdentifier for identifying 11 // similarities in IR including the IRInstructionMapper. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/IR/Intrinsics.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/User.h" 20 #include "llvm/InitializePasses.h" 21 #include "llvm/Support/SuffixTree.h" 22 23 using namespace llvm; 24 using namespace IRSimilarity; 25 26 namespace llvm { 27 cl::opt<bool> 28 DisableBranches("no-ir-sim-branch-matching", cl::init(false), 29 cl::ReallyHidden, 30 cl::desc("disable similarity matching, and outlining, " 31 "across branches for debugging purposes.")); 32 33 cl::opt<bool> 34 DisableIndirectCalls("no-ir-sim-indirect-calls", cl::init(false), 35 cl::ReallyHidden, 36 cl::desc("disable outlining indirect calls.")); 37 38 cl::opt<bool> 39 MatchCallsByName("ir-sim-calls-by-name", cl::init(false), cl::ReallyHidden, 40 cl::desc("only allow matching call instructions if the " 41 "name and type signature match.")); 42 43 cl::opt<bool> 44 DisableIntrinsics("no-ir-sim-intrinsics", cl::init(false), cl::ReallyHidden, 45 cl::desc("Don't match or outline intrinsics")); 46 } // namespace llvm 47 48 IRInstructionData::IRInstructionData(Instruction &I, bool Legality, 49 IRInstructionDataList &IDList) 50 : Inst(&I), Legal(Legality), IDL(&IDList) { 51 initializeInstruction(); 52 } 53 54 void IRInstructionData::initializeInstruction() { 55 // We check for whether we have a comparison instruction. If it is, we 56 // find the "less than" version of the predicate for consistency for 57 // comparison instructions throught the program. 58 if (CmpInst *C = dyn_cast<CmpInst>(Inst)) { 59 CmpInst::Predicate Predicate = predicateForConsistency(C); 60 if (Predicate != C->getPredicate()) 61 RevisedPredicate = Predicate; 62 } 63 64 // Here we collect the operands and their types for determining whether 65 // the structure of the operand use matches between two different candidates. 66 for (Use &OI : Inst->operands()) { 67 if (isa<CmpInst>(Inst) && RevisedPredicate.hasValue()) { 68 // If we have a CmpInst where the predicate is reversed, it means the 69 // operands must be reversed as well. 70 OperVals.insert(OperVals.begin(), OI.get()); 71 continue; 72 } 73 74 OperVals.push_back(OI.get()); 75 } 76 77 // We capture the incoming BasicBlocks as values as well as the incoming 78 // Values in order to check for structural similarity. 79 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 80 for (BasicBlock *BB : PN->blocks()) 81 OperVals.push_back(BB); 82 } 83 84 IRInstructionData::IRInstructionData(IRInstructionDataList &IDList) 85 : IDL(&IDList) {} 86 87 void IRInstructionData::setBranchSuccessors( 88 DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) { 89 assert(isa<BranchInst>(Inst) && "Instruction must be branch"); 90 91 BranchInst *BI = cast<BranchInst>(Inst); 92 DenseMap<BasicBlock *, unsigned>::iterator BBNumIt; 93 94 BBNumIt = BasicBlockToInteger.find(BI->getParent()); 95 assert(BBNumIt != BasicBlockToInteger.end() && 96 "Could not find location for BasicBlock!"); 97 98 int CurrentBlockNumber = static_cast<int>(BBNumIt->second); 99 100 for (BasicBlock *Successor : BI->successors()) { 101 BBNumIt = BasicBlockToInteger.find(Successor); 102 assert(BBNumIt != BasicBlockToInteger.end() && 103 "Could not find number for BasicBlock!"); 104 int OtherBlockNumber = static_cast<int>(BBNumIt->second); 105 106 int Relative = OtherBlockNumber - CurrentBlockNumber; 107 RelativeBlockLocations.push_back(Relative); 108 } 109 } 110 111 void IRInstructionData::setCalleeName(bool MatchByName) { 112 CallInst *CI = dyn_cast<CallInst>(Inst); 113 assert(CI && "Instruction must be call"); 114 115 CalleeName = ""; 116 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 117 // To hash intrinsics, we use the opcode, and types like the other 118 // instructions, but also, the Intrinsic ID, and the Name of the 119 // intrinsic. 120 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 121 FunctionType *FT = II->getFunctionType(); 122 // If there is an overloaded name, we have to use the complex version 123 // of getName to get the entire string. 124 if (Intrinsic::isOverloaded(IntrinsicID)) 125 CalleeName = 126 Intrinsic::getName(IntrinsicID, FT->params(), II->getModule(), FT); 127 // If there is not an overloaded name, we only need to use this version. 128 else 129 CalleeName = Intrinsic::getName(IntrinsicID).str(); 130 131 return; 132 } 133 134 if (!CI->isIndirectCall() && MatchByName) 135 CalleeName = CI->getCalledFunction()->getName().str(); 136 } 137 138 void IRInstructionData::setPHIPredecessors( 139 DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) { 140 assert(isa<PHINode>(Inst) && "Instruction must be phi node"); 141 142 PHINode *PN = cast<PHINode>(Inst); 143 DenseMap<BasicBlock *, unsigned>::iterator BBNumIt; 144 145 BBNumIt = BasicBlockToInteger.find(PN->getParent()); 146 assert(BBNumIt != BasicBlockToInteger.end() && 147 "Could not find location for BasicBlock!"); 148 149 int CurrentBlockNumber = static_cast<int>(BBNumIt->second); 150 151 // Convert the incoming blocks of the PHINode to an integer value, based on 152 // the relative distances between the current block and the incoming block. 153 for (unsigned Idx = 0; Idx < PN->getNumIncomingValues(); Idx++) { 154 BasicBlock *Incoming = PN->getIncomingBlock(Idx); 155 BBNumIt = BasicBlockToInteger.find(Incoming); 156 assert(BBNumIt != BasicBlockToInteger.end() && 157 "Could not find number for BasicBlock!"); 158 int OtherBlockNumber = static_cast<int>(BBNumIt->second); 159 160 int Relative = OtherBlockNumber - CurrentBlockNumber; 161 RelativeBlockLocations.push_back(Relative); 162 RelativeBlockLocations.push_back(Relative); 163 } 164 } 165 166 CmpInst::Predicate IRInstructionData::predicateForConsistency(CmpInst *CI) { 167 switch (CI->getPredicate()) { 168 case CmpInst::FCMP_OGT: 169 case CmpInst::FCMP_UGT: 170 case CmpInst::FCMP_OGE: 171 case CmpInst::FCMP_UGE: 172 case CmpInst::ICMP_SGT: 173 case CmpInst::ICMP_UGT: 174 case CmpInst::ICMP_SGE: 175 case CmpInst::ICMP_UGE: 176 return CI->getSwappedPredicate(); 177 default: 178 return CI->getPredicate(); 179 } 180 } 181 182 CmpInst::Predicate IRInstructionData::getPredicate() const { 183 assert(isa<CmpInst>(Inst) && 184 "Can only get a predicate from a compare instruction"); 185 186 if (RevisedPredicate.hasValue()) 187 return RevisedPredicate.getValue(); 188 189 return cast<CmpInst>(Inst)->getPredicate(); 190 } 191 192 StringRef IRInstructionData::getCalleeName() const { 193 assert(isa<CallInst>(Inst) && 194 "Can only get a name from a call instruction"); 195 196 assert(CalleeName.hasValue() && "CalleeName has not been set"); 197 198 return *CalleeName; 199 } 200 201 bool IRSimilarity::isClose(const IRInstructionData &A, 202 const IRInstructionData &B) { 203 204 if (!A.Legal || !B.Legal) 205 return false; 206 207 // Check if we are performing the same sort of operation on the same types 208 // but not on the same values. 209 if (!A.Inst->isSameOperationAs(B.Inst)) { 210 // If there is a predicate, this means that either there is a swapped 211 // predicate, or that the types are different, we want to make sure that 212 // the predicates are equivalent via swapping. 213 if (isa<CmpInst>(A.Inst) && isa<CmpInst>(B.Inst)) { 214 215 if (A.getPredicate() != B.getPredicate()) 216 return false; 217 218 // If the predicates are the same via swap, make sure that the types are 219 // still the same. 220 auto ZippedTypes = zip(A.OperVals, B.OperVals); 221 222 return all_of( 223 ZippedTypes, [](std::tuple<llvm::Value *, llvm::Value *> R) { 224 return std::get<0>(R)->getType() == std::get<1>(R)->getType(); 225 }); 226 } 227 228 return false; 229 } 230 231 // Since any GEP Instruction operands after the first operand cannot be 232 // defined by a register, we must make sure that the operands after the first 233 // are the same in the two instructions 234 if (auto *GEP = dyn_cast<GetElementPtrInst>(A.Inst)) { 235 auto *OtherGEP = cast<GetElementPtrInst>(B.Inst); 236 237 // If the instructions do not have the same inbounds restrictions, we do 238 // not consider them the same. 239 if (GEP->isInBounds() != OtherGEP->isInBounds()) 240 return false; 241 242 auto ZippedOperands = zip(GEP->indices(), OtherGEP->indices()); 243 244 // We increment here since we do not care about the first instruction, 245 // we only care about the following operands since they must be the 246 // exact same to be considered similar. 247 return all_of(drop_begin(ZippedOperands), 248 [](std::tuple<llvm::Use &, llvm::Use &> R) { 249 return std::get<0>(R) == std::get<1>(R); 250 }); 251 } 252 253 // If the instructions are functions calls, we make sure that the function 254 // name is the same. We already know that the types are since is 255 // isSameOperationAs is true. 256 if (isa<CallInst>(A.Inst) && isa<CallInst>(B.Inst)) { 257 if (A.getCalleeName().str() != B.getCalleeName().str()) 258 return false; 259 } 260 261 if (isa<BranchInst>(A.Inst) && isa<BranchInst>(B.Inst) && 262 A.RelativeBlockLocations.size() != B.RelativeBlockLocations.size()) 263 return false; 264 265 return true; 266 } 267 268 // TODO: This is the same as the MachineOutliner, and should be consolidated 269 // into the same interface. 270 void IRInstructionMapper::convertToUnsignedVec( 271 BasicBlock &BB, std::vector<IRInstructionData *> &InstrList, 272 std::vector<unsigned> &IntegerMapping) { 273 BasicBlock::iterator It = BB.begin(); 274 275 std::vector<unsigned> IntegerMappingForBB; 276 std::vector<IRInstructionData *> InstrListForBB; 277 278 for (BasicBlock::iterator Et = BB.end(); It != Et; ++It) { 279 switch (InstClassifier.visit(*It)) { 280 case InstrType::Legal: 281 mapToLegalUnsigned(It, IntegerMappingForBB, InstrListForBB); 282 break; 283 case InstrType::Illegal: 284 mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB); 285 break; 286 case InstrType::Invisible: 287 AddedIllegalLastTime = false; 288 break; 289 } 290 } 291 292 if (HaveLegalRange) { 293 if (AddedIllegalLastTime) 294 mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB, true); 295 for (IRInstructionData *ID : InstrListForBB) 296 this->IDL->push_back(*ID); 297 llvm::append_range(InstrList, InstrListForBB); 298 llvm::append_range(IntegerMapping, IntegerMappingForBB); 299 } 300 } 301 302 // TODO: This is the same as the MachineOutliner, and should be consolidated 303 // into the same interface. 304 unsigned IRInstructionMapper::mapToLegalUnsigned( 305 BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB, 306 std::vector<IRInstructionData *> &InstrListForBB) { 307 // We added something legal, so we should unset the AddedLegalLastTime 308 // flag. 309 AddedIllegalLastTime = false; 310 311 // If we have at least two adjacent legal instructions (which may have 312 // invisible instructions in between), remember that. 313 if (CanCombineWithPrevInstr) 314 HaveLegalRange = true; 315 CanCombineWithPrevInstr = true; 316 317 // Get the integer for this instruction or give it the current 318 // LegalInstrNumber. 319 IRInstructionData *ID = allocateIRInstructionData(*It, true, *IDL); 320 InstrListForBB.push_back(ID); 321 322 if (isa<BranchInst>(*It)) 323 ID->setBranchSuccessors(BasicBlockToInteger); 324 325 if (isa<CallInst>(*It)) 326 ID->setCalleeName(EnableMatchCallsByName); 327 328 if (isa<PHINode>(*It)) 329 ID->setPHIPredecessors(BasicBlockToInteger); 330 331 // Add to the instruction list 332 bool WasInserted; 333 DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>::iterator 334 ResultIt; 335 std::tie(ResultIt, WasInserted) = 336 InstructionIntegerMap.insert(std::make_pair(ID, LegalInstrNumber)); 337 unsigned INumber = ResultIt->second; 338 339 // There was an insertion. 340 if (WasInserted) 341 LegalInstrNumber++; 342 343 IntegerMappingForBB.push_back(INumber); 344 345 // Make sure we don't overflow or use any integers reserved by the DenseMap. 346 assert(LegalInstrNumber < IllegalInstrNumber && 347 "Instruction mapping overflow!"); 348 349 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 350 "Tried to assign DenseMap tombstone or empty key to instruction."); 351 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 352 "Tried to assign DenseMap tombstone or empty key to instruction."); 353 354 return INumber; 355 } 356 357 IRInstructionData * 358 IRInstructionMapper::allocateIRInstructionData(Instruction &I, bool Legality, 359 IRInstructionDataList &IDL) { 360 return new (InstDataAllocator->Allocate()) IRInstructionData(I, Legality, IDL); 361 } 362 363 IRInstructionData * 364 IRInstructionMapper::allocateIRInstructionData(IRInstructionDataList &IDL) { 365 return new (InstDataAllocator->Allocate()) IRInstructionData(IDL); 366 } 367 368 IRInstructionDataList * 369 IRInstructionMapper::allocateIRInstructionDataList() { 370 return new (IDLAllocator->Allocate()) IRInstructionDataList(); 371 } 372 373 // TODO: This is the same as the MachineOutliner, and should be consolidated 374 // into the same interface. 375 unsigned IRInstructionMapper::mapToIllegalUnsigned( 376 BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB, 377 std::vector<IRInstructionData *> &InstrListForBB, bool End) { 378 // Can't combine an illegal instruction. Set the flag. 379 CanCombineWithPrevInstr = false; 380 381 // Only add one illegal number per range of legal numbers. 382 if (AddedIllegalLastTime) 383 return IllegalInstrNumber; 384 385 IRInstructionData *ID = nullptr; 386 if (!End) 387 ID = allocateIRInstructionData(*It, false, *IDL); 388 else 389 ID = allocateIRInstructionData(*IDL); 390 InstrListForBB.push_back(ID); 391 392 // Remember that we added an illegal number last time. 393 AddedIllegalLastTime = true; 394 unsigned INumber = IllegalInstrNumber; 395 IntegerMappingForBB.push_back(IllegalInstrNumber--); 396 397 assert(LegalInstrNumber < IllegalInstrNumber && 398 "Instruction mapping overflow!"); 399 400 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 401 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 402 403 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 404 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 405 406 return INumber; 407 } 408 409 IRSimilarityCandidate::IRSimilarityCandidate(unsigned StartIdx, unsigned Len, 410 IRInstructionData *FirstInstIt, 411 IRInstructionData *LastInstIt) 412 : StartIdx(StartIdx), Len(Len) { 413 414 assert(FirstInstIt != nullptr && "Instruction is nullptr!"); 415 assert(LastInstIt != nullptr && "Instruction is nullptr!"); 416 assert(StartIdx + Len > StartIdx && 417 "Overflow for IRSimilarityCandidate range?"); 418 assert(Len - 1 == static_cast<unsigned>(std::distance( 419 iterator(FirstInstIt), iterator(LastInstIt))) && 420 "Length of the first and last IRInstructionData do not match the " 421 "given length"); 422 423 // We iterate over the given instructions, and map each unique value 424 // to a unique number in the IRSimilarityCandidate ValueToNumber and 425 // NumberToValue maps. A constant get its own value globally, the individual 426 // uses of the constants are not considered to be unique. 427 // 428 // IR: Mapping Added: 429 // %add1 = add i32 %a, c1 %add1 -> 3, %a -> 1, c1 -> 2 430 // %add2 = add i32 %a, %1 %add2 -> 4 431 // %add3 = add i32 c2, c1 %add3 -> 6, c2 -> 5 432 // 433 // when replace with global values, starting from 1, would be 434 // 435 // 3 = add i32 1, 2 436 // 4 = add i32 1, 3 437 // 6 = add i32 5, 2 438 unsigned LocalValNumber = 1; 439 IRInstructionDataList::iterator ID = iterator(*FirstInstIt); 440 for (unsigned Loc = StartIdx; Loc < StartIdx + Len; Loc++, ID++) { 441 // Map the operand values to an unsigned integer if it does not already 442 // have an unsigned integer assigned to it. 443 for (Value *Arg : ID->OperVals) 444 if (ValueToNumber.find(Arg) == ValueToNumber.end()) { 445 ValueToNumber.try_emplace(Arg, LocalValNumber); 446 NumberToValue.try_emplace(LocalValNumber, Arg); 447 LocalValNumber++; 448 } 449 450 // Mapping the instructions to an unsigned integer if it is not already 451 // exist in the mapping. 452 if (ValueToNumber.find(ID->Inst) == ValueToNumber.end()) { 453 ValueToNumber.try_emplace(ID->Inst, LocalValNumber); 454 NumberToValue.try_emplace(LocalValNumber, ID->Inst); 455 LocalValNumber++; 456 } 457 } 458 459 // Setting the first and last instruction data pointers for the candidate. If 460 // we got through the entire for loop without hitting an assert, we know 461 // that both of these instructions are not nullptrs. 462 FirstInst = FirstInstIt; 463 LastInst = LastInstIt; 464 } 465 466 bool IRSimilarityCandidate::isSimilar(const IRSimilarityCandidate &A, 467 const IRSimilarityCandidate &B) { 468 if (A.getLength() != B.getLength()) 469 return false; 470 471 auto InstrDataForBoth = 472 zip(make_range(A.begin(), A.end()), make_range(B.begin(), B.end())); 473 474 return all_of(InstrDataForBoth, 475 [](std::tuple<IRInstructionData &, IRInstructionData &> R) { 476 IRInstructionData &A = std::get<0>(R); 477 IRInstructionData &B = std::get<1>(R); 478 if (!A.Legal || !B.Legal) 479 return false; 480 return isClose(A, B); 481 }); 482 } 483 484 /// Determine if one or more of the assigned global value numbers for the 485 /// operands in \p TargetValueNumbers is in the current mapping set for operand 486 /// numbers in \p SourceOperands. The set of possible corresponding global 487 /// value numbers are replaced with the most recent version of compatible 488 /// values. 489 /// 490 /// \param [in] SourceValueToNumberMapping - The mapping of a Value to global 491 /// value number for the source IRInstructionCandidate. 492 /// \param [in, out] CurrentSrcTgtNumberMapping - The current mapping of source 493 /// IRSimilarityCandidate global value numbers to a set of possible numbers in 494 /// the target. 495 /// \param [in] SourceOperands - The operands in the original 496 /// IRSimilarityCandidate in the current instruction. 497 /// \param [in] TargetValueNumbers - The global value numbers of the operands in 498 /// the corresponding Instruction in the other IRSimilarityCandidate. 499 /// \returns true if there exists a possible mapping between the source 500 /// Instruction operands and the target Instruction operands, and false if not. 501 static bool checkNumberingAndReplaceCommutative( 502 const DenseMap<Value *, unsigned> &SourceValueToNumberMapping, 503 DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping, 504 ArrayRef<Value *> &SourceOperands, 505 DenseSet<unsigned> &TargetValueNumbers){ 506 507 DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt; 508 509 unsigned ArgVal; 510 bool WasInserted; 511 512 // Iterate over the operands in the source IRSimilarityCandidate to determine 513 // whether there exists an operand in the other IRSimilarityCandidate that 514 // creates a valid mapping of Value to Value between the 515 // IRSimilarityCaniddates. 516 for (Value *V : SourceOperands) { 517 ArgVal = SourceValueToNumberMapping.find(V)->second; 518 519 std::tie(ValueMappingIt, WasInserted) = CurrentSrcTgtNumberMapping.insert( 520 std::make_pair(ArgVal, TargetValueNumbers)); 521 522 // Instead of finding a current mapping, we inserted a set. This means a 523 // mapping did not exist for the source Instruction operand, it has no 524 // current constraints we need to check. 525 if (WasInserted) 526 continue; 527 528 // If a mapping already exists for the source operand to the values in the 529 // other IRSimilarityCandidate we need to iterate over the items in other 530 // IRSimilarityCandidate's Instruction to determine whether there is a valid 531 // mapping of Value to Value. 532 DenseSet<unsigned> NewSet; 533 for (unsigned &Curr : ValueMappingIt->second) 534 // If we can find the value in the mapping, we add it to the new set. 535 if (TargetValueNumbers.contains(Curr)) 536 NewSet.insert(Curr); 537 538 // If we could not find a Value, return 0. 539 if (NewSet.empty()) 540 return false; 541 542 // Otherwise replace the old mapping with the newly constructed one. 543 if (NewSet.size() != ValueMappingIt->second.size()) 544 ValueMappingIt->second.swap(NewSet); 545 546 // We have reached no conclusions about the mapping, and cannot remove 547 // any items from the other operands, so we move to check the next operand. 548 if (ValueMappingIt->second.size() != 1) 549 continue; 550 551 552 unsigned ValToRemove = *ValueMappingIt->second.begin(); 553 // When there is only one item left in the mapping for and operand, remove 554 // the value from the other operands. If it results in there being no 555 // mapping, return false, it means the mapping is wrong 556 for (Value *InnerV : SourceOperands) { 557 if (V == InnerV) 558 continue; 559 560 unsigned InnerVal = SourceValueToNumberMapping.find(InnerV)->second; 561 ValueMappingIt = CurrentSrcTgtNumberMapping.find(InnerVal); 562 if (ValueMappingIt == CurrentSrcTgtNumberMapping.end()) 563 continue; 564 565 ValueMappingIt->second.erase(ValToRemove); 566 if (ValueMappingIt->second.empty()) 567 return false; 568 } 569 } 570 571 return true; 572 } 573 574 /// Determine if operand number \p TargetArgVal is in the current mapping set 575 /// for operand number \p SourceArgVal. 576 /// 577 /// \param [in, out] CurrentSrcTgtNumberMapping current mapping of global 578 /// value numbers from source IRSimilarityCandidate to target 579 /// IRSimilarityCandidate. 580 /// \param [in] SourceArgVal The global value number for an operand in the 581 /// in the original candidate. 582 /// \param [in] TargetArgVal The global value number for the corresponding 583 /// operand in the other candidate. 584 /// \returns True if there exists a mapping and false if not. 585 bool checkNumberingAndReplace( 586 DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping, 587 unsigned SourceArgVal, unsigned TargetArgVal) { 588 // We are given two unsigned integers representing the global values of 589 // the operands in different IRSimilarityCandidates and a current mapping 590 // between the two. 591 // 592 // Source Operand GVN: 1 593 // Target Operand GVN: 2 594 // CurrentMapping: {1: {1, 2}} 595 // 596 // Since we have mapping, and the target operand is contained in the set, we 597 // update it to: 598 // CurrentMapping: {1: {2}} 599 // and can return true. But, if the mapping was 600 // CurrentMapping: {1: {3}} 601 // we would return false. 602 603 bool WasInserted; 604 DenseMap<unsigned, DenseSet<unsigned>>::iterator Val; 605 606 std::tie(Val, WasInserted) = CurrentSrcTgtNumberMapping.insert( 607 std::make_pair(SourceArgVal, DenseSet<unsigned>({TargetArgVal}))); 608 609 // If we created a new mapping, then we are done. 610 if (WasInserted) 611 return true; 612 613 // If there is more than one option in the mapping set, and the target value 614 // is included in the mapping set replace that set with one that only includes 615 // the target value, as it is the only valid mapping via the non commutative 616 // instruction. 617 618 DenseSet<unsigned> &TargetSet = Val->second; 619 if (TargetSet.size() > 1 && TargetSet.contains(TargetArgVal)) { 620 TargetSet.clear(); 621 TargetSet.insert(TargetArgVal); 622 return true; 623 } 624 625 // Return true if we can find the value in the set. 626 return TargetSet.contains(TargetArgVal); 627 } 628 629 bool IRSimilarityCandidate::compareNonCommutativeOperandMapping( 630 OperandMapping A, OperandMapping B) { 631 // Iterators to keep track of where we are in the operands for each 632 // Instruction. 633 ArrayRef<Value *>::iterator VItA = A.OperVals.begin(); 634 ArrayRef<Value *>::iterator VItB = B.OperVals.begin(); 635 unsigned OperandLength = A.OperVals.size(); 636 637 // For each operand, get the value numbering and ensure it is consistent. 638 for (unsigned Idx = 0; Idx < OperandLength; Idx++, VItA++, VItB++) { 639 unsigned OperValA = A.IRSC.ValueToNumber.find(*VItA)->second; 640 unsigned OperValB = B.IRSC.ValueToNumber.find(*VItB)->second; 641 642 // Attempt to add a set with only the target value. If there is no mapping 643 // we can create it here. 644 // 645 // For an instruction like a subtraction: 646 // IRSimilarityCandidateA: IRSimilarityCandidateB: 647 // %resultA = sub %a, %b %resultB = sub %d, %e 648 // 649 // We map %a -> %d and %b -> %e. 650 // 651 // And check to see whether their mapping is consistent in 652 // checkNumberingAndReplace. 653 654 if (!checkNumberingAndReplace(A.ValueNumberMapping, OperValA, OperValB)) 655 return false; 656 657 if (!checkNumberingAndReplace(B.ValueNumberMapping, OperValB, OperValA)) 658 return false; 659 } 660 return true; 661 } 662 663 bool IRSimilarityCandidate::compareCommutativeOperandMapping( 664 OperandMapping A, OperandMapping B) { 665 DenseSet<unsigned> ValueNumbersA; 666 DenseSet<unsigned> ValueNumbersB; 667 668 ArrayRef<Value *>::iterator VItA = A.OperVals.begin(); 669 ArrayRef<Value *>::iterator VItB = B.OperVals.begin(); 670 unsigned OperandLength = A.OperVals.size(); 671 672 // Find the value number sets for the operands. 673 for (unsigned Idx = 0; Idx < OperandLength; 674 Idx++, VItA++, VItB++) { 675 ValueNumbersA.insert(A.IRSC.ValueToNumber.find(*VItA)->second); 676 ValueNumbersB.insert(B.IRSC.ValueToNumber.find(*VItB)->second); 677 } 678 679 // Iterate over the operands in the first IRSimilarityCandidate and make sure 680 // there exists a possible mapping with the operands in the second 681 // IRSimilarityCandidate. 682 if (!checkNumberingAndReplaceCommutative(A.IRSC.ValueToNumber, 683 A.ValueNumberMapping, A.OperVals, 684 ValueNumbersB)) 685 return false; 686 687 // Iterate over the operands in the second IRSimilarityCandidate and make sure 688 // there exists a possible mapping with the operands in the first 689 // IRSimilarityCandidate. 690 if (!checkNumberingAndReplaceCommutative(B.IRSC.ValueToNumber, 691 B.ValueNumberMapping, B.OperVals, 692 ValueNumbersA)) 693 return false; 694 695 return true; 696 } 697 698 bool IRSimilarityCandidate::checkRelativeLocations(RelativeLocMapping A, 699 RelativeLocMapping B) { 700 // Get the basic blocks the label refers to. 701 BasicBlock *ABB = static_cast<BasicBlock *>(A.OperVal); 702 BasicBlock *BBB = static_cast<BasicBlock *>(B.OperVal); 703 704 // Get the basic blocks contained in each region. 705 DenseSet<BasicBlock *> BasicBlockA; 706 DenseSet<BasicBlock *> BasicBlockB; 707 A.IRSC.getBasicBlocks(BasicBlockA); 708 B.IRSC.getBasicBlocks(BasicBlockB); 709 710 // Determine if the block is contained in the region. 711 bool AContained = BasicBlockA.contains(ABB); 712 bool BContained = BasicBlockB.contains(BBB); 713 714 // Both blocks need to be contained in the region, or both need to be outside 715 // the reigon. 716 if (AContained != BContained) 717 return false; 718 719 // If both are contained, then we need to make sure that the relative 720 // distance to the target blocks are the same. 721 if (AContained) 722 return A.RelativeLocation == B.RelativeLocation; 723 return true; 724 } 725 726 bool IRSimilarityCandidate::compareStructure(const IRSimilarityCandidate &A, 727 const IRSimilarityCandidate &B) { 728 DenseMap<unsigned, DenseSet<unsigned>> MappingA; 729 DenseMap<unsigned, DenseSet<unsigned>> MappingB; 730 return IRSimilarityCandidate::compareStructure(A, B, MappingA, MappingB); 731 } 732 733 typedef detail::zippy<detail::zip_shortest, SmallVector<int, 4> &, 734 SmallVector<int, 4> &, ArrayRef<Value *> &, 735 ArrayRef<Value *> &> 736 ZippedRelativeLocationsT; 737 738 bool IRSimilarityCandidate::compareStructure( 739 const IRSimilarityCandidate &A, const IRSimilarityCandidate &B, 740 DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA, 741 DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB) { 742 if (A.getLength() != B.getLength()) 743 return false; 744 745 if (A.ValueToNumber.size() != B.ValueToNumber.size()) 746 return false; 747 748 iterator ItA = A.begin(); 749 iterator ItB = B.begin(); 750 751 // These ValueNumber Mapping sets create a create a mapping between the values 752 // in one candidate to values in the other candidate. If we create a set with 753 // one element, and that same element maps to the original element in the 754 // candidate we have a good mapping. 755 DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt; 756 757 758 // Iterate over the instructions contained in each candidate 759 unsigned SectionLength = A.getStartIdx() + A.getLength(); 760 for (unsigned Loc = A.getStartIdx(); Loc < SectionLength; 761 ItA++, ItB++, Loc++) { 762 // Make sure the instructions are similar to one another. 763 if (!isClose(*ItA, *ItB)) 764 return false; 765 766 Instruction *IA = ItA->Inst; 767 Instruction *IB = ItB->Inst; 768 769 if (!ItA->Legal || !ItB->Legal) 770 return false; 771 772 // Get the operand sets for the instructions. 773 ArrayRef<Value *> OperValsA = ItA->OperVals; 774 ArrayRef<Value *> OperValsB = ItB->OperVals; 775 776 unsigned InstValA = A.ValueToNumber.find(IA)->second; 777 unsigned InstValB = B.ValueToNumber.find(IB)->second; 778 779 bool WasInserted; 780 // Ensure that the mappings for the instructions exists. 781 std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert( 782 std::make_pair(InstValA, DenseSet<unsigned>({InstValB}))); 783 if (!WasInserted && !ValueMappingIt->second.contains(InstValB)) 784 return false; 785 786 std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingB.insert( 787 std::make_pair(InstValB, DenseSet<unsigned>({InstValA}))); 788 if (!WasInserted && !ValueMappingIt->second.contains(InstValA)) 789 return false; 790 791 // We have different paths for commutative instructions and non-commutative 792 // instructions since commutative instructions could allow multiple mappings 793 // to certain values. 794 if (IA->isCommutative() && !isa<FPMathOperator>(IA)) { 795 if (!compareCommutativeOperandMapping( 796 {A, OperValsA, ValueNumberMappingA}, 797 {B, OperValsB, ValueNumberMappingB})) 798 return false; 799 continue; 800 } 801 802 // Handle the non-commutative cases. 803 if (!compareNonCommutativeOperandMapping( 804 {A, OperValsA, ValueNumberMappingA}, 805 {B, OperValsB, ValueNumberMappingB})) 806 return false; 807 808 // Here we check that between two corresponding instructions, 809 // when referring to a basic block in the same region, the 810 // relative locations are the same. And, that the instructions refer to 811 // basic blocks outside the region in the same corresponding locations. 812 813 // We are able to make the assumption about blocks outside of the region 814 // since the target block labels are considered values and will follow the 815 // same number matching that we defined for the other instructions in the 816 // region. So, at this point, in each location we target a specific block 817 // outside the region, we are targeting a corresponding block in each 818 // analagous location in the region we are comparing to. 819 if (!(isa<BranchInst>(IA) && isa<BranchInst>(IB)) && 820 !(isa<PHINode>(IA) && isa<PHINode>(IB))) 821 continue; 822 823 SmallVector<int, 4> &RelBlockLocsA = ItA->RelativeBlockLocations; 824 SmallVector<int, 4> &RelBlockLocsB = ItB->RelativeBlockLocations; 825 if (RelBlockLocsA.size() != RelBlockLocsB.size() && 826 OperValsA.size() != OperValsB.size()) 827 return false; 828 829 ZippedRelativeLocationsT ZippedRelativeLocations = 830 zip(RelBlockLocsA, RelBlockLocsB, OperValsA, OperValsB); 831 if (any_of(ZippedRelativeLocations, 832 [&A, &B](std::tuple<int, int, Value *, Value *> R) { 833 return !checkRelativeLocations( 834 {A, std::get<0>(R), std::get<2>(R)}, 835 {B, std::get<1>(R), std::get<3>(R)}); 836 })) 837 return false; 838 } 839 return true; 840 } 841 842 bool IRSimilarityCandidate::overlap(const IRSimilarityCandidate &A, 843 const IRSimilarityCandidate &B) { 844 auto DoesOverlap = [](const IRSimilarityCandidate &X, 845 const IRSimilarityCandidate &Y) { 846 // Check: 847 // XXXXXX X starts before Y ends 848 // YYYYYYY Y starts after X starts 849 return X.StartIdx <= Y.getEndIdx() && Y.StartIdx >= X.StartIdx; 850 }; 851 852 return DoesOverlap(A, B) || DoesOverlap(B, A); 853 } 854 855 void IRSimilarityIdentifier::populateMapper( 856 Module &M, std::vector<IRInstructionData *> &InstrList, 857 std::vector<unsigned> &IntegerMapping) { 858 859 std::vector<IRInstructionData *> InstrListForModule; 860 std::vector<unsigned> IntegerMappingForModule; 861 // Iterate over the functions in the module to map each Instruction in each 862 // BasicBlock to an unsigned integer. 863 Mapper.initializeForBBs(M); 864 865 for (Function &F : M) { 866 867 if (F.empty()) 868 continue; 869 870 for (BasicBlock &BB : F) { 871 872 // BB has potential to have similarity since it has a size greater than 2 873 // and can therefore match other regions greater than 2. Map it to a list 874 // of unsigned integers. 875 Mapper.convertToUnsignedVec(BB, InstrListForModule, 876 IntegerMappingForModule); 877 } 878 879 BasicBlock::iterator It = F.begin()->end(); 880 Mapper.mapToIllegalUnsigned(It, IntegerMappingForModule, InstrListForModule, 881 true); 882 if (InstrListForModule.size() > 0) 883 Mapper.IDL->push_back(*InstrListForModule.back()); 884 } 885 886 // Insert the InstrListForModule at the end of the overall InstrList so that 887 // we can have a long InstrList for the entire set of Modules being analyzed. 888 llvm::append_range(InstrList, InstrListForModule); 889 // Do the same as above, but for IntegerMapping. 890 llvm::append_range(IntegerMapping, IntegerMappingForModule); 891 } 892 893 void IRSimilarityIdentifier::populateMapper( 894 ArrayRef<std::unique_ptr<Module>> &Modules, 895 std::vector<IRInstructionData *> &InstrList, 896 std::vector<unsigned> &IntegerMapping) { 897 898 // Iterate over, and map the instructions in each module. 899 for (const std::unique_ptr<Module> &M : Modules) 900 populateMapper(*M, InstrList, IntegerMapping); 901 } 902 903 /// From a repeated subsequence, find all the different instances of the 904 /// subsequence from the \p InstrList, and create an IRSimilarityCandidate from 905 /// the IRInstructionData in subsequence. 906 /// 907 /// \param [in] Mapper - The instruction mapper for basic correctness checks. 908 /// \param [in] InstrList - The vector that holds the instruction data. 909 /// \param [in] IntegerMapping - The vector that holds the mapped integers. 910 /// \param [out] CandsForRepSubstring - The vector to store the generated 911 /// IRSimilarityCandidates. 912 static void createCandidatesFromSuffixTree( 913 const IRInstructionMapper& Mapper, std::vector<IRInstructionData *> &InstrList, 914 std::vector<unsigned> &IntegerMapping, SuffixTree::RepeatedSubstring &RS, 915 std::vector<IRSimilarityCandidate> &CandsForRepSubstring) { 916 917 unsigned StringLen = RS.Length; 918 if (StringLen < 2) 919 return; 920 921 // Create an IRSimilarityCandidate for instance of this subsequence \p RS. 922 for (const unsigned &StartIdx : RS.StartIndices) { 923 unsigned EndIdx = StartIdx + StringLen - 1; 924 925 // Check that this subsequence does not contain an illegal instruction. 926 bool ContainsIllegal = false; 927 for (unsigned CurrIdx = StartIdx; CurrIdx <= EndIdx; CurrIdx++) { 928 unsigned Key = IntegerMapping[CurrIdx]; 929 if (Key > Mapper.IllegalInstrNumber) { 930 ContainsIllegal = true; 931 break; 932 } 933 } 934 935 // If we have an illegal instruction, we should not create an 936 // IRSimilarityCandidate for this region. 937 if (ContainsIllegal) 938 continue; 939 940 // We are getting iterators to the instructions in this region of code 941 // by advancing the start and end indices from the start of the 942 // InstrList. 943 std::vector<IRInstructionData *>::iterator StartIt = InstrList.begin(); 944 std::advance(StartIt, StartIdx); 945 std::vector<IRInstructionData *>::iterator EndIt = InstrList.begin(); 946 std::advance(EndIt, EndIdx); 947 948 CandsForRepSubstring.emplace_back(StartIdx, StringLen, *StartIt, *EndIt); 949 } 950 } 951 952 void IRSimilarityCandidate::createCanonicalRelationFrom( 953 IRSimilarityCandidate &SourceCand, 954 DenseMap<unsigned, DenseSet<unsigned>> &ToSourceMapping, 955 DenseMap<unsigned, DenseSet<unsigned>> &FromSourceMapping) { 956 assert(SourceCand.CanonNumToNumber.size() != 0 && 957 "Base canonical relationship is empty!"); 958 assert(SourceCand.NumberToCanonNum.size() != 0 && 959 "Base canonical relationship is empty!"); 960 961 assert(CanonNumToNumber.size() == 0 && "Canonical Relationship is non-empty"); 962 assert(NumberToCanonNum.size() == 0 && "Canonical Relationship is non-empty"); 963 964 DenseSet<unsigned> UsedGVNs; 965 // Iterate over the mappings provided from this candidate to SourceCand. We 966 // are then able to map the GVN in this candidate to the same canonical number 967 // given to the corresponding GVN in SourceCand. 968 for (std::pair<unsigned, DenseSet<unsigned>> &GVNMapping : ToSourceMapping) { 969 unsigned SourceGVN = GVNMapping.first; 970 971 assert(GVNMapping.second.size() != 0 && "Possible GVNs is 0!"); 972 973 unsigned ResultGVN; 974 // We need special handling if we have more than one potential value. This 975 // means that there are at least two GVNs that could correspond to this GVN. 976 // This could lead to potential swapping later on, so we make a decision 977 // here to ensure a one-to-one mapping. 978 if (GVNMapping.second.size() > 1) { 979 bool Found = false; 980 for (unsigned Val : GVNMapping.second) { 981 // We make sure the target value number hasn't already been reserved. 982 if (UsedGVNs.contains(Val)) 983 continue; 984 985 // We make sure that the opposite mapping is still consistent. 986 DenseMap<unsigned, DenseSet<unsigned>>::iterator It = 987 FromSourceMapping.find(Val); 988 989 if (!It->second.contains(SourceGVN)) 990 continue; 991 992 // We pick the first item that satisfies these conditions. 993 Found = true; 994 ResultGVN = Val; 995 break; 996 } 997 998 assert(Found && "Could not find matching value for source GVN"); 999 (void)Found; 1000 1001 } else 1002 ResultGVN = *GVNMapping.second.begin(); 1003 1004 // Whatever GVN is found, we mark it as used. 1005 UsedGVNs.insert(ResultGVN); 1006 1007 unsigned CanonNum = *SourceCand.getCanonicalNum(ResultGVN); 1008 CanonNumToNumber.insert(std::make_pair(CanonNum, SourceGVN)); 1009 NumberToCanonNum.insert(std::make_pair(SourceGVN, CanonNum)); 1010 } 1011 } 1012 1013 void IRSimilarityCandidate::createCanonicalMappingFor( 1014 IRSimilarityCandidate &CurrCand) { 1015 assert(CurrCand.CanonNumToNumber.size() == 0 && 1016 "Canonical Relationship is non-empty"); 1017 assert(CurrCand.NumberToCanonNum.size() == 0 && 1018 "Canonical Relationship is non-empty"); 1019 1020 unsigned CanonNum = 0; 1021 // Iterate over the value numbers found, the order does not matter in this 1022 // case. 1023 for (std::pair<unsigned, Value *> &NumToVal : CurrCand.NumberToValue) { 1024 CurrCand.NumberToCanonNum.insert(std::make_pair(NumToVal.first, CanonNum)); 1025 CurrCand.CanonNumToNumber.insert(std::make_pair(CanonNum, NumToVal.first)); 1026 CanonNum++; 1027 } 1028 } 1029 1030 /// From the list of IRSimilarityCandidates, perform a comparison between each 1031 /// IRSimilarityCandidate to determine if there are overlapping 1032 /// IRInstructionData, or if they do not have the same structure. 1033 /// 1034 /// \param [in] CandsForRepSubstring - The vector containing the 1035 /// IRSimilarityCandidates. 1036 /// \param [out] StructuralGroups - the mapping of unsigned integers to vector 1037 /// of IRSimilarityCandidates where each of the IRSimilarityCandidates in the 1038 /// vector are structurally similar to one another. 1039 static void findCandidateStructures( 1040 std::vector<IRSimilarityCandidate> &CandsForRepSubstring, 1041 DenseMap<unsigned, SimilarityGroup> &StructuralGroups) { 1042 std::vector<IRSimilarityCandidate>::iterator CandIt, CandEndIt, InnerCandIt, 1043 InnerCandEndIt; 1044 1045 // IRSimilarityCandidates each have a structure for operand use. It is 1046 // possible that two instances of the same subsequences have different 1047 // structure. Each type of structure found is assigned a number. This 1048 // DenseMap maps an IRSimilarityCandidate to which type of similarity 1049 // discovered it fits within. 1050 DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup; 1051 1052 // Find the compatibility from each candidate to the others to determine 1053 // which candidates overlap and which have the same structure by mapping 1054 // each structure to a different group. 1055 bool SameStructure; 1056 bool Inserted; 1057 unsigned CurrentGroupNum = 0; 1058 unsigned OuterGroupNum; 1059 DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupIt; 1060 DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupItInner; 1061 DenseMap<unsigned, SimilarityGroup>::iterator CurrentGroupPair; 1062 1063 // Iterate over the candidates to determine its structural and overlapping 1064 // compatibility with other instructions 1065 DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingA; 1066 DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingB; 1067 for (CandIt = CandsForRepSubstring.begin(), 1068 CandEndIt = CandsForRepSubstring.end(); 1069 CandIt != CandEndIt; CandIt++) { 1070 1071 // Determine if it has an assigned structural group already. 1072 CandToGroupIt = CandToGroup.find(&*CandIt); 1073 if (CandToGroupIt == CandToGroup.end()) { 1074 // If not, we assign it one, and add it to our mapping. 1075 std::tie(CandToGroupIt, Inserted) = 1076 CandToGroup.insert(std::make_pair(&*CandIt, CurrentGroupNum++)); 1077 } 1078 1079 // Get the structural group number from the iterator. 1080 OuterGroupNum = CandToGroupIt->second; 1081 1082 // Check if we already have a list of IRSimilarityCandidates for the current 1083 // structural group. Create one if one does not exist. 1084 CurrentGroupPair = StructuralGroups.find(OuterGroupNum); 1085 if (CurrentGroupPair == StructuralGroups.end()) { 1086 IRSimilarityCandidate::createCanonicalMappingFor(*CandIt); 1087 std::tie(CurrentGroupPair, Inserted) = StructuralGroups.insert( 1088 std::make_pair(OuterGroupNum, SimilarityGroup({*CandIt}))); 1089 } 1090 1091 // Iterate over the IRSimilarityCandidates following the current 1092 // IRSimilarityCandidate in the list to determine whether the two 1093 // IRSimilarityCandidates are compatible. This is so we do not repeat pairs 1094 // of IRSimilarityCandidates. 1095 for (InnerCandIt = std::next(CandIt), 1096 InnerCandEndIt = CandsForRepSubstring.end(); 1097 InnerCandIt != InnerCandEndIt; InnerCandIt++) { 1098 1099 // We check if the inner item has a group already, if it does, we skip it. 1100 CandToGroupItInner = CandToGroup.find(&*InnerCandIt); 1101 if (CandToGroupItInner != CandToGroup.end()) 1102 continue; 1103 1104 // Otherwise we determine if they have the same structure and add it to 1105 // vector if they match. 1106 ValueNumberMappingA.clear(); 1107 ValueNumberMappingB.clear(); 1108 SameStructure = IRSimilarityCandidate::compareStructure( 1109 *CandIt, *InnerCandIt, ValueNumberMappingA, ValueNumberMappingB); 1110 if (!SameStructure) 1111 continue; 1112 1113 InnerCandIt->createCanonicalRelationFrom(*CandIt, ValueNumberMappingA, 1114 ValueNumberMappingB); 1115 CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum)); 1116 CurrentGroupPair->second.push_back(*InnerCandIt); 1117 } 1118 } 1119 } 1120 1121 void IRSimilarityIdentifier::findCandidates( 1122 std::vector<IRInstructionData *> &InstrList, 1123 std::vector<unsigned> &IntegerMapping) { 1124 SuffixTree ST(IntegerMapping); 1125 1126 std::vector<IRSimilarityCandidate> CandsForRepSubstring; 1127 std::vector<SimilarityGroup> NewCandidateGroups; 1128 1129 DenseMap<unsigned, SimilarityGroup> StructuralGroups; 1130 1131 // Iterate over the subsequences found by the Suffix Tree to create 1132 // IRSimilarityCandidates for each repeated subsequence and determine which 1133 // instances are structurally similar to one another. 1134 for (SuffixTree::RepeatedSubstring &RS : ST) { 1135 createCandidatesFromSuffixTree(Mapper, InstrList, IntegerMapping, RS, 1136 CandsForRepSubstring); 1137 1138 if (CandsForRepSubstring.size() < 2) 1139 continue; 1140 1141 findCandidateStructures(CandsForRepSubstring, StructuralGroups); 1142 for (std::pair<unsigned, SimilarityGroup> &Group : StructuralGroups) 1143 // We only add the group if it contains more than one 1144 // IRSimilarityCandidate. If there is only one, that means there is no 1145 // other repeated subsequence with the same structure. 1146 if (Group.second.size() > 1) 1147 SimilarityCandidates->push_back(Group.second); 1148 1149 CandsForRepSubstring.clear(); 1150 StructuralGroups.clear(); 1151 NewCandidateGroups.clear(); 1152 } 1153 } 1154 1155 SimilarityGroupList &IRSimilarityIdentifier::findSimilarity( 1156 ArrayRef<std::unique_ptr<Module>> Modules) { 1157 resetSimilarityCandidates(); 1158 1159 std::vector<IRInstructionData *> InstrList; 1160 std::vector<unsigned> IntegerMapping; 1161 Mapper.InstClassifier.EnableBranches = this->EnableBranches; 1162 Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls; 1163 Mapper.EnableMatchCallsByName = EnableMatchingCallsByName; 1164 Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics; 1165 1166 populateMapper(Modules, InstrList, IntegerMapping); 1167 findCandidates(InstrList, IntegerMapping); 1168 1169 return SimilarityCandidates.getValue(); 1170 } 1171 1172 SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(Module &M) { 1173 resetSimilarityCandidates(); 1174 Mapper.InstClassifier.EnableBranches = this->EnableBranches; 1175 Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls; 1176 Mapper.EnableMatchCallsByName = EnableMatchingCallsByName; 1177 Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics; 1178 1179 std::vector<IRInstructionData *> InstrList; 1180 std::vector<unsigned> IntegerMapping; 1181 1182 populateMapper(M, InstrList, IntegerMapping); 1183 findCandidates(InstrList, IntegerMapping); 1184 1185 return SimilarityCandidates.getValue(); 1186 } 1187 1188 INITIALIZE_PASS(IRSimilarityIdentifierWrapperPass, "ir-similarity-identifier", 1189 "ir-similarity-identifier", false, true) 1190 1191 IRSimilarityIdentifierWrapperPass::IRSimilarityIdentifierWrapperPass() 1192 : ModulePass(ID) { 1193 initializeIRSimilarityIdentifierWrapperPassPass( 1194 *PassRegistry::getPassRegistry()); 1195 } 1196 1197 bool IRSimilarityIdentifierWrapperPass::doInitialization(Module &M) { 1198 IRSI.reset(new IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls, 1199 MatchCallsByName, !DisableIntrinsics)); 1200 return false; 1201 } 1202 1203 bool IRSimilarityIdentifierWrapperPass::doFinalization(Module &M) { 1204 IRSI.reset(); 1205 return false; 1206 } 1207 1208 bool IRSimilarityIdentifierWrapperPass::runOnModule(Module &M) { 1209 IRSI->findSimilarity(M); 1210 return false; 1211 } 1212 1213 AnalysisKey IRSimilarityAnalysis::Key; 1214 IRSimilarityIdentifier IRSimilarityAnalysis::run(Module &M, 1215 ModuleAnalysisManager &) { 1216 auto IRSI = IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls, 1217 MatchCallsByName, !DisableIntrinsics); 1218 IRSI.findSimilarity(M); 1219 return IRSI; 1220 } 1221 1222 PreservedAnalyses 1223 IRSimilarityAnalysisPrinterPass::run(Module &M, ModuleAnalysisManager &AM) { 1224 IRSimilarityIdentifier &IRSI = AM.getResult<IRSimilarityAnalysis>(M); 1225 Optional<SimilarityGroupList> &SimilarityCandidatesOpt = IRSI.getSimilarity(); 1226 1227 for (std::vector<IRSimilarityCandidate> &CandVec : *SimilarityCandidatesOpt) { 1228 OS << CandVec.size() << " candidates of length " 1229 << CandVec.begin()->getLength() << ". Found in: \n"; 1230 for (IRSimilarityCandidate &Cand : CandVec) { 1231 OS << " Function: " << Cand.front()->Inst->getFunction()->getName().str() 1232 << ", Basic Block: "; 1233 if (Cand.front()->Inst->getParent()->getName().str() == "") 1234 OS << "(unnamed)"; 1235 else 1236 OS << Cand.front()->Inst->getParent()->getName().str(); 1237 OS << "\n Start Instruction: "; 1238 Cand.frontInstruction()->print(OS); 1239 OS << "\n End Instruction: "; 1240 Cand.backInstruction()->print(OS); 1241 OS << "\n"; 1242 } 1243 } 1244 1245 return PreservedAnalyses::all(); 1246 } 1247 1248 char IRSimilarityIdentifierWrapperPass::ID = 0; 1249