xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/GlobalsModRef.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure").  For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "globalsmodref-aa"
34 
35 STATISTIC(NumNonAddrTakenGlobalVars,
36           "Number of global vars without address taken");
37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41 
42 // An option to enable unsafe alias results from the GlobalsModRef analysis.
43 // When enabled, GlobalsModRef will provide no-alias results which in extremely
44 // rare cases may not be conservatively correct. In particular, in the face of
45 // transforms which cause assymetry between how effective GetUnderlyingObject
46 // is for two pointers, it may produce incorrect results.
47 //
48 // These unsafe results have been returned by GMR for many years without
49 // causing significant issues in the wild and so we provide a mechanism to
50 // re-enable them for users of LLVM that have a particular performance
51 // sensitivity and no known issues. The option also makes it easy to evaluate
52 // the performance impact of these results.
53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
54     "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
55 
56 /// The mod/ref information collected for a particular function.
57 ///
58 /// We collect information about mod/ref behavior of a function here, both in
59 /// general and as pertains to specific globals. We only have this detailed
60 /// information when we know *something* useful about the behavior. If we
61 /// saturate to fully general mod/ref, we remove the info for the function.
62 class GlobalsAAResult::FunctionInfo {
63   typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
64 
65   /// Build a wrapper struct that has 8-byte alignment. All heap allocations
66   /// should provide this much alignment at least, but this makes it clear we
67   /// specifically rely on this amount of alignment.
68   struct alignas(8) AlignedMap {
69     AlignedMap() {}
70     AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
71     GlobalInfoMapType Map;
72   };
73 
74   /// Pointer traits for our aligned map.
75   struct AlignedMapPointerTraits {
76     static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
77     static inline AlignedMap *getFromVoidPointer(void *P) {
78       return (AlignedMap *)P;
79     }
80     enum { NumLowBitsAvailable = 3 };
81     static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
82                   "AlignedMap insufficiently aligned to have enough low bits.");
83   };
84 
85   /// The bit that flags that this function may read any global. This is
86   /// chosen to mix together with ModRefInfo bits.
87   /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
88   /// It overlaps with ModRefInfo::Must bit!
89   /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
90   /// this remains correct, but the Must info is lost.
91   enum { MayReadAnyGlobal = 4 };
92 
93   /// Checks to document the invariants of the bit packing here.
94   static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
95                     0,
96                 "ModRef and the MayReadAnyGlobal flag bits overlap.");
97   static_assert(((MayReadAnyGlobal |
98                   static_cast<int>(ModRefInfo::MustModRef)) >>
99                  AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
100                 "Insufficient low bits to store our flag and ModRef info.");
101 
102 public:
103   FunctionInfo() : Info() {}
104   ~FunctionInfo() {
105     delete Info.getPointer();
106   }
107   // Spell out the copy ond move constructors and assignment operators to get
108   // deep copy semantics and correct move semantics in the face of the
109   // pointer-int pair.
110   FunctionInfo(const FunctionInfo &Arg)
111       : Info(nullptr, Arg.Info.getInt()) {
112     if (const auto *ArgPtr = Arg.Info.getPointer())
113       Info.setPointer(new AlignedMap(*ArgPtr));
114   }
115   FunctionInfo(FunctionInfo &&Arg)
116       : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
117     Arg.Info.setPointerAndInt(nullptr, 0);
118   }
119   FunctionInfo &operator=(const FunctionInfo &RHS) {
120     delete Info.getPointer();
121     Info.setPointerAndInt(nullptr, RHS.Info.getInt());
122     if (const auto *RHSPtr = RHS.Info.getPointer())
123       Info.setPointer(new AlignedMap(*RHSPtr));
124     return *this;
125   }
126   FunctionInfo &operator=(FunctionInfo &&RHS) {
127     delete Info.getPointer();
128     Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
129     RHS.Info.setPointerAndInt(nullptr, 0);
130     return *this;
131   }
132 
133   /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
134   /// the corresponding ModRefInfo. It must align in functionality with
135   /// clearMust().
136   ModRefInfo globalClearMayReadAnyGlobal(int I) const {
137     return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
138                       static_cast<int>(ModRefInfo::NoModRef));
139   }
140 
141   /// Returns the \c ModRefInfo info for this function.
142   ModRefInfo getModRefInfo() const {
143     return globalClearMayReadAnyGlobal(Info.getInt());
144   }
145 
146   /// Adds new \c ModRefInfo for this function to its state.
147   void addModRefInfo(ModRefInfo NewMRI) {
148     Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
149   }
150 
151   /// Returns whether this function may read any global variable, and we don't
152   /// know which global.
153   bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
154 
155   /// Sets this function as potentially reading from any global.
156   void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
157 
158   /// Returns the \c ModRefInfo info for this function w.r.t. a particular
159   /// global, which may be more precise than the general information above.
160   ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
161     ModRefInfo GlobalMRI =
162         mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
163     if (AlignedMap *P = Info.getPointer()) {
164       auto I = P->Map.find(&GV);
165       if (I != P->Map.end())
166         GlobalMRI = unionModRef(GlobalMRI, I->second);
167     }
168     return GlobalMRI;
169   }
170 
171   /// Add mod/ref info from another function into ours, saturating towards
172   /// ModRef.
173   void addFunctionInfo(const FunctionInfo &FI) {
174     addModRefInfo(FI.getModRefInfo());
175 
176     if (FI.mayReadAnyGlobal())
177       setMayReadAnyGlobal();
178 
179     if (AlignedMap *P = FI.Info.getPointer())
180       for (const auto &G : P->Map)
181         addModRefInfoForGlobal(*G.first, G.second);
182   }
183 
184   void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
185     AlignedMap *P = Info.getPointer();
186     if (!P) {
187       P = new AlignedMap();
188       Info.setPointer(P);
189     }
190     auto &GlobalMRI = P->Map[&GV];
191     GlobalMRI = unionModRef(GlobalMRI, NewMRI);
192   }
193 
194   /// Clear a global's ModRef info. Should be used when a global is being
195   /// deleted.
196   void eraseModRefInfoForGlobal(const GlobalValue &GV) {
197     if (AlignedMap *P = Info.getPointer())
198       P->Map.erase(&GV);
199   }
200 
201 private:
202   /// All of the information is encoded into a single pointer, with a three bit
203   /// integer in the low three bits. The high bit provides a flag for when this
204   /// function may read any global. The low two bits are the ModRefInfo. And
205   /// the pointer, when non-null, points to a map from GlobalValue to
206   /// ModRefInfo specific to that GlobalValue.
207   PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
208 };
209 
210 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
211   Value *V = getValPtr();
212   if (auto *F = dyn_cast<Function>(V))
213     GAR->FunctionInfos.erase(F);
214 
215   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
216     if (GAR->NonAddressTakenGlobals.erase(GV)) {
217       // This global might be an indirect global.  If so, remove it and
218       // remove any AllocRelatedValues for it.
219       if (GAR->IndirectGlobals.erase(GV)) {
220         // Remove any entries in AllocsForIndirectGlobals for this global.
221         for (auto I = GAR->AllocsForIndirectGlobals.begin(),
222                   E = GAR->AllocsForIndirectGlobals.end();
223              I != E; ++I)
224           if (I->second == GV)
225             GAR->AllocsForIndirectGlobals.erase(I);
226       }
227 
228       // Scan the function info we have collected and remove this global
229       // from all of them.
230       for (auto &FIPair : GAR->FunctionInfos)
231         FIPair.second.eraseModRefInfoForGlobal(*GV);
232     }
233   }
234 
235   // If this is an allocation related to an indirect global, remove it.
236   GAR->AllocsForIndirectGlobals.erase(V);
237 
238   // And clear out the handle.
239   setValPtr(nullptr);
240   GAR->Handles.erase(I);
241   // This object is now destroyed!
242 }
243 
244 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
245   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
246 
247   if (FunctionInfo *FI = getFunctionInfo(F)) {
248     if (!isModOrRefSet(FI->getModRefInfo()))
249       Min = FMRB_DoesNotAccessMemory;
250     else if (!isModSet(FI->getModRefInfo()))
251       Min = FMRB_OnlyReadsMemory;
252   }
253 
254   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
255 }
256 
257 FunctionModRefBehavior
258 GlobalsAAResult::getModRefBehavior(const CallBase *Call) {
259   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
260 
261   if (!Call->hasOperandBundles())
262     if (const Function *F = Call->getCalledFunction())
263       if (FunctionInfo *FI = getFunctionInfo(F)) {
264         if (!isModOrRefSet(FI->getModRefInfo()))
265           Min = FMRB_DoesNotAccessMemory;
266         else if (!isModSet(FI->getModRefInfo()))
267           Min = FMRB_OnlyReadsMemory;
268       }
269 
270   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
271 }
272 
273 /// Returns the function info for the function, or null if we don't have
274 /// anything useful to say about it.
275 GlobalsAAResult::FunctionInfo *
276 GlobalsAAResult::getFunctionInfo(const Function *F) {
277   auto I = FunctionInfos.find(F);
278   if (I != FunctionInfos.end())
279     return &I->second;
280   return nullptr;
281 }
282 
283 /// AnalyzeGlobals - Scan through the users of all of the internal
284 /// GlobalValue's in the program.  If none of them have their "address taken"
285 /// (really, their address passed to something nontrivial), record this fact,
286 /// and record the functions that they are used directly in.
287 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
288   SmallPtrSet<Function *, 32> TrackedFunctions;
289   for (Function &F : M)
290     if (F.hasLocalLinkage()) {
291       if (!AnalyzeUsesOfPointer(&F)) {
292         // Remember that we are tracking this global.
293         NonAddressTakenGlobals.insert(&F);
294         TrackedFunctions.insert(&F);
295         Handles.emplace_front(*this, &F);
296         Handles.front().I = Handles.begin();
297         ++NumNonAddrTakenFunctions;
298       } else
299         UnknownFunctionsWithLocalLinkage = true;
300     }
301 
302   SmallPtrSet<Function *, 16> Readers, Writers;
303   for (GlobalVariable &GV : M.globals())
304     if (GV.hasLocalLinkage()) {
305       if (!AnalyzeUsesOfPointer(&GV, &Readers,
306                                 GV.isConstant() ? nullptr : &Writers)) {
307         // Remember that we are tracking this global, and the mod/ref fns
308         NonAddressTakenGlobals.insert(&GV);
309         Handles.emplace_front(*this, &GV);
310         Handles.front().I = Handles.begin();
311 
312         for (Function *Reader : Readers) {
313           if (TrackedFunctions.insert(Reader).second) {
314             Handles.emplace_front(*this, Reader);
315             Handles.front().I = Handles.begin();
316           }
317           FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
318         }
319 
320         if (!GV.isConstant()) // No need to keep track of writers to constants
321           for (Function *Writer : Writers) {
322             if (TrackedFunctions.insert(Writer).second) {
323               Handles.emplace_front(*this, Writer);
324               Handles.front().I = Handles.begin();
325             }
326             FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
327           }
328         ++NumNonAddrTakenGlobalVars;
329 
330         // If this global holds a pointer type, see if it is an indirect global.
331         if (GV.getValueType()->isPointerTy() &&
332             AnalyzeIndirectGlobalMemory(&GV))
333           ++NumIndirectGlobalVars;
334       }
335       Readers.clear();
336       Writers.clear();
337     }
338 }
339 
340 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
341 /// If this is used by anything complex (i.e., the address escapes), return
342 /// true.  Also, while we are at it, keep track of those functions that read and
343 /// write to the value.
344 ///
345 /// If OkayStoreDest is non-null, stores into this global are allowed.
346 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
347                                            SmallPtrSetImpl<Function *> *Readers,
348                                            SmallPtrSetImpl<Function *> *Writers,
349                                            GlobalValue *OkayStoreDest) {
350   if (!V->getType()->isPointerTy())
351     return true;
352 
353   for (Use &U : V->uses()) {
354     User *I = U.getUser();
355     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
356       if (Readers)
357         Readers->insert(LI->getParent()->getParent());
358     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
359       if (V == SI->getOperand(1)) {
360         if (Writers)
361           Writers->insert(SI->getParent()->getParent());
362       } else if (SI->getOperand(1) != OkayStoreDest) {
363         return true; // Storing the pointer
364       }
365     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
366       if (AnalyzeUsesOfPointer(I, Readers, Writers))
367         return true;
368     } else if (Operator::getOpcode(I) == Instruction::BitCast) {
369       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
370         return true;
371     } else if (auto *Call = dyn_cast<CallBase>(I)) {
372       // Make sure that this is just the function being called, not that it is
373       // passing into the function.
374       if (Call->isDataOperand(&U)) {
375         // Detect calls to free.
376         if (Call->isArgOperand(&U) &&
377             isFreeCall(I, &GetTLI(*Call->getFunction()))) {
378           if (Writers)
379             Writers->insert(Call->getParent()->getParent());
380         } else {
381           return true; // Argument of an unknown call.
382         }
383       }
384     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
385       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
386         return true; // Allow comparison against null.
387     } else if (Constant *C = dyn_cast<Constant>(I)) {
388       // Ignore constants which don't have any live uses.
389       if (isa<GlobalValue>(C) || C->isConstantUsed())
390         return true;
391     } else {
392       return true;
393     }
394   }
395 
396   return false;
397 }
398 
399 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
400 /// which holds a pointer type.  See if the global always points to non-aliased
401 /// heap memory: that is, all initializers of the globals are allocations, and
402 /// those allocations have no use other than initialization of the global.
403 /// Further, all loads out of GV must directly use the memory, not store the
404 /// pointer somewhere.  If this is true, we consider the memory pointed to by
405 /// GV to be owned by GV and can disambiguate other pointers from it.
406 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
407   // Keep track of values related to the allocation of the memory, f.e. the
408   // value produced by the malloc call and any casts.
409   std::vector<Value *> AllocRelatedValues;
410 
411   // If the initializer is a valid pointer, bail.
412   if (Constant *C = GV->getInitializer())
413     if (!C->isNullValue())
414       return false;
415 
416   // Walk the user list of the global.  If we find anything other than a direct
417   // load or store, bail out.
418   for (User *U : GV->users()) {
419     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
420       // The pointer loaded from the global can only be used in simple ways:
421       // we allow addressing of it and loading storing to it.  We do *not* allow
422       // storing the loaded pointer somewhere else or passing to a function.
423       if (AnalyzeUsesOfPointer(LI))
424         return false; // Loaded pointer escapes.
425       // TODO: Could try some IP mod/ref of the loaded pointer.
426     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
427       // Storing the global itself.
428       if (SI->getOperand(0) == GV)
429         return false;
430 
431       // If storing the null pointer, ignore it.
432       if (isa<ConstantPointerNull>(SI->getOperand(0)))
433         continue;
434 
435       // Check the value being stored.
436       Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
437                                        GV->getParent()->getDataLayout());
438 
439       if (!isAllocLikeFn(Ptr, &GetTLI(*SI->getFunction())))
440         return false; // Too hard to analyze.
441 
442       // Analyze all uses of the allocation.  If any of them are used in a
443       // non-simple way (e.g. stored to another global) bail out.
444       if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
445                                GV))
446         return false; // Loaded pointer escapes.
447 
448       // Remember that this allocation is related to the indirect global.
449       AllocRelatedValues.push_back(Ptr);
450     } else {
451       // Something complex, bail out.
452       return false;
453     }
454   }
455 
456   // Okay, this is an indirect global.  Remember all of the allocations for
457   // this global in AllocsForIndirectGlobals.
458   while (!AllocRelatedValues.empty()) {
459     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
460     Handles.emplace_front(*this, AllocRelatedValues.back());
461     Handles.front().I = Handles.begin();
462     AllocRelatedValues.pop_back();
463   }
464   IndirectGlobals.insert(GV);
465   Handles.emplace_front(*this, GV);
466   Handles.front().I = Handles.begin();
467   return true;
468 }
469 
470 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
471   // We do a bottom-up SCC traversal of the call graph.  In other words, we
472   // visit all callees before callers (leaf-first).
473   unsigned SCCID = 0;
474   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
475     const std::vector<CallGraphNode *> &SCC = *I;
476     assert(!SCC.empty() && "SCC with no functions?");
477 
478     for (auto *CGN : SCC)
479       if (Function *F = CGN->getFunction())
480         FunctionToSCCMap[F] = SCCID;
481     ++SCCID;
482   }
483 }
484 
485 /// AnalyzeCallGraph - At this point, we know the functions where globals are
486 /// immediately stored to and read from.  Propagate this information up the call
487 /// graph to all callers and compute the mod/ref info for all memory for each
488 /// function.
489 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
490   // We do a bottom-up SCC traversal of the call graph.  In other words, we
491   // visit all callees before callers (leaf-first).
492   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
493     const std::vector<CallGraphNode *> &SCC = *I;
494     assert(!SCC.empty() && "SCC with no functions?");
495 
496     Function *F = SCC[0]->getFunction();
497 
498     if (!F || !F->isDefinitionExact()) {
499       // Calls externally or not exact - can't say anything useful. Remove any
500       // existing function records (may have been created when scanning
501       // globals).
502       for (auto *Node : SCC)
503         FunctionInfos.erase(Node->getFunction());
504       continue;
505     }
506 
507     FunctionInfo &FI = FunctionInfos[F];
508     Handles.emplace_front(*this, F);
509     Handles.front().I = Handles.begin();
510     bool KnowNothing = false;
511 
512     // Collect the mod/ref properties due to called functions.  We only compute
513     // one mod-ref set.
514     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
515       if (!F) {
516         KnowNothing = true;
517         break;
518       }
519 
520       if (F->isDeclaration() || F->hasOptNone()) {
521         // Try to get mod/ref behaviour from function attributes.
522         if (F->doesNotAccessMemory()) {
523           // Can't do better than that!
524         } else if (F->onlyReadsMemory()) {
525           FI.addModRefInfo(ModRefInfo::Ref);
526           if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
527             // This function might call back into the module and read a global -
528             // consider every global as possibly being read by this function.
529             FI.setMayReadAnyGlobal();
530         } else {
531           FI.addModRefInfo(ModRefInfo::ModRef);
532           if (!F->onlyAccessesArgMemory())
533             FI.setMayReadAnyGlobal();
534           if (!F->isIntrinsic()) {
535             KnowNothing = true;
536             break;
537           }
538         }
539         continue;
540       }
541 
542       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
543            CI != E && !KnowNothing; ++CI)
544         if (Function *Callee = CI->second->getFunction()) {
545           if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
546             // Propagate function effect up.
547             FI.addFunctionInfo(*CalleeFI);
548           } else {
549             // Can't say anything about it.  However, if it is inside our SCC,
550             // then nothing needs to be done.
551             CallGraphNode *CalleeNode = CG[Callee];
552             if (!is_contained(SCC, CalleeNode))
553               KnowNothing = true;
554           }
555         } else {
556           KnowNothing = true;
557         }
558     }
559 
560     // If we can't say anything useful about this SCC, remove all SCC functions
561     // from the FunctionInfos map.
562     if (KnowNothing) {
563       for (auto *Node : SCC)
564         FunctionInfos.erase(Node->getFunction());
565       continue;
566     }
567 
568     // Scan the function bodies for explicit loads or stores.
569     for (auto *Node : SCC) {
570       if (isModAndRefSet(FI.getModRefInfo()))
571         break; // The mod/ref lattice saturates here.
572 
573       // Don't prove any properties based on the implementation of an optnone
574       // function. Function attributes were already used as a best approximation
575       // above.
576       if (Node->getFunction()->hasOptNone())
577         continue;
578 
579       for (Instruction &I : instructions(Node->getFunction())) {
580         if (isModAndRefSet(FI.getModRefInfo()))
581           break; // The mod/ref lattice saturates here.
582 
583         // We handle calls specially because the graph-relevant aspects are
584         // handled above.
585         if (auto *Call = dyn_cast<CallBase>(&I)) {
586           auto &TLI = GetTLI(*Node->getFunction());
587           if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) {
588             // FIXME: It is completely unclear why this is necessary and not
589             // handled by the above graph code.
590             FI.addModRefInfo(ModRefInfo::ModRef);
591           } else if (Function *Callee = Call->getCalledFunction()) {
592             // The callgraph doesn't include intrinsic calls.
593             if (Callee->isIntrinsic()) {
594               if (isa<DbgInfoIntrinsic>(Call))
595                 // Don't let dbg intrinsics affect alias info.
596                 continue;
597 
598               FunctionModRefBehavior Behaviour =
599                   AAResultBase::getModRefBehavior(Callee);
600               FI.addModRefInfo(createModRefInfo(Behaviour));
601             }
602           }
603           continue;
604         }
605 
606         // All non-call instructions we use the primary predicates for whether
607         // they read or write memory.
608         if (I.mayReadFromMemory())
609           FI.addModRefInfo(ModRefInfo::Ref);
610         if (I.mayWriteToMemory())
611           FI.addModRefInfo(ModRefInfo::Mod);
612       }
613     }
614 
615     if (!isModSet(FI.getModRefInfo()))
616       ++NumReadMemFunctions;
617     if (!isModOrRefSet(FI.getModRefInfo()))
618       ++NumNoMemFunctions;
619 
620     // Finally, now that we know the full effect on this SCC, clone the
621     // information to each function in the SCC.
622     // FI is a reference into FunctionInfos, so copy it now so that it doesn't
623     // get invalidated if DenseMap decides to re-hash.
624     FunctionInfo CachedFI = FI;
625     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
626       FunctionInfos[SCC[i]->getFunction()] = CachedFI;
627   }
628 }
629 
630 // GV is a non-escaping global. V is a pointer address that has been loaded from.
631 // If we can prove that V must escape, we can conclude that a load from V cannot
632 // alias GV.
633 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
634                                                const Value *V,
635                                                int &Depth,
636                                                const DataLayout &DL) {
637   SmallPtrSet<const Value *, 8> Visited;
638   SmallVector<const Value *, 8> Inputs;
639   Visited.insert(V);
640   Inputs.push_back(V);
641   do {
642     const Value *Input = Inputs.pop_back_val();
643 
644     if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
645         isa<InvokeInst>(Input))
646       // Arguments to functions or returns from functions are inherently
647       // escaping, so we can immediately classify those as not aliasing any
648       // non-addr-taken globals.
649       //
650       // (Transitive) loads from a global are also safe - if this aliased
651       // another global, its address would escape, so no alias.
652       continue;
653 
654     // Recurse through a limited number of selects, loads and PHIs. This is an
655     // arbitrary depth of 4, lower numbers could be used to fix compile time
656     // issues if needed, but this is generally expected to be only be important
657     // for small depths.
658     if (++Depth > 4)
659       return false;
660 
661     if (auto *LI = dyn_cast<LoadInst>(Input)) {
662       Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
663       continue;
664     }
665     if (auto *SI = dyn_cast<SelectInst>(Input)) {
666       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
667       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
668       if (Visited.insert(LHS).second)
669         Inputs.push_back(LHS);
670       if (Visited.insert(RHS).second)
671         Inputs.push_back(RHS);
672       continue;
673     }
674     if (auto *PN = dyn_cast<PHINode>(Input)) {
675       for (const Value *Op : PN->incoming_values()) {
676         Op = GetUnderlyingObject(Op, DL);
677         if (Visited.insert(Op).second)
678           Inputs.push_back(Op);
679       }
680       continue;
681     }
682 
683     return false;
684   } while (!Inputs.empty());
685 
686   // All inputs were known to be no-alias.
687   return true;
688 }
689 
690 // There are particular cases where we can conclude no-alias between
691 // a non-addr-taken global and some other underlying object. Specifically,
692 // a non-addr-taken global is known to not be escaped from any function. It is
693 // also incorrect for a transformation to introduce an escape of a global in
694 // a way that is observable when it was not there previously. One function
695 // being transformed to introduce an escape which could possibly be observed
696 // (via loading from a global or the return value for example) within another
697 // function is never safe. If the observation is made through non-atomic
698 // operations on different threads, it is a data-race and UB. If the
699 // observation is well defined, by being observed the transformation would have
700 // changed program behavior by introducing the observed escape, making it an
701 // invalid transform.
702 //
703 // This property does require that transformations which *temporarily* escape
704 // a global that was not previously escaped, prior to restoring it, cannot rely
705 // on the results of GMR::alias. This seems a reasonable restriction, although
706 // currently there is no way to enforce it. There is also no realistic
707 // optimization pass that would make this mistake. The closest example is
708 // a transformation pass which does reg2mem of SSA values but stores them into
709 // global variables temporarily before restoring the global variable's value.
710 // This could be useful to expose "benign" races for example. However, it seems
711 // reasonable to require that a pass which introduces escapes of global
712 // variables in this way to either not trust AA results while the escape is
713 // active, or to be forced to operate as a module pass that cannot co-exist
714 // with an alias analysis such as GMR.
715 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
716                                                  const Value *V) {
717   // In order to know that the underlying object cannot alias the
718   // non-addr-taken global, we must know that it would have to be an escape.
719   // Thus if the underlying object is a function argument, a load from
720   // a global, or the return of a function, it cannot alias. We can also
721   // recurse through PHI nodes and select nodes provided all of their inputs
722   // resolve to one of these known-escaping roots.
723   SmallPtrSet<const Value *, 8> Visited;
724   SmallVector<const Value *, 8> Inputs;
725   Visited.insert(V);
726   Inputs.push_back(V);
727   int Depth = 0;
728   do {
729     const Value *Input = Inputs.pop_back_val();
730 
731     if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
732       // If one input is the very global we're querying against, then we can't
733       // conclude no-alias.
734       if (InputGV == GV)
735         return false;
736 
737       // Distinct GlobalVariables never alias, unless overriden or zero-sized.
738       // FIXME: The condition can be refined, but be conservative for now.
739       auto *GVar = dyn_cast<GlobalVariable>(GV);
740       auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
741       if (GVar && InputGVar &&
742           !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
743           !GVar->isInterposable() && !InputGVar->isInterposable()) {
744         Type *GVType = GVar->getInitializer()->getType();
745         Type *InputGVType = InputGVar->getInitializer()->getType();
746         if (GVType->isSized() && InputGVType->isSized() &&
747             (DL.getTypeAllocSize(GVType) > 0) &&
748             (DL.getTypeAllocSize(InputGVType) > 0))
749           continue;
750       }
751 
752       // Conservatively return false, even though we could be smarter
753       // (e.g. look through GlobalAliases).
754       return false;
755     }
756 
757     if (isa<Argument>(Input) || isa<CallInst>(Input) ||
758         isa<InvokeInst>(Input)) {
759       // Arguments to functions or returns from functions are inherently
760       // escaping, so we can immediately classify those as not aliasing any
761       // non-addr-taken globals.
762       continue;
763     }
764 
765     // Recurse through a limited number of selects, loads and PHIs. This is an
766     // arbitrary depth of 4, lower numbers could be used to fix compile time
767     // issues if needed, but this is generally expected to be only be important
768     // for small depths.
769     if (++Depth > 4)
770       return false;
771 
772     if (auto *LI = dyn_cast<LoadInst>(Input)) {
773       // A pointer loaded from a global would have been captured, and we know
774       // that the global is non-escaping, so no alias.
775       const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
776       if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
777         // The load does not alias with GV.
778         continue;
779       // Otherwise, a load could come from anywhere, so bail.
780       return false;
781     }
782     if (auto *SI = dyn_cast<SelectInst>(Input)) {
783       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
784       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
785       if (Visited.insert(LHS).second)
786         Inputs.push_back(LHS);
787       if (Visited.insert(RHS).second)
788         Inputs.push_back(RHS);
789       continue;
790     }
791     if (auto *PN = dyn_cast<PHINode>(Input)) {
792       for (const Value *Op : PN->incoming_values()) {
793         Op = GetUnderlyingObject(Op, DL);
794         if (Visited.insert(Op).second)
795           Inputs.push_back(Op);
796       }
797       continue;
798     }
799 
800     // FIXME: It would be good to handle other obvious no-alias cases here, but
801     // it isn't clear how to do so reasonably without building a small version
802     // of BasicAA into this code. We could recurse into AAResultBase::alias
803     // here but that seems likely to go poorly as we're inside the
804     // implementation of such a query. Until then, just conservatively return
805     // false.
806     return false;
807   } while (!Inputs.empty());
808 
809   // If all the inputs to V were definitively no-alias, then V is no-alias.
810   return true;
811 }
812 
813 /// alias - If one of the pointers is to a global that we are tracking, and the
814 /// other is some random pointer, we know there cannot be an alias, because the
815 /// address of the global isn't taken.
816 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
817                                    const MemoryLocation &LocB,
818                                    AAQueryInfo &AAQI) {
819   // Get the base object these pointers point to.
820   const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
821   const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
822 
823   // If either of the underlying values is a global, they may be non-addr-taken
824   // globals, which we can answer queries about.
825   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
826   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
827   if (GV1 || GV2) {
828     // If the global's address is taken, pretend we don't know it's a pointer to
829     // the global.
830     if (GV1 && !NonAddressTakenGlobals.count(GV1))
831       GV1 = nullptr;
832     if (GV2 && !NonAddressTakenGlobals.count(GV2))
833       GV2 = nullptr;
834 
835     // If the two pointers are derived from two different non-addr-taken
836     // globals we know these can't alias.
837     if (GV1 && GV2 && GV1 != GV2)
838       return NoAlias;
839 
840     // If one is and the other isn't, it isn't strictly safe but we can fake
841     // this result if necessary for performance. This does not appear to be
842     // a common problem in practice.
843     if (EnableUnsafeGlobalsModRefAliasResults)
844       if ((GV1 || GV2) && GV1 != GV2)
845         return NoAlias;
846 
847     // Check for a special case where a non-escaping global can be used to
848     // conclude no-alias.
849     if ((GV1 || GV2) && GV1 != GV2) {
850       const GlobalValue *GV = GV1 ? GV1 : GV2;
851       const Value *UV = GV1 ? UV2 : UV1;
852       if (isNonEscapingGlobalNoAlias(GV, UV))
853         return NoAlias;
854     }
855 
856     // Otherwise if they are both derived from the same addr-taken global, we
857     // can't know the two accesses don't overlap.
858   }
859 
860   // These pointers may be based on the memory owned by an indirect global.  If
861   // so, we may be able to handle this.  First check to see if the base pointer
862   // is a direct load from an indirect global.
863   GV1 = GV2 = nullptr;
864   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
865     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
866       if (IndirectGlobals.count(GV))
867         GV1 = GV;
868   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
869     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
870       if (IndirectGlobals.count(GV))
871         GV2 = GV;
872 
873   // These pointers may also be from an allocation for the indirect global.  If
874   // so, also handle them.
875   if (!GV1)
876     GV1 = AllocsForIndirectGlobals.lookup(UV1);
877   if (!GV2)
878     GV2 = AllocsForIndirectGlobals.lookup(UV2);
879 
880   // Now that we know whether the two pointers are related to indirect globals,
881   // use this to disambiguate the pointers. If the pointers are based on
882   // different indirect globals they cannot alias.
883   if (GV1 && GV2 && GV1 != GV2)
884     return NoAlias;
885 
886   // If one is based on an indirect global and the other isn't, it isn't
887   // strictly safe but we can fake this result if necessary for performance.
888   // This does not appear to be a common problem in practice.
889   if (EnableUnsafeGlobalsModRefAliasResults)
890     if ((GV1 || GV2) && GV1 != GV2)
891       return NoAlias;
892 
893   return AAResultBase::alias(LocA, LocB, AAQI);
894 }
895 
896 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
897                                                      const GlobalValue *GV,
898                                                      AAQueryInfo &AAQI) {
899   if (Call->doesNotAccessMemory())
900     return ModRefInfo::NoModRef;
901   ModRefInfo ConservativeResult =
902       Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
903 
904   // Iterate through all the arguments to the called function. If any argument
905   // is based on GV, return the conservative result.
906   for (auto &A : Call->args()) {
907     SmallVector<const Value*, 4> Objects;
908     GetUnderlyingObjects(A, Objects, DL);
909 
910     // All objects must be identified.
911     if (!all_of(Objects, isIdentifiedObject) &&
912         // Try ::alias to see if all objects are known not to alias GV.
913         !all_of(Objects, [&](const Value *V) {
914           return this->alias(MemoryLocation(V), MemoryLocation(GV), AAQI) ==
915                  NoAlias;
916         }))
917       return ConservativeResult;
918 
919     if (is_contained(Objects, GV))
920       return ConservativeResult;
921   }
922 
923   // We identified all objects in the argument list, and none of them were GV.
924   return ModRefInfo::NoModRef;
925 }
926 
927 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
928                                           const MemoryLocation &Loc,
929                                           AAQueryInfo &AAQI) {
930   ModRefInfo Known = ModRefInfo::ModRef;
931 
932   // If we are asking for mod/ref info of a direct call with a pointer to a
933   // global we are tracking, return information if we have it.
934   if (const GlobalValue *GV =
935           dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
936     // If GV is internal to this IR and there is no function with local linkage
937     // that has had their address taken, keep looking for a tighter ModRefInfo.
938     if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage)
939       if (const Function *F = Call->getCalledFunction())
940         if (NonAddressTakenGlobals.count(GV))
941           if (const FunctionInfo *FI = getFunctionInfo(F))
942             Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
943                                 getModRefInfoForArgument(Call, GV, AAQI));
944 
945   if (!isModOrRefSet(Known))
946     return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
947   return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI));
948 }
949 
950 GlobalsAAResult::GlobalsAAResult(
951     const DataLayout &DL,
952     std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
953     : AAResultBase(), DL(DL), GetTLI(std::move(GetTLI)) {}
954 
955 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
956     : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)),
957       NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
958       IndirectGlobals(std::move(Arg.IndirectGlobals)),
959       AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
960       FunctionInfos(std::move(Arg.FunctionInfos)),
961       Handles(std::move(Arg.Handles)) {
962   // Update the parent for each DeletionCallbackHandle.
963   for (auto &H : Handles) {
964     assert(H.GAR == &Arg);
965     H.GAR = this;
966   }
967 }
968 
969 GlobalsAAResult::~GlobalsAAResult() {}
970 
971 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule(
972     Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
973     CallGraph &CG) {
974   GlobalsAAResult Result(M.getDataLayout(), GetTLI);
975 
976   // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
977   Result.CollectSCCMembership(CG);
978 
979   // Find non-addr taken globals.
980   Result.AnalyzeGlobals(M);
981 
982   // Propagate on CG.
983   Result.AnalyzeCallGraph(CG, M);
984 
985   return Result;
986 }
987 
988 AnalysisKey GlobalsAA::Key;
989 
990 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
991   FunctionAnalysisManager &FAM =
992       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
993   auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
994     return FAM.getResult<TargetLibraryAnalysis>(F);
995   };
996   return GlobalsAAResult::analyzeModule(M, GetTLI,
997                                         AM.getResult<CallGraphAnalysis>(M));
998 }
999 
1000 char GlobalsAAWrapperPass::ID = 0;
1001 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
1002                       "Globals Alias Analysis", false, true)
1003 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1004 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1005 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
1006                     "Globals Alias Analysis", false, true)
1007 
1008 ModulePass *llvm::createGlobalsAAWrapperPass() {
1009   return new GlobalsAAWrapperPass();
1010 }
1011 
1012 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
1013   initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1014 }
1015 
1016 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1017   auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
1018     return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1019   };
1020   Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1021       M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1022   return false;
1023 }
1024 
1025 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1026   Result.reset();
1027   return false;
1028 }
1029 
1030 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1031   AU.setPreservesAll();
1032   AU.addRequired<CallGraphWrapperPass>();
1033   AU.addRequired<TargetLibraryInfoWrapperPass>();
1034 }
1035