xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/IRSimilarityIdentifier.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1e8d8bef9SDimitry Andric //===- IRSimilarityIdentifier.cpp - Find similarity in a module -----------===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric //
9e8d8bef9SDimitry Andric // \file
10e8d8bef9SDimitry Andric // Implementation file for the IRSimilarityIdentifier for identifying
11e8d8bef9SDimitry Andric // similarities in IR including the IRInstructionMapper.
12e8d8bef9SDimitry Andric //
13e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
14e8d8bef9SDimitry Andric 
15e8d8bef9SDimitry Andric #include "llvm/Analysis/IRSimilarityIdentifier.h"
16e8d8bef9SDimitry Andric #include "llvm/ADT/DenseMap.h"
17*06c3fb27SDimitry Andric #include "llvm/ADT/SetOperations.h"
18e8d8bef9SDimitry Andric #include "llvm/IR/Intrinsics.h"
19e8d8bef9SDimitry Andric #include "llvm/IR/Operator.h"
20e8d8bef9SDimitry Andric #include "llvm/IR/User.h"
21e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h"
22e8d8bef9SDimitry Andric #include "llvm/Support/SuffixTree.h"
23e8d8bef9SDimitry Andric 
24e8d8bef9SDimitry Andric using namespace llvm;
25e8d8bef9SDimitry Andric using namespace IRSimilarity;
26e8d8bef9SDimitry Andric 
2704eeddc0SDimitry Andric namespace llvm {
28349cc55cSDimitry Andric cl::opt<bool>
29349cc55cSDimitry Andric     DisableBranches("no-ir-sim-branch-matching", cl::init(false),
30349cc55cSDimitry Andric                     cl::ReallyHidden,
31349cc55cSDimitry Andric                     cl::desc("disable similarity matching, and outlining, "
32349cc55cSDimitry Andric                              "across branches for debugging purposes."));
33349cc55cSDimitry Andric 
3404eeddc0SDimitry Andric cl::opt<bool>
3504eeddc0SDimitry Andric     DisableIndirectCalls("no-ir-sim-indirect-calls", cl::init(false),
3604eeddc0SDimitry Andric                          cl::ReallyHidden,
3704eeddc0SDimitry Andric                          cl::desc("disable outlining indirect calls."));
3804eeddc0SDimitry Andric 
3904eeddc0SDimitry Andric cl::opt<bool>
4004eeddc0SDimitry Andric     MatchCallsByName("ir-sim-calls-by-name", cl::init(false), cl::ReallyHidden,
4104eeddc0SDimitry Andric                      cl::desc("only allow matching call instructions if the "
4204eeddc0SDimitry Andric                               "name and type signature match."));
431fd87a68SDimitry Andric 
441fd87a68SDimitry Andric cl::opt<bool>
451fd87a68SDimitry Andric     DisableIntrinsics("no-ir-sim-intrinsics", cl::init(false), cl::ReallyHidden,
461fd87a68SDimitry Andric                       cl::desc("Don't match or outline intrinsics"));
4704eeddc0SDimitry Andric } // namespace llvm
4804eeddc0SDimitry Andric 
49e8d8bef9SDimitry Andric IRInstructionData::IRInstructionData(Instruction &I, bool Legality,
50e8d8bef9SDimitry Andric                                      IRInstructionDataList &IDList)
51e8d8bef9SDimitry Andric     : Inst(&I), Legal(Legality), IDL(&IDList) {
52349cc55cSDimitry Andric   initializeInstruction();
53349cc55cSDimitry Andric }
54349cc55cSDimitry Andric 
55349cc55cSDimitry Andric void IRInstructionData::initializeInstruction() {
56e8d8bef9SDimitry Andric   // We check for whether we have a comparison instruction.  If it is, we
57e8d8bef9SDimitry Andric   // find the "less than" version of the predicate for consistency for
58e8d8bef9SDimitry Andric   // comparison instructions throught the program.
59349cc55cSDimitry Andric   if (CmpInst *C = dyn_cast<CmpInst>(Inst)) {
60e8d8bef9SDimitry Andric     CmpInst::Predicate Predicate = predicateForConsistency(C);
61e8d8bef9SDimitry Andric     if (Predicate != C->getPredicate())
62e8d8bef9SDimitry Andric       RevisedPredicate = Predicate;
63e8d8bef9SDimitry Andric   }
64e8d8bef9SDimitry Andric 
65e8d8bef9SDimitry Andric   // Here we collect the operands and their types for determining whether
66e8d8bef9SDimitry Andric   // the structure of the operand use matches between two different candidates.
67349cc55cSDimitry Andric   for (Use &OI : Inst->operands()) {
6881ad6265SDimitry Andric     if (isa<CmpInst>(Inst) && RevisedPredicate) {
69e8d8bef9SDimitry Andric       // If we have a CmpInst where the predicate is reversed, it means the
70e8d8bef9SDimitry Andric       // operands must be reversed as well.
71e8d8bef9SDimitry Andric       OperVals.insert(OperVals.begin(), OI.get());
72e8d8bef9SDimitry Andric       continue;
73e8d8bef9SDimitry Andric     }
74e8d8bef9SDimitry Andric 
75e8d8bef9SDimitry Andric     OperVals.push_back(OI.get());
76e8d8bef9SDimitry Andric   }
7704eeddc0SDimitry Andric 
7804eeddc0SDimitry Andric   // We capture the incoming BasicBlocks as values as well as the incoming
7904eeddc0SDimitry Andric   // Values in order to check for structural similarity.
8004eeddc0SDimitry Andric   if (PHINode *PN = dyn_cast<PHINode>(Inst))
8104eeddc0SDimitry Andric     for (BasicBlock *BB : PN->blocks())
8204eeddc0SDimitry Andric       OperVals.push_back(BB);
83e8d8bef9SDimitry Andric }
84e8d8bef9SDimitry Andric 
85349cc55cSDimitry Andric IRInstructionData::IRInstructionData(IRInstructionDataList &IDList)
8604eeddc0SDimitry Andric     : IDL(&IDList) {}
87349cc55cSDimitry Andric 
88349cc55cSDimitry Andric void IRInstructionData::setBranchSuccessors(
89349cc55cSDimitry Andric     DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) {
90349cc55cSDimitry Andric   assert(isa<BranchInst>(Inst) && "Instruction must be branch");
91349cc55cSDimitry Andric 
92349cc55cSDimitry Andric   BranchInst *BI = cast<BranchInst>(Inst);
93349cc55cSDimitry Andric   DenseMap<BasicBlock *, unsigned>::iterator BBNumIt;
94349cc55cSDimitry Andric 
95349cc55cSDimitry Andric   BBNumIt = BasicBlockToInteger.find(BI->getParent());
96349cc55cSDimitry Andric   assert(BBNumIt != BasicBlockToInteger.end() &&
97349cc55cSDimitry Andric          "Could not find location for BasicBlock!");
98349cc55cSDimitry Andric 
99349cc55cSDimitry Andric   int CurrentBlockNumber = static_cast<int>(BBNumIt->second);
100349cc55cSDimitry Andric 
101*06c3fb27SDimitry Andric   for (Value *V : getBlockOperVals()) {
102*06c3fb27SDimitry Andric     BasicBlock *Successor = cast<BasicBlock>(V);
103349cc55cSDimitry Andric     BBNumIt = BasicBlockToInteger.find(Successor);
104349cc55cSDimitry Andric     assert(BBNumIt != BasicBlockToInteger.end() &&
105349cc55cSDimitry Andric            "Could not find number for BasicBlock!");
106349cc55cSDimitry Andric     int OtherBlockNumber = static_cast<int>(BBNumIt->second);
107349cc55cSDimitry Andric 
108349cc55cSDimitry Andric     int Relative = OtherBlockNumber - CurrentBlockNumber;
109349cc55cSDimitry Andric     RelativeBlockLocations.push_back(Relative);
110349cc55cSDimitry Andric   }
111349cc55cSDimitry Andric }
112349cc55cSDimitry Andric 
113*06c3fb27SDimitry Andric ArrayRef<Value *> IRInstructionData::getBlockOperVals() {
114*06c3fb27SDimitry Andric   assert((isa<BranchInst>(Inst) ||
115*06c3fb27SDimitry Andric          isa<PHINode>(Inst)) && "Instruction must be branch or PHINode");
116*06c3fb27SDimitry Andric 
117*06c3fb27SDimitry Andric   if (BranchInst *BI = dyn_cast<BranchInst>(Inst))
118*06c3fb27SDimitry Andric     return ArrayRef<Value *>(
119*06c3fb27SDimitry Andric       std::next(OperVals.begin(), BI->isConditional() ? 1 : 0),
120*06c3fb27SDimitry Andric       OperVals.end()
121*06c3fb27SDimitry Andric     );
122*06c3fb27SDimitry Andric 
123*06c3fb27SDimitry Andric   if (PHINode *PN = dyn_cast<PHINode>(Inst))
124*06c3fb27SDimitry Andric     return ArrayRef<Value *>(
125*06c3fb27SDimitry Andric       std::next(OperVals.begin(), PN->getNumIncomingValues()),
126*06c3fb27SDimitry Andric       OperVals.end()
127*06c3fb27SDimitry Andric     );
128*06c3fb27SDimitry Andric 
129*06c3fb27SDimitry Andric   return ArrayRef<Value *>();
130*06c3fb27SDimitry Andric }
131*06c3fb27SDimitry Andric 
13204eeddc0SDimitry Andric void IRInstructionData::setCalleeName(bool MatchByName) {
13304eeddc0SDimitry Andric   CallInst *CI = dyn_cast<CallInst>(Inst);
13404eeddc0SDimitry Andric   assert(CI && "Instruction must be call");
13504eeddc0SDimitry Andric 
13604eeddc0SDimitry Andric   CalleeName = "";
1371fd87a68SDimitry Andric   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1381fd87a68SDimitry Andric     // To hash intrinsics, we use the opcode, and types like the other
1391fd87a68SDimitry Andric     // instructions, but also, the Intrinsic ID, and the Name of the
1401fd87a68SDimitry Andric     // intrinsic.
1411fd87a68SDimitry Andric     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
1421fd87a68SDimitry Andric     FunctionType *FT = II->getFunctionType();
1431fd87a68SDimitry Andric     // If there is an overloaded name, we have to use the complex version
1441fd87a68SDimitry Andric     // of getName to get the entire string.
1451fd87a68SDimitry Andric     if (Intrinsic::isOverloaded(IntrinsicID))
1461fd87a68SDimitry Andric       CalleeName =
1471fd87a68SDimitry Andric           Intrinsic::getName(IntrinsicID, FT->params(), II->getModule(), FT);
1481fd87a68SDimitry Andric     // If there is not an overloaded name, we only need to use this version.
1491fd87a68SDimitry Andric     else
1501fd87a68SDimitry Andric       CalleeName = Intrinsic::getName(IntrinsicID).str();
1511fd87a68SDimitry Andric 
1521fd87a68SDimitry Andric     return;
1531fd87a68SDimitry Andric   }
1541fd87a68SDimitry Andric 
15504eeddc0SDimitry Andric   if (!CI->isIndirectCall() && MatchByName)
15604eeddc0SDimitry Andric     CalleeName = CI->getCalledFunction()->getName().str();
15704eeddc0SDimitry Andric }
15804eeddc0SDimitry Andric 
15904eeddc0SDimitry Andric void IRInstructionData::setPHIPredecessors(
16004eeddc0SDimitry Andric     DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) {
16104eeddc0SDimitry Andric   assert(isa<PHINode>(Inst) && "Instruction must be phi node");
16204eeddc0SDimitry Andric 
16304eeddc0SDimitry Andric   PHINode *PN = cast<PHINode>(Inst);
16404eeddc0SDimitry Andric   DenseMap<BasicBlock *, unsigned>::iterator BBNumIt;
16504eeddc0SDimitry Andric 
16604eeddc0SDimitry Andric   BBNumIt = BasicBlockToInteger.find(PN->getParent());
16704eeddc0SDimitry Andric   assert(BBNumIt != BasicBlockToInteger.end() &&
16804eeddc0SDimitry Andric          "Could not find location for BasicBlock!");
16904eeddc0SDimitry Andric 
17004eeddc0SDimitry Andric   int CurrentBlockNumber = static_cast<int>(BBNumIt->second);
17104eeddc0SDimitry Andric 
17204eeddc0SDimitry Andric   // Convert the incoming blocks of the PHINode to an integer value, based on
17304eeddc0SDimitry Andric   // the relative distances between the current block and the incoming block.
17404eeddc0SDimitry Andric   for (unsigned Idx = 0; Idx < PN->getNumIncomingValues(); Idx++) {
17504eeddc0SDimitry Andric     BasicBlock *Incoming = PN->getIncomingBlock(Idx);
17604eeddc0SDimitry Andric     BBNumIt = BasicBlockToInteger.find(Incoming);
17704eeddc0SDimitry Andric     assert(BBNumIt != BasicBlockToInteger.end() &&
17804eeddc0SDimitry Andric            "Could not find number for BasicBlock!");
17904eeddc0SDimitry Andric     int OtherBlockNumber = static_cast<int>(BBNumIt->second);
18004eeddc0SDimitry Andric 
18104eeddc0SDimitry Andric     int Relative = OtherBlockNumber - CurrentBlockNumber;
18204eeddc0SDimitry Andric     RelativeBlockLocations.push_back(Relative);
18304eeddc0SDimitry Andric   }
18404eeddc0SDimitry Andric }
18504eeddc0SDimitry Andric 
186e8d8bef9SDimitry Andric CmpInst::Predicate IRInstructionData::predicateForConsistency(CmpInst *CI) {
187e8d8bef9SDimitry Andric   switch (CI->getPredicate()) {
188e8d8bef9SDimitry Andric   case CmpInst::FCMP_OGT:
189e8d8bef9SDimitry Andric   case CmpInst::FCMP_UGT:
190e8d8bef9SDimitry Andric   case CmpInst::FCMP_OGE:
191e8d8bef9SDimitry Andric   case CmpInst::FCMP_UGE:
192e8d8bef9SDimitry Andric   case CmpInst::ICMP_SGT:
193e8d8bef9SDimitry Andric   case CmpInst::ICMP_UGT:
194e8d8bef9SDimitry Andric   case CmpInst::ICMP_SGE:
195e8d8bef9SDimitry Andric   case CmpInst::ICMP_UGE:
196e8d8bef9SDimitry Andric     return CI->getSwappedPredicate();
197e8d8bef9SDimitry Andric   default:
198e8d8bef9SDimitry Andric     return CI->getPredicate();
199e8d8bef9SDimitry Andric   }
200e8d8bef9SDimitry Andric }
201e8d8bef9SDimitry Andric 
202e8d8bef9SDimitry Andric CmpInst::Predicate IRInstructionData::getPredicate() const {
203e8d8bef9SDimitry Andric   assert(isa<CmpInst>(Inst) &&
204e8d8bef9SDimitry Andric          "Can only get a predicate from a compare instruction");
205e8d8bef9SDimitry Andric 
20681ad6265SDimitry Andric   if (RevisedPredicate)
207bdd1243dSDimitry Andric     return *RevisedPredicate;
208e8d8bef9SDimitry Andric 
209e8d8bef9SDimitry Andric   return cast<CmpInst>(Inst)->getPredicate();
210e8d8bef9SDimitry Andric }
211e8d8bef9SDimitry Andric 
21204eeddc0SDimitry Andric StringRef IRInstructionData::getCalleeName() const {
21304eeddc0SDimitry Andric   assert(isa<CallInst>(Inst) &&
21404eeddc0SDimitry Andric          "Can only get a name from a call instruction");
215e8d8bef9SDimitry Andric 
21681ad6265SDimitry Andric   assert(CalleeName && "CalleeName has not been set");
21704eeddc0SDimitry Andric 
21804eeddc0SDimitry Andric   return *CalleeName;
219e8d8bef9SDimitry Andric }
220e8d8bef9SDimitry Andric 
221e8d8bef9SDimitry Andric bool IRSimilarity::isClose(const IRInstructionData &A,
222e8d8bef9SDimitry Andric                            const IRInstructionData &B) {
223e8d8bef9SDimitry Andric 
224e8d8bef9SDimitry Andric   if (!A.Legal || !B.Legal)
225e8d8bef9SDimitry Andric     return false;
226e8d8bef9SDimitry Andric 
227e8d8bef9SDimitry Andric   // Check if we are performing the same sort of operation on the same types
228e8d8bef9SDimitry Andric   // but not on the same values.
229e8d8bef9SDimitry Andric   if (!A.Inst->isSameOperationAs(B.Inst)) {
230e8d8bef9SDimitry Andric     // If there is a predicate, this means that either there is a swapped
231e8d8bef9SDimitry Andric     // predicate, or that the types are different, we want to make sure that
232e8d8bef9SDimitry Andric     // the predicates are equivalent via swapping.
233e8d8bef9SDimitry Andric     if (isa<CmpInst>(A.Inst) && isa<CmpInst>(B.Inst)) {
234e8d8bef9SDimitry Andric 
235e8d8bef9SDimitry Andric       if (A.getPredicate() != B.getPredicate())
236e8d8bef9SDimitry Andric         return false;
237e8d8bef9SDimitry Andric 
238e8d8bef9SDimitry Andric       // If the predicates are the same via swap, make sure that the types are
239e8d8bef9SDimitry Andric       // still the same.
240e8d8bef9SDimitry Andric       auto ZippedTypes = zip(A.OperVals, B.OperVals);
241e8d8bef9SDimitry Andric 
242e8d8bef9SDimitry Andric       return all_of(
243e8d8bef9SDimitry Andric           ZippedTypes, [](std::tuple<llvm::Value *, llvm::Value *> R) {
244e8d8bef9SDimitry Andric             return std::get<0>(R)->getType() == std::get<1>(R)->getType();
245e8d8bef9SDimitry Andric           });
246e8d8bef9SDimitry Andric     }
247e8d8bef9SDimitry Andric 
248e8d8bef9SDimitry Andric     return false;
249e8d8bef9SDimitry Andric   }
250e8d8bef9SDimitry Andric 
251e8d8bef9SDimitry Andric   // Since any GEP Instruction operands after the first operand cannot be
252e8d8bef9SDimitry Andric   // defined by a register, we must make sure that the operands after the first
253e8d8bef9SDimitry Andric   // are the same in the two instructions
254e8d8bef9SDimitry Andric   if (auto *GEP = dyn_cast<GetElementPtrInst>(A.Inst)) {
255e8d8bef9SDimitry Andric     auto *OtherGEP = cast<GetElementPtrInst>(B.Inst);
256e8d8bef9SDimitry Andric 
257e8d8bef9SDimitry Andric     // If the instructions do not have the same inbounds restrictions, we do
258e8d8bef9SDimitry Andric     // not consider them the same.
259e8d8bef9SDimitry Andric     if (GEP->isInBounds() != OtherGEP->isInBounds())
260e8d8bef9SDimitry Andric       return false;
261e8d8bef9SDimitry Andric 
262e8d8bef9SDimitry Andric     auto ZippedOperands = zip(GEP->indices(), OtherGEP->indices());
263e8d8bef9SDimitry Andric 
264e8d8bef9SDimitry Andric     // We increment here since we do not care about the first instruction,
265e8d8bef9SDimitry Andric     // we only care about the following operands since they must be the
266e8d8bef9SDimitry Andric     // exact same to be considered similar.
267e8d8bef9SDimitry Andric     return all_of(drop_begin(ZippedOperands),
268e8d8bef9SDimitry Andric                   [](std::tuple<llvm::Use &, llvm::Use &> R) {
269e8d8bef9SDimitry Andric                     return std::get<0>(R) == std::get<1>(R);
270e8d8bef9SDimitry Andric                   });
271e8d8bef9SDimitry Andric   }
272e8d8bef9SDimitry Andric 
27304eeddc0SDimitry Andric   // If the instructions are functions calls, we make sure that the function
27404eeddc0SDimitry Andric   // name is the same.  We already know that the types are since is
27504eeddc0SDimitry Andric   // isSameOperationAs is true.
276e8d8bef9SDimitry Andric   if (isa<CallInst>(A.Inst) && isa<CallInst>(B.Inst)) {
2771fd87a68SDimitry Andric     if (A.getCalleeName().str() != B.getCalleeName().str())
278e8d8bef9SDimitry Andric       return false;
279e8d8bef9SDimitry Andric   }
280e8d8bef9SDimitry Andric 
281349cc55cSDimitry Andric   if (isa<BranchInst>(A.Inst) && isa<BranchInst>(B.Inst) &&
282349cc55cSDimitry Andric       A.RelativeBlockLocations.size() != B.RelativeBlockLocations.size())
283349cc55cSDimitry Andric     return false;
284349cc55cSDimitry Andric 
285e8d8bef9SDimitry Andric   return true;
286e8d8bef9SDimitry Andric }
287e8d8bef9SDimitry Andric 
288e8d8bef9SDimitry Andric // TODO: This is the same as the MachineOutliner, and should be consolidated
289e8d8bef9SDimitry Andric // into the same interface.
290e8d8bef9SDimitry Andric void IRInstructionMapper::convertToUnsignedVec(
291e8d8bef9SDimitry Andric     BasicBlock &BB, std::vector<IRInstructionData *> &InstrList,
292e8d8bef9SDimitry Andric     std::vector<unsigned> &IntegerMapping) {
293e8d8bef9SDimitry Andric   BasicBlock::iterator It = BB.begin();
294e8d8bef9SDimitry Andric 
295e8d8bef9SDimitry Andric   std::vector<unsigned> IntegerMappingForBB;
296e8d8bef9SDimitry Andric   std::vector<IRInstructionData *> InstrListForBB;
297e8d8bef9SDimitry Andric 
298e8d8bef9SDimitry Andric   for (BasicBlock::iterator Et = BB.end(); It != Et; ++It) {
299e8d8bef9SDimitry Andric     switch (InstClassifier.visit(*It)) {
300e8d8bef9SDimitry Andric     case InstrType::Legal:
301e8d8bef9SDimitry Andric       mapToLegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
302e8d8bef9SDimitry Andric       break;
303e8d8bef9SDimitry Andric     case InstrType::Illegal:
304e8d8bef9SDimitry Andric       mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
305e8d8bef9SDimitry Andric       break;
306e8d8bef9SDimitry Andric     case InstrType::Invisible:
307e8d8bef9SDimitry Andric       AddedIllegalLastTime = false;
308e8d8bef9SDimitry Andric       break;
309e8d8bef9SDimitry Andric     }
310e8d8bef9SDimitry Andric   }
311e8d8bef9SDimitry Andric 
312349cc55cSDimitry Andric   if (AddedIllegalLastTime)
313e8d8bef9SDimitry Andric     mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB, true);
314fe6060f1SDimitry Andric   for (IRInstructionData *ID : InstrListForBB)
315fe6060f1SDimitry Andric     this->IDL->push_back(*ID);
316e8d8bef9SDimitry Andric   llvm::append_range(InstrList, InstrListForBB);
317e8d8bef9SDimitry Andric   llvm::append_range(IntegerMapping, IntegerMappingForBB);
318e8d8bef9SDimitry Andric }
319e8d8bef9SDimitry Andric 
320e8d8bef9SDimitry Andric // TODO: This is the same as the MachineOutliner, and should be consolidated
321e8d8bef9SDimitry Andric // into the same interface.
322e8d8bef9SDimitry Andric unsigned IRInstructionMapper::mapToLegalUnsigned(
323e8d8bef9SDimitry Andric     BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
324e8d8bef9SDimitry Andric     std::vector<IRInstructionData *> &InstrListForBB) {
325e8d8bef9SDimitry Andric   // We added something legal, so we should unset the AddedLegalLastTime
326e8d8bef9SDimitry Andric   // flag.
327e8d8bef9SDimitry Andric   AddedIllegalLastTime = false;
328e8d8bef9SDimitry Andric 
329e8d8bef9SDimitry Andric   // If we have at least two adjacent legal instructions (which may have
330e8d8bef9SDimitry Andric   // invisible instructions in between), remember that.
331e8d8bef9SDimitry Andric   if (CanCombineWithPrevInstr)
332e8d8bef9SDimitry Andric     HaveLegalRange = true;
333e8d8bef9SDimitry Andric   CanCombineWithPrevInstr = true;
334e8d8bef9SDimitry Andric 
335e8d8bef9SDimitry Andric   // Get the integer for this instruction or give it the current
336e8d8bef9SDimitry Andric   // LegalInstrNumber.
337e8d8bef9SDimitry Andric   IRInstructionData *ID = allocateIRInstructionData(*It, true, *IDL);
338e8d8bef9SDimitry Andric   InstrListForBB.push_back(ID);
339e8d8bef9SDimitry Andric 
340349cc55cSDimitry Andric   if (isa<BranchInst>(*It))
341349cc55cSDimitry Andric     ID->setBranchSuccessors(BasicBlockToInteger);
342349cc55cSDimitry Andric 
34304eeddc0SDimitry Andric   if (isa<CallInst>(*It))
34404eeddc0SDimitry Andric     ID->setCalleeName(EnableMatchCallsByName);
34504eeddc0SDimitry Andric 
34604eeddc0SDimitry Andric   if (isa<PHINode>(*It))
34704eeddc0SDimitry Andric     ID->setPHIPredecessors(BasicBlockToInteger);
34804eeddc0SDimitry Andric 
349e8d8bef9SDimitry Andric   // Add to the instruction list
350e8d8bef9SDimitry Andric   bool WasInserted;
351e8d8bef9SDimitry Andric   DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>::iterator
352e8d8bef9SDimitry Andric       ResultIt;
353e8d8bef9SDimitry Andric   std::tie(ResultIt, WasInserted) =
354e8d8bef9SDimitry Andric       InstructionIntegerMap.insert(std::make_pair(ID, LegalInstrNumber));
355e8d8bef9SDimitry Andric   unsigned INumber = ResultIt->second;
356e8d8bef9SDimitry Andric 
357e8d8bef9SDimitry Andric   // There was an insertion.
358e8d8bef9SDimitry Andric   if (WasInserted)
359e8d8bef9SDimitry Andric     LegalInstrNumber++;
360e8d8bef9SDimitry Andric 
361e8d8bef9SDimitry Andric   IntegerMappingForBB.push_back(INumber);
362e8d8bef9SDimitry Andric 
363e8d8bef9SDimitry Andric   // Make sure we don't overflow or use any integers reserved by the DenseMap.
364e8d8bef9SDimitry Andric   assert(LegalInstrNumber < IllegalInstrNumber &&
365e8d8bef9SDimitry Andric          "Instruction mapping overflow!");
366e8d8bef9SDimitry Andric 
367e8d8bef9SDimitry Andric   assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
368e8d8bef9SDimitry Andric          "Tried to assign DenseMap tombstone or empty key to instruction.");
369e8d8bef9SDimitry Andric   assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
370e8d8bef9SDimitry Andric          "Tried to assign DenseMap tombstone or empty key to instruction.");
371e8d8bef9SDimitry Andric 
372e8d8bef9SDimitry Andric   return INumber;
373e8d8bef9SDimitry Andric }
374e8d8bef9SDimitry Andric 
375e8d8bef9SDimitry Andric IRInstructionData *
376e8d8bef9SDimitry Andric IRInstructionMapper::allocateIRInstructionData(Instruction &I, bool Legality,
377e8d8bef9SDimitry Andric                                                IRInstructionDataList &IDL) {
378e8d8bef9SDimitry Andric   return new (InstDataAllocator->Allocate()) IRInstructionData(I, Legality, IDL);
379e8d8bef9SDimitry Andric }
380e8d8bef9SDimitry Andric 
381349cc55cSDimitry Andric IRInstructionData *
382349cc55cSDimitry Andric IRInstructionMapper::allocateIRInstructionData(IRInstructionDataList &IDL) {
383349cc55cSDimitry Andric   return new (InstDataAllocator->Allocate()) IRInstructionData(IDL);
384349cc55cSDimitry Andric }
385349cc55cSDimitry Andric 
386e8d8bef9SDimitry Andric IRInstructionDataList *
387e8d8bef9SDimitry Andric IRInstructionMapper::allocateIRInstructionDataList() {
388e8d8bef9SDimitry Andric   return new (IDLAllocator->Allocate()) IRInstructionDataList();
389e8d8bef9SDimitry Andric }
390e8d8bef9SDimitry Andric 
391e8d8bef9SDimitry Andric // TODO: This is the same as the MachineOutliner, and should be consolidated
392e8d8bef9SDimitry Andric // into the same interface.
393e8d8bef9SDimitry Andric unsigned IRInstructionMapper::mapToIllegalUnsigned(
394e8d8bef9SDimitry Andric     BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
395e8d8bef9SDimitry Andric     std::vector<IRInstructionData *> &InstrListForBB, bool End) {
396e8d8bef9SDimitry Andric   // Can't combine an illegal instruction. Set the flag.
397e8d8bef9SDimitry Andric   CanCombineWithPrevInstr = false;
398e8d8bef9SDimitry Andric 
399e8d8bef9SDimitry Andric   // Only add one illegal number per range of legal numbers.
400e8d8bef9SDimitry Andric   if (AddedIllegalLastTime)
401e8d8bef9SDimitry Andric     return IllegalInstrNumber;
402e8d8bef9SDimitry Andric 
403e8d8bef9SDimitry Andric   IRInstructionData *ID = nullptr;
404e8d8bef9SDimitry Andric   if (!End)
405e8d8bef9SDimitry Andric     ID = allocateIRInstructionData(*It, false, *IDL);
406349cc55cSDimitry Andric   else
407349cc55cSDimitry Andric     ID = allocateIRInstructionData(*IDL);
408e8d8bef9SDimitry Andric   InstrListForBB.push_back(ID);
409e8d8bef9SDimitry Andric 
410e8d8bef9SDimitry Andric   // Remember that we added an illegal number last time.
411e8d8bef9SDimitry Andric   AddedIllegalLastTime = true;
412e8d8bef9SDimitry Andric   unsigned INumber = IllegalInstrNumber;
413e8d8bef9SDimitry Andric   IntegerMappingForBB.push_back(IllegalInstrNumber--);
414e8d8bef9SDimitry Andric 
415e8d8bef9SDimitry Andric   assert(LegalInstrNumber < IllegalInstrNumber &&
416e8d8bef9SDimitry Andric          "Instruction mapping overflow!");
417e8d8bef9SDimitry Andric 
418e8d8bef9SDimitry Andric   assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
419e8d8bef9SDimitry Andric          "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
420e8d8bef9SDimitry Andric 
421e8d8bef9SDimitry Andric   assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
422e8d8bef9SDimitry Andric          "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
423e8d8bef9SDimitry Andric 
424e8d8bef9SDimitry Andric   return INumber;
425e8d8bef9SDimitry Andric }
426e8d8bef9SDimitry Andric 
427e8d8bef9SDimitry Andric IRSimilarityCandidate::IRSimilarityCandidate(unsigned StartIdx, unsigned Len,
428e8d8bef9SDimitry Andric                                              IRInstructionData *FirstInstIt,
429e8d8bef9SDimitry Andric                                              IRInstructionData *LastInstIt)
430e8d8bef9SDimitry Andric     : StartIdx(StartIdx), Len(Len) {
431e8d8bef9SDimitry Andric 
432e8d8bef9SDimitry Andric   assert(FirstInstIt != nullptr && "Instruction is nullptr!");
433e8d8bef9SDimitry Andric   assert(LastInstIt != nullptr && "Instruction is nullptr!");
434e8d8bef9SDimitry Andric   assert(StartIdx + Len > StartIdx &&
435e8d8bef9SDimitry Andric          "Overflow for IRSimilarityCandidate range?");
436e8d8bef9SDimitry Andric   assert(Len - 1 == static_cast<unsigned>(std::distance(
437e8d8bef9SDimitry Andric                         iterator(FirstInstIt), iterator(LastInstIt))) &&
438e8d8bef9SDimitry Andric          "Length of the first and last IRInstructionData do not match the "
439e8d8bef9SDimitry Andric          "given length");
440e8d8bef9SDimitry Andric 
441e8d8bef9SDimitry Andric   // We iterate over the given instructions, and map each unique value
442e8d8bef9SDimitry Andric   // to a unique number in the IRSimilarityCandidate ValueToNumber and
443e8d8bef9SDimitry Andric   // NumberToValue maps.  A constant get its own value globally, the individual
444e8d8bef9SDimitry Andric   // uses of the constants are not considered to be unique.
445e8d8bef9SDimitry Andric   //
446e8d8bef9SDimitry Andric   // IR:                    Mapping Added:
447e8d8bef9SDimitry Andric   // %add1 = add i32 %a, c1    %add1 -> 3, %a -> 1, c1 -> 2
448e8d8bef9SDimitry Andric   // %add2 = add i32 %a, %1    %add2 -> 4
449e8d8bef9SDimitry Andric   // %add3 = add i32 c2, c1    %add3 -> 6, c2 -> 5
450e8d8bef9SDimitry Andric   //
451e8d8bef9SDimitry Andric   // when replace with global values, starting from 1, would be
452e8d8bef9SDimitry Andric   //
453e8d8bef9SDimitry Andric   // 3 = add i32 1, 2
454e8d8bef9SDimitry Andric   // 4 = add i32 1, 3
455e8d8bef9SDimitry Andric   // 6 = add i32 5, 2
456e8d8bef9SDimitry Andric   unsigned LocalValNumber = 1;
457e8d8bef9SDimitry Andric   IRInstructionDataList::iterator ID = iterator(*FirstInstIt);
458e8d8bef9SDimitry Andric   for (unsigned Loc = StartIdx; Loc < StartIdx + Len; Loc++, ID++) {
459e8d8bef9SDimitry Andric     // Map the operand values to an unsigned integer if it does not already
460e8d8bef9SDimitry Andric     // have an unsigned integer assigned to it.
461e8d8bef9SDimitry Andric     for (Value *Arg : ID->OperVals)
462*06c3fb27SDimitry Andric       if (!ValueToNumber.contains(Arg)) {
463e8d8bef9SDimitry Andric         ValueToNumber.try_emplace(Arg, LocalValNumber);
464e8d8bef9SDimitry Andric         NumberToValue.try_emplace(LocalValNumber, Arg);
465e8d8bef9SDimitry Andric         LocalValNumber++;
466e8d8bef9SDimitry Andric       }
467e8d8bef9SDimitry Andric 
468e8d8bef9SDimitry Andric     // Mapping the instructions to an unsigned integer if it is not already
469e8d8bef9SDimitry Andric     // exist in the mapping.
470*06c3fb27SDimitry Andric     if (!ValueToNumber.contains(ID->Inst)) {
471e8d8bef9SDimitry Andric       ValueToNumber.try_emplace(ID->Inst, LocalValNumber);
472e8d8bef9SDimitry Andric       NumberToValue.try_emplace(LocalValNumber, ID->Inst);
473e8d8bef9SDimitry Andric       LocalValNumber++;
474e8d8bef9SDimitry Andric     }
475e8d8bef9SDimitry Andric   }
476e8d8bef9SDimitry Andric 
477e8d8bef9SDimitry Andric   // Setting the first and last instruction data pointers for the candidate.  If
478e8d8bef9SDimitry Andric   // we got through the entire for loop without hitting an assert, we know
479e8d8bef9SDimitry Andric   // that both of these instructions are not nullptrs.
480e8d8bef9SDimitry Andric   FirstInst = FirstInstIt;
481e8d8bef9SDimitry Andric   LastInst = LastInstIt;
48281ad6265SDimitry Andric 
48381ad6265SDimitry Andric   // Add the basic blocks contained in the set into the global value numbering.
48481ad6265SDimitry Andric   DenseSet<BasicBlock *> BBSet;
48581ad6265SDimitry Andric   getBasicBlocks(BBSet);
48681ad6265SDimitry Andric   for (BasicBlock *BB : BBSet) {
487*06c3fb27SDimitry Andric     if (ValueToNumber.contains(BB))
48881ad6265SDimitry Andric       continue;
48981ad6265SDimitry Andric 
49081ad6265SDimitry Andric     ValueToNumber.try_emplace(BB, LocalValNumber);
49181ad6265SDimitry Andric     NumberToValue.try_emplace(LocalValNumber, BB);
49281ad6265SDimitry Andric     LocalValNumber++;
49381ad6265SDimitry Andric   }
494e8d8bef9SDimitry Andric }
495e8d8bef9SDimitry Andric 
496e8d8bef9SDimitry Andric bool IRSimilarityCandidate::isSimilar(const IRSimilarityCandidate &A,
497e8d8bef9SDimitry Andric                                       const IRSimilarityCandidate &B) {
498e8d8bef9SDimitry Andric   if (A.getLength() != B.getLength())
499e8d8bef9SDimitry Andric     return false;
500e8d8bef9SDimitry Andric 
501e8d8bef9SDimitry Andric   auto InstrDataForBoth =
502e8d8bef9SDimitry Andric       zip(make_range(A.begin(), A.end()), make_range(B.begin(), B.end()));
503e8d8bef9SDimitry Andric 
504e8d8bef9SDimitry Andric   return all_of(InstrDataForBoth,
505e8d8bef9SDimitry Andric                 [](std::tuple<IRInstructionData &, IRInstructionData &> R) {
506e8d8bef9SDimitry Andric                   IRInstructionData &A = std::get<0>(R);
507e8d8bef9SDimitry Andric                   IRInstructionData &B = std::get<1>(R);
508e8d8bef9SDimitry Andric                   if (!A.Legal || !B.Legal)
509e8d8bef9SDimitry Andric                     return false;
510e8d8bef9SDimitry Andric                   return isClose(A, B);
511e8d8bef9SDimitry Andric                 });
512e8d8bef9SDimitry Andric }
513e8d8bef9SDimitry Andric 
514e8d8bef9SDimitry Andric /// Determine if one or more of the assigned global value numbers for the
515e8d8bef9SDimitry Andric /// operands in \p TargetValueNumbers is in the current mapping set for operand
516e8d8bef9SDimitry Andric /// numbers in \p SourceOperands.  The set of possible corresponding global
517e8d8bef9SDimitry Andric /// value numbers are replaced with the most recent version of compatible
518e8d8bef9SDimitry Andric /// values.
519e8d8bef9SDimitry Andric ///
520e8d8bef9SDimitry Andric /// \param [in] SourceValueToNumberMapping - The mapping of a Value to global
521e8d8bef9SDimitry Andric /// value number for the source IRInstructionCandidate.
522e8d8bef9SDimitry Andric /// \param [in, out] CurrentSrcTgtNumberMapping - The current mapping of source
523e8d8bef9SDimitry Andric /// IRSimilarityCandidate global value numbers to a set of possible numbers in
524e8d8bef9SDimitry Andric /// the target.
525e8d8bef9SDimitry Andric /// \param [in] SourceOperands - The operands in the original
526e8d8bef9SDimitry Andric /// IRSimilarityCandidate in the current instruction.
527e8d8bef9SDimitry Andric /// \param [in] TargetValueNumbers - The global value numbers of the operands in
528e8d8bef9SDimitry Andric /// the corresponding Instruction in the other IRSimilarityCandidate.
529e8d8bef9SDimitry Andric /// \returns true if there exists a possible mapping between the source
530e8d8bef9SDimitry Andric /// Instruction operands and the target Instruction operands, and false if not.
531e8d8bef9SDimitry Andric static bool checkNumberingAndReplaceCommutative(
532e8d8bef9SDimitry Andric   const DenseMap<Value *, unsigned> &SourceValueToNumberMapping,
533e8d8bef9SDimitry Andric   DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
534e8d8bef9SDimitry Andric   ArrayRef<Value *> &SourceOperands,
535e8d8bef9SDimitry Andric   DenseSet<unsigned> &TargetValueNumbers){
536e8d8bef9SDimitry Andric 
537e8d8bef9SDimitry Andric   DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;
538e8d8bef9SDimitry Andric 
539e8d8bef9SDimitry Andric   unsigned ArgVal;
540e8d8bef9SDimitry Andric   bool WasInserted;
541e8d8bef9SDimitry Andric 
542e8d8bef9SDimitry Andric   // Iterate over the operands in the source IRSimilarityCandidate to determine
543e8d8bef9SDimitry Andric   // whether there exists an operand in the other IRSimilarityCandidate that
544e8d8bef9SDimitry Andric   // creates a valid mapping of Value to Value between the
545e8d8bef9SDimitry Andric   // IRSimilarityCaniddates.
546e8d8bef9SDimitry Andric   for (Value *V : SourceOperands) {
547e8d8bef9SDimitry Andric     ArgVal = SourceValueToNumberMapping.find(V)->second;
548e8d8bef9SDimitry Andric 
54981ad6265SDimitry Andric     // Instead of finding a current mapping, we attempt to insert a set.
550e8d8bef9SDimitry Andric     std::tie(ValueMappingIt, WasInserted) = CurrentSrcTgtNumberMapping.insert(
551e8d8bef9SDimitry Andric         std::make_pair(ArgVal, TargetValueNumbers));
552e8d8bef9SDimitry Andric 
55381ad6265SDimitry Andric     // We need to iterate over the items in other IRSimilarityCandidate's
55481ad6265SDimitry Andric     // Instruction to determine whether there is a valid mapping of
55581ad6265SDimitry Andric     // Value to Value.
556e8d8bef9SDimitry Andric     DenseSet<unsigned> NewSet;
557e8d8bef9SDimitry Andric     for (unsigned &Curr : ValueMappingIt->second)
558e8d8bef9SDimitry Andric       // If we can find the value in the mapping, we add it to the new set.
559e8d8bef9SDimitry Andric       if (TargetValueNumbers.contains(Curr))
560e8d8bef9SDimitry Andric         NewSet.insert(Curr);
561e8d8bef9SDimitry Andric 
562e8d8bef9SDimitry Andric     // If we could not find a Value, return 0.
563e8d8bef9SDimitry Andric     if (NewSet.empty())
564e8d8bef9SDimitry Andric       return false;
565e8d8bef9SDimitry Andric 
566e8d8bef9SDimitry Andric     // Otherwise replace the old mapping with the newly constructed one.
567e8d8bef9SDimitry Andric     if (NewSet.size() != ValueMappingIt->second.size())
568e8d8bef9SDimitry Andric       ValueMappingIt->second.swap(NewSet);
569e8d8bef9SDimitry Andric 
570e8d8bef9SDimitry Andric     // We have reached no conclusions about the mapping, and cannot remove
571e8d8bef9SDimitry Andric     // any items from the other operands, so we move to check the next operand.
572e8d8bef9SDimitry Andric     if (ValueMappingIt->second.size() != 1)
573e8d8bef9SDimitry Andric       continue;
574e8d8bef9SDimitry Andric 
575e8d8bef9SDimitry Andric     unsigned ValToRemove = *ValueMappingIt->second.begin();
576e8d8bef9SDimitry Andric     // When there is only one item left in the mapping for and operand, remove
577e8d8bef9SDimitry Andric     // the value from the other operands.  If it results in there being no
578e8d8bef9SDimitry Andric     // mapping, return false, it means the mapping is wrong
579e8d8bef9SDimitry Andric     for (Value *InnerV : SourceOperands) {
580e8d8bef9SDimitry Andric       if (V == InnerV)
581e8d8bef9SDimitry Andric         continue;
582e8d8bef9SDimitry Andric 
583e8d8bef9SDimitry Andric       unsigned InnerVal = SourceValueToNumberMapping.find(InnerV)->second;
584e8d8bef9SDimitry Andric       ValueMappingIt = CurrentSrcTgtNumberMapping.find(InnerVal);
585e8d8bef9SDimitry Andric       if (ValueMappingIt == CurrentSrcTgtNumberMapping.end())
586e8d8bef9SDimitry Andric         continue;
587e8d8bef9SDimitry Andric 
588e8d8bef9SDimitry Andric       ValueMappingIt->second.erase(ValToRemove);
589e8d8bef9SDimitry Andric       if (ValueMappingIt->second.empty())
590e8d8bef9SDimitry Andric         return false;
591e8d8bef9SDimitry Andric     }
592e8d8bef9SDimitry Andric   }
593e8d8bef9SDimitry Andric 
594e8d8bef9SDimitry Andric   return true;
595e8d8bef9SDimitry Andric }
596e8d8bef9SDimitry Andric 
597e8d8bef9SDimitry Andric /// Determine if operand number \p TargetArgVal is in the current mapping set
598e8d8bef9SDimitry Andric /// for operand number \p SourceArgVal.
599e8d8bef9SDimitry Andric ///
600e8d8bef9SDimitry Andric /// \param [in, out] CurrentSrcTgtNumberMapping current mapping of global
601e8d8bef9SDimitry Andric /// value numbers from source IRSimilarityCandidate to target
602e8d8bef9SDimitry Andric /// IRSimilarityCandidate.
603e8d8bef9SDimitry Andric /// \param [in] SourceArgVal The global value number for an operand in the
604e8d8bef9SDimitry Andric /// in the original candidate.
605e8d8bef9SDimitry Andric /// \param [in] TargetArgVal The global value number for the corresponding
606e8d8bef9SDimitry Andric /// operand in the other candidate.
607e8d8bef9SDimitry Andric /// \returns True if there exists a mapping and false if not.
608e8d8bef9SDimitry Andric bool checkNumberingAndReplace(
609e8d8bef9SDimitry Andric     DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
610e8d8bef9SDimitry Andric     unsigned SourceArgVal, unsigned TargetArgVal) {
611e8d8bef9SDimitry Andric   // We are given two unsigned integers representing the global values of
612e8d8bef9SDimitry Andric   // the operands in different IRSimilarityCandidates and a current mapping
613e8d8bef9SDimitry Andric   // between the two.
614e8d8bef9SDimitry Andric   //
615e8d8bef9SDimitry Andric   // Source Operand GVN: 1
616e8d8bef9SDimitry Andric   // Target Operand GVN: 2
617e8d8bef9SDimitry Andric   // CurrentMapping: {1: {1, 2}}
618e8d8bef9SDimitry Andric   //
619e8d8bef9SDimitry Andric   // Since we have mapping, and the target operand is contained in the set, we
620e8d8bef9SDimitry Andric   // update it to:
621e8d8bef9SDimitry Andric   // CurrentMapping: {1: {2}}
622e8d8bef9SDimitry Andric   // and can return true. But, if the mapping was
623e8d8bef9SDimitry Andric   // CurrentMapping: {1: {3}}
624e8d8bef9SDimitry Andric   // we would return false.
625e8d8bef9SDimitry Andric 
626e8d8bef9SDimitry Andric   bool WasInserted;
627e8d8bef9SDimitry Andric   DenseMap<unsigned, DenseSet<unsigned>>::iterator Val;
628e8d8bef9SDimitry Andric 
629e8d8bef9SDimitry Andric   std::tie(Val, WasInserted) = CurrentSrcTgtNumberMapping.insert(
630e8d8bef9SDimitry Andric       std::make_pair(SourceArgVal, DenseSet<unsigned>({TargetArgVal})));
631e8d8bef9SDimitry Andric 
632e8d8bef9SDimitry Andric   // If we created a new mapping, then we are done.
633e8d8bef9SDimitry Andric   if (WasInserted)
634e8d8bef9SDimitry Andric     return true;
635e8d8bef9SDimitry Andric 
636e8d8bef9SDimitry Andric   // If there is more than one option in the mapping set, and the target value
637e8d8bef9SDimitry Andric   // is included in the mapping set replace that set with one that only includes
638e8d8bef9SDimitry Andric   // the target value, as it is the only valid mapping via the non commutative
639e8d8bef9SDimitry Andric   // instruction.
640e8d8bef9SDimitry Andric 
641e8d8bef9SDimitry Andric   DenseSet<unsigned> &TargetSet = Val->second;
642e8d8bef9SDimitry Andric   if (TargetSet.size() > 1 && TargetSet.contains(TargetArgVal)) {
643e8d8bef9SDimitry Andric     TargetSet.clear();
644e8d8bef9SDimitry Andric     TargetSet.insert(TargetArgVal);
645e8d8bef9SDimitry Andric     return true;
646e8d8bef9SDimitry Andric   }
647e8d8bef9SDimitry Andric 
648e8d8bef9SDimitry Andric   // Return true if we can find the value in the set.
649e8d8bef9SDimitry Andric   return TargetSet.contains(TargetArgVal);
650e8d8bef9SDimitry Andric }
651e8d8bef9SDimitry Andric 
652e8d8bef9SDimitry Andric bool IRSimilarityCandidate::compareNonCommutativeOperandMapping(
653e8d8bef9SDimitry Andric     OperandMapping A, OperandMapping B) {
654e8d8bef9SDimitry Andric   // Iterators to keep track of where we are in the operands for each
655e8d8bef9SDimitry Andric   // Instruction.
656e8d8bef9SDimitry Andric   ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
657e8d8bef9SDimitry Andric   ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
658e8d8bef9SDimitry Andric   unsigned OperandLength = A.OperVals.size();
659e8d8bef9SDimitry Andric 
660e8d8bef9SDimitry Andric   // For each operand, get the value numbering and ensure it is consistent.
661e8d8bef9SDimitry Andric   for (unsigned Idx = 0; Idx < OperandLength; Idx++, VItA++, VItB++) {
662e8d8bef9SDimitry Andric     unsigned OperValA = A.IRSC.ValueToNumber.find(*VItA)->second;
663e8d8bef9SDimitry Andric     unsigned OperValB = B.IRSC.ValueToNumber.find(*VItB)->second;
664e8d8bef9SDimitry Andric 
665e8d8bef9SDimitry Andric     // Attempt to add a set with only the target value.  If there is no mapping
666e8d8bef9SDimitry Andric     // we can create it here.
667e8d8bef9SDimitry Andric     //
668e8d8bef9SDimitry Andric     // For an instruction like a subtraction:
669e8d8bef9SDimitry Andric     // IRSimilarityCandidateA:  IRSimilarityCandidateB:
670e8d8bef9SDimitry Andric     // %resultA = sub %a, %b    %resultB = sub %d, %e
671e8d8bef9SDimitry Andric     //
672e8d8bef9SDimitry Andric     // We map %a -> %d and %b -> %e.
673e8d8bef9SDimitry Andric     //
674e8d8bef9SDimitry Andric     // And check to see whether their mapping is consistent in
675e8d8bef9SDimitry Andric     // checkNumberingAndReplace.
676e8d8bef9SDimitry Andric 
677e8d8bef9SDimitry Andric     if (!checkNumberingAndReplace(A.ValueNumberMapping, OperValA, OperValB))
678e8d8bef9SDimitry Andric       return false;
679e8d8bef9SDimitry Andric 
680e8d8bef9SDimitry Andric     if (!checkNumberingAndReplace(B.ValueNumberMapping, OperValB, OperValA))
681e8d8bef9SDimitry Andric       return false;
682e8d8bef9SDimitry Andric   }
683e8d8bef9SDimitry Andric   return true;
684e8d8bef9SDimitry Andric }
685e8d8bef9SDimitry Andric 
686e8d8bef9SDimitry Andric bool IRSimilarityCandidate::compareCommutativeOperandMapping(
687e8d8bef9SDimitry Andric     OperandMapping A, OperandMapping B) {
688e8d8bef9SDimitry Andric   DenseSet<unsigned> ValueNumbersA;
689e8d8bef9SDimitry Andric   DenseSet<unsigned> ValueNumbersB;
690e8d8bef9SDimitry Andric 
691e8d8bef9SDimitry Andric   ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
692e8d8bef9SDimitry Andric   ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
693e8d8bef9SDimitry Andric   unsigned OperandLength = A.OperVals.size();
694e8d8bef9SDimitry Andric 
695e8d8bef9SDimitry Andric   // Find the value number sets for the operands.
696e8d8bef9SDimitry Andric   for (unsigned Idx = 0; Idx < OperandLength;
697e8d8bef9SDimitry Andric        Idx++, VItA++, VItB++) {
698e8d8bef9SDimitry Andric     ValueNumbersA.insert(A.IRSC.ValueToNumber.find(*VItA)->second);
699e8d8bef9SDimitry Andric     ValueNumbersB.insert(B.IRSC.ValueToNumber.find(*VItB)->second);
700e8d8bef9SDimitry Andric   }
701e8d8bef9SDimitry Andric 
702e8d8bef9SDimitry Andric   // Iterate over the operands in the first IRSimilarityCandidate and make sure
703e8d8bef9SDimitry Andric   // there exists a possible mapping with the operands in the second
704e8d8bef9SDimitry Andric   // IRSimilarityCandidate.
705e8d8bef9SDimitry Andric   if (!checkNumberingAndReplaceCommutative(A.IRSC.ValueToNumber,
706e8d8bef9SDimitry Andric                                            A.ValueNumberMapping, A.OperVals,
707e8d8bef9SDimitry Andric                                            ValueNumbersB))
708e8d8bef9SDimitry Andric     return false;
709e8d8bef9SDimitry Andric 
710e8d8bef9SDimitry Andric   // Iterate over the operands in the second IRSimilarityCandidate and make sure
711e8d8bef9SDimitry Andric   // there exists a possible mapping with the operands in the first
712e8d8bef9SDimitry Andric   // IRSimilarityCandidate.
713e8d8bef9SDimitry Andric   if (!checkNumberingAndReplaceCommutative(B.IRSC.ValueToNumber,
714e8d8bef9SDimitry Andric                                            B.ValueNumberMapping, B.OperVals,
715e8d8bef9SDimitry Andric                                            ValueNumbersA))
716e8d8bef9SDimitry Andric     return false;
717e8d8bef9SDimitry Andric 
718e8d8bef9SDimitry Andric   return true;
719e8d8bef9SDimitry Andric }
720e8d8bef9SDimitry Andric 
721*06c3fb27SDimitry Andric bool IRSimilarityCandidate::compareAssignmentMapping(
722*06c3fb27SDimitry Andric     const unsigned InstValA, const unsigned &InstValB,
723*06c3fb27SDimitry Andric     DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA,
724*06c3fb27SDimitry Andric     DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB) {
725*06c3fb27SDimitry Andric   DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;
726*06c3fb27SDimitry Andric   bool WasInserted;
727*06c3fb27SDimitry Andric   std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert(
728*06c3fb27SDimitry Andric       std::make_pair(InstValA, DenseSet<unsigned>({InstValB})));
729*06c3fb27SDimitry Andric   if (!WasInserted && !ValueMappingIt->second.contains(InstValB))
730*06c3fb27SDimitry Andric     return false;
731*06c3fb27SDimitry Andric   else if (ValueMappingIt->second.size() != 1) {
732*06c3fb27SDimitry Andric     for (unsigned OtherVal : ValueMappingIt->second) {
733*06c3fb27SDimitry Andric       if (OtherVal == InstValB)
734*06c3fb27SDimitry Andric         continue;
735*06c3fb27SDimitry Andric       if (!ValueNumberMappingA.contains(OtherVal))
736*06c3fb27SDimitry Andric         continue;
737*06c3fb27SDimitry Andric       if (!ValueNumberMappingA[OtherVal].contains(InstValA))
738*06c3fb27SDimitry Andric         continue;
739*06c3fb27SDimitry Andric       ValueNumberMappingA[OtherVal].erase(InstValA);
740*06c3fb27SDimitry Andric     }
741*06c3fb27SDimitry Andric     ValueNumberMappingA.erase(ValueMappingIt);
742*06c3fb27SDimitry Andric     std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert(
743*06c3fb27SDimitry Andric       std::make_pair(InstValA, DenseSet<unsigned>({InstValB})));
744*06c3fb27SDimitry Andric   }
745*06c3fb27SDimitry Andric 
746*06c3fb27SDimitry Andric   return true;
747*06c3fb27SDimitry Andric }
748*06c3fb27SDimitry Andric 
749349cc55cSDimitry Andric bool IRSimilarityCandidate::checkRelativeLocations(RelativeLocMapping A,
750349cc55cSDimitry Andric                                                    RelativeLocMapping B) {
751349cc55cSDimitry Andric   // Get the basic blocks the label refers to.
752*06c3fb27SDimitry Andric   BasicBlock *ABB = cast<BasicBlock>(A.OperVal);
753*06c3fb27SDimitry Andric   BasicBlock *BBB = cast<BasicBlock>(B.OperVal);
754349cc55cSDimitry Andric 
755349cc55cSDimitry Andric   // Get the basic blocks contained in each region.
756349cc55cSDimitry Andric   DenseSet<BasicBlock *> BasicBlockA;
757349cc55cSDimitry Andric   DenseSet<BasicBlock *> BasicBlockB;
758349cc55cSDimitry Andric   A.IRSC.getBasicBlocks(BasicBlockA);
759349cc55cSDimitry Andric   B.IRSC.getBasicBlocks(BasicBlockB);
760349cc55cSDimitry Andric 
761349cc55cSDimitry Andric   // Determine if the block is contained in the region.
762349cc55cSDimitry Andric   bool AContained = BasicBlockA.contains(ABB);
763349cc55cSDimitry Andric   bool BContained = BasicBlockB.contains(BBB);
764349cc55cSDimitry Andric 
765349cc55cSDimitry Andric   // Both blocks need to be contained in the region, or both need to be outside
766*06c3fb27SDimitry Andric   // the region.
767349cc55cSDimitry Andric   if (AContained != BContained)
768349cc55cSDimitry Andric     return false;
769349cc55cSDimitry Andric 
770349cc55cSDimitry Andric   // If both are contained, then we need to make sure that the relative
771349cc55cSDimitry Andric   // distance to the target blocks are the same.
772349cc55cSDimitry Andric   if (AContained)
773349cc55cSDimitry Andric     return A.RelativeLocation == B.RelativeLocation;
774349cc55cSDimitry Andric   return true;
775349cc55cSDimitry Andric }
776349cc55cSDimitry Andric 
777e8d8bef9SDimitry Andric bool IRSimilarityCandidate::compareStructure(const IRSimilarityCandidate &A,
778e8d8bef9SDimitry Andric                                              const IRSimilarityCandidate &B) {
779349cc55cSDimitry Andric   DenseMap<unsigned, DenseSet<unsigned>> MappingA;
780349cc55cSDimitry Andric   DenseMap<unsigned, DenseSet<unsigned>> MappingB;
781349cc55cSDimitry Andric   return IRSimilarityCandidate::compareStructure(A, B, MappingA, MappingB);
782349cc55cSDimitry Andric }
783349cc55cSDimitry Andric 
784349cc55cSDimitry Andric typedef detail::zippy<detail::zip_shortest, SmallVector<int, 4> &,
785349cc55cSDimitry Andric                       SmallVector<int, 4> &, ArrayRef<Value *> &,
786349cc55cSDimitry Andric                       ArrayRef<Value *> &>
787349cc55cSDimitry Andric     ZippedRelativeLocationsT;
788349cc55cSDimitry Andric 
789349cc55cSDimitry Andric bool IRSimilarityCandidate::compareStructure(
790349cc55cSDimitry Andric     const IRSimilarityCandidate &A, const IRSimilarityCandidate &B,
791349cc55cSDimitry Andric     DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA,
792349cc55cSDimitry Andric     DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB) {
793e8d8bef9SDimitry Andric   if (A.getLength() != B.getLength())
794e8d8bef9SDimitry Andric     return false;
795e8d8bef9SDimitry Andric 
796e8d8bef9SDimitry Andric   if (A.ValueToNumber.size() != B.ValueToNumber.size())
797e8d8bef9SDimitry Andric     return false;
798e8d8bef9SDimitry Andric 
799e8d8bef9SDimitry Andric   iterator ItA = A.begin();
800e8d8bef9SDimitry Andric   iterator ItB = B.begin();
801e8d8bef9SDimitry Andric 
802349cc55cSDimitry Andric   // These ValueNumber Mapping sets create a create a mapping between the values
803349cc55cSDimitry Andric   // in one candidate to values in the other candidate.  If we create a set with
804349cc55cSDimitry Andric   // one element, and that same element maps to the original element in the
805349cc55cSDimitry Andric   // candidate we have a good mapping.
806e8d8bef9SDimitry Andric 
807e8d8bef9SDimitry Andric   // Iterate over the instructions contained in each candidate
808e8d8bef9SDimitry Andric   unsigned SectionLength = A.getStartIdx() + A.getLength();
809e8d8bef9SDimitry Andric   for (unsigned Loc = A.getStartIdx(); Loc < SectionLength;
810e8d8bef9SDimitry Andric        ItA++, ItB++, Loc++) {
811e8d8bef9SDimitry Andric     // Make sure the instructions are similar to one another.
812e8d8bef9SDimitry Andric     if (!isClose(*ItA, *ItB))
813e8d8bef9SDimitry Andric       return false;
814e8d8bef9SDimitry Andric 
815e8d8bef9SDimitry Andric     Instruction *IA = ItA->Inst;
816e8d8bef9SDimitry Andric     Instruction *IB = ItB->Inst;
817e8d8bef9SDimitry Andric 
818e8d8bef9SDimitry Andric     if (!ItA->Legal || !ItB->Legal)
819e8d8bef9SDimitry Andric       return false;
820e8d8bef9SDimitry Andric 
821e8d8bef9SDimitry Andric     // Get the operand sets for the instructions.
822e8d8bef9SDimitry Andric     ArrayRef<Value *> OperValsA = ItA->OperVals;
823e8d8bef9SDimitry Andric     ArrayRef<Value *> OperValsB = ItB->OperVals;
824e8d8bef9SDimitry Andric 
825e8d8bef9SDimitry Andric     unsigned InstValA = A.ValueToNumber.find(IA)->second;
826e8d8bef9SDimitry Andric     unsigned InstValB = B.ValueToNumber.find(IB)->second;
827e8d8bef9SDimitry Andric 
828e8d8bef9SDimitry Andric     // Ensure that the mappings for the instructions exists.
829*06c3fb27SDimitry Andric     if (!compareAssignmentMapping(InstValA, InstValB, ValueNumberMappingA,
830*06c3fb27SDimitry Andric                                   ValueNumberMappingB))
831e8d8bef9SDimitry Andric       return false;
832e8d8bef9SDimitry Andric 
833*06c3fb27SDimitry Andric     if (!compareAssignmentMapping(InstValB, InstValA, ValueNumberMappingB,
834*06c3fb27SDimitry Andric                                   ValueNumberMappingA))
835e8d8bef9SDimitry Andric       return false;
836e8d8bef9SDimitry Andric 
837e8d8bef9SDimitry Andric     // We have different paths for commutative instructions and non-commutative
838e8d8bef9SDimitry Andric     // instructions since commutative instructions could allow multiple mappings
839e8d8bef9SDimitry Andric     // to certain values.
84081ad6265SDimitry Andric     if (IA->isCommutative() && !isa<FPMathOperator>(IA) &&
84181ad6265SDimitry Andric         !isa<IntrinsicInst>(IA)) {
842e8d8bef9SDimitry Andric       if (!compareCommutativeOperandMapping(
843e8d8bef9SDimitry Andric               {A, OperValsA, ValueNumberMappingA},
844e8d8bef9SDimitry Andric               {B, OperValsB, ValueNumberMappingB}))
845e8d8bef9SDimitry Andric         return false;
846e8d8bef9SDimitry Andric       continue;
847e8d8bef9SDimitry Andric     }
848e8d8bef9SDimitry Andric 
849e8d8bef9SDimitry Andric     // Handle the non-commutative cases.
850e8d8bef9SDimitry Andric     if (!compareNonCommutativeOperandMapping(
851e8d8bef9SDimitry Andric             {A, OperValsA, ValueNumberMappingA},
852e8d8bef9SDimitry Andric             {B, OperValsB, ValueNumberMappingB}))
853e8d8bef9SDimitry Andric       return false;
854349cc55cSDimitry Andric 
855349cc55cSDimitry Andric     // Here we check that between two corresponding instructions,
856349cc55cSDimitry Andric     // when referring to a basic block in the same region, the
857349cc55cSDimitry Andric     // relative locations are the same. And, that the instructions refer to
858349cc55cSDimitry Andric     // basic blocks outside the region in the same corresponding locations.
859349cc55cSDimitry Andric 
860349cc55cSDimitry Andric     // We are able to make the assumption about blocks outside of the region
861349cc55cSDimitry Andric     // since the target block labels are considered values and will follow the
862349cc55cSDimitry Andric     // same number matching that we defined for the other instructions in the
863349cc55cSDimitry Andric     // region.  So, at this point, in each location we target a specific block
864349cc55cSDimitry Andric     // outside the region, we are targeting a corresponding block in each
865349cc55cSDimitry Andric     // analagous location in the region we are comparing to.
866349cc55cSDimitry Andric     if (!(isa<BranchInst>(IA) && isa<BranchInst>(IB)) &&
867349cc55cSDimitry Andric         !(isa<PHINode>(IA) && isa<PHINode>(IB)))
868349cc55cSDimitry Andric       continue;
869349cc55cSDimitry Andric 
870349cc55cSDimitry Andric     SmallVector<int, 4> &RelBlockLocsA = ItA->RelativeBlockLocations;
871349cc55cSDimitry Andric     SmallVector<int, 4> &RelBlockLocsB = ItB->RelativeBlockLocations;
872*06c3fb27SDimitry Andric     ArrayRef<Value *> ABL = ItA->getBlockOperVals();
873*06c3fb27SDimitry Andric     ArrayRef<Value *> BBL = ItB->getBlockOperVals();
874*06c3fb27SDimitry Andric 
875*06c3fb27SDimitry Andric     // Check to make sure that the number of operands, and branching locations
876*06c3fb27SDimitry Andric     // between BranchInsts is the same.
877349cc55cSDimitry Andric     if (RelBlockLocsA.size() != RelBlockLocsB.size() &&
878*06c3fb27SDimitry Andric         ABL.size() != BBL.size())
879349cc55cSDimitry Andric       return false;
880349cc55cSDimitry Andric 
881*06c3fb27SDimitry Andric     assert(RelBlockLocsA.size() == ABL.size() &&
882*06c3fb27SDimitry Andric            "Block information vectors not the same size.");
883*06c3fb27SDimitry Andric     assert(RelBlockLocsB.size() == BBL.size() &&
884*06c3fb27SDimitry Andric            "Block information vectors not the same size.");
885*06c3fb27SDimitry Andric 
886349cc55cSDimitry Andric     ZippedRelativeLocationsT ZippedRelativeLocations =
887*06c3fb27SDimitry Andric         zip(RelBlockLocsA, RelBlockLocsB, ABL, BBL);
888349cc55cSDimitry Andric     if (any_of(ZippedRelativeLocations,
889349cc55cSDimitry Andric                [&A, &B](std::tuple<int, int, Value *, Value *> R) {
890349cc55cSDimitry Andric                  return !checkRelativeLocations(
891349cc55cSDimitry Andric                      {A, std::get<0>(R), std::get<2>(R)},
892349cc55cSDimitry Andric                      {B, std::get<1>(R), std::get<3>(R)});
893349cc55cSDimitry Andric                }))
894349cc55cSDimitry Andric       return false;
895e8d8bef9SDimitry Andric   }
896e8d8bef9SDimitry Andric   return true;
897e8d8bef9SDimitry Andric }
898e8d8bef9SDimitry Andric 
899e8d8bef9SDimitry Andric bool IRSimilarityCandidate::overlap(const IRSimilarityCandidate &A,
900e8d8bef9SDimitry Andric                                     const IRSimilarityCandidate &B) {
901e8d8bef9SDimitry Andric   auto DoesOverlap = [](const IRSimilarityCandidate &X,
902e8d8bef9SDimitry Andric                         const IRSimilarityCandidate &Y) {
903e8d8bef9SDimitry Andric     // Check:
904e8d8bef9SDimitry Andric     // XXXXXX        X starts before Y ends
905e8d8bef9SDimitry Andric     //      YYYYYYY  Y starts after X starts
906e8d8bef9SDimitry Andric     return X.StartIdx <= Y.getEndIdx() && Y.StartIdx >= X.StartIdx;
907e8d8bef9SDimitry Andric   };
908e8d8bef9SDimitry Andric 
909e8d8bef9SDimitry Andric   return DoesOverlap(A, B) || DoesOverlap(B, A);
910e8d8bef9SDimitry Andric }
911e8d8bef9SDimitry Andric 
912e8d8bef9SDimitry Andric void IRSimilarityIdentifier::populateMapper(
913e8d8bef9SDimitry Andric     Module &M, std::vector<IRInstructionData *> &InstrList,
914e8d8bef9SDimitry Andric     std::vector<unsigned> &IntegerMapping) {
915e8d8bef9SDimitry Andric 
916e8d8bef9SDimitry Andric   std::vector<IRInstructionData *> InstrListForModule;
917e8d8bef9SDimitry Andric   std::vector<unsigned> IntegerMappingForModule;
918e8d8bef9SDimitry Andric   // Iterate over the functions in the module to map each Instruction in each
919e8d8bef9SDimitry Andric   // BasicBlock to an unsigned integer.
920349cc55cSDimitry Andric   Mapper.initializeForBBs(M);
921349cc55cSDimitry Andric 
922e8d8bef9SDimitry Andric   for (Function &F : M) {
923e8d8bef9SDimitry Andric 
924e8d8bef9SDimitry Andric     if (F.empty())
925e8d8bef9SDimitry Andric       continue;
926e8d8bef9SDimitry Andric 
927e8d8bef9SDimitry Andric     for (BasicBlock &BB : F) {
928e8d8bef9SDimitry Andric 
929e8d8bef9SDimitry Andric       // BB has potential to have similarity since it has a size greater than 2
930e8d8bef9SDimitry Andric       // and can therefore match other regions greater than 2. Map it to a list
931e8d8bef9SDimitry Andric       // of unsigned integers.
932e8d8bef9SDimitry Andric       Mapper.convertToUnsignedVec(BB, InstrListForModule,
933e8d8bef9SDimitry Andric                                   IntegerMappingForModule);
934e8d8bef9SDimitry Andric     }
935349cc55cSDimitry Andric 
936349cc55cSDimitry Andric     BasicBlock::iterator It = F.begin()->end();
937349cc55cSDimitry Andric     Mapper.mapToIllegalUnsigned(It, IntegerMappingForModule, InstrListForModule,
938349cc55cSDimitry Andric                                 true);
939349cc55cSDimitry Andric     if (InstrListForModule.size() > 0)
940349cc55cSDimitry Andric       Mapper.IDL->push_back(*InstrListForModule.back());
941e8d8bef9SDimitry Andric   }
942e8d8bef9SDimitry Andric 
943e8d8bef9SDimitry Andric   // Insert the InstrListForModule at the end of the overall InstrList so that
944e8d8bef9SDimitry Andric   // we can have a long InstrList for the entire set of Modules being analyzed.
945e8d8bef9SDimitry Andric   llvm::append_range(InstrList, InstrListForModule);
946e8d8bef9SDimitry Andric   // Do the same as above, but for IntegerMapping.
947e8d8bef9SDimitry Andric   llvm::append_range(IntegerMapping, IntegerMappingForModule);
948e8d8bef9SDimitry Andric }
949e8d8bef9SDimitry Andric 
950e8d8bef9SDimitry Andric void IRSimilarityIdentifier::populateMapper(
951e8d8bef9SDimitry Andric     ArrayRef<std::unique_ptr<Module>> &Modules,
952e8d8bef9SDimitry Andric     std::vector<IRInstructionData *> &InstrList,
953e8d8bef9SDimitry Andric     std::vector<unsigned> &IntegerMapping) {
954e8d8bef9SDimitry Andric 
955e8d8bef9SDimitry Andric   // Iterate over, and map the instructions in each module.
956e8d8bef9SDimitry Andric   for (const std::unique_ptr<Module> &M : Modules)
957e8d8bef9SDimitry Andric     populateMapper(*M, InstrList, IntegerMapping);
958e8d8bef9SDimitry Andric }
959e8d8bef9SDimitry Andric 
960e8d8bef9SDimitry Andric /// From a repeated subsequence, find all the different instances of the
961e8d8bef9SDimitry Andric /// subsequence from the \p InstrList, and create an IRSimilarityCandidate from
962e8d8bef9SDimitry Andric /// the IRInstructionData in subsequence.
963e8d8bef9SDimitry Andric ///
9644824e7fdSDimitry Andric /// \param [in] Mapper - The instruction mapper for basic correctness checks.
965e8d8bef9SDimitry Andric /// \param [in] InstrList - The vector that holds the instruction data.
966e8d8bef9SDimitry Andric /// \param [in] IntegerMapping - The vector that holds the mapped integers.
967e8d8bef9SDimitry Andric /// \param [out] CandsForRepSubstring - The vector to store the generated
968e8d8bef9SDimitry Andric /// IRSimilarityCandidates.
969e8d8bef9SDimitry Andric static void createCandidatesFromSuffixTree(
970fe6060f1SDimitry Andric     const IRInstructionMapper& Mapper, std::vector<IRInstructionData *> &InstrList,
971e8d8bef9SDimitry Andric     std::vector<unsigned> &IntegerMapping, SuffixTree::RepeatedSubstring &RS,
972e8d8bef9SDimitry Andric     std::vector<IRSimilarityCandidate> &CandsForRepSubstring) {
973e8d8bef9SDimitry Andric 
974e8d8bef9SDimitry Andric   unsigned StringLen = RS.Length;
975349cc55cSDimitry Andric   if (StringLen < 2)
976349cc55cSDimitry Andric     return;
977e8d8bef9SDimitry Andric 
978e8d8bef9SDimitry Andric   // Create an IRSimilarityCandidate for instance of this subsequence \p RS.
979e8d8bef9SDimitry Andric   for (const unsigned &StartIdx : RS.StartIndices) {
980e8d8bef9SDimitry Andric     unsigned EndIdx = StartIdx + StringLen - 1;
981e8d8bef9SDimitry Andric 
982e8d8bef9SDimitry Andric     // Check that this subsequence does not contain an illegal instruction.
983e8d8bef9SDimitry Andric     bool ContainsIllegal = false;
984e8d8bef9SDimitry Andric     for (unsigned CurrIdx = StartIdx; CurrIdx <= EndIdx; CurrIdx++) {
985e8d8bef9SDimitry Andric       unsigned Key = IntegerMapping[CurrIdx];
986e8d8bef9SDimitry Andric       if (Key > Mapper.IllegalInstrNumber) {
987e8d8bef9SDimitry Andric         ContainsIllegal = true;
988e8d8bef9SDimitry Andric         break;
989e8d8bef9SDimitry Andric       }
990e8d8bef9SDimitry Andric     }
991e8d8bef9SDimitry Andric 
992e8d8bef9SDimitry Andric     // If we have an illegal instruction, we should not create an
993e8d8bef9SDimitry Andric     // IRSimilarityCandidate for this region.
994e8d8bef9SDimitry Andric     if (ContainsIllegal)
995e8d8bef9SDimitry Andric       continue;
996e8d8bef9SDimitry Andric 
997e8d8bef9SDimitry Andric     // We are getting iterators to the instructions in this region of code
998e8d8bef9SDimitry Andric     // by advancing the start and end indices from the start of the
999e8d8bef9SDimitry Andric     // InstrList.
1000e8d8bef9SDimitry Andric     std::vector<IRInstructionData *>::iterator StartIt = InstrList.begin();
1001e8d8bef9SDimitry Andric     std::advance(StartIt, StartIdx);
1002e8d8bef9SDimitry Andric     std::vector<IRInstructionData *>::iterator EndIt = InstrList.begin();
1003e8d8bef9SDimitry Andric     std::advance(EndIt, EndIdx);
1004e8d8bef9SDimitry Andric 
1005e8d8bef9SDimitry Andric     CandsForRepSubstring.emplace_back(StartIdx, StringLen, *StartIt, *EndIt);
1006e8d8bef9SDimitry Andric   }
1007e8d8bef9SDimitry Andric }
1008e8d8bef9SDimitry Andric 
1009349cc55cSDimitry Andric void IRSimilarityCandidate::createCanonicalRelationFrom(
1010349cc55cSDimitry Andric     IRSimilarityCandidate &SourceCand,
1011349cc55cSDimitry Andric     DenseMap<unsigned, DenseSet<unsigned>> &ToSourceMapping,
1012349cc55cSDimitry Andric     DenseMap<unsigned, DenseSet<unsigned>> &FromSourceMapping) {
1013349cc55cSDimitry Andric   assert(SourceCand.CanonNumToNumber.size() != 0 &&
1014349cc55cSDimitry Andric          "Base canonical relationship is empty!");
1015349cc55cSDimitry Andric   assert(SourceCand.NumberToCanonNum.size() != 0 &&
1016349cc55cSDimitry Andric          "Base canonical relationship is empty!");
1017349cc55cSDimitry Andric 
1018349cc55cSDimitry Andric   assert(CanonNumToNumber.size() == 0 && "Canonical Relationship is non-empty");
1019349cc55cSDimitry Andric   assert(NumberToCanonNum.size() == 0 && "Canonical Relationship is non-empty");
1020349cc55cSDimitry Andric 
1021349cc55cSDimitry Andric   DenseSet<unsigned> UsedGVNs;
1022349cc55cSDimitry Andric   // Iterate over the mappings provided from this candidate to SourceCand.  We
1023349cc55cSDimitry Andric   // are then able to map the GVN in this candidate to the same canonical number
1024349cc55cSDimitry Andric   // given to the corresponding GVN in SourceCand.
1025349cc55cSDimitry Andric   for (std::pair<unsigned, DenseSet<unsigned>> &GVNMapping : ToSourceMapping) {
1026349cc55cSDimitry Andric     unsigned SourceGVN = GVNMapping.first;
1027349cc55cSDimitry Andric 
1028349cc55cSDimitry Andric     assert(GVNMapping.second.size() != 0 && "Possible GVNs is 0!");
1029349cc55cSDimitry Andric 
1030349cc55cSDimitry Andric     unsigned ResultGVN;
1031349cc55cSDimitry Andric     // We need special handling if we have more than one potential value.  This
1032349cc55cSDimitry Andric     // means that there are at least two GVNs that could correspond to this GVN.
1033349cc55cSDimitry Andric     // This could lead to potential swapping later on, so we make a decision
1034349cc55cSDimitry Andric     // here to ensure a one-to-one mapping.
1035349cc55cSDimitry Andric     if (GVNMapping.second.size() > 1) {
1036349cc55cSDimitry Andric       bool Found = false;
1037349cc55cSDimitry Andric       for (unsigned Val : GVNMapping.second) {
1038349cc55cSDimitry Andric         // We make sure the target value number hasn't already been reserved.
1039349cc55cSDimitry Andric         if (UsedGVNs.contains(Val))
1040349cc55cSDimitry Andric           continue;
1041349cc55cSDimitry Andric 
1042349cc55cSDimitry Andric         // We make sure that the opposite mapping is still consistent.
1043349cc55cSDimitry Andric         DenseMap<unsigned, DenseSet<unsigned>>::iterator It =
1044349cc55cSDimitry Andric             FromSourceMapping.find(Val);
1045349cc55cSDimitry Andric 
1046349cc55cSDimitry Andric         if (!It->second.contains(SourceGVN))
1047349cc55cSDimitry Andric           continue;
1048349cc55cSDimitry Andric 
1049349cc55cSDimitry Andric         // We pick the first item that satisfies these conditions.
1050349cc55cSDimitry Andric         Found = true;
1051349cc55cSDimitry Andric         ResultGVN = Val;
1052349cc55cSDimitry Andric         break;
1053349cc55cSDimitry Andric       }
1054349cc55cSDimitry Andric 
1055349cc55cSDimitry Andric       assert(Found && "Could not find matching value for source GVN");
1056349cc55cSDimitry Andric       (void)Found;
1057349cc55cSDimitry Andric 
1058349cc55cSDimitry Andric     } else
1059349cc55cSDimitry Andric       ResultGVN = *GVNMapping.second.begin();
1060349cc55cSDimitry Andric 
1061349cc55cSDimitry Andric     // Whatever GVN is found, we mark it as used.
1062349cc55cSDimitry Andric     UsedGVNs.insert(ResultGVN);
1063349cc55cSDimitry Andric 
1064349cc55cSDimitry Andric     unsigned CanonNum = *SourceCand.getCanonicalNum(ResultGVN);
1065349cc55cSDimitry Andric     CanonNumToNumber.insert(std::make_pair(CanonNum, SourceGVN));
1066349cc55cSDimitry Andric     NumberToCanonNum.insert(std::make_pair(SourceGVN, CanonNum));
1067349cc55cSDimitry Andric   }
106881ad6265SDimitry Andric 
106981ad6265SDimitry Andric   DenseSet<BasicBlock *> BBSet;
107081ad6265SDimitry Andric   getBasicBlocks(BBSet);
107181ad6265SDimitry Andric   // Find canonical numbers for the BasicBlocks in the current candidate.
107281ad6265SDimitry Andric   // This is done by finding the corresponding value for the first instruction
107381ad6265SDimitry Andric   // in the block in the current candidate, finding the matching value in the
107481ad6265SDimitry Andric   // source candidate.  Then by finding the parent of this value, use the
107581ad6265SDimitry Andric   // canonical number of the block in the source candidate for the canonical
107681ad6265SDimitry Andric   // number in the current candidate.
107781ad6265SDimitry Andric   for (BasicBlock *BB : BBSet) {
107881ad6265SDimitry Andric     unsigned BBGVNForCurrCand = ValueToNumber.find(BB)->second;
107981ad6265SDimitry Andric 
108081ad6265SDimitry Andric     // We can skip the BasicBlock if the canonical numbering has already been
108181ad6265SDimitry Andric     // found in a separate instruction.
1082*06c3fb27SDimitry Andric     if (NumberToCanonNum.contains(BBGVNForCurrCand))
108381ad6265SDimitry Andric       continue;
108481ad6265SDimitry Andric 
108581ad6265SDimitry Andric     // If the basic block is the starting block, then the shared instruction may
108681ad6265SDimitry Andric     // not be the first instruction in the block, it will be the first
108781ad6265SDimitry Andric     // instruction in the similarity region.
108881ad6265SDimitry Andric     Value *FirstOutlineInst = BB == getStartBB()
108981ad6265SDimitry Andric                                   ? frontInstruction()
109081ad6265SDimitry Andric                                   : &*BB->instructionsWithoutDebug().begin();
109181ad6265SDimitry Andric 
109281ad6265SDimitry Andric     unsigned FirstInstGVN = *getGVN(FirstOutlineInst);
109381ad6265SDimitry Andric     unsigned FirstInstCanonNum = *getCanonicalNum(FirstInstGVN);
109481ad6265SDimitry Andric     unsigned SourceGVN = *SourceCand.fromCanonicalNum(FirstInstCanonNum);
109581ad6265SDimitry Andric     Value *SourceV = *SourceCand.fromGVN(SourceGVN);
109681ad6265SDimitry Andric     BasicBlock *SourceBB = cast<Instruction>(SourceV)->getParent();
109781ad6265SDimitry Andric     unsigned SourceBBGVN = *SourceCand.getGVN(SourceBB);
109881ad6265SDimitry Andric     unsigned SourceCanonBBGVN = *SourceCand.getCanonicalNum(SourceBBGVN);
109981ad6265SDimitry Andric     CanonNumToNumber.insert(std::make_pair(SourceCanonBBGVN, BBGVNForCurrCand));
110081ad6265SDimitry Andric     NumberToCanonNum.insert(std::make_pair(BBGVNForCurrCand, SourceCanonBBGVN));
110181ad6265SDimitry Andric   }
1102349cc55cSDimitry Andric }
1103349cc55cSDimitry Andric 
1104*06c3fb27SDimitry Andric void IRSimilarityCandidate::createCanonicalRelationFrom(
1105*06c3fb27SDimitry Andric     IRSimilarityCandidate &SourceCand, IRSimilarityCandidate &SourceCandLarge,
1106*06c3fb27SDimitry Andric     IRSimilarityCandidate &TargetCandLarge) {
1107*06c3fb27SDimitry Andric   assert(!SourceCand.CanonNumToNumber.empty() &&
1108*06c3fb27SDimitry Andric          "Canonical Relationship is non-empty");
1109*06c3fb27SDimitry Andric   assert(!SourceCand.NumberToCanonNum.empty() &&
1110*06c3fb27SDimitry Andric          "Canonical Relationship is non-empty");
1111*06c3fb27SDimitry Andric 
1112*06c3fb27SDimitry Andric   assert(!SourceCandLarge.CanonNumToNumber.empty() &&
1113*06c3fb27SDimitry Andric          "Canonical Relationship is non-empty");
1114*06c3fb27SDimitry Andric   assert(!SourceCandLarge.NumberToCanonNum.empty() &&
1115*06c3fb27SDimitry Andric          "Canonical Relationship is non-empty");
1116*06c3fb27SDimitry Andric 
1117*06c3fb27SDimitry Andric   assert(!TargetCandLarge.CanonNumToNumber.empty() &&
1118*06c3fb27SDimitry Andric          "Canonical Relationship is non-empty");
1119*06c3fb27SDimitry Andric   assert(!TargetCandLarge.NumberToCanonNum.empty() &&
1120*06c3fb27SDimitry Andric          "Canonical Relationship is non-empty");
1121*06c3fb27SDimitry Andric 
1122*06c3fb27SDimitry Andric   assert(CanonNumToNumber.empty() && "Canonical Relationship is non-empty");
1123*06c3fb27SDimitry Andric   assert(NumberToCanonNum.empty() && "Canonical Relationship is non-empty");
1124*06c3fb27SDimitry Andric 
1125*06c3fb27SDimitry Andric   // We're going to use the larger candidates as a "bridge" to create the
1126*06c3fb27SDimitry Andric   // canonical number for the target candidate since we have idetified two
1127*06c3fb27SDimitry Andric   // candidates as subsequences of larger sequences, and therefore must be
1128*06c3fb27SDimitry Andric   // structurally similar.
1129*06c3fb27SDimitry Andric   for (std::pair<Value *, unsigned> &ValueNumPair : ValueToNumber) {
1130*06c3fb27SDimitry Andric     Value *CurrVal = ValueNumPair.first;
1131*06c3fb27SDimitry Andric     unsigned TargetCandGVN = ValueNumPair.second;
1132*06c3fb27SDimitry Andric 
1133*06c3fb27SDimitry Andric     // Find the numbering in the large candidate that surrounds the
1134*06c3fb27SDimitry Andric     // current candidate.
1135*06c3fb27SDimitry Andric     std::optional<unsigned> OLargeTargetGVN = TargetCandLarge.getGVN(CurrVal);
1136*06c3fb27SDimitry Andric     assert(OLargeTargetGVN.has_value() && "GVN not found for Value");
1137*06c3fb27SDimitry Andric 
1138*06c3fb27SDimitry Andric     // Get the canonical numbering in the large target candidate.
1139*06c3fb27SDimitry Andric     std::optional<unsigned> OTargetCandCanon =
1140*06c3fb27SDimitry Andric         TargetCandLarge.getCanonicalNum(OLargeTargetGVN.value());
1141*06c3fb27SDimitry Andric     assert(OTargetCandCanon.has_value() &&
1142*06c3fb27SDimitry Andric            "Canononical Number not found for GVN");
1143*06c3fb27SDimitry Andric 
1144*06c3fb27SDimitry Andric     // Get the GVN in the large source candidate from the canonical numbering.
1145*06c3fb27SDimitry Andric     std::optional<unsigned> OLargeSourceGVN =
1146*06c3fb27SDimitry Andric         SourceCandLarge.fromCanonicalNum(OTargetCandCanon.value());
1147*06c3fb27SDimitry Andric     assert(OLargeSourceGVN.has_value() &&
1148*06c3fb27SDimitry Andric            "GVN Number not found for Canonical Number");
1149*06c3fb27SDimitry Andric 
1150*06c3fb27SDimitry Andric     // Get the Value from the GVN in the large source candidate.
1151*06c3fb27SDimitry Andric     std::optional<Value *> OLargeSourceV =
1152*06c3fb27SDimitry Andric         SourceCandLarge.fromGVN(OLargeSourceGVN.value());
1153*06c3fb27SDimitry Andric     assert(OLargeSourceV.has_value() && "Value not found for GVN");
1154*06c3fb27SDimitry Andric 
1155*06c3fb27SDimitry Andric     // Get the GVN number for the Value in the source candidate.
1156*06c3fb27SDimitry Andric     std::optional<unsigned> OSourceGVN =
1157*06c3fb27SDimitry Andric         SourceCand.getGVN(OLargeSourceV.value());
1158*06c3fb27SDimitry Andric     assert(OSourceGVN.has_value() && "GVN Number not found for Value");
1159*06c3fb27SDimitry Andric 
1160*06c3fb27SDimitry Andric     // Get the canonical numbering from the GVN/
1161*06c3fb27SDimitry Andric     std::optional<unsigned> OSourceCanon =
1162*06c3fb27SDimitry Andric         SourceCand.getCanonicalNum(OSourceGVN.value());
1163*06c3fb27SDimitry Andric     assert(OSourceCanon.has_value() && "Canon Number not found for GVN");
1164*06c3fb27SDimitry Andric 
1165*06c3fb27SDimitry Andric     // Insert the canonical numbering and GVN pair into their respective
1166*06c3fb27SDimitry Andric     // mappings.
1167*06c3fb27SDimitry Andric     CanonNumToNumber.insert(
1168*06c3fb27SDimitry Andric         std::make_pair(OSourceCanon.value(), TargetCandGVN));
1169*06c3fb27SDimitry Andric     NumberToCanonNum.insert(
1170*06c3fb27SDimitry Andric         std::make_pair(TargetCandGVN, OSourceCanon.value()));
1171*06c3fb27SDimitry Andric   }
1172*06c3fb27SDimitry Andric }
1173*06c3fb27SDimitry Andric 
1174349cc55cSDimitry Andric void IRSimilarityCandidate::createCanonicalMappingFor(
1175349cc55cSDimitry Andric     IRSimilarityCandidate &CurrCand) {
1176349cc55cSDimitry Andric   assert(CurrCand.CanonNumToNumber.size() == 0 &&
1177349cc55cSDimitry Andric          "Canonical Relationship is non-empty");
1178349cc55cSDimitry Andric   assert(CurrCand.NumberToCanonNum.size() == 0 &&
1179349cc55cSDimitry Andric          "Canonical Relationship is non-empty");
1180349cc55cSDimitry Andric 
1181349cc55cSDimitry Andric   unsigned CanonNum = 0;
1182349cc55cSDimitry Andric   // Iterate over the value numbers found, the order does not matter in this
1183349cc55cSDimitry Andric   // case.
1184349cc55cSDimitry Andric   for (std::pair<unsigned, Value *> &NumToVal : CurrCand.NumberToValue) {
1185349cc55cSDimitry Andric     CurrCand.NumberToCanonNum.insert(std::make_pair(NumToVal.first, CanonNum));
1186349cc55cSDimitry Andric     CurrCand.CanonNumToNumber.insert(std::make_pair(CanonNum, NumToVal.first));
1187349cc55cSDimitry Andric     CanonNum++;
1188349cc55cSDimitry Andric   }
1189349cc55cSDimitry Andric }
1190349cc55cSDimitry Andric 
1191*06c3fb27SDimitry Andric /// Look for larger IRSimilarityCandidates From the previously matched
1192*06c3fb27SDimitry Andric /// IRSimilarityCandidates that fully contain \p CandA or \p CandB.  If there is
1193*06c3fb27SDimitry Andric /// an overlap, return a pair of structurally similar, larger
1194*06c3fb27SDimitry Andric /// IRSimilarityCandidates.
1195*06c3fb27SDimitry Andric ///
1196*06c3fb27SDimitry Andric /// \param [in] CandA - The first candidate we are trying to determine the
1197*06c3fb27SDimitry Andric /// structure of.
1198*06c3fb27SDimitry Andric /// \param [in] CandB - The second candidate we are trying to determine the
1199*06c3fb27SDimitry Andric /// structure of.
1200*06c3fb27SDimitry Andric /// \param [in] IndexToIncludedCand - Mapping of index of the an instruction in
1201*06c3fb27SDimitry Andric /// a circuit to the IRSimilarityCandidates that include this instruction.
1202*06c3fb27SDimitry Andric /// \param [in] CandToOverallGroup - Mapping of IRSimilarityCandidate to a
1203*06c3fb27SDimitry Andric /// number representing the structural group assigned to it.
1204*06c3fb27SDimitry Andric static std::optional<
1205*06c3fb27SDimitry Andric     std::pair<IRSimilarityCandidate *, IRSimilarityCandidate *>>
1206*06c3fb27SDimitry Andric CheckLargerCands(
1207*06c3fb27SDimitry Andric     IRSimilarityCandidate &CandA, IRSimilarityCandidate &CandB,
1208*06c3fb27SDimitry Andric     DenseMap<unsigned, DenseSet<IRSimilarityCandidate *>> &IndexToIncludedCand,
1209*06c3fb27SDimitry Andric     DenseMap<IRSimilarityCandidate *, unsigned> &CandToGroup) {
1210*06c3fb27SDimitry Andric   DenseMap<unsigned, IRSimilarityCandidate *> IncludedGroupAndCandA;
1211*06c3fb27SDimitry Andric   DenseMap<unsigned, IRSimilarityCandidate *> IncludedGroupAndCandB;
1212*06c3fb27SDimitry Andric   DenseSet<unsigned> IncludedGroupsA;
1213*06c3fb27SDimitry Andric   DenseSet<unsigned> IncludedGroupsB;
1214*06c3fb27SDimitry Andric 
1215*06c3fb27SDimitry Andric   // Find the overall similarity group numbers that fully contain the candidate,
1216*06c3fb27SDimitry Andric   // and record the larger candidate for each group.
1217*06c3fb27SDimitry Andric   auto IdxToCandidateIt = IndexToIncludedCand.find(CandA.getStartIdx());
1218*06c3fb27SDimitry Andric   std::optional<std::pair<IRSimilarityCandidate *, IRSimilarityCandidate *>>
1219*06c3fb27SDimitry Andric       Result;
1220*06c3fb27SDimitry Andric 
1221*06c3fb27SDimitry Andric   unsigned CandAStart = CandA.getStartIdx();
1222*06c3fb27SDimitry Andric   unsigned CandAEnd = CandA.getEndIdx();
1223*06c3fb27SDimitry Andric   unsigned CandBStart = CandB.getStartIdx();
1224*06c3fb27SDimitry Andric   unsigned CandBEnd = CandB.getEndIdx();
1225*06c3fb27SDimitry Andric   if (IdxToCandidateIt == IndexToIncludedCand.end())
1226*06c3fb27SDimitry Andric     return Result;
1227*06c3fb27SDimitry Andric   for (IRSimilarityCandidate *MatchedCand : IdxToCandidateIt->second) {
1228*06c3fb27SDimitry Andric     if (MatchedCand->getStartIdx() > CandAStart ||
1229*06c3fb27SDimitry Andric         (MatchedCand->getEndIdx() < CandAEnd))
1230*06c3fb27SDimitry Andric       continue;
1231*06c3fb27SDimitry Andric     unsigned GroupNum = CandToGroup.find(MatchedCand)->second;
1232*06c3fb27SDimitry Andric     IncludedGroupAndCandA.insert(std::make_pair(GroupNum, MatchedCand));
1233*06c3fb27SDimitry Andric     IncludedGroupsA.insert(GroupNum);
1234*06c3fb27SDimitry Andric   }
1235*06c3fb27SDimitry Andric 
1236*06c3fb27SDimitry Andric   // Find the overall similarity group numbers that fully contain the next
1237*06c3fb27SDimitry Andric   // candidate, and record the larger candidate for each group.
1238*06c3fb27SDimitry Andric   IdxToCandidateIt = IndexToIncludedCand.find(CandBStart);
1239*06c3fb27SDimitry Andric   if (IdxToCandidateIt == IndexToIncludedCand.end())
1240*06c3fb27SDimitry Andric     return Result;
1241*06c3fb27SDimitry Andric   for (IRSimilarityCandidate *MatchedCand : IdxToCandidateIt->second) {
1242*06c3fb27SDimitry Andric     if (MatchedCand->getStartIdx() > CandBStart ||
1243*06c3fb27SDimitry Andric         MatchedCand->getEndIdx() < CandBEnd)
1244*06c3fb27SDimitry Andric       continue;
1245*06c3fb27SDimitry Andric     unsigned GroupNum = CandToGroup.find(MatchedCand)->second;
1246*06c3fb27SDimitry Andric     IncludedGroupAndCandB.insert(std::make_pair(GroupNum, MatchedCand));
1247*06c3fb27SDimitry Andric     IncludedGroupsB.insert(GroupNum);
1248*06c3fb27SDimitry Andric   }
1249*06c3fb27SDimitry Andric 
1250*06c3fb27SDimitry Andric   // Find the intersection between the two groups, these are the groups where
1251*06c3fb27SDimitry Andric   // the larger candidates exist.
1252*06c3fb27SDimitry Andric   set_intersect(IncludedGroupsA, IncludedGroupsB);
1253*06c3fb27SDimitry Andric 
1254*06c3fb27SDimitry Andric   // If there is no intersection between the sets, then we cannot determine
1255*06c3fb27SDimitry Andric   // whether or not there is a match.
1256*06c3fb27SDimitry Andric   if (IncludedGroupsA.empty())
1257*06c3fb27SDimitry Andric     return Result;
1258*06c3fb27SDimitry Andric 
1259*06c3fb27SDimitry Andric   // Create a pair that contains the larger candidates.
1260*06c3fb27SDimitry Andric   auto ItA = IncludedGroupAndCandA.find(*IncludedGroupsA.begin());
1261*06c3fb27SDimitry Andric   auto ItB = IncludedGroupAndCandB.find(*IncludedGroupsA.begin());
1262*06c3fb27SDimitry Andric   Result = std::make_pair(ItA->second, ItB->second);
1263*06c3fb27SDimitry Andric   return Result;
1264*06c3fb27SDimitry Andric }
1265*06c3fb27SDimitry Andric 
1266e8d8bef9SDimitry Andric /// From the list of IRSimilarityCandidates, perform a comparison between each
1267e8d8bef9SDimitry Andric /// IRSimilarityCandidate to determine if there are overlapping
1268e8d8bef9SDimitry Andric /// IRInstructionData, or if they do not have the same structure.
1269e8d8bef9SDimitry Andric ///
1270e8d8bef9SDimitry Andric /// \param [in] CandsForRepSubstring - The vector containing the
1271e8d8bef9SDimitry Andric /// IRSimilarityCandidates.
1272e8d8bef9SDimitry Andric /// \param [out] StructuralGroups - the mapping of unsigned integers to vector
1273e8d8bef9SDimitry Andric /// of IRSimilarityCandidates where each of the IRSimilarityCandidates in the
1274e8d8bef9SDimitry Andric /// vector are structurally similar to one another.
1275*06c3fb27SDimitry Andric /// \param [in] IndexToIncludedCand - Mapping of index of the an instruction in
1276*06c3fb27SDimitry Andric /// a circuit to the IRSimilarityCandidates that include this instruction.
1277*06c3fb27SDimitry Andric /// \param [in] CandToOverallGroup - Mapping of IRSimilarityCandidate to a
1278*06c3fb27SDimitry Andric /// number representing the structural group assigned to it.
1279e8d8bef9SDimitry Andric static void findCandidateStructures(
1280e8d8bef9SDimitry Andric     std::vector<IRSimilarityCandidate> &CandsForRepSubstring,
1281*06c3fb27SDimitry Andric     DenseMap<unsigned, SimilarityGroup> &StructuralGroups,
1282*06c3fb27SDimitry Andric     DenseMap<unsigned,  DenseSet<IRSimilarityCandidate *>> &IndexToIncludedCand,
1283*06c3fb27SDimitry Andric     DenseMap<IRSimilarityCandidate *, unsigned> &CandToOverallGroup
1284*06c3fb27SDimitry Andric     ) {
1285e8d8bef9SDimitry Andric   std::vector<IRSimilarityCandidate>::iterator CandIt, CandEndIt, InnerCandIt,
1286e8d8bef9SDimitry Andric       InnerCandEndIt;
1287e8d8bef9SDimitry Andric 
1288e8d8bef9SDimitry Andric   // IRSimilarityCandidates each have a structure for operand use.  It is
1289e8d8bef9SDimitry Andric   // possible that two instances of the same subsequences have different
1290e8d8bef9SDimitry Andric   // structure. Each type of structure found is assigned a number.  This
1291e8d8bef9SDimitry Andric   // DenseMap maps an IRSimilarityCandidate to which type of similarity
1292e8d8bef9SDimitry Andric   // discovered it fits within.
1293e8d8bef9SDimitry Andric   DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup;
1294e8d8bef9SDimitry Andric 
1295e8d8bef9SDimitry Andric   // Find the compatibility from each candidate to the others to determine
1296e8d8bef9SDimitry Andric   // which candidates overlap and which have the same structure by mapping
1297e8d8bef9SDimitry Andric   // each structure to a different group.
1298e8d8bef9SDimitry Andric   bool SameStructure;
1299e8d8bef9SDimitry Andric   bool Inserted;
1300e8d8bef9SDimitry Andric   unsigned CurrentGroupNum = 0;
1301e8d8bef9SDimitry Andric   unsigned OuterGroupNum;
1302e8d8bef9SDimitry Andric   DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupIt;
1303e8d8bef9SDimitry Andric   DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupItInner;
1304e8d8bef9SDimitry Andric   DenseMap<unsigned, SimilarityGroup>::iterator CurrentGroupPair;
1305e8d8bef9SDimitry Andric 
1306e8d8bef9SDimitry Andric   // Iterate over the candidates to determine its structural and overlapping
1307e8d8bef9SDimitry Andric   // compatibility with other instructions
1308349cc55cSDimitry Andric   DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingA;
1309349cc55cSDimitry Andric   DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingB;
1310e8d8bef9SDimitry Andric   for (CandIt = CandsForRepSubstring.begin(),
1311e8d8bef9SDimitry Andric       CandEndIt = CandsForRepSubstring.end();
1312e8d8bef9SDimitry Andric        CandIt != CandEndIt; CandIt++) {
1313e8d8bef9SDimitry Andric 
1314e8d8bef9SDimitry Andric     // Determine if it has an assigned structural group already.
1315e8d8bef9SDimitry Andric     CandToGroupIt = CandToGroup.find(&*CandIt);
1316e8d8bef9SDimitry Andric     if (CandToGroupIt == CandToGroup.end()) {
1317e8d8bef9SDimitry Andric       // If not, we assign it one, and add it to our mapping.
1318e8d8bef9SDimitry Andric       std::tie(CandToGroupIt, Inserted) =
1319e8d8bef9SDimitry Andric           CandToGroup.insert(std::make_pair(&*CandIt, CurrentGroupNum++));
1320e8d8bef9SDimitry Andric     }
1321e8d8bef9SDimitry Andric 
1322e8d8bef9SDimitry Andric     // Get the structural group number from the iterator.
1323e8d8bef9SDimitry Andric     OuterGroupNum = CandToGroupIt->second;
1324e8d8bef9SDimitry Andric 
1325e8d8bef9SDimitry Andric     // Check if we already have a list of IRSimilarityCandidates for the current
1326e8d8bef9SDimitry Andric     // structural group.  Create one if one does not exist.
1327e8d8bef9SDimitry Andric     CurrentGroupPair = StructuralGroups.find(OuterGroupNum);
1328349cc55cSDimitry Andric     if (CurrentGroupPair == StructuralGroups.end()) {
1329349cc55cSDimitry Andric       IRSimilarityCandidate::createCanonicalMappingFor(*CandIt);
1330e8d8bef9SDimitry Andric       std::tie(CurrentGroupPair, Inserted) = StructuralGroups.insert(
1331e8d8bef9SDimitry Andric           std::make_pair(OuterGroupNum, SimilarityGroup({*CandIt})));
1332349cc55cSDimitry Andric     }
1333e8d8bef9SDimitry Andric 
1334e8d8bef9SDimitry Andric     // Iterate over the IRSimilarityCandidates following the current
1335e8d8bef9SDimitry Andric     // IRSimilarityCandidate in the list to determine whether the two
1336e8d8bef9SDimitry Andric     // IRSimilarityCandidates are compatible.  This is so we do not repeat pairs
1337e8d8bef9SDimitry Andric     // of IRSimilarityCandidates.
1338e8d8bef9SDimitry Andric     for (InnerCandIt = std::next(CandIt),
1339e8d8bef9SDimitry Andric         InnerCandEndIt = CandsForRepSubstring.end();
1340e8d8bef9SDimitry Andric          InnerCandIt != InnerCandEndIt; InnerCandIt++) {
1341e8d8bef9SDimitry Andric 
1342e8d8bef9SDimitry Andric       // We check if the inner item has a group already, if it does, we skip it.
1343e8d8bef9SDimitry Andric       CandToGroupItInner = CandToGroup.find(&*InnerCandIt);
1344e8d8bef9SDimitry Andric       if (CandToGroupItInner != CandToGroup.end())
1345e8d8bef9SDimitry Andric         continue;
1346e8d8bef9SDimitry Andric 
1347*06c3fb27SDimitry Andric       // Check if we have found structural similarity between two candidates
1348*06c3fb27SDimitry Andric       // that fully contains the first and second candidates.
1349*06c3fb27SDimitry Andric       std::optional<std::pair<IRSimilarityCandidate *, IRSimilarityCandidate *>>
1350*06c3fb27SDimitry Andric           LargerPair = CheckLargerCands(
1351*06c3fb27SDimitry Andric               *CandIt, *InnerCandIt, IndexToIncludedCand, CandToOverallGroup);
1352*06c3fb27SDimitry Andric 
1353*06c3fb27SDimitry Andric       // If a pair was found, it means that we can assume that these smaller
1354*06c3fb27SDimitry Andric       // substrings are also structurally similar.  Use the larger candidates to
1355*06c3fb27SDimitry Andric       // determine the canonical mapping between the two sections.
1356*06c3fb27SDimitry Andric       if (LargerPair.has_value()) {
1357*06c3fb27SDimitry Andric         SameStructure = true;
1358*06c3fb27SDimitry Andric         InnerCandIt->createCanonicalRelationFrom(
1359*06c3fb27SDimitry Andric             *CandIt, *LargerPair.value().first, *LargerPair.value().second);
1360*06c3fb27SDimitry Andric         CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum));
1361*06c3fb27SDimitry Andric         CurrentGroupPair->second.push_back(*InnerCandIt);
1362*06c3fb27SDimitry Andric         continue;
1363*06c3fb27SDimitry Andric       }
1364*06c3fb27SDimitry Andric 
1365e8d8bef9SDimitry Andric       // Otherwise we determine if they have the same structure and add it to
1366e8d8bef9SDimitry Andric       // vector if they match.
1367349cc55cSDimitry Andric       ValueNumberMappingA.clear();
1368349cc55cSDimitry Andric       ValueNumberMappingB.clear();
1369349cc55cSDimitry Andric       SameStructure = IRSimilarityCandidate::compareStructure(
1370349cc55cSDimitry Andric           *CandIt, *InnerCandIt, ValueNumberMappingA, ValueNumberMappingB);
1371e8d8bef9SDimitry Andric       if (!SameStructure)
1372e8d8bef9SDimitry Andric         continue;
1373e8d8bef9SDimitry Andric 
1374349cc55cSDimitry Andric       InnerCandIt->createCanonicalRelationFrom(*CandIt, ValueNumberMappingA,
1375349cc55cSDimitry Andric                                                ValueNumberMappingB);
1376e8d8bef9SDimitry Andric       CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum));
1377e8d8bef9SDimitry Andric       CurrentGroupPair->second.push_back(*InnerCandIt);
1378e8d8bef9SDimitry Andric     }
1379e8d8bef9SDimitry Andric   }
1380e8d8bef9SDimitry Andric }
1381e8d8bef9SDimitry Andric 
1382e8d8bef9SDimitry Andric void IRSimilarityIdentifier::findCandidates(
1383e8d8bef9SDimitry Andric     std::vector<IRInstructionData *> &InstrList,
1384e8d8bef9SDimitry Andric     std::vector<unsigned> &IntegerMapping) {
1385e8d8bef9SDimitry Andric   SuffixTree ST(IntegerMapping);
1386e8d8bef9SDimitry Andric 
1387e8d8bef9SDimitry Andric   std::vector<IRSimilarityCandidate> CandsForRepSubstring;
1388e8d8bef9SDimitry Andric   std::vector<SimilarityGroup> NewCandidateGroups;
1389e8d8bef9SDimitry Andric 
1390e8d8bef9SDimitry Andric   DenseMap<unsigned, SimilarityGroup> StructuralGroups;
1391*06c3fb27SDimitry Andric   DenseMap<unsigned, DenseSet<IRSimilarityCandidate *>> IndexToIncludedCand;
1392*06c3fb27SDimitry Andric   DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup;
1393e8d8bef9SDimitry Andric 
1394e8d8bef9SDimitry Andric   // Iterate over the subsequences found by the Suffix Tree to create
1395e8d8bef9SDimitry Andric   // IRSimilarityCandidates for each repeated subsequence and determine which
1396e8d8bef9SDimitry Andric   // instances are structurally similar to one another.
1397*06c3fb27SDimitry Andric 
1398*06c3fb27SDimitry Andric   // Sort the suffix tree from longest substring to shortest.
1399*06c3fb27SDimitry Andric   std::vector<SuffixTree::RepeatedSubstring> RSes;
1400*06c3fb27SDimitry Andric   for (SuffixTree::RepeatedSubstring &RS : ST)
1401*06c3fb27SDimitry Andric     RSes.push_back(RS);
1402*06c3fb27SDimitry Andric 
1403*06c3fb27SDimitry Andric   llvm::stable_sort(RSes, [](const SuffixTree::RepeatedSubstring &LHS,
1404*06c3fb27SDimitry Andric                              const SuffixTree::RepeatedSubstring &RHS) {
1405*06c3fb27SDimitry Andric     return LHS.Length > RHS.Length;
1406*06c3fb27SDimitry Andric   });
1407*06c3fb27SDimitry Andric   for (SuffixTree::RepeatedSubstring &RS : RSes) {
1408fe6060f1SDimitry Andric     createCandidatesFromSuffixTree(Mapper, InstrList, IntegerMapping, RS,
1409e8d8bef9SDimitry Andric                                    CandsForRepSubstring);
1410e8d8bef9SDimitry Andric 
1411e8d8bef9SDimitry Andric     if (CandsForRepSubstring.size() < 2)
1412e8d8bef9SDimitry Andric       continue;
1413e8d8bef9SDimitry Andric 
1414*06c3fb27SDimitry Andric     findCandidateStructures(CandsForRepSubstring, StructuralGroups,
1415*06c3fb27SDimitry Andric                             IndexToIncludedCand, CandToGroup);
1416*06c3fb27SDimitry Andric     for (std::pair<unsigned, SimilarityGroup> &Group : StructuralGroups) {
1417e8d8bef9SDimitry Andric       // We only add the group if it contains more than one
1418e8d8bef9SDimitry Andric       // IRSimilarityCandidate.  If there is only one, that means there is no
1419e8d8bef9SDimitry Andric       // other repeated subsequence with the same structure.
1420*06c3fb27SDimitry Andric       if (Group.second.size() > 1) {
1421e8d8bef9SDimitry Andric         SimilarityCandidates->push_back(Group.second);
1422*06c3fb27SDimitry Andric         // Iterate over each candidate in the group, and add an entry for each
1423*06c3fb27SDimitry Andric         // instruction included with a mapping to a set of
1424*06c3fb27SDimitry Andric         // IRSimilarityCandidates that include that instruction.
1425*06c3fb27SDimitry Andric         for (IRSimilarityCandidate &IRCand : SimilarityCandidates->back()) {
1426*06c3fb27SDimitry Andric           for (unsigned Idx = IRCand.getStartIdx(), Edx = IRCand.getEndIdx();
1427*06c3fb27SDimitry Andric                Idx <= Edx; ++Idx) {
1428*06c3fb27SDimitry Andric             DenseMap<unsigned, DenseSet<IRSimilarityCandidate *>>::iterator
1429*06c3fb27SDimitry Andric                 IdIt;
1430*06c3fb27SDimitry Andric             IdIt = IndexToIncludedCand.find(Idx);
1431*06c3fb27SDimitry Andric             bool Inserted = false;
1432*06c3fb27SDimitry Andric             if (IdIt == IndexToIncludedCand.end())
1433*06c3fb27SDimitry Andric               std::tie(IdIt, Inserted) = IndexToIncludedCand.insert(
1434*06c3fb27SDimitry Andric                   std::make_pair(Idx, DenseSet<IRSimilarityCandidate *>()));
1435*06c3fb27SDimitry Andric             IdIt->second.insert(&IRCand);
1436*06c3fb27SDimitry Andric           }
1437*06c3fb27SDimitry Andric           // Add mapping of candidate to the overall similarity group number.
1438*06c3fb27SDimitry Andric           CandToGroup.insert(
1439*06c3fb27SDimitry Andric               std::make_pair(&IRCand, SimilarityCandidates->size() - 1));
1440*06c3fb27SDimitry Andric         }
1441*06c3fb27SDimitry Andric       }
1442*06c3fb27SDimitry Andric     }
1443e8d8bef9SDimitry Andric 
1444e8d8bef9SDimitry Andric     CandsForRepSubstring.clear();
1445e8d8bef9SDimitry Andric     StructuralGroups.clear();
1446e8d8bef9SDimitry Andric     NewCandidateGroups.clear();
1447e8d8bef9SDimitry Andric   }
1448e8d8bef9SDimitry Andric }
1449e8d8bef9SDimitry Andric 
1450e8d8bef9SDimitry Andric SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(
1451e8d8bef9SDimitry Andric     ArrayRef<std::unique_ptr<Module>> Modules) {
1452e8d8bef9SDimitry Andric   resetSimilarityCandidates();
1453e8d8bef9SDimitry Andric 
1454e8d8bef9SDimitry Andric   std::vector<IRInstructionData *> InstrList;
1455e8d8bef9SDimitry Andric   std::vector<unsigned> IntegerMapping;
1456349cc55cSDimitry Andric   Mapper.InstClassifier.EnableBranches = this->EnableBranches;
145704eeddc0SDimitry Andric   Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls;
145804eeddc0SDimitry Andric   Mapper.EnableMatchCallsByName = EnableMatchingCallsByName;
14591fd87a68SDimitry Andric   Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics;
146081ad6265SDimitry Andric   Mapper.InstClassifier.EnableMustTailCalls = EnableMustTailCalls;
1461e8d8bef9SDimitry Andric 
1462e8d8bef9SDimitry Andric   populateMapper(Modules, InstrList, IntegerMapping);
1463e8d8bef9SDimitry Andric   findCandidates(InstrList, IntegerMapping);
1464e8d8bef9SDimitry Andric 
146581ad6265SDimitry Andric   return *SimilarityCandidates;
1466e8d8bef9SDimitry Andric }
1467e8d8bef9SDimitry Andric 
1468e8d8bef9SDimitry Andric SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(Module &M) {
1469e8d8bef9SDimitry Andric   resetSimilarityCandidates();
1470349cc55cSDimitry Andric   Mapper.InstClassifier.EnableBranches = this->EnableBranches;
147104eeddc0SDimitry Andric   Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls;
147204eeddc0SDimitry Andric   Mapper.EnableMatchCallsByName = EnableMatchingCallsByName;
14731fd87a68SDimitry Andric   Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics;
147481ad6265SDimitry Andric   Mapper.InstClassifier.EnableMustTailCalls = EnableMustTailCalls;
1475e8d8bef9SDimitry Andric 
1476e8d8bef9SDimitry Andric   std::vector<IRInstructionData *> InstrList;
1477e8d8bef9SDimitry Andric   std::vector<unsigned> IntegerMapping;
1478e8d8bef9SDimitry Andric 
1479e8d8bef9SDimitry Andric   populateMapper(M, InstrList, IntegerMapping);
1480e8d8bef9SDimitry Andric   findCandidates(InstrList, IntegerMapping);
1481e8d8bef9SDimitry Andric 
148281ad6265SDimitry Andric   return *SimilarityCandidates;
1483e8d8bef9SDimitry Andric }
1484e8d8bef9SDimitry Andric 
1485e8d8bef9SDimitry Andric INITIALIZE_PASS(IRSimilarityIdentifierWrapperPass, "ir-similarity-identifier",
1486e8d8bef9SDimitry Andric                 "ir-similarity-identifier", false, true)
1487e8d8bef9SDimitry Andric 
1488e8d8bef9SDimitry Andric IRSimilarityIdentifierWrapperPass::IRSimilarityIdentifierWrapperPass()
1489e8d8bef9SDimitry Andric     : ModulePass(ID) {
1490e8d8bef9SDimitry Andric   initializeIRSimilarityIdentifierWrapperPassPass(
1491e8d8bef9SDimitry Andric       *PassRegistry::getPassRegistry());
1492e8d8bef9SDimitry Andric }
1493e8d8bef9SDimitry Andric 
1494e8d8bef9SDimitry Andric bool IRSimilarityIdentifierWrapperPass::doInitialization(Module &M) {
149504eeddc0SDimitry Andric   IRSI.reset(new IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls,
149681ad6265SDimitry Andric                                         MatchCallsByName, !DisableIntrinsics,
149781ad6265SDimitry Andric                                         false));
1498e8d8bef9SDimitry Andric   return false;
1499e8d8bef9SDimitry Andric }
1500e8d8bef9SDimitry Andric 
1501e8d8bef9SDimitry Andric bool IRSimilarityIdentifierWrapperPass::doFinalization(Module &M) {
1502e8d8bef9SDimitry Andric   IRSI.reset();
1503e8d8bef9SDimitry Andric   return false;
1504e8d8bef9SDimitry Andric }
1505e8d8bef9SDimitry Andric 
1506e8d8bef9SDimitry Andric bool IRSimilarityIdentifierWrapperPass::runOnModule(Module &M) {
1507fe6060f1SDimitry Andric   IRSI->findSimilarity(M);
1508e8d8bef9SDimitry Andric   return false;
1509e8d8bef9SDimitry Andric }
1510e8d8bef9SDimitry Andric 
1511e8d8bef9SDimitry Andric AnalysisKey IRSimilarityAnalysis::Key;
1512e8d8bef9SDimitry Andric IRSimilarityIdentifier IRSimilarityAnalysis::run(Module &M,
1513e8d8bef9SDimitry Andric                                                  ModuleAnalysisManager &) {
151404eeddc0SDimitry Andric   auto IRSI = IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls,
151581ad6265SDimitry Andric                                      MatchCallsByName, !DisableIntrinsics,
151681ad6265SDimitry Andric                                      false);
1517fe6060f1SDimitry Andric   IRSI.findSimilarity(M);
1518fe6060f1SDimitry Andric   return IRSI;
1519e8d8bef9SDimitry Andric }
1520e8d8bef9SDimitry Andric 
1521e8d8bef9SDimitry Andric PreservedAnalyses
1522e8d8bef9SDimitry Andric IRSimilarityAnalysisPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
1523e8d8bef9SDimitry Andric   IRSimilarityIdentifier &IRSI = AM.getResult<IRSimilarityAnalysis>(M);
1524bdd1243dSDimitry Andric   std::optional<SimilarityGroupList> &SimilarityCandidatesOpt =
1525bdd1243dSDimitry Andric       IRSI.getSimilarity();
1526e8d8bef9SDimitry Andric 
1527e8d8bef9SDimitry Andric   for (std::vector<IRSimilarityCandidate> &CandVec : *SimilarityCandidatesOpt) {
1528e8d8bef9SDimitry Andric     OS << CandVec.size() << " candidates of length "
1529e8d8bef9SDimitry Andric        << CandVec.begin()->getLength() << ".  Found in: \n";
1530e8d8bef9SDimitry Andric     for (IRSimilarityCandidate &Cand : CandVec) {
1531e8d8bef9SDimitry Andric       OS << "  Function: " << Cand.front()->Inst->getFunction()->getName().str()
1532e8d8bef9SDimitry Andric          << ", Basic Block: ";
1533e8d8bef9SDimitry Andric       if (Cand.front()->Inst->getParent()->getName().str() == "")
1534fe6060f1SDimitry Andric         OS << "(unnamed)";
1535e8d8bef9SDimitry Andric       else
1536fe6060f1SDimitry Andric         OS << Cand.front()->Inst->getParent()->getName().str();
1537fe6060f1SDimitry Andric       OS << "\n    Start Instruction: ";
1538fe6060f1SDimitry Andric       Cand.frontInstruction()->print(OS);
1539fe6060f1SDimitry Andric       OS << "\n      End Instruction: ";
1540fe6060f1SDimitry Andric       Cand.backInstruction()->print(OS);
1541fe6060f1SDimitry Andric       OS << "\n";
1542e8d8bef9SDimitry Andric     }
1543e8d8bef9SDimitry Andric   }
1544e8d8bef9SDimitry Andric 
1545e8d8bef9SDimitry Andric   return PreservedAnalyses::all();
1546e8d8bef9SDimitry Andric }
1547e8d8bef9SDimitry Andric 
1548e8d8bef9SDimitry Andric char IRSimilarityIdentifierWrapperPass::ID = 0;
1549