1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This simple pass provides alias and mod/ref information for global values 10 // that do not have their address taken, and keeps track of whether functions 11 // read or write memory (are "pure"). For this simple (but very common) case, 12 // we can provide pretty accurate and useful information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/GlobalsModRef.h" 17 #include "llvm/ADT/SCCIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "globalsmodref-aa" 34 35 STATISTIC(NumNonAddrTakenGlobalVars, 36 "Number of global vars without address taken"); 37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 41 42 // An option to enable unsafe alias results from the GlobalsModRef analysis. 43 // When enabled, GlobalsModRef will provide no-alias results which in extremely 44 // rare cases may not be conservatively correct. In particular, in the face of 45 // transforms which cause assymetry between how effective GetUnderlyingObject 46 // is for two pointers, it may produce incorrect results. 47 // 48 // These unsafe results have been returned by GMR for many years without 49 // causing significant issues in the wild and so we provide a mechanism to 50 // re-enable them for users of LLVM that have a particular performance 51 // sensitivity and no known issues. The option also makes it easy to evaluate 52 // the performance impact of these results. 53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 54 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 55 56 /// The mod/ref information collected for a particular function. 57 /// 58 /// We collect information about mod/ref behavior of a function here, both in 59 /// general and as pertains to specific globals. We only have this detailed 60 /// information when we know *something* useful about the behavior. If we 61 /// saturate to fully general mod/ref, we remove the info for the function. 62 class GlobalsAAResult::FunctionInfo { 63 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 64 65 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 66 /// should provide this much alignment at least, but this makes it clear we 67 /// specifically rely on this amount of alignment. 68 struct alignas(8) AlignedMap { 69 AlignedMap() {} 70 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} 71 GlobalInfoMapType Map; 72 }; 73 74 /// Pointer traits for our aligned map. 75 struct AlignedMapPointerTraits { 76 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 77 static inline AlignedMap *getFromVoidPointer(void *P) { 78 return (AlignedMap *)P; 79 } 80 enum { NumLowBitsAvailable = 3 }; 81 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 82 "AlignedMap insufficiently aligned to have enough low bits."); 83 }; 84 85 /// The bit that flags that this function may read any global. This is 86 /// chosen to mix together with ModRefInfo bits. 87 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 88 /// It overlaps with ModRefInfo::Must bit! 89 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so 90 /// this remains correct, but the Must info is lost. 91 enum { MayReadAnyGlobal = 4 }; 92 93 /// Checks to document the invariants of the bit packing here. 94 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) == 95 0, 96 "ModRef and the MayReadAnyGlobal flag bits overlap."); 97 static_assert(((MayReadAnyGlobal | 98 static_cast<int>(ModRefInfo::MustModRef)) >> 99 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 100 "Insufficient low bits to store our flag and ModRef info."); 101 102 public: 103 FunctionInfo() : Info() {} 104 ~FunctionInfo() { 105 delete Info.getPointer(); 106 } 107 // Spell out the copy ond move constructors and assignment operators to get 108 // deep copy semantics and correct move semantics in the face of the 109 // pointer-int pair. 110 FunctionInfo(const FunctionInfo &Arg) 111 : Info(nullptr, Arg.Info.getInt()) { 112 if (const auto *ArgPtr = Arg.Info.getPointer()) 113 Info.setPointer(new AlignedMap(*ArgPtr)); 114 } 115 FunctionInfo(FunctionInfo &&Arg) 116 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 117 Arg.Info.setPointerAndInt(nullptr, 0); 118 } 119 FunctionInfo &operator=(const FunctionInfo &RHS) { 120 delete Info.getPointer(); 121 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 122 if (const auto *RHSPtr = RHS.Info.getPointer()) 123 Info.setPointer(new AlignedMap(*RHSPtr)); 124 return *this; 125 } 126 FunctionInfo &operator=(FunctionInfo &&RHS) { 127 delete Info.getPointer(); 128 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 129 RHS.Info.setPointerAndInt(nullptr, 0); 130 return *this; 131 } 132 133 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return 134 /// the corresponding ModRefInfo. It must align in functionality with 135 /// clearMust(). 136 ModRefInfo globalClearMayReadAnyGlobal(int I) const { 137 return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) | 138 static_cast<int>(ModRefInfo::NoModRef)); 139 } 140 141 /// Returns the \c ModRefInfo info for this function. 142 ModRefInfo getModRefInfo() const { 143 return globalClearMayReadAnyGlobal(Info.getInt()); 144 } 145 146 /// Adds new \c ModRefInfo for this function to its state. 147 void addModRefInfo(ModRefInfo NewMRI) { 148 Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI))); 149 } 150 151 /// Returns whether this function may read any global variable, and we don't 152 /// know which global. 153 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 154 155 /// Sets this function as potentially reading from any global. 156 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 157 158 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 159 /// global, which may be more precise than the general information above. 160 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 161 ModRefInfo GlobalMRI = 162 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 163 if (AlignedMap *P = Info.getPointer()) { 164 auto I = P->Map.find(&GV); 165 if (I != P->Map.end()) 166 GlobalMRI = unionModRef(GlobalMRI, I->second); 167 } 168 return GlobalMRI; 169 } 170 171 /// Add mod/ref info from another function into ours, saturating towards 172 /// ModRef. 173 void addFunctionInfo(const FunctionInfo &FI) { 174 addModRefInfo(FI.getModRefInfo()); 175 176 if (FI.mayReadAnyGlobal()) 177 setMayReadAnyGlobal(); 178 179 if (AlignedMap *P = FI.Info.getPointer()) 180 for (const auto &G : P->Map) 181 addModRefInfoForGlobal(*G.first, G.second); 182 } 183 184 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 185 AlignedMap *P = Info.getPointer(); 186 if (!P) { 187 P = new AlignedMap(); 188 Info.setPointer(P); 189 } 190 auto &GlobalMRI = P->Map[&GV]; 191 GlobalMRI = unionModRef(GlobalMRI, NewMRI); 192 } 193 194 /// Clear a global's ModRef info. Should be used when a global is being 195 /// deleted. 196 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 197 if (AlignedMap *P = Info.getPointer()) 198 P->Map.erase(&GV); 199 } 200 201 private: 202 /// All of the information is encoded into a single pointer, with a three bit 203 /// integer in the low three bits. The high bit provides a flag for when this 204 /// function may read any global. The low two bits are the ModRefInfo. And 205 /// the pointer, when non-null, points to a map from GlobalValue to 206 /// ModRefInfo specific to that GlobalValue. 207 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 208 }; 209 210 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 211 Value *V = getValPtr(); 212 if (auto *F = dyn_cast<Function>(V)) 213 GAR->FunctionInfos.erase(F); 214 215 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 216 if (GAR->NonAddressTakenGlobals.erase(GV)) { 217 // This global might be an indirect global. If so, remove it and 218 // remove any AllocRelatedValues for it. 219 if (GAR->IndirectGlobals.erase(GV)) { 220 // Remove any entries in AllocsForIndirectGlobals for this global. 221 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 222 E = GAR->AllocsForIndirectGlobals.end(); 223 I != E; ++I) 224 if (I->second == GV) 225 GAR->AllocsForIndirectGlobals.erase(I); 226 } 227 228 // Scan the function info we have collected and remove this global 229 // from all of them. 230 for (auto &FIPair : GAR->FunctionInfos) 231 FIPair.second.eraseModRefInfoForGlobal(*GV); 232 } 233 } 234 235 // If this is an allocation related to an indirect global, remove it. 236 GAR->AllocsForIndirectGlobals.erase(V); 237 238 // And clear out the handle. 239 setValPtr(nullptr); 240 GAR->Handles.erase(I); 241 // This object is now destroyed! 242 } 243 244 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 245 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 246 247 if (FunctionInfo *FI = getFunctionInfo(F)) { 248 if (!isModOrRefSet(FI->getModRefInfo())) 249 Min = FMRB_DoesNotAccessMemory; 250 else if (!isModSet(FI->getModRefInfo())) 251 Min = FMRB_OnlyReadsMemory; 252 } 253 254 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 255 } 256 257 FunctionModRefBehavior 258 GlobalsAAResult::getModRefBehavior(const CallBase *Call) { 259 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 260 261 if (!Call->hasOperandBundles()) 262 if (const Function *F = Call->getCalledFunction()) 263 if (FunctionInfo *FI = getFunctionInfo(F)) { 264 if (!isModOrRefSet(FI->getModRefInfo())) 265 Min = FMRB_DoesNotAccessMemory; 266 else if (!isModSet(FI->getModRefInfo())) 267 Min = FMRB_OnlyReadsMemory; 268 } 269 270 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min); 271 } 272 273 /// Returns the function info for the function, or null if we don't have 274 /// anything useful to say about it. 275 GlobalsAAResult::FunctionInfo * 276 GlobalsAAResult::getFunctionInfo(const Function *F) { 277 auto I = FunctionInfos.find(F); 278 if (I != FunctionInfos.end()) 279 return &I->second; 280 return nullptr; 281 } 282 283 /// AnalyzeGlobals - Scan through the users of all of the internal 284 /// GlobalValue's in the program. If none of them have their "address taken" 285 /// (really, their address passed to something nontrivial), record this fact, 286 /// and record the functions that they are used directly in. 287 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 288 SmallPtrSet<Function *, 32> TrackedFunctions; 289 for (Function &F : M) 290 if (F.hasLocalLinkage()) { 291 if (!AnalyzeUsesOfPointer(&F)) { 292 // Remember that we are tracking this global. 293 NonAddressTakenGlobals.insert(&F); 294 TrackedFunctions.insert(&F); 295 Handles.emplace_front(*this, &F); 296 Handles.front().I = Handles.begin(); 297 ++NumNonAddrTakenFunctions; 298 } else 299 UnknownFunctionsWithLocalLinkage = true; 300 } 301 302 SmallPtrSet<Function *, 16> Readers, Writers; 303 for (GlobalVariable &GV : M.globals()) 304 if (GV.hasLocalLinkage()) { 305 if (!AnalyzeUsesOfPointer(&GV, &Readers, 306 GV.isConstant() ? nullptr : &Writers)) { 307 // Remember that we are tracking this global, and the mod/ref fns 308 NonAddressTakenGlobals.insert(&GV); 309 Handles.emplace_front(*this, &GV); 310 Handles.front().I = Handles.begin(); 311 312 for (Function *Reader : Readers) { 313 if (TrackedFunctions.insert(Reader).second) { 314 Handles.emplace_front(*this, Reader); 315 Handles.front().I = Handles.begin(); 316 } 317 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 318 } 319 320 if (!GV.isConstant()) // No need to keep track of writers to constants 321 for (Function *Writer : Writers) { 322 if (TrackedFunctions.insert(Writer).second) { 323 Handles.emplace_front(*this, Writer); 324 Handles.front().I = Handles.begin(); 325 } 326 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 327 } 328 ++NumNonAddrTakenGlobalVars; 329 330 // If this global holds a pointer type, see if it is an indirect global. 331 if (GV.getValueType()->isPointerTy() && 332 AnalyzeIndirectGlobalMemory(&GV)) 333 ++NumIndirectGlobalVars; 334 } 335 Readers.clear(); 336 Writers.clear(); 337 } 338 } 339 340 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 341 /// If this is used by anything complex (i.e., the address escapes), return 342 /// true. Also, while we are at it, keep track of those functions that read and 343 /// write to the value. 344 /// 345 /// If OkayStoreDest is non-null, stores into this global are allowed. 346 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 347 SmallPtrSetImpl<Function *> *Readers, 348 SmallPtrSetImpl<Function *> *Writers, 349 GlobalValue *OkayStoreDest) { 350 if (!V->getType()->isPointerTy()) 351 return true; 352 353 for (Use &U : V->uses()) { 354 User *I = U.getUser(); 355 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 356 if (Readers) 357 Readers->insert(LI->getParent()->getParent()); 358 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 359 if (V == SI->getOperand(1)) { 360 if (Writers) 361 Writers->insert(SI->getParent()->getParent()); 362 } else if (SI->getOperand(1) != OkayStoreDest) { 363 return true; // Storing the pointer 364 } 365 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 366 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 367 return true; 368 } else if (Operator::getOpcode(I) == Instruction::BitCast) { 369 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 370 return true; 371 } else if (auto *Call = dyn_cast<CallBase>(I)) { 372 // Make sure that this is just the function being called, not that it is 373 // passing into the function. 374 if (Call->isDataOperand(&U)) { 375 // Detect calls to free. 376 if (Call->isArgOperand(&U) && 377 isFreeCall(I, &GetTLI(*Call->getFunction()))) { 378 if (Writers) 379 Writers->insert(Call->getParent()->getParent()); 380 } else { 381 return true; // Argument of an unknown call. 382 } 383 } 384 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 385 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 386 return true; // Allow comparison against null. 387 } else if (Constant *C = dyn_cast<Constant>(I)) { 388 // Ignore constants which don't have any live uses. 389 if (isa<GlobalValue>(C) || C->isConstantUsed()) 390 return true; 391 } else { 392 return true; 393 } 394 } 395 396 return false; 397 } 398 399 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 400 /// which holds a pointer type. See if the global always points to non-aliased 401 /// heap memory: that is, all initializers of the globals are allocations, and 402 /// those allocations have no use other than initialization of the global. 403 /// Further, all loads out of GV must directly use the memory, not store the 404 /// pointer somewhere. If this is true, we consider the memory pointed to by 405 /// GV to be owned by GV and can disambiguate other pointers from it. 406 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 407 // Keep track of values related to the allocation of the memory, f.e. the 408 // value produced by the malloc call and any casts. 409 std::vector<Value *> AllocRelatedValues; 410 411 // If the initializer is a valid pointer, bail. 412 if (Constant *C = GV->getInitializer()) 413 if (!C->isNullValue()) 414 return false; 415 416 // Walk the user list of the global. If we find anything other than a direct 417 // load or store, bail out. 418 for (User *U : GV->users()) { 419 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 420 // The pointer loaded from the global can only be used in simple ways: 421 // we allow addressing of it and loading storing to it. We do *not* allow 422 // storing the loaded pointer somewhere else or passing to a function. 423 if (AnalyzeUsesOfPointer(LI)) 424 return false; // Loaded pointer escapes. 425 // TODO: Could try some IP mod/ref of the loaded pointer. 426 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 427 // Storing the global itself. 428 if (SI->getOperand(0) == GV) 429 return false; 430 431 // If storing the null pointer, ignore it. 432 if (isa<ConstantPointerNull>(SI->getOperand(0))) 433 continue; 434 435 // Check the value being stored. 436 Value *Ptr = GetUnderlyingObject(SI->getOperand(0), 437 GV->getParent()->getDataLayout()); 438 439 if (!isAllocLikeFn(Ptr, &GetTLI(*SI->getFunction()))) 440 return false; // Too hard to analyze. 441 442 // Analyze all uses of the allocation. If any of them are used in a 443 // non-simple way (e.g. stored to another global) bail out. 444 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 445 GV)) 446 return false; // Loaded pointer escapes. 447 448 // Remember that this allocation is related to the indirect global. 449 AllocRelatedValues.push_back(Ptr); 450 } else { 451 // Something complex, bail out. 452 return false; 453 } 454 } 455 456 // Okay, this is an indirect global. Remember all of the allocations for 457 // this global in AllocsForIndirectGlobals. 458 while (!AllocRelatedValues.empty()) { 459 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 460 Handles.emplace_front(*this, AllocRelatedValues.back()); 461 Handles.front().I = Handles.begin(); 462 AllocRelatedValues.pop_back(); 463 } 464 IndirectGlobals.insert(GV); 465 Handles.emplace_front(*this, GV); 466 Handles.front().I = Handles.begin(); 467 return true; 468 } 469 470 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 471 // We do a bottom-up SCC traversal of the call graph. In other words, we 472 // visit all callees before callers (leaf-first). 473 unsigned SCCID = 0; 474 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 475 const std::vector<CallGraphNode *> &SCC = *I; 476 assert(!SCC.empty() && "SCC with no functions?"); 477 478 for (auto *CGN : SCC) 479 if (Function *F = CGN->getFunction()) 480 FunctionToSCCMap[F] = SCCID; 481 ++SCCID; 482 } 483 } 484 485 /// AnalyzeCallGraph - At this point, we know the functions where globals are 486 /// immediately stored to and read from. Propagate this information up the call 487 /// graph to all callers and compute the mod/ref info for all memory for each 488 /// function. 489 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 490 // We do a bottom-up SCC traversal of the call graph. In other words, we 491 // visit all callees before callers (leaf-first). 492 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 493 const std::vector<CallGraphNode *> &SCC = *I; 494 assert(!SCC.empty() && "SCC with no functions?"); 495 496 Function *F = SCC[0]->getFunction(); 497 498 if (!F || !F->isDefinitionExact()) { 499 // Calls externally or not exact - can't say anything useful. Remove any 500 // existing function records (may have been created when scanning 501 // globals). 502 for (auto *Node : SCC) 503 FunctionInfos.erase(Node->getFunction()); 504 continue; 505 } 506 507 FunctionInfo &FI = FunctionInfos[F]; 508 Handles.emplace_front(*this, F); 509 Handles.front().I = Handles.begin(); 510 bool KnowNothing = false; 511 512 // Collect the mod/ref properties due to called functions. We only compute 513 // one mod-ref set. 514 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 515 if (!F) { 516 KnowNothing = true; 517 break; 518 } 519 520 if (F->isDeclaration() || F->hasOptNone()) { 521 // Try to get mod/ref behaviour from function attributes. 522 if (F->doesNotAccessMemory()) { 523 // Can't do better than that! 524 } else if (F->onlyReadsMemory()) { 525 FI.addModRefInfo(ModRefInfo::Ref); 526 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) 527 // This function might call back into the module and read a global - 528 // consider every global as possibly being read by this function. 529 FI.setMayReadAnyGlobal(); 530 } else { 531 FI.addModRefInfo(ModRefInfo::ModRef); 532 if (!F->onlyAccessesArgMemory()) 533 FI.setMayReadAnyGlobal(); 534 if (!F->isIntrinsic()) { 535 KnowNothing = true; 536 break; 537 } 538 } 539 continue; 540 } 541 542 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 543 CI != E && !KnowNothing; ++CI) 544 if (Function *Callee = CI->second->getFunction()) { 545 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 546 // Propagate function effect up. 547 FI.addFunctionInfo(*CalleeFI); 548 } else { 549 // Can't say anything about it. However, if it is inside our SCC, 550 // then nothing needs to be done. 551 CallGraphNode *CalleeNode = CG[Callee]; 552 if (!is_contained(SCC, CalleeNode)) 553 KnowNothing = true; 554 } 555 } else { 556 KnowNothing = true; 557 } 558 } 559 560 // If we can't say anything useful about this SCC, remove all SCC functions 561 // from the FunctionInfos map. 562 if (KnowNothing) { 563 for (auto *Node : SCC) 564 FunctionInfos.erase(Node->getFunction()); 565 continue; 566 } 567 568 // Scan the function bodies for explicit loads or stores. 569 for (auto *Node : SCC) { 570 if (isModAndRefSet(FI.getModRefInfo())) 571 break; // The mod/ref lattice saturates here. 572 573 // Don't prove any properties based on the implementation of an optnone 574 // function. Function attributes were already used as a best approximation 575 // above. 576 if (Node->getFunction()->hasOptNone()) 577 continue; 578 579 for (Instruction &I : instructions(Node->getFunction())) { 580 if (isModAndRefSet(FI.getModRefInfo())) 581 break; // The mod/ref lattice saturates here. 582 583 // We handle calls specially because the graph-relevant aspects are 584 // handled above. 585 if (auto *Call = dyn_cast<CallBase>(&I)) { 586 auto &TLI = GetTLI(*Node->getFunction()); 587 if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) { 588 // FIXME: It is completely unclear why this is necessary and not 589 // handled by the above graph code. 590 FI.addModRefInfo(ModRefInfo::ModRef); 591 } else if (Function *Callee = Call->getCalledFunction()) { 592 // The callgraph doesn't include intrinsic calls. 593 if (Callee->isIntrinsic()) { 594 if (isa<DbgInfoIntrinsic>(Call)) 595 // Don't let dbg intrinsics affect alias info. 596 continue; 597 598 FunctionModRefBehavior Behaviour = 599 AAResultBase::getModRefBehavior(Callee); 600 FI.addModRefInfo(createModRefInfo(Behaviour)); 601 } 602 } 603 continue; 604 } 605 606 // All non-call instructions we use the primary predicates for whether 607 // they read or write memory. 608 if (I.mayReadFromMemory()) 609 FI.addModRefInfo(ModRefInfo::Ref); 610 if (I.mayWriteToMemory()) 611 FI.addModRefInfo(ModRefInfo::Mod); 612 } 613 } 614 615 if (!isModSet(FI.getModRefInfo())) 616 ++NumReadMemFunctions; 617 if (!isModOrRefSet(FI.getModRefInfo())) 618 ++NumNoMemFunctions; 619 620 // Finally, now that we know the full effect on this SCC, clone the 621 // information to each function in the SCC. 622 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 623 // get invalidated if DenseMap decides to re-hash. 624 FunctionInfo CachedFI = FI; 625 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 626 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 627 } 628 } 629 630 // GV is a non-escaping global. V is a pointer address that has been loaded from. 631 // If we can prove that V must escape, we can conclude that a load from V cannot 632 // alias GV. 633 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 634 const Value *V, 635 int &Depth, 636 const DataLayout &DL) { 637 SmallPtrSet<const Value *, 8> Visited; 638 SmallVector<const Value *, 8> Inputs; 639 Visited.insert(V); 640 Inputs.push_back(V); 641 do { 642 const Value *Input = Inputs.pop_back_val(); 643 644 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 645 isa<InvokeInst>(Input)) 646 // Arguments to functions or returns from functions are inherently 647 // escaping, so we can immediately classify those as not aliasing any 648 // non-addr-taken globals. 649 // 650 // (Transitive) loads from a global are also safe - if this aliased 651 // another global, its address would escape, so no alias. 652 continue; 653 654 // Recurse through a limited number of selects, loads and PHIs. This is an 655 // arbitrary depth of 4, lower numbers could be used to fix compile time 656 // issues if needed, but this is generally expected to be only be important 657 // for small depths. 658 if (++Depth > 4) 659 return false; 660 661 if (auto *LI = dyn_cast<LoadInst>(Input)) { 662 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); 663 continue; 664 } 665 if (auto *SI = dyn_cast<SelectInst>(Input)) { 666 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 667 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 668 if (Visited.insert(LHS).second) 669 Inputs.push_back(LHS); 670 if (Visited.insert(RHS).second) 671 Inputs.push_back(RHS); 672 continue; 673 } 674 if (auto *PN = dyn_cast<PHINode>(Input)) { 675 for (const Value *Op : PN->incoming_values()) { 676 Op = GetUnderlyingObject(Op, DL); 677 if (Visited.insert(Op).second) 678 Inputs.push_back(Op); 679 } 680 continue; 681 } 682 683 return false; 684 } while (!Inputs.empty()); 685 686 // All inputs were known to be no-alias. 687 return true; 688 } 689 690 // There are particular cases where we can conclude no-alias between 691 // a non-addr-taken global and some other underlying object. Specifically, 692 // a non-addr-taken global is known to not be escaped from any function. It is 693 // also incorrect for a transformation to introduce an escape of a global in 694 // a way that is observable when it was not there previously. One function 695 // being transformed to introduce an escape which could possibly be observed 696 // (via loading from a global or the return value for example) within another 697 // function is never safe. If the observation is made through non-atomic 698 // operations on different threads, it is a data-race and UB. If the 699 // observation is well defined, by being observed the transformation would have 700 // changed program behavior by introducing the observed escape, making it an 701 // invalid transform. 702 // 703 // This property does require that transformations which *temporarily* escape 704 // a global that was not previously escaped, prior to restoring it, cannot rely 705 // on the results of GMR::alias. This seems a reasonable restriction, although 706 // currently there is no way to enforce it. There is also no realistic 707 // optimization pass that would make this mistake. The closest example is 708 // a transformation pass which does reg2mem of SSA values but stores them into 709 // global variables temporarily before restoring the global variable's value. 710 // This could be useful to expose "benign" races for example. However, it seems 711 // reasonable to require that a pass which introduces escapes of global 712 // variables in this way to either not trust AA results while the escape is 713 // active, or to be forced to operate as a module pass that cannot co-exist 714 // with an alias analysis such as GMR. 715 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 716 const Value *V) { 717 // In order to know that the underlying object cannot alias the 718 // non-addr-taken global, we must know that it would have to be an escape. 719 // Thus if the underlying object is a function argument, a load from 720 // a global, or the return of a function, it cannot alias. We can also 721 // recurse through PHI nodes and select nodes provided all of their inputs 722 // resolve to one of these known-escaping roots. 723 SmallPtrSet<const Value *, 8> Visited; 724 SmallVector<const Value *, 8> Inputs; 725 Visited.insert(V); 726 Inputs.push_back(V); 727 int Depth = 0; 728 do { 729 const Value *Input = Inputs.pop_back_val(); 730 731 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 732 // If one input is the very global we're querying against, then we can't 733 // conclude no-alias. 734 if (InputGV == GV) 735 return false; 736 737 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 738 // FIXME: The condition can be refined, but be conservative for now. 739 auto *GVar = dyn_cast<GlobalVariable>(GV); 740 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 741 if (GVar && InputGVar && 742 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 743 !GVar->isInterposable() && !InputGVar->isInterposable()) { 744 Type *GVType = GVar->getInitializer()->getType(); 745 Type *InputGVType = InputGVar->getInitializer()->getType(); 746 if (GVType->isSized() && InputGVType->isSized() && 747 (DL.getTypeAllocSize(GVType) > 0) && 748 (DL.getTypeAllocSize(InputGVType) > 0)) 749 continue; 750 } 751 752 // Conservatively return false, even though we could be smarter 753 // (e.g. look through GlobalAliases). 754 return false; 755 } 756 757 if (isa<Argument>(Input) || isa<CallInst>(Input) || 758 isa<InvokeInst>(Input)) { 759 // Arguments to functions or returns from functions are inherently 760 // escaping, so we can immediately classify those as not aliasing any 761 // non-addr-taken globals. 762 continue; 763 } 764 765 // Recurse through a limited number of selects, loads and PHIs. This is an 766 // arbitrary depth of 4, lower numbers could be used to fix compile time 767 // issues if needed, but this is generally expected to be only be important 768 // for small depths. 769 if (++Depth > 4) 770 return false; 771 772 if (auto *LI = dyn_cast<LoadInst>(Input)) { 773 // A pointer loaded from a global would have been captured, and we know 774 // that the global is non-escaping, so no alias. 775 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); 776 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 777 // The load does not alias with GV. 778 continue; 779 // Otherwise, a load could come from anywhere, so bail. 780 return false; 781 } 782 if (auto *SI = dyn_cast<SelectInst>(Input)) { 783 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 784 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 785 if (Visited.insert(LHS).second) 786 Inputs.push_back(LHS); 787 if (Visited.insert(RHS).second) 788 Inputs.push_back(RHS); 789 continue; 790 } 791 if (auto *PN = dyn_cast<PHINode>(Input)) { 792 for (const Value *Op : PN->incoming_values()) { 793 Op = GetUnderlyingObject(Op, DL); 794 if (Visited.insert(Op).second) 795 Inputs.push_back(Op); 796 } 797 continue; 798 } 799 800 // FIXME: It would be good to handle other obvious no-alias cases here, but 801 // it isn't clear how to do so reasonably without building a small version 802 // of BasicAA into this code. We could recurse into AAResultBase::alias 803 // here but that seems likely to go poorly as we're inside the 804 // implementation of such a query. Until then, just conservatively return 805 // false. 806 return false; 807 } while (!Inputs.empty()); 808 809 // If all the inputs to V were definitively no-alias, then V is no-alias. 810 return true; 811 } 812 813 /// alias - If one of the pointers is to a global that we are tracking, and the 814 /// other is some random pointer, we know there cannot be an alias, because the 815 /// address of the global isn't taken. 816 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 817 const MemoryLocation &LocB, 818 AAQueryInfo &AAQI) { 819 // Get the base object these pointers point to. 820 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); 821 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); 822 823 // If either of the underlying values is a global, they may be non-addr-taken 824 // globals, which we can answer queries about. 825 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 826 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 827 if (GV1 || GV2) { 828 // If the global's address is taken, pretend we don't know it's a pointer to 829 // the global. 830 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 831 GV1 = nullptr; 832 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 833 GV2 = nullptr; 834 835 // If the two pointers are derived from two different non-addr-taken 836 // globals we know these can't alias. 837 if (GV1 && GV2 && GV1 != GV2) 838 return NoAlias; 839 840 // If one is and the other isn't, it isn't strictly safe but we can fake 841 // this result if necessary for performance. This does not appear to be 842 // a common problem in practice. 843 if (EnableUnsafeGlobalsModRefAliasResults) 844 if ((GV1 || GV2) && GV1 != GV2) 845 return NoAlias; 846 847 // Check for a special case where a non-escaping global can be used to 848 // conclude no-alias. 849 if ((GV1 || GV2) && GV1 != GV2) { 850 const GlobalValue *GV = GV1 ? GV1 : GV2; 851 const Value *UV = GV1 ? UV2 : UV1; 852 if (isNonEscapingGlobalNoAlias(GV, UV)) 853 return NoAlias; 854 } 855 856 // Otherwise if they are both derived from the same addr-taken global, we 857 // can't know the two accesses don't overlap. 858 } 859 860 // These pointers may be based on the memory owned by an indirect global. If 861 // so, we may be able to handle this. First check to see if the base pointer 862 // is a direct load from an indirect global. 863 GV1 = GV2 = nullptr; 864 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 865 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 866 if (IndirectGlobals.count(GV)) 867 GV1 = GV; 868 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 869 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 870 if (IndirectGlobals.count(GV)) 871 GV2 = GV; 872 873 // These pointers may also be from an allocation for the indirect global. If 874 // so, also handle them. 875 if (!GV1) 876 GV1 = AllocsForIndirectGlobals.lookup(UV1); 877 if (!GV2) 878 GV2 = AllocsForIndirectGlobals.lookup(UV2); 879 880 // Now that we know whether the two pointers are related to indirect globals, 881 // use this to disambiguate the pointers. If the pointers are based on 882 // different indirect globals they cannot alias. 883 if (GV1 && GV2 && GV1 != GV2) 884 return NoAlias; 885 886 // If one is based on an indirect global and the other isn't, it isn't 887 // strictly safe but we can fake this result if necessary for performance. 888 // This does not appear to be a common problem in practice. 889 if (EnableUnsafeGlobalsModRefAliasResults) 890 if ((GV1 || GV2) && GV1 != GV2) 891 return NoAlias; 892 893 return AAResultBase::alias(LocA, LocB, AAQI); 894 } 895 896 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, 897 const GlobalValue *GV, 898 AAQueryInfo &AAQI) { 899 if (Call->doesNotAccessMemory()) 900 return ModRefInfo::NoModRef; 901 ModRefInfo ConservativeResult = 902 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 903 904 // Iterate through all the arguments to the called function. If any argument 905 // is based on GV, return the conservative result. 906 for (auto &A : Call->args()) { 907 SmallVector<const Value*, 4> Objects; 908 GetUnderlyingObjects(A, Objects, DL); 909 910 // All objects must be identified. 911 if (!all_of(Objects, isIdentifiedObject) && 912 // Try ::alias to see if all objects are known not to alias GV. 913 !all_of(Objects, [&](const Value *V) { 914 return this->alias(MemoryLocation(V), MemoryLocation(GV), AAQI) == 915 NoAlias; 916 })) 917 return ConservativeResult; 918 919 if (is_contained(Objects, GV)) 920 return ConservativeResult; 921 } 922 923 // We identified all objects in the argument list, and none of them were GV. 924 return ModRefInfo::NoModRef; 925 } 926 927 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, 928 const MemoryLocation &Loc, 929 AAQueryInfo &AAQI) { 930 ModRefInfo Known = ModRefInfo::ModRef; 931 932 // If we are asking for mod/ref info of a direct call with a pointer to a 933 // global we are tracking, return information if we have it. 934 if (const GlobalValue *GV = 935 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) 936 // If GV is internal to this IR and there is no function with local linkage 937 // that has had their address taken, keep looking for a tighter ModRefInfo. 938 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage) 939 if (const Function *F = Call->getCalledFunction()) 940 if (NonAddressTakenGlobals.count(GV)) 941 if (const FunctionInfo *FI = getFunctionInfo(F)) 942 Known = unionModRef(FI->getModRefInfoForGlobal(*GV), 943 getModRefInfoForArgument(Call, GV, AAQI)); 944 945 if (!isModOrRefSet(Known)) 946 return ModRefInfo::NoModRef; // No need to query other mod/ref analyses 947 return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI)); 948 } 949 950 GlobalsAAResult::GlobalsAAResult( 951 const DataLayout &DL, 952 std::function<const TargetLibraryInfo &(Function &F)> GetTLI) 953 : AAResultBase(), DL(DL), GetTLI(std::move(GetTLI)) {} 954 955 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 956 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)), 957 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 958 IndirectGlobals(std::move(Arg.IndirectGlobals)), 959 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 960 FunctionInfos(std::move(Arg.FunctionInfos)), 961 Handles(std::move(Arg.Handles)) { 962 // Update the parent for each DeletionCallbackHandle. 963 for (auto &H : Handles) { 964 assert(H.GAR == &Arg); 965 H.GAR = this; 966 } 967 } 968 969 GlobalsAAResult::~GlobalsAAResult() {} 970 971 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule( 972 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 973 CallGraph &CG) { 974 GlobalsAAResult Result(M.getDataLayout(), GetTLI); 975 976 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 977 Result.CollectSCCMembership(CG); 978 979 // Find non-addr taken globals. 980 Result.AnalyzeGlobals(M); 981 982 // Propagate on CG. 983 Result.AnalyzeCallGraph(CG, M); 984 985 return Result; 986 } 987 988 AnalysisKey GlobalsAA::Key; 989 990 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 991 FunctionAnalysisManager &FAM = 992 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 993 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 994 return FAM.getResult<TargetLibraryAnalysis>(F); 995 }; 996 return GlobalsAAResult::analyzeModule(M, GetTLI, 997 AM.getResult<CallGraphAnalysis>(M)); 998 } 999 1000 char GlobalsAAWrapperPass::ID = 0; 1001 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 1002 "Globals Alias Analysis", false, true) 1003 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1004 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1005 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 1006 "Globals Alias Analysis", false, true) 1007 1008 ModulePass *llvm::createGlobalsAAWrapperPass() { 1009 return new GlobalsAAWrapperPass(); 1010 } 1011 1012 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 1013 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1014 } 1015 1016 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 1017 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 1018 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1019 }; 1020 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 1021 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 1022 return false; 1023 } 1024 1025 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 1026 Result.reset(); 1027 return false; 1028 } 1029 1030 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1031 AU.setPreservesAll(); 1032 AU.addRequired<CallGraphWrapperPass>(); 1033 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1034 } 1035