xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/FunctionPropertiesAnalysis.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- FunctionPropertiesAnalysis.cpp - Function Properties Analysis ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the FunctionPropertiesInfo and FunctionPropertiesAnalysis
10 // classes used to extract function properties.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/FunctionPropertiesAnalysis.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/CFG.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/CommandLine.h"
24 #include <deque>
25 
26 using namespace llvm;
27 
28 namespace llvm {
29 cl::opt<bool> EnableDetailedFunctionProperties(
30     "enable-detailed-function-properties", cl::Hidden, cl::init(false),
31     cl::desc("Whether or not to compute detailed function properties."));
32 
33 cl::opt<unsigned> BigBasicBlockInstructionThreshold(
34     "big-basic-block-instruction-threshold", cl::Hidden, cl::init(500),
35     cl::desc("The minimum number of instructions a basic block should contain "
36              "before being considered big."));
37 
38 cl::opt<unsigned> MediumBasicBlockInstructionThreshold(
39     "medium-basic-block-instruction-threshold", cl::Hidden, cl::init(15),
40     cl::desc("The minimum number of instructions a basic block should contain "
41              "before being considered medium-sized."));
42 } // namespace llvm
43 
44 static cl::opt<unsigned> CallWithManyArgumentsThreshold(
45     "call-with-many-arguments-threshold", cl::Hidden, cl::init(4),
46     cl::desc("The minimum number of arguments a function call must have before "
47              "it is considered having many arguments."));
48 
49 namespace {
50 int64_t getNrBlocksFromCond(const BasicBlock &BB) {
51   int64_t Ret = 0;
52   if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
53     if (BI->isConditional())
54       Ret += BI->getNumSuccessors();
55   } else if (const auto *SI = dyn_cast<SwitchInst>(BB.getTerminator())) {
56     Ret += (SI->getNumCases() + (nullptr != SI->getDefaultDest()));
57   }
58   return Ret;
59 }
60 
61 int64_t getUses(const Function &F) {
62   return ((!F.hasLocalLinkage()) ? 1 : 0) + F.getNumUses();
63 }
64 } // namespace
65 
66 void FunctionPropertiesInfo::reIncludeBB(const BasicBlock &BB) {
67   updateForBB(BB, +1);
68 }
69 
70 void FunctionPropertiesInfo::updateForBB(const BasicBlock &BB,
71                                          int64_t Direction) {
72   assert(Direction == 1 || Direction == -1);
73   BasicBlockCount += Direction;
74   BlocksReachedFromConditionalInstruction +=
75       (Direction * getNrBlocksFromCond(BB));
76   for (const auto &I : BB) {
77     if (auto *CS = dyn_cast<CallBase>(&I)) {
78       const auto *Callee = CS->getCalledFunction();
79       if (Callee && !Callee->isIntrinsic() && !Callee->isDeclaration())
80         DirectCallsToDefinedFunctions += Direction;
81     }
82     if (I.getOpcode() == Instruction::Load) {
83       LoadInstCount += Direction;
84     } else if (I.getOpcode() == Instruction::Store) {
85       StoreInstCount += Direction;
86     }
87   }
88   TotalInstructionCount += Direction * BB.sizeWithoutDebug();
89 
90   if (EnableDetailedFunctionProperties) {
91     unsigned SuccessorCount = succ_size(&BB);
92     if (SuccessorCount == 1)
93       BasicBlocksWithSingleSuccessor += Direction;
94     else if (SuccessorCount == 2)
95       BasicBlocksWithTwoSuccessors += Direction;
96     else if (SuccessorCount > 2)
97       BasicBlocksWithMoreThanTwoSuccessors += Direction;
98 
99     unsigned PredecessorCount = pred_size(&BB);
100     if (PredecessorCount == 1)
101       BasicBlocksWithSinglePredecessor += Direction;
102     else if (PredecessorCount == 2)
103       BasicBlocksWithTwoPredecessors += Direction;
104     else if (PredecessorCount > 2)
105       BasicBlocksWithMoreThanTwoPredecessors += Direction;
106 
107     if (TotalInstructionCount > BigBasicBlockInstructionThreshold)
108       BigBasicBlocks += Direction;
109     else if (TotalInstructionCount > MediumBasicBlockInstructionThreshold)
110       MediumBasicBlocks += Direction;
111     else
112       SmallBasicBlocks += Direction;
113 
114     // Calculate critical edges by looking through all successors of a basic
115     // block that has multiple successors and finding ones that have multiple
116     // predecessors, which represent critical edges.
117     if (SuccessorCount > 1) {
118       for (const auto *Successor : successors(&BB)) {
119         if (pred_size(Successor) > 1)
120           CriticalEdgeCount += Direction;
121       }
122     }
123 
124     ControlFlowEdgeCount += Direction * SuccessorCount;
125 
126     if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
127       if (!BI->isConditional())
128         UnconditionalBranchCount += Direction;
129     }
130 
131     for (const Instruction &I : BB.instructionsWithoutDebug()) {
132       if (I.isCast())
133         CastInstructionCount += Direction;
134 
135       if (I.getType()->isFloatTy())
136         FloatingPointInstructionCount += Direction;
137       else if (I.getType()->isIntegerTy())
138         IntegerInstructionCount += Direction;
139 
140       if (isa<IntrinsicInst>(I))
141         ++IntrinsicCount;
142 
143       if (const auto *Call = dyn_cast<CallInst>(&I)) {
144         if (Call->isIndirectCall())
145           IndirectCallCount += Direction;
146         else
147           DirectCallCount += Direction;
148 
149         if (Call->getType()->isIntegerTy())
150           CallReturnsIntegerCount += Direction;
151         else if (Call->getType()->isFloatingPointTy())
152           CallReturnsFloatCount += Direction;
153         else if (Call->getType()->isPointerTy())
154           CallReturnsPointerCount += Direction;
155         else if (Call->getType()->isVectorTy()) {
156           if (Call->getType()->getScalarType()->isIntegerTy())
157             CallReturnsVectorIntCount += Direction;
158           else if (Call->getType()->getScalarType()->isFloatingPointTy())
159             CallReturnsVectorFloatCount += Direction;
160           else if (Call->getType()->getScalarType()->isPointerTy())
161             CallReturnsVectorPointerCount += Direction;
162         }
163 
164         if (Call->arg_size() > CallWithManyArgumentsThreshold)
165           CallWithManyArgumentsCount += Direction;
166 
167         for (const auto &Arg : Call->args()) {
168           if (Arg->getType()->isPointerTy()) {
169             CallWithPointerArgumentCount += Direction;
170             break;
171           }
172         }
173       }
174 
175 #define COUNT_OPERAND(OPTYPE)                                                  \
176   if (isa<OPTYPE>(Operand)) {                                                  \
177     OPTYPE##OperandCount += Direction;                                         \
178     continue;                                                                  \
179   }
180 
181       for (unsigned int OperandIndex = 0; OperandIndex < I.getNumOperands();
182            ++OperandIndex) {
183         Value *Operand = I.getOperand(OperandIndex);
184         COUNT_OPERAND(GlobalValue)
185         COUNT_OPERAND(ConstantInt)
186         COUNT_OPERAND(ConstantFP)
187         COUNT_OPERAND(Constant)
188         COUNT_OPERAND(Instruction)
189         COUNT_OPERAND(BasicBlock)
190         COUNT_OPERAND(InlineAsm)
191         COUNT_OPERAND(Argument)
192 
193         // We only get to this point if we haven't matched any of the other
194         // operand types.
195         UnknownOperandCount += Direction;
196       }
197 
198 #undef CHECK_OPERAND
199     }
200   }
201 }
202 
203 void FunctionPropertiesInfo::updateAggregateStats(const Function &F,
204                                                   const LoopInfo &LI) {
205 
206   Uses = getUses(F);
207   TopLevelLoopCount = llvm::size(LI);
208   MaxLoopDepth = 0;
209   std::deque<const Loop *> Worklist;
210   llvm::append_range(Worklist, LI);
211   while (!Worklist.empty()) {
212     const auto *L = Worklist.front();
213     MaxLoopDepth =
214         std::max(MaxLoopDepth, static_cast<int64_t>(L->getLoopDepth()));
215     Worklist.pop_front();
216     llvm::append_range(Worklist, L->getSubLoops());
217   }
218 }
219 
220 FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
221     Function &F, FunctionAnalysisManager &FAM) {
222   return getFunctionPropertiesInfo(F, FAM.getResult<DominatorTreeAnalysis>(F),
223                                    FAM.getResult<LoopAnalysis>(F));
224 }
225 
226 FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
227     const Function &F, const DominatorTree &DT, const LoopInfo &LI) {
228 
229   FunctionPropertiesInfo FPI;
230   for (const auto &BB : F)
231     if (DT.isReachableFromEntry(&BB))
232       FPI.reIncludeBB(BB);
233   FPI.updateAggregateStats(F, LI);
234   return FPI;
235 }
236 
237 void FunctionPropertiesInfo::print(raw_ostream &OS) const {
238 #define PRINT_PROPERTY(PROP_NAME) OS << #PROP_NAME ": " << PROP_NAME << "\n";
239 
240   PRINT_PROPERTY(BasicBlockCount)
241   PRINT_PROPERTY(BlocksReachedFromConditionalInstruction)
242   PRINT_PROPERTY(Uses)
243   PRINT_PROPERTY(DirectCallsToDefinedFunctions)
244   PRINT_PROPERTY(LoadInstCount)
245   PRINT_PROPERTY(StoreInstCount)
246   PRINT_PROPERTY(MaxLoopDepth)
247   PRINT_PROPERTY(TopLevelLoopCount)
248   PRINT_PROPERTY(TotalInstructionCount)
249 
250   if (EnableDetailedFunctionProperties) {
251     PRINT_PROPERTY(BasicBlocksWithSingleSuccessor)
252     PRINT_PROPERTY(BasicBlocksWithTwoSuccessors)
253     PRINT_PROPERTY(BasicBlocksWithMoreThanTwoSuccessors)
254     PRINT_PROPERTY(BasicBlocksWithSinglePredecessor)
255     PRINT_PROPERTY(BasicBlocksWithTwoPredecessors)
256     PRINT_PROPERTY(BasicBlocksWithMoreThanTwoPredecessors)
257     PRINT_PROPERTY(BigBasicBlocks)
258     PRINT_PROPERTY(MediumBasicBlocks)
259     PRINT_PROPERTY(SmallBasicBlocks)
260     PRINT_PROPERTY(CastInstructionCount)
261     PRINT_PROPERTY(FloatingPointInstructionCount)
262     PRINT_PROPERTY(IntegerInstructionCount)
263     PRINT_PROPERTY(ConstantIntOperandCount)
264     PRINT_PROPERTY(ConstantFPOperandCount)
265     PRINT_PROPERTY(ConstantOperandCount)
266     PRINT_PROPERTY(InstructionOperandCount)
267     PRINT_PROPERTY(BasicBlockOperandCount)
268     PRINT_PROPERTY(GlobalValueOperandCount)
269     PRINT_PROPERTY(InlineAsmOperandCount)
270     PRINT_PROPERTY(ArgumentOperandCount)
271     PRINT_PROPERTY(UnknownOperandCount)
272     PRINT_PROPERTY(CriticalEdgeCount)
273     PRINT_PROPERTY(ControlFlowEdgeCount)
274     PRINT_PROPERTY(UnconditionalBranchCount)
275     PRINT_PROPERTY(IntrinsicCount)
276     PRINT_PROPERTY(DirectCallCount)
277     PRINT_PROPERTY(IndirectCallCount)
278     PRINT_PROPERTY(CallReturnsIntegerCount)
279     PRINT_PROPERTY(CallReturnsFloatCount)
280     PRINT_PROPERTY(CallReturnsPointerCount)
281     PRINT_PROPERTY(CallReturnsVectorIntCount)
282     PRINT_PROPERTY(CallReturnsVectorFloatCount)
283     PRINT_PROPERTY(CallReturnsVectorPointerCount)
284     PRINT_PROPERTY(CallWithManyArgumentsCount)
285     PRINT_PROPERTY(CallWithPointerArgumentCount)
286   }
287 
288 #undef PRINT_PROPERTY
289 
290   OS << "\n";
291 }
292 
293 AnalysisKey FunctionPropertiesAnalysis::Key;
294 
295 FunctionPropertiesInfo
296 FunctionPropertiesAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
297   return FunctionPropertiesInfo::getFunctionPropertiesInfo(F, FAM);
298 }
299 
300 PreservedAnalyses
301 FunctionPropertiesPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
302   OS << "Printing analysis results of CFA for function "
303      << "'" << F.getName() << "':"
304      << "\n";
305   AM.getResult<FunctionPropertiesAnalysis>(F).print(OS);
306   return PreservedAnalyses::all();
307 }
308 
309 FunctionPropertiesUpdater::FunctionPropertiesUpdater(
310     FunctionPropertiesInfo &FPI, CallBase &CB)
311     : FPI(FPI), CallSiteBB(*CB.getParent()), Caller(*CallSiteBB.getParent()) {
312   assert(isa<CallInst>(CB) || isa<InvokeInst>(CB));
313   // For BBs that are likely to change, we subtract from feature totals their
314   // contribution. Some features, like max loop counts or depths, are left
315   // invalid, as they will be updated post-inlining.
316   SmallPtrSet<const BasicBlock *, 4> LikelyToChangeBBs;
317   // The CB BB will change - it'll either be split or the callee's body (single
318   // BB) will be pasted in.
319   LikelyToChangeBBs.insert(&CallSiteBB);
320 
321   // The caller's entry BB may change due to new alloca instructions.
322   LikelyToChangeBBs.insert(&*Caller.begin());
323 
324   // The successors may become unreachable in the case of `invoke` inlining.
325   // We track successors separately, too, because they form a boundary, together
326   // with the CB BB ('Entry') between which the inlined callee will be pasted.
327   Successors.insert(succ_begin(&CallSiteBB), succ_end(&CallSiteBB));
328 
329   // Inlining only handles invoke and calls. If this is an invoke, and inlining
330   // it pulls another invoke, the original landing pad may get split, so as to
331   // share its content with other potential users. So the edge up to which we
332   // need to invalidate and then re-account BB data is the successors of the
333   // current landing pad. We can leave the current lp, too - if it doesn't get
334   // split, then it will be the place traversal stops. Either way, the
335   // discounted BBs will be checked if reachable and re-added.
336   if (const auto *II = dyn_cast<InvokeInst>(&CB)) {
337     const auto *UnwindDest = II->getUnwindDest();
338     Successors.insert(succ_begin(UnwindDest), succ_end(UnwindDest));
339   }
340 
341   // Exclude the CallSiteBB, if it happens to be its own successor (1-BB loop).
342   // We are only interested in BBs the graph moves past the callsite BB to
343   // define the frontier past which we don't want to re-process BBs. Including
344   // the callsite BB in this case would prematurely stop the traversal in
345   // finish().
346   Successors.erase(&CallSiteBB);
347 
348   for (const auto *BB : Successors)
349     LikelyToChangeBBs.insert(BB);
350 
351   // Commit the change. While some of the BBs accounted for above may play dual
352   // role - e.g. caller's entry BB may be the same as the callsite BB - set
353   // insertion semantics make sure we account them once. This needs to be
354   // followed in `finish`, too.
355   for (const auto *BB : LikelyToChangeBBs)
356     FPI.updateForBB(*BB, -1);
357 }
358 
359 void FunctionPropertiesUpdater::finish(FunctionAnalysisManager &FAM) const {
360   // Update feature values from the BBs that were copied from the callee, or
361   // might have been modified because of inlining. The latter have been
362   // subtracted in the FunctionPropertiesUpdater ctor.
363   // There could be successors that were reached before but now are only
364   // reachable from elsewhere in the CFG.
365   // One example is the following diamond CFG (lines are arrows pointing down):
366   //    A
367   //  /   \
368   // B     C
369   // |     |
370   // |     D
371   // |     |
372   // |     E
373   //  \   /
374   //    F
375   // There's a call site in C that is inlined. Upon doing that, it turns out
376   // it expands to
377   //   call void @llvm.trap()
378   //   unreachable
379   // F isn't reachable from C anymore, but we did discount it when we set up
380   // FunctionPropertiesUpdater, so we need to re-include it here.
381   // At the same time, D and E were reachable before, but now are not anymore,
382   // so we need to leave D out (we discounted it at setup), and explicitly
383   // remove E.
384   SetVector<const BasicBlock *> Reinclude;
385   SetVector<const BasicBlock *> Unreachable;
386   const auto &DT =
387       FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(Caller));
388 
389   if (&CallSiteBB != &*Caller.begin())
390     Reinclude.insert(&*Caller.begin());
391 
392   // Distribute the successors to the 2 buckets.
393   for (const auto *Succ : Successors)
394     if (DT.isReachableFromEntry(Succ))
395       Reinclude.insert(Succ);
396     else
397       Unreachable.insert(Succ);
398 
399   // For reinclusion, we want to stop at the reachable successors, who are at
400   // the beginning of the worklist; but, starting from the callsite bb and
401   // ending at those successors, we also want to perform a traversal.
402   // IncludeSuccessorsMark is the index after which we include successors.
403   const auto IncludeSuccessorsMark = Reinclude.size();
404   bool CSInsertion = Reinclude.insert(&CallSiteBB);
405   (void)CSInsertion;
406   assert(CSInsertion);
407   for (size_t I = 0; I < Reinclude.size(); ++I) {
408     const auto *BB = Reinclude[I];
409     FPI.reIncludeBB(*BB);
410     if (I >= IncludeSuccessorsMark)
411       Reinclude.insert(succ_begin(BB), succ_end(BB));
412   }
413 
414   // For exclusion, we don't need to exclude the set of BBs that were successors
415   // before and are now unreachable, because we already did that at setup. For
416   // the rest, as long as a successor is unreachable, we want to explicitly
417   // exclude it.
418   const auto AlreadyExcludedMark = Unreachable.size();
419   for (size_t I = 0; I < Unreachable.size(); ++I) {
420     const auto *U = Unreachable[I];
421     if (I >= AlreadyExcludedMark)
422       FPI.updateForBB(*U, -1);
423     for (const auto *Succ : successors(U))
424       if (!DT.isReachableFromEntry(Succ))
425         Unreachable.insert(Succ);
426   }
427 
428   const auto &LI = FAM.getResult<LoopAnalysis>(const_cast<Function &>(Caller));
429   FPI.updateAggregateStats(Caller, LI);
430 }
431 
432 bool FunctionPropertiesUpdater::isUpdateValid(Function &F,
433                                               const FunctionPropertiesInfo &FPI,
434                                               FunctionAnalysisManager &FAM) {
435   DominatorTree DT(F);
436   LoopInfo LI(DT);
437   auto Fresh = FunctionPropertiesInfo::getFunctionPropertiesInfo(F, DT, LI);
438   return FPI == Fresh;
439 }
440