1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This simple pass provides alias and mod/ref information for global values 10 // that do not have their address taken, and keeps track of whether functions 11 // read or write memory (are "pure"). For this simple (but very common) case, 12 // we can provide pretty accurate and useful information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/GlobalsModRef.h" 17 #include "llvm/ADT/SCCIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/CallGraph.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/PassManager.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "globalsmodref-aa" 35 36 STATISTIC(NumNonAddrTakenGlobalVars, 37 "Number of global vars without address taken"); 38 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 39 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 40 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 41 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 42 43 // An option to enable unsafe alias results from the GlobalsModRef analysis. 44 // When enabled, GlobalsModRef will provide no-alias results which in extremely 45 // rare cases may not be conservatively correct. In particular, in the face of 46 // transforms which cause asymmetry between how effective getUnderlyingObject 47 // is for two pointers, it may produce incorrect results. 48 // 49 // These unsafe results have been returned by GMR for many years without 50 // causing significant issues in the wild and so we provide a mechanism to 51 // re-enable them for users of LLVM that have a particular performance 52 // sensitivity and no known issues. The option also makes it easy to evaluate 53 // the performance impact of these results. 54 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 55 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 56 57 /// The mod/ref information collected for a particular function. 58 /// 59 /// We collect information about mod/ref behavior of a function here, both in 60 /// general and as pertains to specific globals. We only have this detailed 61 /// information when we know *something* useful about the behavior. If we 62 /// saturate to fully general mod/ref, we remove the info for the function. 63 class GlobalsAAResult::FunctionInfo { 64 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 65 66 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 67 /// should provide this much alignment at least, but this makes it clear we 68 /// specifically rely on this amount of alignment. 69 struct alignas(8) AlignedMap { 70 AlignedMap() = default; 71 AlignedMap(const AlignedMap &Arg) = default; 72 GlobalInfoMapType Map; 73 }; 74 75 /// Pointer traits for our aligned map. 76 struct AlignedMapPointerTraits { 77 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 78 static inline AlignedMap *getFromVoidPointer(void *P) { 79 return (AlignedMap *)P; 80 } 81 static constexpr int NumLowBitsAvailable = 3; 82 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 83 "AlignedMap insufficiently aligned to have enough low bits."); 84 }; 85 86 /// The bit that flags that this function may read any global. This is 87 /// chosen to mix together with ModRefInfo bits. 88 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 89 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so 90 /// this remains correct. 91 enum { MayReadAnyGlobal = 4 }; 92 93 /// Checks to document the invariants of the bit packing here. 94 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::ModRef)) == 0, 95 "ModRef and the MayReadAnyGlobal flag bits overlap."); 96 static_assert(((MayReadAnyGlobal | static_cast<int>(ModRefInfo::ModRef)) >> 97 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 98 "Insufficient low bits to store our flag and ModRef info."); 99 100 public: 101 FunctionInfo() = default; 102 ~FunctionInfo() { 103 delete Info.getPointer(); 104 } 105 // Spell out the copy ond move constructors and assignment operators to get 106 // deep copy semantics and correct move semantics in the face of the 107 // pointer-int pair. 108 FunctionInfo(const FunctionInfo &Arg) 109 : Info(nullptr, Arg.Info.getInt()) { 110 if (const auto *ArgPtr = Arg.Info.getPointer()) 111 Info.setPointer(new AlignedMap(*ArgPtr)); 112 } 113 FunctionInfo(FunctionInfo &&Arg) 114 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 115 Arg.Info.setPointerAndInt(nullptr, 0); 116 } 117 FunctionInfo &operator=(const FunctionInfo &RHS) { 118 delete Info.getPointer(); 119 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 120 if (const auto *RHSPtr = RHS.Info.getPointer()) 121 Info.setPointer(new AlignedMap(*RHSPtr)); 122 return *this; 123 } 124 FunctionInfo &operator=(FunctionInfo &&RHS) { 125 delete Info.getPointer(); 126 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 127 RHS.Info.setPointerAndInt(nullptr, 0); 128 return *this; 129 } 130 131 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return 132 /// the corresponding ModRefInfo. 133 ModRefInfo globalClearMayReadAnyGlobal(int I) const { 134 return ModRefInfo(I & static_cast<int>(ModRefInfo::ModRef)); 135 } 136 137 /// Returns the \c ModRefInfo info for this function. 138 ModRefInfo getModRefInfo() const { 139 return globalClearMayReadAnyGlobal(Info.getInt()); 140 } 141 142 /// Adds new \c ModRefInfo for this function to its state. 143 void addModRefInfo(ModRefInfo NewMRI) { 144 Info.setInt(Info.getInt() | static_cast<int>(NewMRI)); 145 } 146 147 /// Returns whether this function may read any global variable, and we don't 148 /// know which global. 149 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 150 151 /// Sets this function as potentially reading from any global. 152 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 153 154 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 155 /// global, which may be more precise than the general information above. 156 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 157 ModRefInfo GlobalMRI = 158 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 159 if (AlignedMap *P = Info.getPointer()) { 160 auto I = P->Map.find(&GV); 161 if (I != P->Map.end()) 162 GlobalMRI |= I->second; 163 } 164 return GlobalMRI; 165 } 166 167 /// Add mod/ref info from another function into ours, saturating towards 168 /// ModRef. 169 void addFunctionInfo(const FunctionInfo &FI) { 170 addModRefInfo(FI.getModRefInfo()); 171 172 if (FI.mayReadAnyGlobal()) 173 setMayReadAnyGlobal(); 174 175 if (AlignedMap *P = FI.Info.getPointer()) 176 for (const auto &G : P->Map) 177 addModRefInfoForGlobal(*G.first, G.second); 178 } 179 180 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 181 AlignedMap *P = Info.getPointer(); 182 if (!P) { 183 P = new AlignedMap(); 184 Info.setPointer(P); 185 } 186 auto &GlobalMRI = P->Map[&GV]; 187 GlobalMRI |= NewMRI; 188 } 189 190 /// Clear a global's ModRef info. Should be used when a global is being 191 /// deleted. 192 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 193 if (AlignedMap *P = Info.getPointer()) 194 P->Map.erase(&GV); 195 } 196 197 private: 198 /// All of the information is encoded into a single pointer, with a three bit 199 /// integer in the low three bits. The high bit provides a flag for when this 200 /// function may read any global. The low two bits are the ModRefInfo. And 201 /// the pointer, when non-null, points to a map from GlobalValue to 202 /// ModRefInfo specific to that GlobalValue. 203 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 204 }; 205 206 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 207 Value *V = getValPtr(); 208 if (auto *F = dyn_cast<Function>(V)) 209 GAR->FunctionInfos.erase(F); 210 211 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 212 if (GAR->NonAddressTakenGlobals.erase(GV)) { 213 // This global might be an indirect global. If so, remove it and 214 // remove any AllocRelatedValues for it. 215 if (GAR->IndirectGlobals.erase(GV)) { 216 // Remove any entries in AllocsForIndirectGlobals for this global. 217 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 218 E = GAR->AllocsForIndirectGlobals.end(); 219 I != E; ++I) 220 if (I->second == GV) 221 GAR->AllocsForIndirectGlobals.erase(I); 222 } 223 224 // Scan the function info we have collected and remove this global 225 // from all of them. 226 for (auto &FIPair : GAR->FunctionInfos) 227 FIPair.second.eraseModRefInfoForGlobal(*GV); 228 } 229 } 230 231 // If this is an allocation related to an indirect global, remove it. 232 GAR->AllocsForIndirectGlobals.erase(V); 233 234 // And clear out the handle. 235 setValPtr(nullptr); 236 GAR->Handles.erase(I); 237 // This object is now destroyed! 238 } 239 240 MemoryEffects GlobalsAAResult::getMemoryEffects(const Function *F) { 241 if (FunctionInfo *FI = getFunctionInfo(F)) 242 return MemoryEffects(FI->getModRefInfo()); 243 244 return MemoryEffects::unknown(); 245 } 246 247 /// Returns the function info for the function, or null if we don't have 248 /// anything useful to say about it. 249 GlobalsAAResult::FunctionInfo * 250 GlobalsAAResult::getFunctionInfo(const Function *F) { 251 auto I = FunctionInfos.find(F); 252 if (I != FunctionInfos.end()) 253 return &I->second; 254 return nullptr; 255 } 256 257 /// AnalyzeGlobals - Scan through the users of all of the internal 258 /// GlobalValue's in the program. If none of them have their "address taken" 259 /// (really, their address passed to something nontrivial), record this fact, 260 /// and record the functions that they are used directly in. 261 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 262 SmallPtrSet<Function *, 32> TrackedFunctions; 263 for (Function &F : M) 264 if (F.hasLocalLinkage()) { 265 if (!AnalyzeUsesOfPointer(&F)) { 266 // Remember that we are tracking this global. 267 NonAddressTakenGlobals.insert(&F); 268 TrackedFunctions.insert(&F); 269 Handles.emplace_front(*this, &F); 270 Handles.front().I = Handles.begin(); 271 ++NumNonAddrTakenFunctions; 272 } else 273 UnknownFunctionsWithLocalLinkage = true; 274 } 275 276 SmallPtrSet<Function *, 16> Readers, Writers; 277 for (GlobalVariable &GV : M.globals()) 278 if (GV.hasLocalLinkage()) { 279 if (!AnalyzeUsesOfPointer(&GV, &Readers, 280 GV.isConstant() ? nullptr : &Writers)) { 281 // Remember that we are tracking this global, and the mod/ref fns 282 NonAddressTakenGlobals.insert(&GV); 283 Handles.emplace_front(*this, &GV); 284 Handles.front().I = Handles.begin(); 285 286 for (Function *Reader : Readers) { 287 if (TrackedFunctions.insert(Reader).second) { 288 Handles.emplace_front(*this, Reader); 289 Handles.front().I = Handles.begin(); 290 } 291 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 292 } 293 294 if (!GV.isConstant()) // No need to keep track of writers to constants 295 for (Function *Writer : Writers) { 296 if (TrackedFunctions.insert(Writer).second) { 297 Handles.emplace_front(*this, Writer); 298 Handles.front().I = Handles.begin(); 299 } 300 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 301 } 302 ++NumNonAddrTakenGlobalVars; 303 304 // If this global holds a pointer type, see if it is an indirect global. 305 if (GV.getValueType()->isPointerTy() && 306 AnalyzeIndirectGlobalMemory(&GV)) 307 ++NumIndirectGlobalVars; 308 } 309 Readers.clear(); 310 Writers.clear(); 311 } 312 } 313 314 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 315 /// If this is used by anything complex (i.e., the address escapes), return 316 /// true. Also, while we are at it, keep track of those functions that read and 317 /// write to the value. 318 /// 319 /// If OkayStoreDest is non-null, stores into this global are allowed. 320 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 321 SmallPtrSetImpl<Function *> *Readers, 322 SmallPtrSetImpl<Function *> *Writers, 323 GlobalValue *OkayStoreDest) { 324 if (!V->getType()->isPointerTy()) 325 return true; 326 327 for (Use &U : V->uses()) { 328 User *I = U.getUser(); 329 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 330 if (Readers) 331 Readers->insert(LI->getParent()->getParent()); 332 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 333 if (V == SI->getOperand(1)) { 334 if (Writers) 335 Writers->insert(SI->getParent()->getParent()); 336 } else if (SI->getOperand(1) != OkayStoreDest) { 337 return true; // Storing the pointer 338 } 339 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 340 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 341 return true; 342 } else if (Operator::getOpcode(I) == Instruction::BitCast || 343 Operator::getOpcode(I) == Instruction::AddrSpaceCast) { 344 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 345 return true; 346 } else if (auto *Call = dyn_cast<CallBase>(I)) { 347 // Make sure that this is just the function being called, not that it is 348 // passing into the function. 349 if (Call->isDataOperand(&U)) { 350 // Detect calls to free. 351 if (Call->isArgOperand(&U) && 352 getFreedOperand(Call, &GetTLI(*Call->getFunction())) == U) { 353 if (Writers) 354 Writers->insert(Call->getParent()->getParent()); 355 } else { 356 // In general, we return true for unknown calls, but there are 357 // some simple checks that we can do for functions that 358 // will never call back into the module. 359 auto *F = Call->getCalledFunction(); 360 // TODO: we should be able to remove isDeclaration() check 361 // and let the function body analysis check for captures, 362 // and collect the mod-ref effects. This information will 363 // be later propagated via the call graph. 364 if (!F || !F->isDeclaration()) 365 return true; 366 // Note that the NoCallback check here is a little bit too 367 // conservative. If there are no captures of the global 368 // in the module, then this call may not be a capture even 369 // if it does not have NoCallback. 370 if (!Call->hasFnAttr(Attribute::NoCallback) || 371 !Call->isArgOperand(&U) || 372 !Call->doesNotCapture(Call->getArgOperandNo(&U))) 373 return true; 374 375 // Conservatively, assume the call reads and writes the global. 376 // We could use memory attributes to make it more precise. 377 if (Readers) 378 Readers->insert(Call->getParent()->getParent()); 379 if (Writers) 380 Writers->insert(Call->getParent()->getParent()); 381 } 382 } 383 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 384 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 385 return true; // Allow comparison against null. 386 } else if (Constant *C = dyn_cast<Constant>(I)) { 387 // Ignore constants which don't have any live uses. 388 if (isa<GlobalValue>(C) || C->isConstantUsed()) 389 return true; 390 } else { 391 return true; 392 } 393 } 394 395 return false; 396 } 397 398 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 399 /// which holds a pointer type. See if the global always points to non-aliased 400 /// heap memory: that is, all initializers of the globals store a value known 401 /// to be obtained via a noalias return function call which have no other use. 402 /// Further, all loads out of GV must directly use the memory, not store the 403 /// pointer somewhere. If this is true, we consider the memory pointed to by 404 /// GV to be owned by GV and can disambiguate other pointers from it. 405 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 406 // Keep track of values related to the allocation of the memory, f.e. the 407 // value produced by the noalias call and any casts. 408 std::vector<Value *> AllocRelatedValues; 409 410 // If the initializer is a valid pointer, bail. 411 if (Constant *C = GV->getInitializer()) 412 if (!C->isNullValue()) 413 return false; 414 415 // Walk the user list of the global. If we find anything other than a direct 416 // load or store, bail out. 417 for (User *U : GV->users()) { 418 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 419 // The pointer loaded from the global can only be used in simple ways: 420 // we allow addressing of it and loading storing to it. We do *not* allow 421 // storing the loaded pointer somewhere else or passing to a function. 422 if (AnalyzeUsesOfPointer(LI)) 423 return false; // Loaded pointer escapes. 424 // TODO: Could try some IP mod/ref of the loaded pointer. 425 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 426 // Storing the global itself. 427 if (SI->getOperand(0) == GV) 428 return false; 429 430 // If storing the null pointer, ignore it. 431 if (isa<ConstantPointerNull>(SI->getOperand(0))) 432 continue; 433 434 // Check the value being stored. 435 Value *Ptr = getUnderlyingObject(SI->getOperand(0)); 436 437 if (!isNoAliasCall(Ptr)) 438 return false; // Too hard to analyze. 439 440 // Analyze all uses of the allocation. If any of them are used in a 441 // non-simple way (e.g. stored to another global) bail out. 442 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 443 GV)) 444 return false; // Loaded pointer escapes. 445 446 // Remember that this allocation is related to the indirect global. 447 AllocRelatedValues.push_back(Ptr); 448 } else { 449 // Something complex, bail out. 450 return false; 451 } 452 } 453 454 // Okay, this is an indirect global. Remember all of the allocations for 455 // this global in AllocsForIndirectGlobals. 456 while (!AllocRelatedValues.empty()) { 457 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 458 Handles.emplace_front(*this, AllocRelatedValues.back()); 459 Handles.front().I = Handles.begin(); 460 AllocRelatedValues.pop_back(); 461 } 462 IndirectGlobals.insert(GV); 463 Handles.emplace_front(*this, GV); 464 Handles.front().I = Handles.begin(); 465 return true; 466 } 467 468 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 469 // We do a bottom-up SCC traversal of the call graph. In other words, we 470 // visit all callees before callers (leaf-first). 471 unsigned SCCID = 0; 472 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 473 const std::vector<CallGraphNode *> &SCC = *I; 474 assert(!SCC.empty() && "SCC with no functions?"); 475 476 for (auto *CGN : SCC) 477 if (Function *F = CGN->getFunction()) 478 FunctionToSCCMap[F] = SCCID; 479 ++SCCID; 480 } 481 } 482 483 /// AnalyzeCallGraph - At this point, we know the functions where globals are 484 /// immediately stored to and read from. Propagate this information up the call 485 /// graph to all callers and compute the mod/ref info for all memory for each 486 /// function. 487 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 488 // We do a bottom-up SCC traversal of the call graph. In other words, we 489 // visit all callees before callers (leaf-first). 490 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 491 const std::vector<CallGraphNode *> &SCC = *I; 492 assert(!SCC.empty() && "SCC with no functions?"); 493 494 Function *F = SCC[0]->getFunction(); 495 496 if (!F || !F->isDefinitionExact()) { 497 // Calls externally or not exact - can't say anything useful. Remove any 498 // existing function records (may have been created when scanning 499 // globals). 500 for (auto *Node : SCC) 501 FunctionInfos.erase(Node->getFunction()); 502 continue; 503 } 504 505 FunctionInfo &FI = FunctionInfos[F]; 506 Handles.emplace_front(*this, F); 507 Handles.front().I = Handles.begin(); 508 bool KnowNothing = false; 509 510 // Intrinsics, like any other synchronizing function, can make effects 511 // of other threads visible. Without nosync we know nothing really. 512 // Similarly, if `nocallback` is missing the function, or intrinsic, 513 // can call into the module arbitrarily. If both are set the function 514 // has an effect but will not interact with accesses of internal 515 // globals inside the module. We are conservative here for optnone 516 // functions, might not be necessary. 517 auto MaySyncOrCallIntoModule = [](const Function &F) { 518 return !F.isDeclaration() || !F.hasNoSync() || 519 !F.hasFnAttribute(Attribute::NoCallback); 520 }; 521 522 // Collect the mod/ref properties due to called functions. We only compute 523 // one mod-ref set. 524 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 525 if (!F) { 526 KnowNothing = true; 527 break; 528 } 529 530 if (F->isDeclaration() || F->hasOptNone()) { 531 // Try to get mod/ref behaviour from function attributes. 532 if (F->doesNotAccessMemory()) { 533 // Can't do better than that! 534 } else if (F->onlyReadsMemory()) { 535 FI.addModRefInfo(ModRefInfo::Ref); 536 if (!F->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F)) 537 // This function might call back into the module and read a global - 538 // consider every global as possibly being read by this function. 539 FI.setMayReadAnyGlobal(); 540 } else { 541 FI.addModRefInfo(ModRefInfo::ModRef); 542 if (!F->onlyAccessesArgMemory()) 543 FI.setMayReadAnyGlobal(); 544 if (MaySyncOrCallIntoModule(*F)) { 545 KnowNothing = true; 546 break; 547 } 548 } 549 continue; 550 } 551 552 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 553 CI != E && !KnowNothing; ++CI) 554 if (Function *Callee = CI->second->getFunction()) { 555 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 556 // Propagate function effect up. 557 FI.addFunctionInfo(*CalleeFI); 558 } else { 559 // Can't say anything about it. However, if it is inside our SCC, 560 // then nothing needs to be done. 561 CallGraphNode *CalleeNode = CG[Callee]; 562 if (!is_contained(SCC, CalleeNode)) 563 KnowNothing = true; 564 } 565 } else { 566 KnowNothing = true; 567 } 568 } 569 570 // If we can't say anything useful about this SCC, remove all SCC functions 571 // from the FunctionInfos map. 572 if (KnowNothing) { 573 for (auto *Node : SCC) 574 FunctionInfos.erase(Node->getFunction()); 575 continue; 576 } 577 578 // Scan the function bodies for explicit loads or stores. 579 for (auto *Node : SCC) { 580 if (isModAndRefSet(FI.getModRefInfo())) 581 break; // The mod/ref lattice saturates here. 582 583 // Don't prove any properties based on the implementation of an optnone 584 // function. Function attributes were already used as a best approximation 585 // above. 586 if (Node->getFunction()->hasOptNone()) 587 continue; 588 589 for (Instruction &I : instructions(Node->getFunction())) { 590 if (isModAndRefSet(FI.getModRefInfo())) 591 break; // The mod/ref lattice saturates here. 592 593 // We handle calls specially because the graph-relevant aspects are 594 // handled above. 595 if (isa<CallBase>(&I)) 596 continue; 597 598 // All non-call instructions we use the primary predicates for whether 599 // they read or write memory. 600 if (I.mayReadFromMemory()) 601 FI.addModRefInfo(ModRefInfo::Ref); 602 if (I.mayWriteToMemory()) 603 FI.addModRefInfo(ModRefInfo::Mod); 604 } 605 } 606 607 if (!isModSet(FI.getModRefInfo())) 608 ++NumReadMemFunctions; 609 if (!isModOrRefSet(FI.getModRefInfo())) 610 ++NumNoMemFunctions; 611 612 // Finally, now that we know the full effect on this SCC, clone the 613 // information to each function in the SCC. 614 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 615 // get invalidated if DenseMap decides to re-hash. 616 FunctionInfo CachedFI = FI; 617 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 618 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 619 } 620 } 621 622 // GV is a non-escaping global. V is a pointer address that has been loaded from. 623 // If we can prove that V must escape, we can conclude that a load from V cannot 624 // alias GV. 625 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 626 const Value *V, 627 int &Depth, 628 const DataLayout &DL) { 629 SmallPtrSet<const Value *, 8> Visited; 630 SmallVector<const Value *, 8> Inputs; 631 Visited.insert(V); 632 Inputs.push_back(V); 633 do { 634 const Value *Input = Inputs.pop_back_val(); 635 636 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 637 isa<InvokeInst>(Input)) 638 // Arguments to functions or returns from functions are inherently 639 // escaping, so we can immediately classify those as not aliasing any 640 // non-addr-taken globals. 641 // 642 // (Transitive) loads from a global are also safe - if this aliased 643 // another global, its address would escape, so no alias. 644 continue; 645 646 // Recurse through a limited number of selects, loads and PHIs. This is an 647 // arbitrary depth of 4, lower numbers could be used to fix compile time 648 // issues if needed, but this is generally expected to be only be important 649 // for small depths. 650 if (++Depth > 4) 651 return false; 652 653 if (auto *LI = dyn_cast<LoadInst>(Input)) { 654 Inputs.push_back(getUnderlyingObject(LI->getPointerOperand())); 655 continue; 656 } 657 if (auto *SI = dyn_cast<SelectInst>(Input)) { 658 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 659 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 660 if (Visited.insert(LHS).second) 661 Inputs.push_back(LHS); 662 if (Visited.insert(RHS).second) 663 Inputs.push_back(RHS); 664 continue; 665 } 666 if (auto *PN = dyn_cast<PHINode>(Input)) { 667 for (const Value *Op : PN->incoming_values()) { 668 Op = getUnderlyingObject(Op); 669 if (Visited.insert(Op).second) 670 Inputs.push_back(Op); 671 } 672 continue; 673 } 674 675 return false; 676 } while (!Inputs.empty()); 677 678 // All inputs were known to be no-alias. 679 return true; 680 } 681 682 // There are particular cases where we can conclude no-alias between 683 // a non-addr-taken global and some other underlying object. Specifically, 684 // a non-addr-taken global is known to not be escaped from any function. It is 685 // also incorrect for a transformation to introduce an escape of a global in 686 // a way that is observable when it was not there previously. One function 687 // being transformed to introduce an escape which could possibly be observed 688 // (via loading from a global or the return value for example) within another 689 // function is never safe. If the observation is made through non-atomic 690 // operations on different threads, it is a data-race and UB. If the 691 // observation is well defined, by being observed the transformation would have 692 // changed program behavior by introducing the observed escape, making it an 693 // invalid transform. 694 // 695 // This property does require that transformations which *temporarily* escape 696 // a global that was not previously escaped, prior to restoring it, cannot rely 697 // on the results of GMR::alias. This seems a reasonable restriction, although 698 // currently there is no way to enforce it. There is also no realistic 699 // optimization pass that would make this mistake. The closest example is 700 // a transformation pass which does reg2mem of SSA values but stores them into 701 // global variables temporarily before restoring the global variable's value. 702 // This could be useful to expose "benign" races for example. However, it seems 703 // reasonable to require that a pass which introduces escapes of global 704 // variables in this way to either not trust AA results while the escape is 705 // active, or to be forced to operate as a module pass that cannot co-exist 706 // with an alias analysis such as GMR. 707 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 708 const Value *V) { 709 // In order to know that the underlying object cannot alias the 710 // non-addr-taken global, we must know that it would have to be an escape. 711 // Thus if the underlying object is a function argument, a load from 712 // a global, or the return of a function, it cannot alias. We can also 713 // recurse through PHI nodes and select nodes provided all of their inputs 714 // resolve to one of these known-escaping roots. 715 SmallPtrSet<const Value *, 8> Visited; 716 SmallVector<const Value *, 8> Inputs; 717 Visited.insert(V); 718 Inputs.push_back(V); 719 int Depth = 0; 720 do { 721 const Value *Input = Inputs.pop_back_val(); 722 723 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 724 // If one input is the very global we're querying against, then we can't 725 // conclude no-alias. 726 if (InputGV == GV) 727 return false; 728 729 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 730 // FIXME: The condition can be refined, but be conservative for now. 731 auto *GVar = dyn_cast<GlobalVariable>(GV); 732 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 733 if (GVar && InputGVar && 734 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 735 !GVar->isInterposable() && !InputGVar->isInterposable()) { 736 Type *GVType = GVar->getInitializer()->getType(); 737 Type *InputGVType = InputGVar->getInitializer()->getType(); 738 if (GVType->isSized() && InputGVType->isSized() && 739 (DL.getTypeAllocSize(GVType) > 0) && 740 (DL.getTypeAllocSize(InputGVType) > 0)) 741 continue; 742 } 743 744 // Conservatively return false, even though we could be smarter 745 // (e.g. look through GlobalAliases). 746 return false; 747 } 748 749 if (isa<Argument>(Input) || isa<CallInst>(Input) || 750 isa<InvokeInst>(Input)) { 751 // Arguments to functions or returns from functions are inherently 752 // escaping, so we can immediately classify those as not aliasing any 753 // non-addr-taken globals. 754 continue; 755 } 756 757 // Recurse through a limited number of selects, loads and PHIs. This is an 758 // arbitrary depth of 4, lower numbers could be used to fix compile time 759 // issues if needed, but this is generally expected to be only be important 760 // for small depths. 761 if (++Depth > 4) 762 return false; 763 764 if (auto *LI = dyn_cast<LoadInst>(Input)) { 765 // A pointer loaded from a global would have been captured, and we know 766 // that the global is non-escaping, so no alias. 767 const Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); 768 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 769 // The load does not alias with GV. 770 continue; 771 // Otherwise, a load could come from anywhere, so bail. 772 return false; 773 } 774 if (auto *SI = dyn_cast<SelectInst>(Input)) { 775 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 776 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 777 if (Visited.insert(LHS).second) 778 Inputs.push_back(LHS); 779 if (Visited.insert(RHS).second) 780 Inputs.push_back(RHS); 781 continue; 782 } 783 if (auto *PN = dyn_cast<PHINode>(Input)) { 784 for (const Value *Op : PN->incoming_values()) { 785 Op = getUnderlyingObject(Op); 786 if (Visited.insert(Op).second) 787 Inputs.push_back(Op); 788 } 789 continue; 790 } 791 792 // FIXME: It would be good to handle other obvious no-alias cases here, but 793 // it isn't clear how to do so reasonably without building a small version 794 // of BasicAA into this code. 795 return false; 796 } while (!Inputs.empty()); 797 798 // If all the inputs to V were definitively no-alias, then V is no-alias. 799 return true; 800 } 801 802 bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA, 803 ModuleAnalysisManager::Invalidator &) { 804 // Check whether the analysis has been explicitly invalidated. Otherwise, it's 805 // stateless and remains preserved. 806 auto PAC = PA.getChecker<GlobalsAA>(); 807 return !PAC.preservedWhenStateless(); 808 } 809 810 /// alias - If one of the pointers is to a global that we are tracking, and the 811 /// other is some random pointer, we know there cannot be an alias, because the 812 /// address of the global isn't taken. 813 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 814 const MemoryLocation &LocB, 815 AAQueryInfo &AAQI, const Instruction *) { 816 // Get the base object these pointers point to. 817 const Value *UV1 = 818 getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis()); 819 const Value *UV2 = 820 getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis()); 821 822 // If either of the underlying values is a global, they may be non-addr-taken 823 // globals, which we can answer queries about. 824 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 825 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 826 if (GV1 || GV2) { 827 // If the global's address is taken, pretend we don't know it's a pointer to 828 // the global. 829 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 830 GV1 = nullptr; 831 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 832 GV2 = nullptr; 833 834 // If the two pointers are derived from two different non-addr-taken 835 // globals we know these can't alias. 836 if (GV1 && GV2 && GV1 != GV2) 837 return AliasResult::NoAlias; 838 839 // If one is and the other isn't, it isn't strictly safe but we can fake 840 // this result if necessary for performance. This does not appear to be 841 // a common problem in practice. 842 if (EnableUnsafeGlobalsModRefAliasResults) 843 if ((GV1 || GV2) && GV1 != GV2) 844 return AliasResult::NoAlias; 845 846 // Check for a special case where a non-escaping global can be used to 847 // conclude no-alias. 848 if ((GV1 || GV2) && GV1 != GV2) { 849 const GlobalValue *GV = GV1 ? GV1 : GV2; 850 const Value *UV = GV1 ? UV2 : UV1; 851 if (isNonEscapingGlobalNoAlias(GV, UV)) 852 return AliasResult::NoAlias; 853 } 854 855 // Otherwise if they are both derived from the same addr-taken global, we 856 // can't know the two accesses don't overlap. 857 } 858 859 // These pointers may be based on the memory owned by an indirect global. If 860 // so, we may be able to handle this. First check to see if the base pointer 861 // is a direct load from an indirect global. 862 GV1 = GV2 = nullptr; 863 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 864 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 865 if (IndirectGlobals.count(GV)) 866 GV1 = GV; 867 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 868 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 869 if (IndirectGlobals.count(GV)) 870 GV2 = GV; 871 872 // These pointers may also be from an allocation for the indirect global. If 873 // so, also handle them. 874 if (!GV1) 875 GV1 = AllocsForIndirectGlobals.lookup(UV1); 876 if (!GV2) 877 GV2 = AllocsForIndirectGlobals.lookup(UV2); 878 879 // Now that we know whether the two pointers are related to indirect globals, 880 // use this to disambiguate the pointers. If the pointers are based on 881 // different indirect globals they cannot alias. 882 if (GV1 && GV2 && GV1 != GV2) 883 return AliasResult::NoAlias; 884 885 // If one is based on an indirect global and the other isn't, it isn't 886 // strictly safe but we can fake this result if necessary for performance. 887 // This does not appear to be a common problem in practice. 888 if (EnableUnsafeGlobalsModRefAliasResults) 889 if ((GV1 || GV2) && GV1 != GV2) 890 return AliasResult::NoAlias; 891 892 return AliasResult::MayAlias; 893 } 894 895 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, 896 const GlobalValue *GV, 897 AAQueryInfo &AAQI) { 898 if (Call->doesNotAccessMemory()) 899 return ModRefInfo::NoModRef; 900 ModRefInfo ConservativeResult = 901 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 902 903 // Iterate through all the arguments to the called function. If any argument 904 // is based on GV, return the conservative result. 905 for (const auto &A : Call->args()) { 906 SmallVector<const Value*, 4> Objects; 907 getUnderlyingObjects(A, Objects); 908 909 // All objects must be identified. 910 if (!all_of(Objects, isIdentifiedObject) && 911 // Try ::alias to see if all objects are known not to alias GV. 912 !all_of(Objects, [&](const Value *V) { 913 return this->alias(MemoryLocation::getBeforeOrAfter(V), 914 MemoryLocation::getBeforeOrAfter(GV), AAQI, 915 nullptr) == AliasResult::NoAlias; 916 })) 917 return ConservativeResult; 918 919 if (is_contained(Objects, GV)) 920 return ConservativeResult; 921 } 922 923 // We identified all objects in the argument list, and none of them were GV. 924 return ModRefInfo::NoModRef; 925 } 926 927 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, 928 const MemoryLocation &Loc, 929 AAQueryInfo &AAQI) { 930 ModRefInfo Known = ModRefInfo::ModRef; 931 932 // If we are asking for mod/ref info of a direct call with a pointer to a 933 // global we are tracking, return information if we have it. 934 if (const GlobalValue *GV = 935 dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr))) 936 // If GV is internal to this IR and there is no function with local linkage 937 // that has had their address taken, keep looking for a tighter ModRefInfo. 938 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage) 939 if (const Function *F = Call->getCalledFunction()) 940 if (NonAddressTakenGlobals.count(GV)) 941 if (const FunctionInfo *FI = getFunctionInfo(F)) 942 Known = FI->getModRefInfoForGlobal(*GV) | 943 getModRefInfoForArgument(Call, GV, AAQI); 944 945 return Known; 946 } 947 948 GlobalsAAResult::GlobalsAAResult( 949 const DataLayout &DL, 950 std::function<const TargetLibraryInfo &(Function &F)> GetTLI) 951 : DL(DL), GetTLI(std::move(GetTLI)) {} 952 953 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 954 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)), 955 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 956 IndirectGlobals(std::move(Arg.IndirectGlobals)), 957 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 958 FunctionInfos(std::move(Arg.FunctionInfos)), 959 Handles(std::move(Arg.Handles)) { 960 // Update the parent for each DeletionCallbackHandle. 961 for (auto &H : Handles) { 962 assert(H.GAR == &Arg); 963 H.GAR = this; 964 } 965 } 966 967 GlobalsAAResult::~GlobalsAAResult() = default; 968 969 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule( 970 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 971 CallGraph &CG) { 972 GlobalsAAResult Result(M.getDataLayout(), GetTLI); 973 974 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 975 Result.CollectSCCMembership(CG); 976 977 // Find non-addr taken globals. 978 Result.AnalyzeGlobals(M); 979 980 // Propagate on CG. 981 Result.AnalyzeCallGraph(CG, M); 982 983 return Result; 984 } 985 986 AnalysisKey GlobalsAA::Key; 987 988 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 989 FunctionAnalysisManager &FAM = 990 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 991 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 992 return FAM.getResult<TargetLibraryAnalysis>(F); 993 }; 994 return GlobalsAAResult::analyzeModule(M, GetTLI, 995 AM.getResult<CallGraphAnalysis>(M)); 996 } 997 998 PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M, 999 ModuleAnalysisManager &AM) { 1000 if (auto *G = AM.getCachedResult<GlobalsAA>(M)) { 1001 auto &CG = AM.getResult<CallGraphAnalysis>(M); 1002 G->NonAddressTakenGlobals.clear(); 1003 G->UnknownFunctionsWithLocalLinkage = false; 1004 G->IndirectGlobals.clear(); 1005 G->AllocsForIndirectGlobals.clear(); 1006 G->FunctionInfos.clear(); 1007 G->FunctionToSCCMap.clear(); 1008 G->Handles.clear(); 1009 G->CollectSCCMembership(CG); 1010 G->AnalyzeGlobals(M); 1011 G->AnalyzeCallGraph(CG, M); 1012 } 1013 return PreservedAnalyses::all(); 1014 } 1015 1016 char GlobalsAAWrapperPass::ID = 0; 1017 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 1018 "Globals Alias Analysis", false, true) 1019 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1020 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1021 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 1022 "Globals Alias Analysis", false, true) 1023 1024 ModulePass *llvm::createGlobalsAAWrapperPass() { 1025 return new GlobalsAAWrapperPass(); 1026 } 1027 1028 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 1029 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1030 } 1031 1032 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 1033 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 1034 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1035 }; 1036 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 1037 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 1038 return false; 1039 } 1040 1041 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 1042 Result.reset(); 1043 return false; 1044 } 1045 1046 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1047 AU.setPreservesAll(); 1048 AU.addRequired<CallGraphWrapperPass>(); 1049 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1050 } 1051