1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This simple pass provides alias and mod/ref information for global values 10 // that do not have their address taken, and keeps track of whether functions 11 // read or write memory (are "pure"). For this simple (but very common) case, 12 // we can provide pretty accurate and useful information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/GlobalsModRef.h" 17 #include "llvm/ADT/SCCIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/CommandLine.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "globalsmodref-aa" 33 34 STATISTIC(NumNonAddrTakenGlobalVars, 35 "Number of global vars without address taken"); 36 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 37 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 38 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 39 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 40 41 // An option to enable unsafe alias results from the GlobalsModRef analysis. 42 // When enabled, GlobalsModRef will provide no-alias results which in extremely 43 // rare cases may not be conservatively correct. In particular, in the face of 44 // transforms which cause assymetry between how effective GetUnderlyingObject 45 // is for two pointers, it may produce incorrect results. 46 // 47 // These unsafe results have been returned by GMR for many years without 48 // causing significant issues in the wild and so we provide a mechanism to 49 // re-enable them for users of LLVM that have a particular performance 50 // sensitivity and no known issues. The option also makes it easy to evaluate 51 // the performance impact of these results. 52 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 53 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 54 55 /// The mod/ref information collected for a particular function. 56 /// 57 /// We collect information about mod/ref behavior of a function here, both in 58 /// general and as pertains to specific globals. We only have this detailed 59 /// information when we know *something* useful about the behavior. If we 60 /// saturate to fully general mod/ref, we remove the info for the function. 61 class GlobalsAAResult::FunctionInfo { 62 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 63 64 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 65 /// should provide this much alignment at least, but this makes it clear we 66 /// specifically rely on this amount of alignment. 67 struct alignas(8) AlignedMap { 68 AlignedMap() {} 69 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} 70 GlobalInfoMapType Map; 71 }; 72 73 /// Pointer traits for our aligned map. 74 struct AlignedMapPointerTraits { 75 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 76 static inline AlignedMap *getFromVoidPointer(void *P) { 77 return (AlignedMap *)P; 78 } 79 enum { NumLowBitsAvailable = 3 }; 80 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 81 "AlignedMap insufficiently aligned to have enough low bits."); 82 }; 83 84 /// The bit that flags that this function may read any global. This is 85 /// chosen to mix together with ModRefInfo bits. 86 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 87 /// It overlaps with ModRefInfo::Must bit! 88 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so 89 /// this remains correct, but the Must info is lost. 90 enum { MayReadAnyGlobal = 4 }; 91 92 /// Checks to document the invariants of the bit packing here. 93 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) == 94 0, 95 "ModRef and the MayReadAnyGlobal flag bits overlap."); 96 static_assert(((MayReadAnyGlobal | 97 static_cast<int>(ModRefInfo::MustModRef)) >> 98 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 99 "Insufficient low bits to store our flag and ModRef info."); 100 101 public: 102 FunctionInfo() : Info() {} 103 ~FunctionInfo() { 104 delete Info.getPointer(); 105 } 106 // Spell out the copy ond move constructors and assignment operators to get 107 // deep copy semantics and correct move semantics in the face of the 108 // pointer-int pair. 109 FunctionInfo(const FunctionInfo &Arg) 110 : Info(nullptr, Arg.Info.getInt()) { 111 if (const auto *ArgPtr = Arg.Info.getPointer()) 112 Info.setPointer(new AlignedMap(*ArgPtr)); 113 } 114 FunctionInfo(FunctionInfo &&Arg) 115 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 116 Arg.Info.setPointerAndInt(nullptr, 0); 117 } 118 FunctionInfo &operator=(const FunctionInfo &RHS) { 119 delete Info.getPointer(); 120 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 121 if (const auto *RHSPtr = RHS.Info.getPointer()) 122 Info.setPointer(new AlignedMap(*RHSPtr)); 123 return *this; 124 } 125 FunctionInfo &operator=(FunctionInfo &&RHS) { 126 delete Info.getPointer(); 127 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 128 RHS.Info.setPointerAndInt(nullptr, 0); 129 return *this; 130 } 131 132 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return 133 /// the corresponding ModRefInfo. It must align in functionality with 134 /// clearMust(). 135 ModRefInfo globalClearMayReadAnyGlobal(int I) const { 136 return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) | 137 static_cast<int>(ModRefInfo::NoModRef)); 138 } 139 140 /// Returns the \c ModRefInfo info for this function. 141 ModRefInfo getModRefInfo() const { 142 return globalClearMayReadAnyGlobal(Info.getInt()); 143 } 144 145 /// Adds new \c ModRefInfo for this function to its state. 146 void addModRefInfo(ModRefInfo NewMRI) { 147 Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI))); 148 } 149 150 /// Returns whether this function may read any global variable, and we don't 151 /// know which global. 152 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 153 154 /// Sets this function as potentially reading from any global. 155 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 156 157 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 158 /// global, which may be more precise than the general information above. 159 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 160 ModRefInfo GlobalMRI = 161 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 162 if (AlignedMap *P = Info.getPointer()) { 163 auto I = P->Map.find(&GV); 164 if (I != P->Map.end()) 165 GlobalMRI = unionModRef(GlobalMRI, I->second); 166 } 167 return GlobalMRI; 168 } 169 170 /// Add mod/ref info from another function into ours, saturating towards 171 /// ModRef. 172 void addFunctionInfo(const FunctionInfo &FI) { 173 addModRefInfo(FI.getModRefInfo()); 174 175 if (FI.mayReadAnyGlobal()) 176 setMayReadAnyGlobal(); 177 178 if (AlignedMap *P = FI.Info.getPointer()) 179 for (const auto &G : P->Map) 180 addModRefInfoForGlobal(*G.first, G.second); 181 } 182 183 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 184 AlignedMap *P = Info.getPointer(); 185 if (!P) { 186 P = new AlignedMap(); 187 Info.setPointer(P); 188 } 189 auto &GlobalMRI = P->Map[&GV]; 190 GlobalMRI = unionModRef(GlobalMRI, NewMRI); 191 } 192 193 /// Clear a global's ModRef info. Should be used when a global is being 194 /// deleted. 195 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 196 if (AlignedMap *P = Info.getPointer()) 197 P->Map.erase(&GV); 198 } 199 200 private: 201 /// All of the information is encoded into a single pointer, with a three bit 202 /// integer in the low three bits. The high bit provides a flag for when this 203 /// function may read any global. The low two bits are the ModRefInfo. And 204 /// the pointer, when non-null, points to a map from GlobalValue to 205 /// ModRefInfo specific to that GlobalValue. 206 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 207 }; 208 209 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 210 Value *V = getValPtr(); 211 if (auto *F = dyn_cast<Function>(V)) 212 GAR->FunctionInfos.erase(F); 213 214 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 215 if (GAR->NonAddressTakenGlobals.erase(GV)) { 216 // This global might be an indirect global. If so, remove it and 217 // remove any AllocRelatedValues for it. 218 if (GAR->IndirectGlobals.erase(GV)) { 219 // Remove any entries in AllocsForIndirectGlobals for this global. 220 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 221 E = GAR->AllocsForIndirectGlobals.end(); 222 I != E; ++I) 223 if (I->second == GV) 224 GAR->AllocsForIndirectGlobals.erase(I); 225 } 226 227 // Scan the function info we have collected and remove this global 228 // from all of them. 229 for (auto &FIPair : GAR->FunctionInfos) 230 FIPair.second.eraseModRefInfoForGlobal(*GV); 231 } 232 } 233 234 // If this is an allocation related to an indirect global, remove it. 235 GAR->AllocsForIndirectGlobals.erase(V); 236 237 // And clear out the handle. 238 setValPtr(nullptr); 239 GAR->Handles.erase(I); 240 // This object is now destroyed! 241 } 242 243 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 244 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 245 246 if (FunctionInfo *FI = getFunctionInfo(F)) { 247 if (!isModOrRefSet(FI->getModRefInfo())) 248 Min = FMRB_DoesNotAccessMemory; 249 else if (!isModSet(FI->getModRefInfo())) 250 Min = FMRB_OnlyReadsMemory; 251 } 252 253 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 254 } 255 256 FunctionModRefBehavior 257 GlobalsAAResult::getModRefBehavior(const CallBase *Call) { 258 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 259 260 if (!Call->hasOperandBundles()) 261 if (const Function *F = Call->getCalledFunction()) 262 if (FunctionInfo *FI = getFunctionInfo(F)) { 263 if (!isModOrRefSet(FI->getModRefInfo())) 264 Min = FMRB_DoesNotAccessMemory; 265 else if (!isModSet(FI->getModRefInfo())) 266 Min = FMRB_OnlyReadsMemory; 267 } 268 269 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min); 270 } 271 272 /// Returns the function info for the function, or null if we don't have 273 /// anything useful to say about it. 274 GlobalsAAResult::FunctionInfo * 275 GlobalsAAResult::getFunctionInfo(const Function *F) { 276 auto I = FunctionInfos.find(F); 277 if (I != FunctionInfos.end()) 278 return &I->second; 279 return nullptr; 280 } 281 282 /// AnalyzeGlobals - Scan through the users of all of the internal 283 /// GlobalValue's in the program. If none of them have their "address taken" 284 /// (really, their address passed to something nontrivial), record this fact, 285 /// and record the functions that they are used directly in. 286 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 287 SmallPtrSet<Function *, 32> TrackedFunctions; 288 for (Function &F : M) 289 if (F.hasLocalLinkage()) 290 if (!AnalyzeUsesOfPointer(&F)) { 291 // Remember that we are tracking this global. 292 NonAddressTakenGlobals.insert(&F); 293 TrackedFunctions.insert(&F); 294 Handles.emplace_front(*this, &F); 295 Handles.front().I = Handles.begin(); 296 ++NumNonAddrTakenFunctions; 297 } 298 299 SmallPtrSet<Function *, 16> Readers, Writers; 300 for (GlobalVariable &GV : M.globals()) 301 if (GV.hasLocalLinkage()) { 302 if (!AnalyzeUsesOfPointer(&GV, &Readers, 303 GV.isConstant() ? nullptr : &Writers)) { 304 // Remember that we are tracking this global, and the mod/ref fns 305 NonAddressTakenGlobals.insert(&GV); 306 Handles.emplace_front(*this, &GV); 307 Handles.front().I = Handles.begin(); 308 309 for (Function *Reader : Readers) { 310 if (TrackedFunctions.insert(Reader).second) { 311 Handles.emplace_front(*this, Reader); 312 Handles.front().I = Handles.begin(); 313 } 314 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 315 } 316 317 if (!GV.isConstant()) // No need to keep track of writers to constants 318 for (Function *Writer : Writers) { 319 if (TrackedFunctions.insert(Writer).second) { 320 Handles.emplace_front(*this, Writer); 321 Handles.front().I = Handles.begin(); 322 } 323 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 324 } 325 ++NumNonAddrTakenGlobalVars; 326 327 // If this global holds a pointer type, see if it is an indirect global. 328 if (GV.getValueType()->isPointerTy() && 329 AnalyzeIndirectGlobalMemory(&GV)) 330 ++NumIndirectGlobalVars; 331 } 332 Readers.clear(); 333 Writers.clear(); 334 } 335 } 336 337 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 338 /// If this is used by anything complex (i.e., the address escapes), return 339 /// true. Also, while we are at it, keep track of those functions that read and 340 /// write to the value. 341 /// 342 /// If OkayStoreDest is non-null, stores into this global are allowed. 343 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 344 SmallPtrSetImpl<Function *> *Readers, 345 SmallPtrSetImpl<Function *> *Writers, 346 GlobalValue *OkayStoreDest) { 347 if (!V->getType()->isPointerTy()) 348 return true; 349 350 for (Use &U : V->uses()) { 351 User *I = U.getUser(); 352 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 353 if (Readers) 354 Readers->insert(LI->getParent()->getParent()); 355 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 356 if (V == SI->getOperand(1)) { 357 if (Writers) 358 Writers->insert(SI->getParent()->getParent()); 359 } else if (SI->getOperand(1) != OkayStoreDest) { 360 return true; // Storing the pointer 361 } 362 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 363 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 364 return true; 365 } else if (Operator::getOpcode(I) == Instruction::BitCast) { 366 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 367 return true; 368 } else if (auto *Call = dyn_cast<CallBase>(I)) { 369 // Make sure that this is just the function being called, not that it is 370 // passing into the function. 371 if (Call->isDataOperand(&U)) { 372 // Detect calls to free. 373 if (Call->isArgOperand(&U) && 374 isFreeCall(I, &GetTLI(*Call->getFunction()))) { 375 if (Writers) 376 Writers->insert(Call->getParent()->getParent()); 377 } else { 378 return true; // Argument of an unknown call. 379 } 380 } 381 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 382 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 383 return true; // Allow comparison against null. 384 } else if (Constant *C = dyn_cast<Constant>(I)) { 385 // Ignore constants which don't have any live uses. 386 if (isa<GlobalValue>(C) || C->isConstantUsed()) 387 return true; 388 } else { 389 return true; 390 } 391 } 392 393 return false; 394 } 395 396 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 397 /// which holds a pointer type. See if the global always points to non-aliased 398 /// heap memory: that is, all initializers of the globals are allocations, and 399 /// those allocations have no use other than initialization of the global. 400 /// Further, all loads out of GV must directly use the memory, not store the 401 /// pointer somewhere. If this is true, we consider the memory pointed to by 402 /// GV to be owned by GV and can disambiguate other pointers from it. 403 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 404 // Keep track of values related to the allocation of the memory, f.e. the 405 // value produced by the malloc call and any casts. 406 std::vector<Value *> AllocRelatedValues; 407 408 // If the initializer is a valid pointer, bail. 409 if (Constant *C = GV->getInitializer()) 410 if (!C->isNullValue()) 411 return false; 412 413 // Walk the user list of the global. If we find anything other than a direct 414 // load or store, bail out. 415 for (User *U : GV->users()) { 416 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 417 // The pointer loaded from the global can only be used in simple ways: 418 // we allow addressing of it and loading storing to it. We do *not* allow 419 // storing the loaded pointer somewhere else or passing to a function. 420 if (AnalyzeUsesOfPointer(LI)) 421 return false; // Loaded pointer escapes. 422 // TODO: Could try some IP mod/ref of the loaded pointer. 423 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 424 // Storing the global itself. 425 if (SI->getOperand(0) == GV) 426 return false; 427 428 // If storing the null pointer, ignore it. 429 if (isa<ConstantPointerNull>(SI->getOperand(0))) 430 continue; 431 432 // Check the value being stored. 433 Value *Ptr = GetUnderlyingObject(SI->getOperand(0), 434 GV->getParent()->getDataLayout()); 435 436 if (!isAllocLikeFn(Ptr, &GetTLI(*SI->getFunction()))) 437 return false; // Too hard to analyze. 438 439 // Analyze all uses of the allocation. If any of them are used in a 440 // non-simple way (e.g. stored to another global) bail out. 441 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 442 GV)) 443 return false; // Loaded pointer escapes. 444 445 // Remember that this allocation is related to the indirect global. 446 AllocRelatedValues.push_back(Ptr); 447 } else { 448 // Something complex, bail out. 449 return false; 450 } 451 } 452 453 // Okay, this is an indirect global. Remember all of the allocations for 454 // this global in AllocsForIndirectGlobals. 455 while (!AllocRelatedValues.empty()) { 456 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 457 Handles.emplace_front(*this, AllocRelatedValues.back()); 458 Handles.front().I = Handles.begin(); 459 AllocRelatedValues.pop_back(); 460 } 461 IndirectGlobals.insert(GV); 462 Handles.emplace_front(*this, GV); 463 Handles.front().I = Handles.begin(); 464 return true; 465 } 466 467 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 468 // We do a bottom-up SCC traversal of the call graph. In other words, we 469 // visit all callees before callers (leaf-first). 470 unsigned SCCID = 0; 471 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 472 const std::vector<CallGraphNode *> &SCC = *I; 473 assert(!SCC.empty() && "SCC with no functions?"); 474 475 for (auto *CGN : SCC) 476 if (Function *F = CGN->getFunction()) 477 FunctionToSCCMap[F] = SCCID; 478 ++SCCID; 479 } 480 } 481 482 /// AnalyzeCallGraph - At this point, we know the functions where globals are 483 /// immediately stored to and read from. Propagate this information up the call 484 /// graph to all callers and compute the mod/ref info for all memory for each 485 /// function. 486 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 487 // We do a bottom-up SCC traversal of the call graph. In other words, we 488 // visit all callees before callers (leaf-first). 489 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 490 const std::vector<CallGraphNode *> &SCC = *I; 491 assert(!SCC.empty() && "SCC with no functions?"); 492 493 Function *F = SCC[0]->getFunction(); 494 495 if (!F || !F->isDefinitionExact()) { 496 // Calls externally or not exact - can't say anything useful. Remove any 497 // existing function records (may have been created when scanning 498 // globals). 499 for (auto *Node : SCC) 500 FunctionInfos.erase(Node->getFunction()); 501 continue; 502 } 503 504 FunctionInfo &FI = FunctionInfos[F]; 505 Handles.emplace_front(*this, F); 506 Handles.front().I = Handles.begin(); 507 bool KnowNothing = false; 508 509 // Collect the mod/ref properties due to called functions. We only compute 510 // one mod-ref set. 511 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 512 if (!F) { 513 KnowNothing = true; 514 break; 515 } 516 517 if (F->isDeclaration() || F->hasOptNone()) { 518 // Try to get mod/ref behaviour from function attributes. 519 if (F->doesNotAccessMemory()) { 520 // Can't do better than that! 521 } else if (F->onlyReadsMemory()) { 522 FI.addModRefInfo(ModRefInfo::Ref); 523 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) 524 // This function might call back into the module and read a global - 525 // consider every global as possibly being read by this function. 526 FI.setMayReadAnyGlobal(); 527 } else { 528 FI.addModRefInfo(ModRefInfo::ModRef); 529 // Can't say anything useful unless it's an intrinsic - they don't 530 // read or write global variables of the kind considered here. 531 KnowNothing = !F->isIntrinsic(); 532 } 533 continue; 534 } 535 536 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 537 CI != E && !KnowNothing; ++CI) 538 if (Function *Callee = CI->second->getFunction()) { 539 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 540 // Propagate function effect up. 541 FI.addFunctionInfo(*CalleeFI); 542 } else { 543 // Can't say anything about it. However, if it is inside our SCC, 544 // then nothing needs to be done. 545 CallGraphNode *CalleeNode = CG[Callee]; 546 if (!is_contained(SCC, CalleeNode)) 547 KnowNothing = true; 548 } 549 } else { 550 KnowNothing = true; 551 } 552 } 553 554 // If we can't say anything useful about this SCC, remove all SCC functions 555 // from the FunctionInfos map. 556 if (KnowNothing) { 557 for (auto *Node : SCC) 558 FunctionInfos.erase(Node->getFunction()); 559 continue; 560 } 561 562 // Scan the function bodies for explicit loads or stores. 563 for (auto *Node : SCC) { 564 if (isModAndRefSet(FI.getModRefInfo())) 565 break; // The mod/ref lattice saturates here. 566 567 // Don't prove any properties based on the implementation of an optnone 568 // function. Function attributes were already used as a best approximation 569 // above. 570 if (Node->getFunction()->hasOptNone()) 571 continue; 572 573 for (Instruction &I : instructions(Node->getFunction())) { 574 if (isModAndRefSet(FI.getModRefInfo())) 575 break; // The mod/ref lattice saturates here. 576 577 // We handle calls specially because the graph-relevant aspects are 578 // handled above. 579 if (auto *Call = dyn_cast<CallBase>(&I)) { 580 auto &TLI = GetTLI(*Node->getFunction()); 581 if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) { 582 // FIXME: It is completely unclear why this is necessary and not 583 // handled by the above graph code. 584 FI.addModRefInfo(ModRefInfo::ModRef); 585 } else if (Function *Callee = Call->getCalledFunction()) { 586 // The callgraph doesn't include intrinsic calls. 587 if (Callee->isIntrinsic()) { 588 if (isa<DbgInfoIntrinsic>(Call)) 589 // Don't let dbg intrinsics affect alias info. 590 continue; 591 592 FunctionModRefBehavior Behaviour = 593 AAResultBase::getModRefBehavior(Callee); 594 FI.addModRefInfo(createModRefInfo(Behaviour)); 595 } 596 } 597 continue; 598 } 599 600 // All non-call instructions we use the primary predicates for whether 601 // they read or write memory. 602 if (I.mayReadFromMemory()) 603 FI.addModRefInfo(ModRefInfo::Ref); 604 if (I.mayWriteToMemory()) 605 FI.addModRefInfo(ModRefInfo::Mod); 606 } 607 } 608 609 if (!isModSet(FI.getModRefInfo())) 610 ++NumReadMemFunctions; 611 if (!isModOrRefSet(FI.getModRefInfo())) 612 ++NumNoMemFunctions; 613 614 // Finally, now that we know the full effect on this SCC, clone the 615 // information to each function in the SCC. 616 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 617 // get invalidated if DenseMap decides to re-hash. 618 FunctionInfo CachedFI = FI; 619 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 620 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 621 } 622 } 623 624 // GV is a non-escaping global. V is a pointer address that has been loaded from. 625 // If we can prove that V must escape, we can conclude that a load from V cannot 626 // alias GV. 627 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 628 const Value *V, 629 int &Depth, 630 const DataLayout &DL) { 631 SmallPtrSet<const Value *, 8> Visited; 632 SmallVector<const Value *, 8> Inputs; 633 Visited.insert(V); 634 Inputs.push_back(V); 635 do { 636 const Value *Input = Inputs.pop_back_val(); 637 638 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 639 isa<InvokeInst>(Input)) 640 // Arguments to functions or returns from functions are inherently 641 // escaping, so we can immediately classify those as not aliasing any 642 // non-addr-taken globals. 643 // 644 // (Transitive) loads from a global are also safe - if this aliased 645 // another global, its address would escape, so no alias. 646 continue; 647 648 // Recurse through a limited number of selects, loads and PHIs. This is an 649 // arbitrary depth of 4, lower numbers could be used to fix compile time 650 // issues if needed, but this is generally expected to be only be important 651 // for small depths. 652 if (++Depth > 4) 653 return false; 654 655 if (auto *LI = dyn_cast<LoadInst>(Input)) { 656 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); 657 continue; 658 } 659 if (auto *SI = dyn_cast<SelectInst>(Input)) { 660 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 661 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 662 if (Visited.insert(LHS).second) 663 Inputs.push_back(LHS); 664 if (Visited.insert(RHS).second) 665 Inputs.push_back(RHS); 666 continue; 667 } 668 if (auto *PN = dyn_cast<PHINode>(Input)) { 669 for (const Value *Op : PN->incoming_values()) { 670 Op = GetUnderlyingObject(Op, DL); 671 if (Visited.insert(Op).second) 672 Inputs.push_back(Op); 673 } 674 continue; 675 } 676 677 return false; 678 } while (!Inputs.empty()); 679 680 // All inputs were known to be no-alias. 681 return true; 682 } 683 684 // There are particular cases where we can conclude no-alias between 685 // a non-addr-taken global and some other underlying object. Specifically, 686 // a non-addr-taken global is known to not be escaped from any function. It is 687 // also incorrect for a transformation to introduce an escape of a global in 688 // a way that is observable when it was not there previously. One function 689 // being transformed to introduce an escape which could possibly be observed 690 // (via loading from a global or the return value for example) within another 691 // function is never safe. If the observation is made through non-atomic 692 // operations on different threads, it is a data-race and UB. If the 693 // observation is well defined, by being observed the transformation would have 694 // changed program behavior by introducing the observed escape, making it an 695 // invalid transform. 696 // 697 // This property does require that transformations which *temporarily* escape 698 // a global that was not previously escaped, prior to restoring it, cannot rely 699 // on the results of GMR::alias. This seems a reasonable restriction, although 700 // currently there is no way to enforce it. There is also no realistic 701 // optimization pass that would make this mistake. The closest example is 702 // a transformation pass which does reg2mem of SSA values but stores them into 703 // global variables temporarily before restoring the global variable's value. 704 // This could be useful to expose "benign" races for example. However, it seems 705 // reasonable to require that a pass which introduces escapes of global 706 // variables in this way to either not trust AA results while the escape is 707 // active, or to be forced to operate as a module pass that cannot co-exist 708 // with an alias analysis such as GMR. 709 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 710 const Value *V) { 711 // In order to know that the underlying object cannot alias the 712 // non-addr-taken global, we must know that it would have to be an escape. 713 // Thus if the underlying object is a function argument, a load from 714 // a global, or the return of a function, it cannot alias. We can also 715 // recurse through PHI nodes and select nodes provided all of their inputs 716 // resolve to one of these known-escaping roots. 717 SmallPtrSet<const Value *, 8> Visited; 718 SmallVector<const Value *, 8> Inputs; 719 Visited.insert(V); 720 Inputs.push_back(V); 721 int Depth = 0; 722 do { 723 const Value *Input = Inputs.pop_back_val(); 724 725 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 726 // If one input is the very global we're querying against, then we can't 727 // conclude no-alias. 728 if (InputGV == GV) 729 return false; 730 731 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 732 // FIXME: The condition can be refined, but be conservative for now. 733 auto *GVar = dyn_cast<GlobalVariable>(GV); 734 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 735 if (GVar && InputGVar && 736 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 737 !GVar->isInterposable() && !InputGVar->isInterposable()) { 738 Type *GVType = GVar->getInitializer()->getType(); 739 Type *InputGVType = InputGVar->getInitializer()->getType(); 740 if (GVType->isSized() && InputGVType->isSized() && 741 (DL.getTypeAllocSize(GVType) > 0) && 742 (DL.getTypeAllocSize(InputGVType) > 0)) 743 continue; 744 } 745 746 // Conservatively return false, even though we could be smarter 747 // (e.g. look through GlobalAliases). 748 return false; 749 } 750 751 if (isa<Argument>(Input) || isa<CallInst>(Input) || 752 isa<InvokeInst>(Input)) { 753 // Arguments to functions or returns from functions are inherently 754 // escaping, so we can immediately classify those as not aliasing any 755 // non-addr-taken globals. 756 continue; 757 } 758 759 // Recurse through a limited number of selects, loads and PHIs. This is an 760 // arbitrary depth of 4, lower numbers could be used to fix compile time 761 // issues if needed, but this is generally expected to be only be important 762 // for small depths. 763 if (++Depth > 4) 764 return false; 765 766 if (auto *LI = dyn_cast<LoadInst>(Input)) { 767 // A pointer loaded from a global would have been captured, and we know 768 // that the global is non-escaping, so no alias. 769 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); 770 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 771 // The load does not alias with GV. 772 continue; 773 // Otherwise, a load could come from anywhere, so bail. 774 return false; 775 } 776 if (auto *SI = dyn_cast<SelectInst>(Input)) { 777 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 778 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 779 if (Visited.insert(LHS).second) 780 Inputs.push_back(LHS); 781 if (Visited.insert(RHS).second) 782 Inputs.push_back(RHS); 783 continue; 784 } 785 if (auto *PN = dyn_cast<PHINode>(Input)) { 786 for (const Value *Op : PN->incoming_values()) { 787 Op = GetUnderlyingObject(Op, DL); 788 if (Visited.insert(Op).second) 789 Inputs.push_back(Op); 790 } 791 continue; 792 } 793 794 // FIXME: It would be good to handle other obvious no-alias cases here, but 795 // it isn't clear how to do so reasonably without building a small version 796 // of BasicAA into this code. We could recurse into AAResultBase::alias 797 // here but that seems likely to go poorly as we're inside the 798 // implementation of such a query. Until then, just conservatively return 799 // false. 800 return false; 801 } while (!Inputs.empty()); 802 803 // If all the inputs to V were definitively no-alias, then V is no-alias. 804 return true; 805 } 806 807 /// alias - If one of the pointers is to a global that we are tracking, and the 808 /// other is some random pointer, we know there cannot be an alias, because the 809 /// address of the global isn't taken. 810 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 811 const MemoryLocation &LocB, 812 AAQueryInfo &AAQI) { 813 // Get the base object these pointers point to. 814 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); 815 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); 816 817 // If either of the underlying values is a global, they may be non-addr-taken 818 // globals, which we can answer queries about. 819 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 820 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 821 if (GV1 || GV2) { 822 // If the global's address is taken, pretend we don't know it's a pointer to 823 // the global. 824 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 825 GV1 = nullptr; 826 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 827 GV2 = nullptr; 828 829 // If the two pointers are derived from two different non-addr-taken 830 // globals we know these can't alias. 831 if (GV1 && GV2 && GV1 != GV2) 832 return NoAlias; 833 834 // If one is and the other isn't, it isn't strictly safe but we can fake 835 // this result if necessary for performance. This does not appear to be 836 // a common problem in practice. 837 if (EnableUnsafeGlobalsModRefAliasResults) 838 if ((GV1 || GV2) && GV1 != GV2) 839 return NoAlias; 840 841 // Check for a special case where a non-escaping global can be used to 842 // conclude no-alias. 843 if ((GV1 || GV2) && GV1 != GV2) { 844 const GlobalValue *GV = GV1 ? GV1 : GV2; 845 const Value *UV = GV1 ? UV2 : UV1; 846 if (isNonEscapingGlobalNoAlias(GV, UV)) 847 return NoAlias; 848 } 849 850 // Otherwise if they are both derived from the same addr-taken global, we 851 // can't know the two accesses don't overlap. 852 } 853 854 // These pointers may be based on the memory owned by an indirect global. If 855 // so, we may be able to handle this. First check to see if the base pointer 856 // is a direct load from an indirect global. 857 GV1 = GV2 = nullptr; 858 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 859 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 860 if (IndirectGlobals.count(GV)) 861 GV1 = GV; 862 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 863 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 864 if (IndirectGlobals.count(GV)) 865 GV2 = GV; 866 867 // These pointers may also be from an allocation for the indirect global. If 868 // so, also handle them. 869 if (!GV1) 870 GV1 = AllocsForIndirectGlobals.lookup(UV1); 871 if (!GV2) 872 GV2 = AllocsForIndirectGlobals.lookup(UV2); 873 874 // Now that we know whether the two pointers are related to indirect globals, 875 // use this to disambiguate the pointers. If the pointers are based on 876 // different indirect globals they cannot alias. 877 if (GV1 && GV2 && GV1 != GV2) 878 return NoAlias; 879 880 // If one is based on an indirect global and the other isn't, it isn't 881 // strictly safe but we can fake this result if necessary for performance. 882 // This does not appear to be a common problem in practice. 883 if (EnableUnsafeGlobalsModRefAliasResults) 884 if ((GV1 || GV2) && GV1 != GV2) 885 return NoAlias; 886 887 return AAResultBase::alias(LocA, LocB, AAQI); 888 } 889 890 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, 891 const GlobalValue *GV, 892 AAQueryInfo &AAQI) { 893 if (Call->doesNotAccessMemory()) 894 return ModRefInfo::NoModRef; 895 ModRefInfo ConservativeResult = 896 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 897 898 // Iterate through all the arguments to the called function. If any argument 899 // is based on GV, return the conservative result. 900 for (auto &A : Call->args()) { 901 SmallVector<const Value*, 4> Objects; 902 GetUnderlyingObjects(A, Objects, DL); 903 904 // All objects must be identified. 905 if (!all_of(Objects, isIdentifiedObject) && 906 // Try ::alias to see if all objects are known not to alias GV. 907 !all_of(Objects, [&](const Value *V) { 908 return this->alias(MemoryLocation(V), MemoryLocation(GV), AAQI) == 909 NoAlias; 910 })) 911 return ConservativeResult; 912 913 if (is_contained(Objects, GV)) 914 return ConservativeResult; 915 } 916 917 // We identified all objects in the argument list, and none of them were GV. 918 return ModRefInfo::NoModRef; 919 } 920 921 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, 922 const MemoryLocation &Loc, 923 AAQueryInfo &AAQI) { 924 ModRefInfo Known = ModRefInfo::ModRef; 925 926 // If we are asking for mod/ref info of a direct call with a pointer to a 927 // global we are tracking, return information if we have it. 928 if (const GlobalValue *GV = 929 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) 930 if (GV->hasLocalLinkage()) 931 if (const Function *F = Call->getCalledFunction()) 932 if (NonAddressTakenGlobals.count(GV)) 933 if (const FunctionInfo *FI = getFunctionInfo(F)) 934 Known = unionModRef(FI->getModRefInfoForGlobal(*GV), 935 getModRefInfoForArgument(Call, GV, AAQI)); 936 937 if (!isModOrRefSet(Known)) 938 return ModRefInfo::NoModRef; // No need to query other mod/ref analyses 939 return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI)); 940 } 941 942 GlobalsAAResult::GlobalsAAResult( 943 const DataLayout &DL, 944 std::function<const TargetLibraryInfo &(Function &F)> GetTLI) 945 : AAResultBase(), DL(DL), GetTLI(std::move(GetTLI)) {} 946 947 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 948 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)), 949 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 950 IndirectGlobals(std::move(Arg.IndirectGlobals)), 951 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 952 FunctionInfos(std::move(Arg.FunctionInfos)), 953 Handles(std::move(Arg.Handles)) { 954 // Update the parent for each DeletionCallbackHandle. 955 for (auto &H : Handles) { 956 assert(H.GAR == &Arg); 957 H.GAR = this; 958 } 959 } 960 961 GlobalsAAResult::~GlobalsAAResult() {} 962 963 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule( 964 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 965 CallGraph &CG) { 966 GlobalsAAResult Result(M.getDataLayout(), GetTLI); 967 968 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 969 Result.CollectSCCMembership(CG); 970 971 // Find non-addr taken globals. 972 Result.AnalyzeGlobals(M); 973 974 // Propagate on CG. 975 Result.AnalyzeCallGraph(CG, M); 976 977 return Result; 978 } 979 980 AnalysisKey GlobalsAA::Key; 981 982 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 983 FunctionAnalysisManager &FAM = 984 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 985 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 986 return FAM.getResult<TargetLibraryAnalysis>(F); 987 }; 988 return GlobalsAAResult::analyzeModule(M, GetTLI, 989 AM.getResult<CallGraphAnalysis>(M)); 990 } 991 992 char GlobalsAAWrapperPass::ID = 0; 993 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 994 "Globals Alias Analysis", false, true) 995 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 996 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 997 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 998 "Globals Alias Analysis", false, true) 999 1000 ModulePass *llvm::createGlobalsAAWrapperPass() { 1001 return new GlobalsAAWrapperPass(); 1002 } 1003 1004 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 1005 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1006 } 1007 1008 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 1009 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 1010 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1011 }; 1012 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 1013 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 1014 return false; 1015 } 1016 1017 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 1018 Result.reset(); 1019 return false; 1020 } 1021 1022 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1023 AU.setPreservesAll(); 1024 AU.addRequired<CallGraphWrapperPass>(); 1025 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1026 } 1027