1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This simple pass provides alias and mod/ref information for global values 10 // that do not have their address taken, and keeps track of whether functions 11 // read or write memory (are "pure"). For this simple (but very common) case, 12 // we can provide pretty accurate and useful information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/GlobalsModRef.h" 17 #include "llvm/ADT/SCCIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/CallGraph.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/PassManager.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "globalsmodref-aa" 35 36 STATISTIC(NumNonAddrTakenGlobalVars, 37 "Number of global vars without address taken"); 38 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 39 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 40 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 41 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 42 43 // An option to enable unsafe alias results from the GlobalsModRef analysis. 44 // When enabled, GlobalsModRef will provide no-alias results which in extremely 45 // rare cases may not be conservatively correct. In particular, in the face of 46 // transforms which cause asymmetry between how effective getUnderlyingObject 47 // is for two pointers, it may produce incorrect results. 48 // 49 // These unsafe results have been returned by GMR for many years without 50 // causing significant issues in the wild and so we provide a mechanism to 51 // re-enable them for users of LLVM that have a particular performance 52 // sensitivity and no known issues. The option also makes it easy to evaluate 53 // the performance impact of these results. 54 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 55 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 56 57 /// The mod/ref information collected for a particular function. 58 /// 59 /// We collect information about mod/ref behavior of a function here, both in 60 /// general and as pertains to specific globals. We only have this detailed 61 /// information when we know *something* useful about the behavior. If we 62 /// saturate to fully general mod/ref, we remove the info for the function. 63 class GlobalsAAResult::FunctionInfo { 64 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 65 66 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 67 /// should provide this much alignment at least, but this makes it clear we 68 /// specifically rely on this amount of alignment. 69 struct alignas(8) AlignedMap { 70 AlignedMap() = default; 71 AlignedMap(const AlignedMap &Arg) = default; 72 GlobalInfoMapType Map; 73 }; 74 75 /// Pointer traits for our aligned map. 76 struct AlignedMapPointerTraits { 77 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 78 static inline AlignedMap *getFromVoidPointer(void *P) { 79 return (AlignedMap *)P; 80 } 81 static constexpr int NumLowBitsAvailable = 3; 82 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 83 "AlignedMap insufficiently aligned to have enough low bits."); 84 }; 85 86 /// The bit that flags that this function may read any global. This is 87 /// chosen to mix together with ModRefInfo bits. 88 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 89 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so 90 /// this remains correct. 91 enum { MayReadAnyGlobal = 4 }; 92 93 /// Checks to document the invariants of the bit packing here. 94 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::ModRef)) == 0, 95 "ModRef and the MayReadAnyGlobal flag bits overlap."); 96 static_assert(((MayReadAnyGlobal | static_cast<int>(ModRefInfo::ModRef)) >> 97 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 98 "Insufficient low bits to store our flag and ModRef info."); 99 100 public: 101 FunctionInfo() = default; 102 ~FunctionInfo() { 103 delete Info.getPointer(); 104 } 105 // Spell out the copy ond move constructors and assignment operators to get 106 // deep copy semantics and correct move semantics in the face of the 107 // pointer-int pair. 108 FunctionInfo(const FunctionInfo &Arg) 109 : Info(nullptr, Arg.Info.getInt()) { 110 if (const auto *ArgPtr = Arg.Info.getPointer()) 111 Info.setPointer(new AlignedMap(*ArgPtr)); 112 } 113 FunctionInfo(FunctionInfo &&Arg) 114 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 115 Arg.Info.setPointerAndInt(nullptr, 0); 116 } 117 FunctionInfo &operator=(const FunctionInfo &RHS) { 118 delete Info.getPointer(); 119 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 120 if (const auto *RHSPtr = RHS.Info.getPointer()) 121 Info.setPointer(new AlignedMap(*RHSPtr)); 122 return *this; 123 } 124 FunctionInfo &operator=(FunctionInfo &&RHS) { 125 delete Info.getPointer(); 126 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 127 RHS.Info.setPointerAndInt(nullptr, 0); 128 return *this; 129 } 130 131 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return 132 /// the corresponding ModRefInfo. 133 ModRefInfo globalClearMayReadAnyGlobal(int I) const { 134 return ModRefInfo(I & static_cast<int>(ModRefInfo::ModRef)); 135 } 136 137 /// Returns the \c ModRefInfo info for this function. 138 ModRefInfo getModRefInfo() const { 139 return globalClearMayReadAnyGlobal(Info.getInt()); 140 } 141 142 /// Adds new \c ModRefInfo for this function to its state. 143 void addModRefInfo(ModRefInfo NewMRI) { 144 Info.setInt(Info.getInt() | static_cast<int>(NewMRI)); 145 } 146 147 /// Returns whether this function may read any global variable, and we don't 148 /// know which global. 149 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 150 151 /// Sets this function as potentially reading from any global. 152 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 153 154 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 155 /// global, which may be more precise than the general information above. 156 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 157 ModRefInfo GlobalMRI = 158 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 159 if (AlignedMap *P = Info.getPointer()) { 160 auto I = P->Map.find(&GV); 161 if (I != P->Map.end()) 162 GlobalMRI |= I->second; 163 } 164 return GlobalMRI; 165 } 166 167 /// Add mod/ref info from another function into ours, saturating towards 168 /// ModRef. 169 void addFunctionInfo(const FunctionInfo &FI) { 170 addModRefInfo(FI.getModRefInfo()); 171 172 if (FI.mayReadAnyGlobal()) 173 setMayReadAnyGlobal(); 174 175 if (AlignedMap *P = FI.Info.getPointer()) 176 for (const auto &G : P->Map) 177 addModRefInfoForGlobal(*G.first, G.second); 178 } 179 180 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 181 AlignedMap *P = Info.getPointer(); 182 if (!P) { 183 P = new AlignedMap(); 184 Info.setPointer(P); 185 } 186 auto &GlobalMRI = P->Map[&GV]; 187 GlobalMRI |= NewMRI; 188 } 189 190 /// Clear a global's ModRef info. Should be used when a global is being 191 /// deleted. 192 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 193 if (AlignedMap *P = Info.getPointer()) 194 P->Map.erase(&GV); 195 } 196 197 private: 198 /// All of the information is encoded into a single pointer, with a three bit 199 /// integer in the low three bits. The high bit provides a flag for when this 200 /// function may read any global. The low two bits are the ModRefInfo. And 201 /// the pointer, when non-null, points to a map from GlobalValue to 202 /// ModRefInfo specific to that GlobalValue. 203 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 204 }; 205 206 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 207 Value *V = getValPtr(); 208 if (auto *F = dyn_cast<Function>(V)) 209 GAR->FunctionInfos.erase(F); 210 211 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 212 if (GAR->NonAddressTakenGlobals.erase(GV)) { 213 // This global might be an indirect global. If so, remove it and 214 // remove any AllocRelatedValues for it. 215 if (GAR->IndirectGlobals.erase(GV)) { 216 // Remove any entries in AllocsForIndirectGlobals for this global. 217 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 218 E = GAR->AllocsForIndirectGlobals.end(); 219 I != E; ++I) 220 if (I->second == GV) 221 GAR->AllocsForIndirectGlobals.erase(I); 222 } 223 224 // Scan the function info we have collected and remove this global 225 // from all of them. 226 for (auto &FIPair : GAR->FunctionInfos) 227 FIPair.second.eraseModRefInfoForGlobal(*GV); 228 } 229 } 230 231 // If this is an allocation related to an indirect global, remove it. 232 GAR->AllocsForIndirectGlobals.erase(V); 233 234 // And clear out the handle. 235 setValPtr(nullptr); 236 GAR->Handles.erase(I); 237 // This object is now destroyed! 238 } 239 240 MemoryEffects GlobalsAAResult::getMemoryEffects(const Function *F) { 241 if (FunctionInfo *FI = getFunctionInfo(F)) 242 return MemoryEffects(FI->getModRefInfo()); 243 244 return MemoryEffects::unknown(); 245 } 246 247 /// Returns the function info for the function, or null if we don't have 248 /// anything useful to say about it. 249 GlobalsAAResult::FunctionInfo * 250 GlobalsAAResult::getFunctionInfo(const Function *F) { 251 auto I = FunctionInfos.find(F); 252 if (I != FunctionInfos.end()) 253 return &I->second; 254 return nullptr; 255 } 256 257 /// AnalyzeGlobals - Scan through the users of all of the internal 258 /// GlobalValue's in the program. If none of them have their "address taken" 259 /// (really, their address passed to something nontrivial), record this fact, 260 /// and record the functions that they are used directly in. 261 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 262 SmallPtrSet<Function *, 32> TrackedFunctions; 263 for (Function &F : M) 264 if (F.hasLocalLinkage()) { 265 if (!AnalyzeUsesOfPointer(&F)) { 266 // Remember that we are tracking this global. 267 NonAddressTakenGlobals.insert(&F); 268 TrackedFunctions.insert(&F); 269 Handles.emplace_front(*this, &F); 270 Handles.front().I = Handles.begin(); 271 ++NumNonAddrTakenFunctions; 272 } else 273 UnknownFunctionsWithLocalLinkage = true; 274 } 275 276 SmallPtrSet<Function *, 16> Readers, Writers; 277 for (GlobalVariable &GV : M.globals()) 278 if (GV.hasLocalLinkage()) { 279 if (!AnalyzeUsesOfPointer(&GV, &Readers, 280 GV.isConstant() ? nullptr : &Writers)) { 281 // Remember that we are tracking this global, and the mod/ref fns 282 NonAddressTakenGlobals.insert(&GV); 283 Handles.emplace_front(*this, &GV); 284 Handles.front().I = Handles.begin(); 285 286 for (Function *Reader : Readers) { 287 if (TrackedFunctions.insert(Reader).second) { 288 Handles.emplace_front(*this, Reader); 289 Handles.front().I = Handles.begin(); 290 } 291 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 292 } 293 294 if (!GV.isConstant()) // No need to keep track of writers to constants 295 for (Function *Writer : Writers) { 296 if (TrackedFunctions.insert(Writer).second) { 297 Handles.emplace_front(*this, Writer); 298 Handles.front().I = Handles.begin(); 299 } 300 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 301 } 302 ++NumNonAddrTakenGlobalVars; 303 304 // If this global holds a pointer type, see if it is an indirect global. 305 if (GV.getValueType()->isPointerTy() && 306 AnalyzeIndirectGlobalMemory(&GV)) 307 ++NumIndirectGlobalVars; 308 } 309 Readers.clear(); 310 Writers.clear(); 311 } 312 } 313 314 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 315 /// If this is used by anything complex (i.e., the address escapes), return 316 /// true. Also, while we are at it, keep track of those functions that read and 317 /// write to the value. 318 /// 319 /// If OkayStoreDest is non-null, stores into this global are allowed. 320 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 321 SmallPtrSetImpl<Function *> *Readers, 322 SmallPtrSetImpl<Function *> *Writers, 323 GlobalValue *OkayStoreDest) { 324 if (!V->getType()->isPointerTy()) 325 return true; 326 327 for (Use &U : V->uses()) { 328 User *I = U.getUser(); 329 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 330 if (Readers) 331 Readers->insert(LI->getParent()->getParent()); 332 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 333 if (V == SI->getOperand(1)) { 334 if (Writers) 335 Writers->insert(SI->getParent()->getParent()); 336 } else if (SI->getOperand(1) != OkayStoreDest) { 337 return true; // Storing the pointer 338 } 339 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 340 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 341 return true; 342 } else if (Operator::getOpcode(I) == Instruction::BitCast || 343 Operator::getOpcode(I) == Instruction::AddrSpaceCast) { 344 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 345 return true; 346 } else if (auto *Call = dyn_cast<CallBase>(I)) { 347 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 348 if (II->getIntrinsicID() == Intrinsic::threadlocal_address && 349 V == II->getArgOperand(0)) { 350 if (AnalyzeUsesOfPointer(II, Readers, Writers)) 351 return true; 352 continue; 353 } 354 } 355 // Make sure that this is just the function being called, not that it is 356 // passing into the function. 357 if (Call->isDataOperand(&U)) { 358 // Detect calls to free. 359 if (Call->isArgOperand(&U) && 360 getFreedOperand(Call, &GetTLI(*Call->getFunction())) == U) { 361 if (Writers) 362 Writers->insert(Call->getParent()->getParent()); 363 } else { 364 // In general, we return true for unknown calls, but there are 365 // some simple checks that we can do for functions that 366 // will never call back into the module. 367 auto *F = Call->getCalledFunction(); 368 // TODO: we should be able to remove isDeclaration() check 369 // and let the function body analysis check for captures, 370 // and collect the mod-ref effects. This information will 371 // be later propagated via the call graph. 372 if (!F || !F->isDeclaration()) 373 return true; 374 // Note that the NoCallback check here is a little bit too 375 // conservative. If there are no captures of the global 376 // in the module, then this call may not be a capture even 377 // if it does not have NoCallback. 378 if (!Call->hasFnAttr(Attribute::NoCallback) || 379 !Call->isArgOperand(&U) || 380 !Call->doesNotCapture(Call->getArgOperandNo(&U))) 381 return true; 382 383 // Conservatively, assume the call reads and writes the global. 384 // We could use memory attributes to make it more precise. 385 if (Readers) 386 Readers->insert(Call->getParent()->getParent()); 387 if (Writers) 388 Writers->insert(Call->getParent()->getParent()); 389 } 390 } 391 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 392 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 393 return true; // Allow comparison against null. 394 } else if (Constant *C = dyn_cast<Constant>(I)) { 395 // Ignore constants which don't have any live uses. 396 if (isa<GlobalValue>(C) || C->isConstantUsed()) 397 return true; 398 } else { 399 return true; 400 } 401 } 402 403 return false; 404 } 405 406 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 407 /// which holds a pointer type. See if the global always points to non-aliased 408 /// heap memory: that is, all initializers of the globals store a value known 409 /// to be obtained via a noalias return function call which have no other use. 410 /// Further, all loads out of GV must directly use the memory, not store the 411 /// pointer somewhere. If this is true, we consider the memory pointed to by 412 /// GV to be owned by GV and can disambiguate other pointers from it. 413 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 414 // Keep track of values related to the allocation of the memory, f.e. the 415 // value produced by the noalias call and any casts. 416 std::vector<Value *> AllocRelatedValues; 417 418 // If the initializer is a valid pointer, bail. 419 if (Constant *C = GV->getInitializer()) 420 if (!C->isNullValue()) 421 return false; 422 423 // Walk the user list of the global. If we find anything other than a direct 424 // load or store, bail out. 425 for (User *U : GV->users()) { 426 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 427 // The pointer loaded from the global can only be used in simple ways: 428 // we allow addressing of it and loading storing to it. We do *not* allow 429 // storing the loaded pointer somewhere else or passing to a function. 430 if (AnalyzeUsesOfPointer(LI)) 431 return false; // Loaded pointer escapes. 432 // TODO: Could try some IP mod/ref of the loaded pointer. 433 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 434 // Storing the global itself. 435 if (SI->getOperand(0) == GV) 436 return false; 437 438 // If storing the null pointer, ignore it. 439 if (isa<ConstantPointerNull>(SI->getOperand(0))) 440 continue; 441 442 // Check the value being stored. 443 Value *Ptr = getUnderlyingObject(SI->getOperand(0)); 444 445 if (!isNoAliasCall(Ptr)) 446 return false; // Too hard to analyze. 447 448 // Analyze all uses of the allocation. If any of them are used in a 449 // non-simple way (e.g. stored to another global) bail out. 450 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 451 GV)) 452 return false; // Loaded pointer escapes. 453 454 // Remember that this allocation is related to the indirect global. 455 AllocRelatedValues.push_back(Ptr); 456 } else { 457 // Something complex, bail out. 458 return false; 459 } 460 } 461 462 // Okay, this is an indirect global. Remember all of the allocations for 463 // this global in AllocsForIndirectGlobals. 464 while (!AllocRelatedValues.empty()) { 465 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 466 Handles.emplace_front(*this, AllocRelatedValues.back()); 467 Handles.front().I = Handles.begin(); 468 AllocRelatedValues.pop_back(); 469 } 470 IndirectGlobals.insert(GV); 471 Handles.emplace_front(*this, GV); 472 Handles.front().I = Handles.begin(); 473 return true; 474 } 475 476 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 477 // We do a bottom-up SCC traversal of the call graph. In other words, we 478 // visit all callees before callers (leaf-first). 479 unsigned SCCID = 0; 480 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 481 const std::vector<CallGraphNode *> &SCC = *I; 482 assert(!SCC.empty() && "SCC with no functions?"); 483 484 for (auto *CGN : SCC) 485 if (Function *F = CGN->getFunction()) 486 FunctionToSCCMap[F] = SCCID; 487 ++SCCID; 488 } 489 } 490 491 /// AnalyzeCallGraph - At this point, we know the functions where globals are 492 /// immediately stored to and read from. Propagate this information up the call 493 /// graph to all callers and compute the mod/ref info for all memory for each 494 /// function. 495 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 496 // We do a bottom-up SCC traversal of the call graph. In other words, we 497 // visit all callees before callers (leaf-first). 498 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 499 const std::vector<CallGraphNode *> &SCC = *I; 500 assert(!SCC.empty() && "SCC with no functions?"); 501 502 Function *F = SCC[0]->getFunction(); 503 504 if (!F || !F->isDefinitionExact()) { 505 // Calls externally or not exact - can't say anything useful. Remove any 506 // existing function records (may have been created when scanning 507 // globals). 508 for (auto *Node : SCC) 509 FunctionInfos.erase(Node->getFunction()); 510 continue; 511 } 512 513 FunctionInfo &FI = FunctionInfos[F]; 514 Handles.emplace_front(*this, F); 515 Handles.front().I = Handles.begin(); 516 bool KnowNothing = false; 517 518 // Intrinsics, like any other synchronizing function, can make effects 519 // of other threads visible. Without nosync we know nothing really. 520 // Similarly, if `nocallback` is missing the function, or intrinsic, 521 // can call into the module arbitrarily. If both are set the function 522 // has an effect but will not interact with accesses of internal 523 // globals inside the module. We are conservative here for optnone 524 // functions, might not be necessary. 525 auto MaySyncOrCallIntoModule = [](const Function &F) { 526 return !F.isDeclaration() || !F.hasNoSync() || 527 !F.hasFnAttribute(Attribute::NoCallback); 528 }; 529 530 // Collect the mod/ref properties due to called functions. We only compute 531 // one mod-ref set. 532 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 533 if (!F) { 534 KnowNothing = true; 535 break; 536 } 537 538 if (F->isDeclaration() || F->hasOptNone()) { 539 // Try to get mod/ref behaviour from function attributes. 540 if (F->doesNotAccessMemory()) { 541 // Can't do better than that! 542 } else if (F->onlyReadsMemory()) { 543 FI.addModRefInfo(ModRefInfo::Ref); 544 if (!F->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F)) 545 // This function might call back into the module and read a global - 546 // consider every global as possibly being read by this function. 547 FI.setMayReadAnyGlobal(); 548 } else { 549 FI.addModRefInfo(ModRefInfo::ModRef); 550 if (!F->onlyAccessesArgMemory()) 551 FI.setMayReadAnyGlobal(); 552 if (MaySyncOrCallIntoModule(*F)) { 553 KnowNothing = true; 554 break; 555 } 556 } 557 continue; 558 } 559 560 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 561 CI != E && !KnowNothing; ++CI) 562 if (Function *Callee = CI->second->getFunction()) { 563 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 564 // Propagate function effect up. 565 FI.addFunctionInfo(*CalleeFI); 566 } else { 567 // Can't say anything about it. However, if it is inside our SCC, 568 // then nothing needs to be done. 569 CallGraphNode *CalleeNode = CG[Callee]; 570 if (!is_contained(SCC, CalleeNode)) 571 KnowNothing = true; 572 } 573 } else { 574 KnowNothing = true; 575 } 576 } 577 578 // If we can't say anything useful about this SCC, remove all SCC functions 579 // from the FunctionInfos map. 580 if (KnowNothing) { 581 for (auto *Node : SCC) 582 FunctionInfos.erase(Node->getFunction()); 583 continue; 584 } 585 586 // Scan the function bodies for explicit loads or stores. 587 for (auto *Node : SCC) { 588 if (isModAndRefSet(FI.getModRefInfo())) 589 break; // The mod/ref lattice saturates here. 590 591 // Don't prove any properties based on the implementation of an optnone 592 // function. Function attributes were already used as a best approximation 593 // above. 594 if (Node->getFunction()->hasOptNone()) 595 continue; 596 597 for (Instruction &I : instructions(Node->getFunction())) { 598 if (isModAndRefSet(FI.getModRefInfo())) 599 break; // The mod/ref lattice saturates here. 600 601 // We handle calls specially because the graph-relevant aspects are 602 // handled above. 603 if (isa<CallBase>(&I)) 604 continue; 605 606 // All non-call instructions we use the primary predicates for whether 607 // they read or write memory. 608 if (I.mayReadFromMemory()) 609 FI.addModRefInfo(ModRefInfo::Ref); 610 if (I.mayWriteToMemory()) 611 FI.addModRefInfo(ModRefInfo::Mod); 612 } 613 } 614 615 if (!isModSet(FI.getModRefInfo())) 616 ++NumReadMemFunctions; 617 if (!isModOrRefSet(FI.getModRefInfo())) 618 ++NumNoMemFunctions; 619 620 // Finally, now that we know the full effect on this SCC, clone the 621 // information to each function in the SCC. 622 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 623 // get invalidated if DenseMap decides to re-hash. 624 FunctionInfo CachedFI = FI; 625 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 626 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 627 } 628 } 629 630 // GV is a non-escaping global. V is a pointer address that has been loaded from. 631 // If we can prove that V must escape, we can conclude that a load from V cannot 632 // alias GV. 633 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 634 const Value *V, 635 int &Depth, 636 const DataLayout &DL) { 637 SmallPtrSet<const Value *, 8> Visited; 638 SmallVector<const Value *, 8> Inputs; 639 Visited.insert(V); 640 Inputs.push_back(V); 641 do { 642 const Value *Input = Inputs.pop_back_val(); 643 644 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 645 isa<InvokeInst>(Input)) 646 // Arguments to functions or returns from functions are inherently 647 // escaping, so we can immediately classify those as not aliasing any 648 // non-addr-taken globals. 649 // 650 // (Transitive) loads from a global are also safe - if this aliased 651 // another global, its address would escape, so no alias. 652 continue; 653 654 // Recurse through a limited number of selects, loads and PHIs. This is an 655 // arbitrary depth of 4, lower numbers could be used to fix compile time 656 // issues if needed, but this is generally expected to be only be important 657 // for small depths. 658 if (++Depth > 4) 659 return false; 660 661 if (auto *LI = dyn_cast<LoadInst>(Input)) { 662 Inputs.push_back(getUnderlyingObject(LI->getPointerOperand())); 663 continue; 664 } 665 if (auto *SI = dyn_cast<SelectInst>(Input)) { 666 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 667 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 668 if (Visited.insert(LHS).second) 669 Inputs.push_back(LHS); 670 if (Visited.insert(RHS).second) 671 Inputs.push_back(RHS); 672 continue; 673 } 674 if (auto *PN = dyn_cast<PHINode>(Input)) { 675 for (const Value *Op : PN->incoming_values()) { 676 Op = getUnderlyingObject(Op); 677 if (Visited.insert(Op).second) 678 Inputs.push_back(Op); 679 } 680 continue; 681 } 682 683 return false; 684 } while (!Inputs.empty()); 685 686 // All inputs were known to be no-alias. 687 return true; 688 } 689 690 // There are particular cases where we can conclude no-alias between 691 // a non-addr-taken global and some other underlying object. Specifically, 692 // a non-addr-taken global is known to not be escaped from any function. It is 693 // also incorrect for a transformation to introduce an escape of a global in 694 // a way that is observable when it was not there previously. One function 695 // being transformed to introduce an escape which could possibly be observed 696 // (via loading from a global or the return value for example) within another 697 // function is never safe. If the observation is made through non-atomic 698 // operations on different threads, it is a data-race and UB. If the 699 // observation is well defined, by being observed the transformation would have 700 // changed program behavior by introducing the observed escape, making it an 701 // invalid transform. 702 // 703 // This property does require that transformations which *temporarily* escape 704 // a global that was not previously escaped, prior to restoring it, cannot rely 705 // on the results of GMR::alias. This seems a reasonable restriction, although 706 // currently there is no way to enforce it. There is also no realistic 707 // optimization pass that would make this mistake. The closest example is 708 // a transformation pass which does reg2mem of SSA values but stores them into 709 // global variables temporarily before restoring the global variable's value. 710 // This could be useful to expose "benign" races for example. However, it seems 711 // reasonable to require that a pass which introduces escapes of global 712 // variables in this way to either not trust AA results while the escape is 713 // active, or to be forced to operate as a module pass that cannot co-exist 714 // with an alias analysis such as GMR. 715 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 716 const Value *V) { 717 // In order to know that the underlying object cannot alias the 718 // non-addr-taken global, we must know that it would have to be an escape. 719 // Thus if the underlying object is a function argument, a load from 720 // a global, or the return of a function, it cannot alias. We can also 721 // recurse through PHI nodes and select nodes provided all of their inputs 722 // resolve to one of these known-escaping roots. 723 SmallPtrSet<const Value *, 8> Visited; 724 SmallVector<const Value *, 8> Inputs; 725 Visited.insert(V); 726 Inputs.push_back(V); 727 int Depth = 0; 728 do { 729 const Value *Input = Inputs.pop_back_val(); 730 731 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 732 // If one input is the very global we're querying against, then we can't 733 // conclude no-alias. 734 if (InputGV == GV) 735 return false; 736 737 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 738 // FIXME: The condition can be refined, but be conservative for now. 739 auto *GVar = dyn_cast<GlobalVariable>(GV); 740 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 741 if (GVar && InputGVar && 742 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 743 !GVar->isInterposable() && !InputGVar->isInterposable()) { 744 Type *GVType = GVar->getInitializer()->getType(); 745 Type *InputGVType = InputGVar->getInitializer()->getType(); 746 if (GVType->isSized() && InputGVType->isSized() && 747 (DL.getTypeAllocSize(GVType) > 0) && 748 (DL.getTypeAllocSize(InputGVType) > 0)) 749 continue; 750 } 751 752 // Conservatively return false, even though we could be smarter 753 // (e.g. look through GlobalAliases). 754 return false; 755 } 756 757 if (isa<Argument>(Input) || isa<CallInst>(Input) || 758 isa<InvokeInst>(Input)) { 759 // Arguments to functions or returns from functions are inherently 760 // escaping, so we can immediately classify those as not aliasing any 761 // non-addr-taken globals. 762 continue; 763 } 764 765 // Recurse through a limited number of selects, loads and PHIs. This is an 766 // arbitrary depth of 4, lower numbers could be used to fix compile time 767 // issues if needed, but this is generally expected to be only be important 768 // for small depths. 769 if (++Depth > 4) 770 return false; 771 772 if (auto *LI = dyn_cast<LoadInst>(Input)) { 773 // A pointer loaded from a global would have been captured, and we know 774 // that the global is non-escaping, so no alias. 775 const Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); 776 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 777 // The load does not alias with GV. 778 continue; 779 // Otherwise, a load could come from anywhere, so bail. 780 return false; 781 } 782 if (auto *SI = dyn_cast<SelectInst>(Input)) { 783 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 784 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 785 if (Visited.insert(LHS).second) 786 Inputs.push_back(LHS); 787 if (Visited.insert(RHS).second) 788 Inputs.push_back(RHS); 789 continue; 790 } 791 if (auto *PN = dyn_cast<PHINode>(Input)) { 792 for (const Value *Op : PN->incoming_values()) { 793 Op = getUnderlyingObject(Op); 794 if (Visited.insert(Op).second) 795 Inputs.push_back(Op); 796 } 797 continue; 798 } 799 800 // FIXME: It would be good to handle other obvious no-alias cases here, but 801 // it isn't clear how to do so reasonably without building a small version 802 // of BasicAA into this code. 803 return false; 804 } while (!Inputs.empty()); 805 806 // If all the inputs to V were definitively no-alias, then V is no-alias. 807 return true; 808 } 809 810 bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA, 811 ModuleAnalysisManager::Invalidator &) { 812 // Check whether the analysis has been explicitly invalidated. Otherwise, it's 813 // stateless and remains preserved. 814 auto PAC = PA.getChecker<GlobalsAA>(); 815 return !PAC.preservedWhenStateless(); 816 } 817 818 /// alias - If one of the pointers is to a global that we are tracking, and the 819 /// other is some random pointer, we know there cannot be an alias, because the 820 /// address of the global isn't taken. 821 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 822 const MemoryLocation &LocB, 823 AAQueryInfo &AAQI, const Instruction *) { 824 // Get the base object these pointers point to. 825 const Value *UV1 = 826 getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis()); 827 const Value *UV2 = 828 getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis()); 829 830 // If either of the underlying values is a global, they may be non-addr-taken 831 // globals, which we can answer queries about. 832 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 833 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 834 if (GV1 || GV2) { 835 // If the global's address is taken, pretend we don't know it's a pointer to 836 // the global. 837 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 838 GV1 = nullptr; 839 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 840 GV2 = nullptr; 841 842 // If the two pointers are derived from two different non-addr-taken 843 // globals we know these can't alias. 844 if (GV1 && GV2 && GV1 != GV2) 845 return AliasResult::NoAlias; 846 847 // If one is and the other isn't, it isn't strictly safe but we can fake 848 // this result if necessary for performance. This does not appear to be 849 // a common problem in practice. 850 if (EnableUnsafeGlobalsModRefAliasResults) 851 if ((GV1 || GV2) && GV1 != GV2) 852 return AliasResult::NoAlias; 853 854 // Check for a special case where a non-escaping global can be used to 855 // conclude no-alias. 856 if ((GV1 || GV2) && GV1 != GV2) { 857 const GlobalValue *GV = GV1 ? GV1 : GV2; 858 const Value *UV = GV1 ? UV2 : UV1; 859 if (isNonEscapingGlobalNoAlias(GV, UV)) 860 return AliasResult::NoAlias; 861 } 862 863 // Otherwise if they are both derived from the same addr-taken global, we 864 // can't know the two accesses don't overlap. 865 } 866 867 // These pointers may be based on the memory owned by an indirect global. If 868 // so, we may be able to handle this. First check to see if the base pointer 869 // is a direct load from an indirect global. 870 GV1 = GV2 = nullptr; 871 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 872 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 873 if (IndirectGlobals.count(GV)) 874 GV1 = GV; 875 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 876 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 877 if (IndirectGlobals.count(GV)) 878 GV2 = GV; 879 880 // These pointers may also be from an allocation for the indirect global. If 881 // so, also handle them. 882 if (!GV1) 883 GV1 = AllocsForIndirectGlobals.lookup(UV1); 884 if (!GV2) 885 GV2 = AllocsForIndirectGlobals.lookup(UV2); 886 887 // Now that we know whether the two pointers are related to indirect globals, 888 // use this to disambiguate the pointers. If the pointers are based on 889 // different indirect globals they cannot alias. 890 if (GV1 && GV2 && GV1 != GV2) 891 return AliasResult::NoAlias; 892 893 // If one is based on an indirect global and the other isn't, it isn't 894 // strictly safe but we can fake this result if necessary for performance. 895 // This does not appear to be a common problem in practice. 896 if (EnableUnsafeGlobalsModRefAliasResults) 897 if ((GV1 || GV2) && GV1 != GV2) 898 return AliasResult::NoAlias; 899 900 return AliasResult::MayAlias; 901 } 902 903 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, 904 const GlobalValue *GV, 905 AAQueryInfo &AAQI) { 906 if (Call->doesNotAccessMemory()) 907 return ModRefInfo::NoModRef; 908 ModRefInfo ConservativeResult = 909 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 910 911 // Iterate through all the arguments to the called function. If any argument 912 // is based on GV, return the conservative result. 913 for (const auto &A : Call->args()) { 914 SmallVector<const Value*, 4> Objects; 915 getUnderlyingObjects(A, Objects); 916 917 // All objects must be identified. 918 if (!all_of(Objects, isIdentifiedObject) && 919 // Try ::alias to see if all objects are known not to alias GV. 920 !all_of(Objects, [&](const Value *V) { 921 return this->alias(MemoryLocation::getBeforeOrAfter(V), 922 MemoryLocation::getBeforeOrAfter(GV), AAQI, 923 nullptr) == AliasResult::NoAlias; 924 })) 925 return ConservativeResult; 926 927 if (is_contained(Objects, GV)) 928 return ConservativeResult; 929 } 930 931 // We identified all objects in the argument list, and none of them were GV. 932 return ModRefInfo::NoModRef; 933 } 934 935 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, 936 const MemoryLocation &Loc, 937 AAQueryInfo &AAQI) { 938 ModRefInfo Known = ModRefInfo::ModRef; 939 940 // If we are asking for mod/ref info of a direct call with a pointer to a 941 // global we are tracking, return information if we have it. 942 if (const GlobalValue *GV = 943 dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr))) 944 // If GV is internal to this IR and there is no function with local linkage 945 // that has had their address taken, keep looking for a tighter ModRefInfo. 946 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage) 947 if (const Function *F = Call->getCalledFunction()) 948 if (NonAddressTakenGlobals.count(GV)) 949 if (const FunctionInfo *FI = getFunctionInfo(F)) 950 Known = FI->getModRefInfoForGlobal(*GV) | 951 getModRefInfoForArgument(Call, GV, AAQI); 952 953 return Known; 954 } 955 956 GlobalsAAResult::GlobalsAAResult( 957 const DataLayout &DL, 958 std::function<const TargetLibraryInfo &(Function &F)> GetTLI) 959 : DL(DL), GetTLI(std::move(GetTLI)) {} 960 961 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 962 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)), 963 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 964 IndirectGlobals(std::move(Arg.IndirectGlobals)), 965 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 966 FunctionInfos(std::move(Arg.FunctionInfos)), 967 Handles(std::move(Arg.Handles)) { 968 // Update the parent for each DeletionCallbackHandle. 969 for (auto &H : Handles) { 970 assert(H.GAR == &Arg); 971 H.GAR = this; 972 } 973 } 974 975 GlobalsAAResult::~GlobalsAAResult() = default; 976 977 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule( 978 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 979 CallGraph &CG) { 980 GlobalsAAResult Result(M.getDataLayout(), GetTLI); 981 982 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 983 Result.CollectSCCMembership(CG); 984 985 // Find non-addr taken globals. 986 Result.AnalyzeGlobals(M); 987 988 // Propagate on CG. 989 Result.AnalyzeCallGraph(CG, M); 990 991 return Result; 992 } 993 994 AnalysisKey GlobalsAA::Key; 995 996 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 997 FunctionAnalysisManager &FAM = 998 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 999 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1000 return FAM.getResult<TargetLibraryAnalysis>(F); 1001 }; 1002 return GlobalsAAResult::analyzeModule(M, GetTLI, 1003 AM.getResult<CallGraphAnalysis>(M)); 1004 } 1005 1006 PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M, 1007 ModuleAnalysisManager &AM) { 1008 if (auto *G = AM.getCachedResult<GlobalsAA>(M)) { 1009 auto &CG = AM.getResult<CallGraphAnalysis>(M); 1010 G->NonAddressTakenGlobals.clear(); 1011 G->UnknownFunctionsWithLocalLinkage = false; 1012 G->IndirectGlobals.clear(); 1013 G->AllocsForIndirectGlobals.clear(); 1014 G->FunctionInfos.clear(); 1015 G->FunctionToSCCMap.clear(); 1016 G->Handles.clear(); 1017 G->CollectSCCMembership(CG); 1018 G->AnalyzeGlobals(M); 1019 G->AnalyzeCallGraph(CG, M); 1020 } 1021 return PreservedAnalyses::all(); 1022 } 1023 1024 char GlobalsAAWrapperPass::ID = 0; 1025 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 1026 "Globals Alias Analysis", false, true) 1027 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1028 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1029 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 1030 "Globals Alias Analysis", false, true) 1031 1032 ModulePass *llvm::createGlobalsAAWrapperPass() { 1033 return new GlobalsAAWrapperPass(); 1034 } 1035 1036 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 1037 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1038 } 1039 1040 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 1041 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 1042 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1043 }; 1044 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 1045 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 1046 return false; 1047 } 1048 1049 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 1050 Result.reset(); 1051 return false; 1052 } 1053 1054 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1055 AU.setPreservesAll(); 1056 AU.addRequired<CallGraphWrapperPass>(); 1057 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1058 } 1059