xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/GlobalsModRef.cpp (revision eea7c61590ae8968b3f1f609cf0bc8633222a94f)
1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure").  For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "globalsmodref-aa"
36 
37 STATISTIC(NumNonAddrTakenGlobalVars,
38           "Number of global vars without address taken");
39 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
40 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
41 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
42 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
43 
44 // An option to enable unsafe alias results from the GlobalsModRef analysis.
45 // When enabled, GlobalsModRef will provide no-alias results which in extremely
46 // rare cases may not be conservatively correct. In particular, in the face of
47 // transforms which cause asymmetry between how effective getUnderlyingObject
48 // is for two pointers, it may produce incorrect results.
49 //
50 // These unsafe results have been returned by GMR for many years without
51 // causing significant issues in the wild and so we provide a mechanism to
52 // re-enable them for users of LLVM that have a particular performance
53 // sensitivity and no known issues. The option also makes it easy to evaluate
54 // the performance impact of these results.
55 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
56     "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
57 
58 /// The mod/ref information collected for a particular function.
59 ///
60 /// We collect information about mod/ref behavior of a function here, both in
61 /// general and as pertains to specific globals. We only have this detailed
62 /// information when we know *something* useful about the behavior. If we
63 /// saturate to fully general mod/ref, we remove the info for the function.
64 class GlobalsAAResult::FunctionInfo {
65   typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
66 
67   /// Build a wrapper struct that has 8-byte alignment. All heap allocations
68   /// should provide this much alignment at least, but this makes it clear we
69   /// specifically rely on this amount of alignment.
70   struct alignas(8) AlignedMap {
71     AlignedMap() {}
72     AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
73     GlobalInfoMapType Map;
74   };
75 
76   /// Pointer traits for our aligned map.
77   struct AlignedMapPointerTraits {
78     static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
79     static inline AlignedMap *getFromVoidPointer(void *P) {
80       return (AlignedMap *)P;
81     }
82     static constexpr int NumLowBitsAvailable = 3;
83     static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
84                   "AlignedMap insufficiently aligned to have enough low bits.");
85   };
86 
87   /// The bit that flags that this function may read any global. This is
88   /// chosen to mix together with ModRefInfo bits.
89   /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
90   /// It overlaps with ModRefInfo::Must bit!
91   /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
92   /// this remains correct, but the Must info is lost.
93   enum { MayReadAnyGlobal = 4 };
94 
95   /// Checks to document the invariants of the bit packing here.
96   static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
97                     0,
98                 "ModRef and the MayReadAnyGlobal flag bits overlap.");
99   static_assert(((MayReadAnyGlobal |
100                   static_cast<int>(ModRefInfo::MustModRef)) >>
101                  AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
102                 "Insufficient low bits to store our flag and ModRef info.");
103 
104 public:
105   FunctionInfo() : Info() {}
106   ~FunctionInfo() {
107     delete Info.getPointer();
108   }
109   // Spell out the copy ond move constructors and assignment operators to get
110   // deep copy semantics and correct move semantics in the face of the
111   // pointer-int pair.
112   FunctionInfo(const FunctionInfo &Arg)
113       : Info(nullptr, Arg.Info.getInt()) {
114     if (const auto *ArgPtr = Arg.Info.getPointer())
115       Info.setPointer(new AlignedMap(*ArgPtr));
116   }
117   FunctionInfo(FunctionInfo &&Arg)
118       : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
119     Arg.Info.setPointerAndInt(nullptr, 0);
120   }
121   FunctionInfo &operator=(const FunctionInfo &RHS) {
122     delete Info.getPointer();
123     Info.setPointerAndInt(nullptr, RHS.Info.getInt());
124     if (const auto *RHSPtr = RHS.Info.getPointer())
125       Info.setPointer(new AlignedMap(*RHSPtr));
126     return *this;
127   }
128   FunctionInfo &operator=(FunctionInfo &&RHS) {
129     delete Info.getPointer();
130     Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
131     RHS.Info.setPointerAndInt(nullptr, 0);
132     return *this;
133   }
134 
135   /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
136   /// the corresponding ModRefInfo. It must align in functionality with
137   /// clearMust().
138   ModRefInfo globalClearMayReadAnyGlobal(int I) const {
139     return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
140                       static_cast<int>(ModRefInfo::NoModRef));
141   }
142 
143   /// Returns the \c ModRefInfo info for this function.
144   ModRefInfo getModRefInfo() const {
145     return globalClearMayReadAnyGlobal(Info.getInt());
146   }
147 
148   /// Adds new \c ModRefInfo for this function to its state.
149   void addModRefInfo(ModRefInfo NewMRI) {
150     Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
151   }
152 
153   /// Returns whether this function may read any global variable, and we don't
154   /// know which global.
155   bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
156 
157   /// Sets this function as potentially reading from any global.
158   void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
159 
160   /// Returns the \c ModRefInfo info for this function w.r.t. a particular
161   /// global, which may be more precise than the general information above.
162   ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
163     ModRefInfo GlobalMRI =
164         mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
165     if (AlignedMap *P = Info.getPointer()) {
166       auto I = P->Map.find(&GV);
167       if (I != P->Map.end())
168         GlobalMRI = unionModRef(GlobalMRI, I->second);
169     }
170     return GlobalMRI;
171   }
172 
173   /// Add mod/ref info from another function into ours, saturating towards
174   /// ModRef.
175   void addFunctionInfo(const FunctionInfo &FI) {
176     addModRefInfo(FI.getModRefInfo());
177 
178     if (FI.mayReadAnyGlobal())
179       setMayReadAnyGlobal();
180 
181     if (AlignedMap *P = FI.Info.getPointer())
182       for (const auto &G : P->Map)
183         addModRefInfoForGlobal(*G.first, G.second);
184   }
185 
186   void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
187     AlignedMap *P = Info.getPointer();
188     if (!P) {
189       P = new AlignedMap();
190       Info.setPointer(P);
191     }
192     auto &GlobalMRI = P->Map[&GV];
193     GlobalMRI = unionModRef(GlobalMRI, NewMRI);
194   }
195 
196   /// Clear a global's ModRef info. Should be used when a global is being
197   /// deleted.
198   void eraseModRefInfoForGlobal(const GlobalValue &GV) {
199     if (AlignedMap *P = Info.getPointer())
200       P->Map.erase(&GV);
201   }
202 
203 private:
204   /// All of the information is encoded into a single pointer, with a three bit
205   /// integer in the low three bits. The high bit provides a flag for when this
206   /// function may read any global. The low two bits are the ModRefInfo. And
207   /// the pointer, when non-null, points to a map from GlobalValue to
208   /// ModRefInfo specific to that GlobalValue.
209   PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
210 };
211 
212 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
213   Value *V = getValPtr();
214   if (auto *F = dyn_cast<Function>(V))
215     GAR->FunctionInfos.erase(F);
216 
217   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
218     if (GAR->NonAddressTakenGlobals.erase(GV)) {
219       // This global might be an indirect global.  If so, remove it and
220       // remove any AllocRelatedValues for it.
221       if (GAR->IndirectGlobals.erase(GV)) {
222         // Remove any entries in AllocsForIndirectGlobals for this global.
223         for (auto I = GAR->AllocsForIndirectGlobals.begin(),
224                   E = GAR->AllocsForIndirectGlobals.end();
225              I != E; ++I)
226           if (I->second == GV)
227             GAR->AllocsForIndirectGlobals.erase(I);
228       }
229 
230       // Scan the function info we have collected and remove this global
231       // from all of them.
232       for (auto &FIPair : GAR->FunctionInfos)
233         FIPair.second.eraseModRefInfoForGlobal(*GV);
234     }
235   }
236 
237   // If this is an allocation related to an indirect global, remove it.
238   GAR->AllocsForIndirectGlobals.erase(V);
239 
240   // And clear out the handle.
241   setValPtr(nullptr);
242   GAR->Handles.erase(I);
243   // This object is now destroyed!
244 }
245 
246 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
247   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
248 
249   if (FunctionInfo *FI = getFunctionInfo(F)) {
250     if (!isModOrRefSet(FI->getModRefInfo()))
251       Min = FMRB_DoesNotAccessMemory;
252     else if (!isModSet(FI->getModRefInfo()))
253       Min = FMRB_OnlyReadsMemory;
254   }
255 
256   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
257 }
258 
259 FunctionModRefBehavior
260 GlobalsAAResult::getModRefBehavior(const CallBase *Call) {
261   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
262 
263   if (!Call->hasOperandBundles())
264     if (const Function *F = Call->getCalledFunction())
265       if (FunctionInfo *FI = getFunctionInfo(F)) {
266         if (!isModOrRefSet(FI->getModRefInfo()))
267           Min = FMRB_DoesNotAccessMemory;
268         else if (!isModSet(FI->getModRefInfo()))
269           Min = FMRB_OnlyReadsMemory;
270       }
271 
272   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
273 }
274 
275 /// Returns the function info for the function, or null if we don't have
276 /// anything useful to say about it.
277 GlobalsAAResult::FunctionInfo *
278 GlobalsAAResult::getFunctionInfo(const Function *F) {
279   auto I = FunctionInfos.find(F);
280   if (I != FunctionInfos.end())
281     return &I->second;
282   return nullptr;
283 }
284 
285 /// AnalyzeGlobals - Scan through the users of all of the internal
286 /// GlobalValue's in the program.  If none of them have their "address taken"
287 /// (really, their address passed to something nontrivial), record this fact,
288 /// and record the functions that they are used directly in.
289 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
290   SmallPtrSet<Function *, 32> TrackedFunctions;
291   for (Function &F : M)
292     if (F.hasLocalLinkage()) {
293       if (!AnalyzeUsesOfPointer(&F)) {
294         // Remember that we are tracking this global.
295         NonAddressTakenGlobals.insert(&F);
296         TrackedFunctions.insert(&F);
297         Handles.emplace_front(*this, &F);
298         Handles.front().I = Handles.begin();
299         ++NumNonAddrTakenFunctions;
300       } else
301         UnknownFunctionsWithLocalLinkage = true;
302     }
303 
304   SmallPtrSet<Function *, 16> Readers, Writers;
305   for (GlobalVariable &GV : M.globals())
306     if (GV.hasLocalLinkage()) {
307       if (!AnalyzeUsesOfPointer(&GV, &Readers,
308                                 GV.isConstant() ? nullptr : &Writers)) {
309         // Remember that we are tracking this global, and the mod/ref fns
310         NonAddressTakenGlobals.insert(&GV);
311         Handles.emplace_front(*this, &GV);
312         Handles.front().I = Handles.begin();
313 
314         for (Function *Reader : Readers) {
315           if (TrackedFunctions.insert(Reader).second) {
316             Handles.emplace_front(*this, Reader);
317             Handles.front().I = Handles.begin();
318           }
319           FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
320         }
321 
322         if (!GV.isConstant()) // No need to keep track of writers to constants
323           for (Function *Writer : Writers) {
324             if (TrackedFunctions.insert(Writer).second) {
325               Handles.emplace_front(*this, Writer);
326               Handles.front().I = Handles.begin();
327             }
328             FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
329           }
330         ++NumNonAddrTakenGlobalVars;
331 
332         // If this global holds a pointer type, see if it is an indirect global.
333         if (GV.getValueType()->isPointerTy() &&
334             AnalyzeIndirectGlobalMemory(&GV))
335           ++NumIndirectGlobalVars;
336       }
337       Readers.clear();
338       Writers.clear();
339     }
340 }
341 
342 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
343 /// If this is used by anything complex (i.e., the address escapes), return
344 /// true.  Also, while we are at it, keep track of those functions that read and
345 /// write to the value.
346 ///
347 /// If OkayStoreDest is non-null, stores into this global are allowed.
348 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
349                                            SmallPtrSetImpl<Function *> *Readers,
350                                            SmallPtrSetImpl<Function *> *Writers,
351                                            GlobalValue *OkayStoreDest) {
352   if (!V->getType()->isPointerTy())
353     return true;
354 
355   for (Use &U : V->uses()) {
356     User *I = U.getUser();
357     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
358       if (Readers)
359         Readers->insert(LI->getParent()->getParent());
360     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
361       if (V == SI->getOperand(1)) {
362         if (Writers)
363           Writers->insert(SI->getParent()->getParent());
364       } else if (SI->getOperand(1) != OkayStoreDest) {
365         return true; // Storing the pointer
366       }
367     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
368       if (AnalyzeUsesOfPointer(I, Readers, Writers))
369         return true;
370     } else if (Operator::getOpcode(I) == Instruction::BitCast ||
371                Operator::getOpcode(I) == Instruction::AddrSpaceCast) {
372       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
373         return true;
374     } else if (auto *Call = dyn_cast<CallBase>(I)) {
375       // Make sure that this is just the function being called, not that it is
376       // passing into the function.
377       if (Call->isDataOperand(&U)) {
378         // Detect calls to free.
379         if (Call->isArgOperand(&U) &&
380             isFreeCall(I, &GetTLI(*Call->getFunction()))) {
381           if (Writers)
382             Writers->insert(Call->getParent()->getParent());
383         } else {
384           return true; // Argument of an unknown call.
385         }
386       }
387     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
388       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
389         return true; // Allow comparison against null.
390     } else if (Constant *C = dyn_cast<Constant>(I)) {
391       // Ignore constants which don't have any live uses.
392       if (isa<GlobalValue>(C) || C->isConstantUsed())
393         return true;
394     } else {
395       return true;
396     }
397   }
398 
399   return false;
400 }
401 
402 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
403 /// which holds a pointer type.  See if the global always points to non-aliased
404 /// heap memory: that is, all initializers of the globals are allocations, and
405 /// those allocations have no use other than initialization of the global.
406 /// Further, all loads out of GV must directly use the memory, not store the
407 /// pointer somewhere.  If this is true, we consider the memory pointed to by
408 /// GV to be owned by GV and can disambiguate other pointers from it.
409 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
410   // Keep track of values related to the allocation of the memory, f.e. the
411   // value produced by the malloc call and any casts.
412   std::vector<Value *> AllocRelatedValues;
413 
414   // If the initializer is a valid pointer, bail.
415   if (Constant *C = GV->getInitializer())
416     if (!C->isNullValue())
417       return false;
418 
419   // Walk the user list of the global.  If we find anything other than a direct
420   // load or store, bail out.
421   for (User *U : GV->users()) {
422     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
423       // The pointer loaded from the global can only be used in simple ways:
424       // we allow addressing of it and loading storing to it.  We do *not* allow
425       // storing the loaded pointer somewhere else or passing to a function.
426       if (AnalyzeUsesOfPointer(LI))
427         return false; // Loaded pointer escapes.
428       // TODO: Could try some IP mod/ref of the loaded pointer.
429     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
430       // Storing the global itself.
431       if (SI->getOperand(0) == GV)
432         return false;
433 
434       // If storing the null pointer, ignore it.
435       if (isa<ConstantPointerNull>(SI->getOperand(0)))
436         continue;
437 
438       // Check the value being stored.
439       Value *Ptr = getUnderlyingObject(SI->getOperand(0));
440 
441       if (!isAllocLikeFn(Ptr, &GetTLI(*SI->getFunction())))
442         return false; // Too hard to analyze.
443 
444       // Analyze all uses of the allocation.  If any of them are used in a
445       // non-simple way (e.g. stored to another global) bail out.
446       if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
447                                GV))
448         return false; // Loaded pointer escapes.
449 
450       // Remember that this allocation is related to the indirect global.
451       AllocRelatedValues.push_back(Ptr);
452     } else {
453       // Something complex, bail out.
454       return false;
455     }
456   }
457 
458   // Okay, this is an indirect global.  Remember all of the allocations for
459   // this global in AllocsForIndirectGlobals.
460   while (!AllocRelatedValues.empty()) {
461     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
462     Handles.emplace_front(*this, AllocRelatedValues.back());
463     Handles.front().I = Handles.begin();
464     AllocRelatedValues.pop_back();
465   }
466   IndirectGlobals.insert(GV);
467   Handles.emplace_front(*this, GV);
468   Handles.front().I = Handles.begin();
469   return true;
470 }
471 
472 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
473   // We do a bottom-up SCC traversal of the call graph.  In other words, we
474   // visit all callees before callers (leaf-first).
475   unsigned SCCID = 0;
476   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
477     const std::vector<CallGraphNode *> &SCC = *I;
478     assert(!SCC.empty() && "SCC with no functions?");
479 
480     for (auto *CGN : SCC)
481       if (Function *F = CGN->getFunction())
482         FunctionToSCCMap[F] = SCCID;
483     ++SCCID;
484   }
485 }
486 
487 /// AnalyzeCallGraph - At this point, we know the functions where globals are
488 /// immediately stored to and read from.  Propagate this information up the call
489 /// graph to all callers and compute the mod/ref info for all memory for each
490 /// function.
491 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
492   // We do a bottom-up SCC traversal of the call graph.  In other words, we
493   // visit all callees before callers (leaf-first).
494   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
495     const std::vector<CallGraphNode *> &SCC = *I;
496     assert(!SCC.empty() && "SCC with no functions?");
497 
498     Function *F = SCC[0]->getFunction();
499 
500     if (!F || !F->isDefinitionExact()) {
501       // Calls externally or not exact - can't say anything useful. Remove any
502       // existing function records (may have been created when scanning
503       // globals).
504       for (auto *Node : SCC)
505         FunctionInfos.erase(Node->getFunction());
506       continue;
507     }
508 
509     FunctionInfo &FI = FunctionInfos[F];
510     Handles.emplace_front(*this, F);
511     Handles.front().I = Handles.begin();
512     bool KnowNothing = false;
513 
514     // Collect the mod/ref properties due to called functions.  We only compute
515     // one mod-ref set.
516     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
517       if (!F) {
518         KnowNothing = true;
519         break;
520       }
521 
522       if (F->isDeclaration() || F->hasOptNone()) {
523         // Try to get mod/ref behaviour from function attributes.
524         if (F->doesNotAccessMemory()) {
525           // Can't do better than that!
526         } else if (F->onlyReadsMemory()) {
527           FI.addModRefInfo(ModRefInfo::Ref);
528           if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
529             // This function might call back into the module and read a global -
530             // consider every global as possibly being read by this function.
531             FI.setMayReadAnyGlobal();
532         } else {
533           FI.addModRefInfo(ModRefInfo::ModRef);
534           if (!F->onlyAccessesArgMemory())
535             FI.setMayReadAnyGlobal();
536           if (!F->isIntrinsic()) {
537             KnowNothing = true;
538             break;
539           }
540         }
541         continue;
542       }
543 
544       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
545            CI != E && !KnowNothing; ++CI)
546         if (Function *Callee = CI->second->getFunction()) {
547           if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
548             // Propagate function effect up.
549             FI.addFunctionInfo(*CalleeFI);
550           } else {
551             // Can't say anything about it.  However, if it is inside our SCC,
552             // then nothing needs to be done.
553             CallGraphNode *CalleeNode = CG[Callee];
554             if (!is_contained(SCC, CalleeNode))
555               KnowNothing = true;
556           }
557         } else {
558           KnowNothing = true;
559         }
560     }
561 
562     // If we can't say anything useful about this SCC, remove all SCC functions
563     // from the FunctionInfos map.
564     if (KnowNothing) {
565       for (auto *Node : SCC)
566         FunctionInfos.erase(Node->getFunction());
567       continue;
568     }
569 
570     // Scan the function bodies for explicit loads or stores.
571     for (auto *Node : SCC) {
572       if (isModAndRefSet(FI.getModRefInfo()))
573         break; // The mod/ref lattice saturates here.
574 
575       // Don't prove any properties based on the implementation of an optnone
576       // function. Function attributes were already used as a best approximation
577       // above.
578       if (Node->getFunction()->hasOptNone())
579         continue;
580 
581       for (Instruction &I : instructions(Node->getFunction())) {
582         if (isModAndRefSet(FI.getModRefInfo()))
583           break; // The mod/ref lattice saturates here.
584 
585         // We handle calls specially because the graph-relevant aspects are
586         // handled above.
587         if (auto *Call = dyn_cast<CallBase>(&I)) {
588           auto &TLI = GetTLI(*Node->getFunction());
589           if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) {
590             // FIXME: It is completely unclear why this is necessary and not
591             // handled by the above graph code.
592             FI.addModRefInfo(ModRefInfo::ModRef);
593           } else if (Function *Callee = Call->getCalledFunction()) {
594             // The callgraph doesn't include intrinsic calls.
595             if (Callee->isIntrinsic()) {
596               if (isa<DbgInfoIntrinsic>(Call))
597                 // Don't let dbg intrinsics affect alias info.
598                 continue;
599 
600               FunctionModRefBehavior Behaviour =
601                   AAResultBase::getModRefBehavior(Callee);
602               FI.addModRefInfo(createModRefInfo(Behaviour));
603             }
604           }
605           continue;
606         }
607 
608         // All non-call instructions we use the primary predicates for whether
609         // they read or write memory.
610         if (I.mayReadFromMemory())
611           FI.addModRefInfo(ModRefInfo::Ref);
612         if (I.mayWriteToMemory())
613           FI.addModRefInfo(ModRefInfo::Mod);
614       }
615     }
616 
617     if (!isModSet(FI.getModRefInfo()))
618       ++NumReadMemFunctions;
619     if (!isModOrRefSet(FI.getModRefInfo()))
620       ++NumNoMemFunctions;
621 
622     // Finally, now that we know the full effect on this SCC, clone the
623     // information to each function in the SCC.
624     // FI is a reference into FunctionInfos, so copy it now so that it doesn't
625     // get invalidated if DenseMap decides to re-hash.
626     FunctionInfo CachedFI = FI;
627     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
628       FunctionInfos[SCC[i]->getFunction()] = CachedFI;
629   }
630 }
631 
632 // GV is a non-escaping global. V is a pointer address that has been loaded from.
633 // If we can prove that V must escape, we can conclude that a load from V cannot
634 // alias GV.
635 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
636                                                const Value *V,
637                                                int &Depth,
638                                                const DataLayout &DL) {
639   SmallPtrSet<const Value *, 8> Visited;
640   SmallVector<const Value *, 8> Inputs;
641   Visited.insert(V);
642   Inputs.push_back(V);
643   do {
644     const Value *Input = Inputs.pop_back_val();
645 
646     if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
647         isa<InvokeInst>(Input))
648       // Arguments to functions or returns from functions are inherently
649       // escaping, so we can immediately classify those as not aliasing any
650       // non-addr-taken globals.
651       //
652       // (Transitive) loads from a global are also safe - if this aliased
653       // another global, its address would escape, so no alias.
654       continue;
655 
656     // Recurse through a limited number of selects, loads and PHIs. This is an
657     // arbitrary depth of 4, lower numbers could be used to fix compile time
658     // issues if needed, but this is generally expected to be only be important
659     // for small depths.
660     if (++Depth > 4)
661       return false;
662 
663     if (auto *LI = dyn_cast<LoadInst>(Input)) {
664       Inputs.push_back(getUnderlyingObject(LI->getPointerOperand()));
665       continue;
666     }
667     if (auto *SI = dyn_cast<SelectInst>(Input)) {
668       const Value *LHS = getUnderlyingObject(SI->getTrueValue());
669       const Value *RHS = getUnderlyingObject(SI->getFalseValue());
670       if (Visited.insert(LHS).second)
671         Inputs.push_back(LHS);
672       if (Visited.insert(RHS).second)
673         Inputs.push_back(RHS);
674       continue;
675     }
676     if (auto *PN = dyn_cast<PHINode>(Input)) {
677       for (const Value *Op : PN->incoming_values()) {
678         Op = getUnderlyingObject(Op);
679         if (Visited.insert(Op).second)
680           Inputs.push_back(Op);
681       }
682       continue;
683     }
684 
685     return false;
686   } while (!Inputs.empty());
687 
688   // All inputs were known to be no-alias.
689   return true;
690 }
691 
692 // There are particular cases where we can conclude no-alias between
693 // a non-addr-taken global and some other underlying object. Specifically,
694 // a non-addr-taken global is known to not be escaped from any function. It is
695 // also incorrect for a transformation to introduce an escape of a global in
696 // a way that is observable when it was not there previously. One function
697 // being transformed to introduce an escape which could possibly be observed
698 // (via loading from a global or the return value for example) within another
699 // function is never safe. If the observation is made through non-atomic
700 // operations on different threads, it is a data-race and UB. If the
701 // observation is well defined, by being observed the transformation would have
702 // changed program behavior by introducing the observed escape, making it an
703 // invalid transform.
704 //
705 // This property does require that transformations which *temporarily* escape
706 // a global that was not previously escaped, prior to restoring it, cannot rely
707 // on the results of GMR::alias. This seems a reasonable restriction, although
708 // currently there is no way to enforce it. There is also no realistic
709 // optimization pass that would make this mistake. The closest example is
710 // a transformation pass which does reg2mem of SSA values but stores them into
711 // global variables temporarily before restoring the global variable's value.
712 // This could be useful to expose "benign" races for example. However, it seems
713 // reasonable to require that a pass which introduces escapes of global
714 // variables in this way to either not trust AA results while the escape is
715 // active, or to be forced to operate as a module pass that cannot co-exist
716 // with an alias analysis such as GMR.
717 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
718                                                  const Value *V) {
719   // In order to know that the underlying object cannot alias the
720   // non-addr-taken global, we must know that it would have to be an escape.
721   // Thus if the underlying object is a function argument, a load from
722   // a global, or the return of a function, it cannot alias. We can also
723   // recurse through PHI nodes and select nodes provided all of their inputs
724   // resolve to one of these known-escaping roots.
725   SmallPtrSet<const Value *, 8> Visited;
726   SmallVector<const Value *, 8> Inputs;
727   Visited.insert(V);
728   Inputs.push_back(V);
729   int Depth = 0;
730   do {
731     const Value *Input = Inputs.pop_back_val();
732 
733     if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
734       // If one input is the very global we're querying against, then we can't
735       // conclude no-alias.
736       if (InputGV == GV)
737         return false;
738 
739       // Distinct GlobalVariables never alias, unless overriden or zero-sized.
740       // FIXME: The condition can be refined, but be conservative for now.
741       auto *GVar = dyn_cast<GlobalVariable>(GV);
742       auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
743       if (GVar && InputGVar &&
744           !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
745           !GVar->isInterposable() && !InputGVar->isInterposable()) {
746         Type *GVType = GVar->getInitializer()->getType();
747         Type *InputGVType = InputGVar->getInitializer()->getType();
748         if (GVType->isSized() && InputGVType->isSized() &&
749             (DL.getTypeAllocSize(GVType) > 0) &&
750             (DL.getTypeAllocSize(InputGVType) > 0))
751           continue;
752       }
753 
754       // Conservatively return false, even though we could be smarter
755       // (e.g. look through GlobalAliases).
756       return false;
757     }
758 
759     if (isa<Argument>(Input) || isa<CallInst>(Input) ||
760         isa<InvokeInst>(Input)) {
761       // Arguments to functions or returns from functions are inherently
762       // escaping, so we can immediately classify those as not aliasing any
763       // non-addr-taken globals.
764       continue;
765     }
766 
767     // Recurse through a limited number of selects, loads and PHIs. This is an
768     // arbitrary depth of 4, lower numbers could be used to fix compile time
769     // issues if needed, but this is generally expected to be only be important
770     // for small depths.
771     if (++Depth > 4)
772       return false;
773 
774     if (auto *LI = dyn_cast<LoadInst>(Input)) {
775       // A pointer loaded from a global would have been captured, and we know
776       // that the global is non-escaping, so no alias.
777       const Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
778       if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
779         // The load does not alias with GV.
780         continue;
781       // Otherwise, a load could come from anywhere, so bail.
782       return false;
783     }
784     if (auto *SI = dyn_cast<SelectInst>(Input)) {
785       const Value *LHS = getUnderlyingObject(SI->getTrueValue());
786       const Value *RHS = getUnderlyingObject(SI->getFalseValue());
787       if (Visited.insert(LHS).second)
788         Inputs.push_back(LHS);
789       if (Visited.insert(RHS).second)
790         Inputs.push_back(RHS);
791       continue;
792     }
793     if (auto *PN = dyn_cast<PHINode>(Input)) {
794       for (const Value *Op : PN->incoming_values()) {
795         Op = getUnderlyingObject(Op);
796         if (Visited.insert(Op).second)
797           Inputs.push_back(Op);
798       }
799       continue;
800     }
801 
802     // FIXME: It would be good to handle other obvious no-alias cases here, but
803     // it isn't clear how to do so reasonably without building a small version
804     // of BasicAA into this code. We could recurse into AAResultBase::alias
805     // here but that seems likely to go poorly as we're inside the
806     // implementation of such a query. Until then, just conservatively return
807     // false.
808     return false;
809   } while (!Inputs.empty());
810 
811   // If all the inputs to V were definitively no-alias, then V is no-alias.
812   return true;
813 }
814 
815 bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA,
816                                  ModuleAnalysisManager::Invalidator &) {
817   // Check whether the analysis has been explicitly invalidated. Otherwise, it's
818   // stateless and remains preserved.
819   auto PAC = PA.getChecker<GlobalsAA>();
820   return !PAC.preservedWhenStateless();
821 }
822 
823 /// alias - If one of the pointers is to a global that we are tracking, and the
824 /// other is some random pointer, we know there cannot be an alias, because the
825 /// address of the global isn't taken.
826 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
827                                    const MemoryLocation &LocB,
828                                    AAQueryInfo &AAQI) {
829   // Get the base object these pointers point to.
830   const Value *UV1 =
831       getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis());
832   const Value *UV2 =
833       getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis());
834 
835   // If either of the underlying values is a global, they may be non-addr-taken
836   // globals, which we can answer queries about.
837   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
838   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
839   if (GV1 || GV2) {
840     // If the global's address is taken, pretend we don't know it's a pointer to
841     // the global.
842     if (GV1 && !NonAddressTakenGlobals.count(GV1))
843       GV1 = nullptr;
844     if (GV2 && !NonAddressTakenGlobals.count(GV2))
845       GV2 = nullptr;
846 
847     // If the two pointers are derived from two different non-addr-taken
848     // globals we know these can't alias.
849     if (GV1 && GV2 && GV1 != GV2)
850       return AliasResult::NoAlias;
851 
852     // If one is and the other isn't, it isn't strictly safe but we can fake
853     // this result if necessary for performance. This does not appear to be
854     // a common problem in practice.
855     if (EnableUnsafeGlobalsModRefAliasResults)
856       if ((GV1 || GV2) && GV1 != GV2)
857         return AliasResult::NoAlias;
858 
859     // Check for a special case where a non-escaping global can be used to
860     // conclude no-alias.
861     if ((GV1 || GV2) && GV1 != GV2) {
862       const GlobalValue *GV = GV1 ? GV1 : GV2;
863       const Value *UV = GV1 ? UV2 : UV1;
864       if (isNonEscapingGlobalNoAlias(GV, UV))
865         return AliasResult::NoAlias;
866     }
867 
868     // Otherwise if they are both derived from the same addr-taken global, we
869     // can't know the two accesses don't overlap.
870   }
871 
872   // These pointers may be based on the memory owned by an indirect global.  If
873   // so, we may be able to handle this.  First check to see if the base pointer
874   // is a direct load from an indirect global.
875   GV1 = GV2 = nullptr;
876   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
877     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
878       if (IndirectGlobals.count(GV))
879         GV1 = GV;
880   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
881     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
882       if (IndirectGlobals.count(GV))
883         GV2 = GV;
884 
885   // These pointers may also be from an allocation for the indirect global.  If
886   // so, also handle them.
887   if (!GV1)
888     GV1 = AllocsForIndirectGlobals.lookup(UV1);
889   if (!GV2)
890     GV2 = AllocsForIndirectGlobals.lookup(UV2);
891 
892   // Now that we know whether the two pointers are related to indirect globals,
893   // use this to disambiguate the pointers. If the pointers are based on
894   // different indirect globals they cannot alias.
895   if (GV1 && GV2 && GV1 != GV2)
896     return AliasResult::NoAlias;
897 
898   // If one is based on an indirect global and the other isn't, it isn't
899   // strictly safe but we can fake this result if necessary for performance.
900   // This does not appear to be a common problem in practice.
901   if (EnableUnsafeGlobalsModRefAliasResults)
902     if ((GV1 || GV2) && GV1 != GV2)
903       return AliasResult::NoAlias;
904 
905   return AAResultBase::alias(LocA, LocB, AAQI);
906 }
907 
908 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
909                                                      const GlobalValue *GV,
910                                                      AAQueryInfo &AAQI) {
911   if (Call->doesNotAccessMemory())
912     return ModRefInfo::NoModRef;
913   ModRefInfo ConservativeResult =
914       Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
915 
916   // Iterate through all the arguments to the called function. If any argument
917   // is based on GV, return the conservative result.
918   for (auto &A : Call->args()) {
919     SmallVector<const Value*, 4> Objects;
920     getUnderlyingObjects(A, Objects);
921 
922     // All objects must be identified.
923     if (!all_of(Objects, isIdentifiedObject) &&
924         // Try ::alias to see if all objects are known not to alias GV.
925         !all_of(Objects, [&](const Value *V) {
926           return this->alias(MemoryLocation::getBeforeOrAfter(V),
927                              MemoryLocation::getBeforeOrAfter(GV),
928                              AAQI) == AliasResult::NoAlias;
929         }))
930       return ConservativeResult;
931 
932     if (is_contained(Objects, GV))
933       return ConservativeResult;
934   }
935 
936   // We identified all objects in the argument list, and none of them were GV.
937   return ModRefInfo::NoModRef;
938 }
939 
940 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
941                                           const MemoryLocation &Loc,
942                                           AAQueryInfo &AAQI) {
943   ModRefInfo Known = ModRefInfo::ModRef;
944 
945   // If we are asking for mod/ref info of a direct call with a pointer to a
946   // global we are tracking, return information if we have it.
947   if (const GlobalValue *GV =
948           dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr)))
949     // If GV is internal to this IR and there is no function with local linkage
950     // that has had their address taken, keep looking for a tighter ModRefInfo.
951     if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage)
952       if (const Function *F = Call->getCalledFunction())
953         if (NonAddressTakenGlobals.count(GV))
954           if (const FunctionInfo *FI = getFunctionInfo(F))
955             Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
956                                 getModRefInfoForArgument(Call, GV, AAQI));
957 
958   if (!isModOrRefSet(Known))
959     return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
960   return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI));
961 }
962 
963 GlobalsAAResult::GlobalsAAResult(
964     const DataLayout &DL,
965     std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
966     : AAResultBase(), DL(DL), GetTLI(std::move(GetTLI)) {}
967 
968 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
969     : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)),
970       NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
971       IndirectGlobals(std::move(Arg.IndirectGlobals)),
972       AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
973       FunctionInfos(std::move(Arg.FunctionInfos)),
974       Handles(std::move(Arg.Handles)) {
975   // Update the parent for each DeletionCallbackHandle.
976   for (auto &H : Handles) {
977     assert(H.GAR == &Arg);
978     H.GAR = this;
979   }
980 }
981 
982 GlobalsAAResult::~GlobalsAAResult() {}
983 
984 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule(
985     Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
986     CallGraph &CG) {
987   GlobalsAAResult Result(M.getDataLayout(), GetTLI);
988 
989   // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
990   Result.CollectSCCMembership(CG);
991 
992   // Find non-addr taken globals.
993   Result.AnalyzeGlobals(M);
994 
995   // Propagate on CG.
996   Result.AnalyzeCallGraph(CG, M);
997 
998   return Result;
999 }
1000 
1001 AnalysisKey GlobalsAA::Key;
1002 
1003 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
1004   FunctionAnalysisManager &FAM =
1005       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1006   auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1007     return FAM.getResult<TargetLibraryAnalysis>(F);
1008   };
1009   return GlobalsAAResult::analyzeModule(M, GetTLI,
1010                                         AM.getResult<CallGraphAnalysis>(M));
1011 }
1012 
1013 char GlobalsAAWrapperPass::ID = 0;
1014 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
1015                       "Globals Alias Analysis", false, true)
1016 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1017 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1018 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
1019                     "Globals Alias Analysis", false, true)
1020 
1021 ModulePass *llvm::createGlobalsAAWrapperPass() {
1022   return new GlobalsAAWrapperPass();
1023 }
1024 
1025 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
1026   initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1027 }
1028 
1029 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1030   auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
1031     return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1032   };
1033   Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1034       M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1035   return false;
1036 }
1037 
1038 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1039   Result.reset();
1040   return false;
1041 }
1042 
1043 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1044   AU.setPreservesAll();
1045   AU.addRequired<CallGraphWrapperPass>();
1046   AU.addRequired<TargetLibraryInfoWrapperPass>();
1047 }
1048