1e8d8bef9SDimitry Andric //===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // The LLVM Compiler Infrastructure 4e8d8bef9SDimitry Andric // 5e8d8bef9SDimitry Andric // This file is distributed under the University of Illinois Open Source 6e8d8bef9SDimitry Andric // License. See LICENSE.TXT for details. 7e8d8bef9SDimitry Andric // 8e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 9e8d8bef9SDimitry Andric // 10e8d8bef9SDimitry Andric // This file implements a model runner using Tensorflow C APIs, allowing the 11e8d8bef9SDimitry Andric // loading of a model from a command line option. 12e8d8bef9SDimitry Andric // 13e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 14e8d8bef9SDimitry Andric #include "llvm/Config/config.h" 15e8d8bef9SDimitry Andric #if defined(LLVM_HAVE_TF_API) 16e8d8bef9SDimitry Andric 17e8d8bef9SDimitry Andric #include "llvm/Analysis/CallGraph.h" 18e8d8bef9SDimitry Andric #include "llvm/Analysis/InlineSizeEstimatorAnalysis.h" 19e8d8bef9SDimitry Andric #include "llvm/Analysis/MLInlineAdvisor.h" 20e8d8bef9SDimitry Andric #include "llvm/Analysis/Utils/TFUtils.h" 21e8d8bef9SDimitry Andric #include "llvm/IR/LLVMContext.h" 22e8d8bef9SDimitry Andric #include "llvm/Support/CommandLine.h" 23e8d8bef9SDimitry Andric #include "llvm/Support/ManagedStatic.h" 24e8d8bef9SDimitry Andric 25e8d8bef9SDimitry Andric #include <vector> 26e8d8bef9SDimitry Andric 27e8d8bef9SDimitry Andric using namespace llvm; 28e8d8bef9SDimitry Andric 29e8d8bef9SDimitry Andric static cl::opt<std::string> TrainingLog( 30e8d8bef9SDimitry Andric "training-log", cl::Hidden, 31e8d8bef9SDimitry Andric cl::desc("Path where the development - mode inlining log is saved.")); 32e8d8bef9SDimitry Andric 33e8d8bef9SDimitry Andric static cl::opt<std::string> TFModelUnderTrainingPath( 34e8d8bef9SDimitry Andric "ml-inliner-model-under-training", cl::Hidden, 35e8d8bef9SDimitry Andric cl::desc(R"(Path to SavedModel from the previous training iteration. 36e8d8bef9SDimitry Andric The directory is also expected to contain a JSON specification of the 37e8d8bef9SDimitry Andric outputs expected to be logged, where the first entry must be the 38e8d8bef9SDimitry Andric inlining decision. The file containing the specification should be 39e8d8bef9SDimitry Andric called output_spec.json. The expected JSON value is an array of 40e8d8bef9SDimitry Andric dictionaries. Each dictionary should have 2 keys: 41e8d8bef9SDimitry Andric 42e8d8bef9SDimitry Andric - "tensor_spec, followed by the TensorSpec description of the 43e8d8bef9SDimitry Andric output; and 44e8d8bef9SDimitry Andric - "logging_name", a string indicating the name to use when 45e8d8bef9SDimitry Andric logging the output values. 46e8d8bef9SDimitry Andric 47e8d8bef9SDimitry Andric Example: 48e8d8bef9SDimitry Andric [ 49e8d8bef9SDimitry Andric { 50e8d8bef9SDimitry Andric "logging_name" : "some_name", 51e8d8bef9SDimitry Andric "tensor_spec" : { 52e8d8bef9SDimitry Andric "name" : "model_name", 53e8d8bef9SDimitry Andric "port" : 0, 54e8d8bef9SDimitry Andric "shape" : [2, 3], 55e8d8bef9SDimitry Andric "type" : "float" 56e8d8bef9SDimitry Andric } 57e8d8bef9SDimitry Andric } 58e8d8bef9SDimitry Andric ] 59e8d8bef9SDimitry Andric 60e8d8bef9SDimitry Andric The first value must always correspond to the decision.)")); 61e8d8bef9SDimitry Andric 62e8d8bef9SDimitry Andric static cl::opt<std::string> TFOutputSpecOverride( 63e8d8bef9SDimitry Andric "ml-inliner-output-spec-override", cl::Hidden, 64e8d8bef9SDimitry Andric cl::desc("Override the path to the output spec json file. See " 65e8d8bef9SDimitry Andric "-ml-inliner-model-under-training documentation for the " 66e8d8bef9SDimitry Andric "specification of that file.")); 67e8d8bef9SDimitry Andric 68e8d8bef9SDimitry Andric static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix", 69e8d8bef9SDimitry Andric cl::Hidden, cl::init("action_"), 70e8d8bef9SDimitry Andric cl::desc("Prefix for feature names.")); 71e8d8bef9SDimitry Andric 72e8d8bef9SDimitry Andric namespace { 73e8d8bef9SDimitry Andric /// An InlineEvent, used by TrainingLogger. 74e8d8bef9SDimitry Andric struct InlineEvent { 75e8d8bef9SDimitry Andric /// What the default policy's decision would have been. 76e8d8bef9SDimitry Andric int64_t DefaultDecision = 0; 77e8d8bef9SDimitry Andric 78e8d8bef9SDimitry Andric /// What we advised. When training off the default policy, this is the same as 79e8d8bef9SDimitry Andric /// DefaultDecision. 80e8d8bef9SDimitry Andric int64_t AdvisedDecision = 0; 81e8d8bef9SDimitry Andric 82e8d8bef9SDimitry Andric /// What actually happened. This would be 'false' in the case of an inline 83e8d8bef9SDimitry Andric /// error, even if AdvisedDecision were true, otherwise it agrees with 84e8d8bef9SDimitry Andric /// AdvisedDecision. 85e8d8bef9SDimitry Andric bool Effect = false; 86e8d8bef9SDimitry Andric 87e8d8bef9SDimitry Andric /// What the change in size was: size_after - size_before 88e8d8bef9SDimitry Andric int64_t Reward = 0; 89e8d8bef9SDimitry Andric }; 90e8d8bef9SDimitry Andric 91e8d8bef9SDimitry Andric /// Collect data we may use for training a model, and write it as a textual 92e8d8bef9SDimitry Andric /// Tensorflow SequenceExample 93e8d8bef9SDimitry Andric /// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample) 94e8d8bef9SDimitry Andric /// protobuf (https://developers.google.com/protocol-buffers). 95e8d8bef9SDimitry Andric /// Because this is a protobuf, we cannot just stream the events as they come. 96e8d8bef9SDimitry Andric /// Internally, TrainingLogger stores data in column-major format, because that 97e8d8bef9SDimitry Andric /// lines up with how TF SequenceExample represents it. 98e8d8bef9SDimitry Andric class ModelUnderTrainingRunner; 99e8d8bef9SDimitry Andric class TrainingLogger final { 100e8d8bef9SDimitry Andric public: 101e8d8bef9SDimitry Andric TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR); 102e8d8bef9SDimitry Andric 103e8d8bef9SDimitry Andric /// Log one inlining event. 104e8d8bef9SDimitry Andric void logInlineEvent(const InlineEvent &Event, 105e8d8bef9SDimitry Andric const MLModelRunner &ModelRunner); 106e8d8bef9SDimitry Andric 107e8d8bef9SDimitry Andric /// Print the stored tensors. 108e8d8bef9SDimitry Andric void print(); 109e8d8bef9SDimitry Andric 110e8d8bef9SDimitry Andric private: 111e8d8bef9SDimitry Andric StringRef LogFileName; 112e8d8bef9SDimitry Andric const ModelUnderTrainingRunner *const MUTR; 113e8d8bef9SDimitry Andric std::unique_ptr<Logger> L; 114e8d8bef9SDimitry Andric std::vector<bool> Effects; 115e8d8bef9SDimitry Andric /// There's at least one output. We'll set this to a different value if MUTR 116e8d8bef9SDimitry Andric /// is avaliable. 117e8d8bef9SDimitry Andric size_t OutputCount = 1; 118e8d8bef9SDimitry Andric /// Set these 2 clearly OOB, to make sure we set them later. 119e8d8bef9SDimitry Andric size_t DefaultDecisionPos = std::numeric_limits<size_t>::max(); 120e8d8bef9SDimitry Andric size_t DecisionPos = std::numeric_limits<size_t>::max(); 121e8d8bef9SDimitry Andric }; 122e8d8bef9SDimitry Andric 123e8d8bef9SDimitry Andric /// An extension of the MLInlineAdvisor for the 'development' mode, targeting 124e8d8bef9SDimitry Andric /// the offline training scenario. Note that training happens outside of the 125e8d8bef9SDimitry Andric /// compiler, this facility is concerned with producing training data ("logs"). 126e8d8bef9SDimitry Andric /// This InlineAdvisor can operate in the following modes: 127e8d8bef9SDimitry Andric /// 128e8d8bef9SDimitry Andric /// 1) collect logs for the default policy. This is useful for bootstrapping 129e8d8bef9SDimitry Andric /// training, which will be considerably faster by starting from a reasonable 130e8d8bef9SDimitry Andric /// policy. 131e8d8bef9SDimitry Andric /// 132e8d8bef9SDimitry Andric /// 2) collect logs for the ML policy, using a model from a previous 133e8d8bef9SDimitry Andric /// training. Potentially, that model uses internally some small random 134e8d8bef9SDimitry Andric /// perturbation of its weights, to induce exploration (setting this up is the 135e8d8bef9SDimitry Andric /// responsibility of the training algorithm). The logs would then be used to 136e8d8bef9SDimitry Andric /// retrain and improve on this model. 137e8d8bef9SDimitry Andric /// 138e8d8bef9SDimitry Andric /// 3) use the provided model, with no logging. This is useful for end to end 139e8d8bef9SDimitry Andric /// validation - the model, in this case, is a release candidate and shouldn't 140e8d8bef9SDimitry Andric /// have random perturbations. It is a convenience feature: rather than needing 141e8d8bef9SDimitry Andric /// to take the release candidate model and compile it in 'release' mode, 142e8d8bef9SDimitry Andric /// validate it, then potentially discard it, it's easier to just pass the model 143e8d8bef9SDimitry Andric /// to the compiler, albeit compilation would be slower, as a one-off. Once the 144e8d8bef9SDimitry Andric /// model behaves satisfactorily, it can be compiled AOT, for efficiency, in 145e8d8bef9SDimitry Andric /// release mode. The expectation is that a well-trained model provides a good 146e8d8bef9SDimitry Andric /// policy over a sufficiently diverse codebase, over many changes (i.e. 147e8d8bef9SDimitry Andric /// training happens seldom). 148e8d8bef9SDimitry Andric class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor { 149e8d8bef9SDimitry Andric public: 150e8d8bef9SDimitry Andric DevelopmentModeMLInlineAdvisor( 151e8d8bef9SDimitry Andric Module &M, ModuleAnalysisManager &MAM, 152e8d8bef9SDimitry Andric std::unique_ptr<MLModelRunner> ModelRunner, 153e8d8bef9SDimitry Andric std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference, 154e8d8bef9SDimitry Andric std::unique_ptr<TrainingLogger> Logger); 155e8d8bef9SDimitry Andric 156e8d8bef9SDimitry Andric size_t getTotalSizeEstimate(); 157e8d8bef9SDimitry Andric 158e8d8bef9SDimitry Andric virtual ~DevelopmentModeMLInlineAdvisor(); 159e8d8bef9SDimitry Andric void updateNativeSizeEstimate(int64_t Change) { 160e8d8bef9SDimitry Andric *CurrentNativeSize += Change; 161e8d8bef9SDimitry Andric } 162e8d8bef9SDimitry Andric void resetNativeSize(Function *F) { 163*fe6060f1SDimitry Andric PreservedAnalyses PA = PreservedAnalyses::all(); 164*fe6060f1SDimitry Andric PA.abandon<InlineSizeEstimatorAnalysis>(); 165*fe6060f1SDimitry Andric FAM.invalidate(*F, PA); 166e8d8bef9SDimitry Andric } 167e8d8bef9SDimitry Andric 168e8d8bef9SDimitry Andric std::unique_ptr<MLInlineAdvice> 169e8d8bef9SDimitry Andric getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override; 170e8d8bef9SDimitry Andric 171e8d8bef9SDimitry Andric Optional<size_t> getNativeSizeEstimate(const Function &F) const; 172e8d8bef9SDimitry Andric 173e8d8bef9SDimitry Andric private: 174e8d8bef9SDimitry Andric bool isLogging() const { return !!Logger; } 175e8d8bef9SDimitry Andric std::unique_ptr<MLInlineAdvice> getMandatoryAdviceImpl(CallBase &CB) override; 176e8d8bef9SDimitry Andric 177e8d8bef9SDimitry Andric std::function<bool(CallBase &)> GetDefaultAdvice; 178e8d8bef9SDimitry Andric const bool IsDoingInference; 179e8d8bef9SDimitry Andric std::unique_ptr<TrainingLogger> Logger; 180e8d8bef9SDimitry Andric 181e8d8bef9SDimitry Andric const Optional<int32_t> InitialNativeSize; 182e8d8bef9SDimitry Andric Optional<int32_t> CurrentNativeSize; 183e8d8bef9SDimitry Andric }; 184e8d8bef9SDimitry Andric 185e8d8bef9SDimitry Andric /// A variant of MLInlineAdvice that tracks all non-trivial inlining 186e8d8bef9SDimitry Andric /// decisions, for training/logging. 187e8d8bef9SDimitry Andric class LoggingMLInlineAdvice : public MLInlineAdvice { 188e8d8bef9SDimitry Andric public: 189e8d8bef9SDimitry Andric LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB, 190e8d8bef9SDimitry Andric OptimizationRemarkEmitter &ORE, bool Recommendation, 191e8d8bef9SDimitry Andric TrainingLogger &Logger, 192e8d8bef9SDimitry Andric Optional<size_t> CallerSizeEstimateBefore, 193e8d8bef9SDimitry Andric Optional<size_t> CalleeSizeEstimateBefore, 194e8d8bef9SDimitry Andric bool DefaultDecision, bool Mandatory = false) 195e8d8bef9SDimitry Andric : MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger), 196e8d8bef9SDimitry Andric CallerSizeEstimateBefore(CallerSizeEstimateBefore), 197e8d8bef9SDimitry Andric CalleeSizeEstimateBefore(CalleeSizeEstimateBefore), 198e8d8bef9SDimitry Andric DefaultDecision(DefaultDecision), Mandatory(Mandatory) {} 199e8d8bef9SDimitry Andric 200e8d8bef9SDimitry Andric virtual ~LoggingMLInlineAdvice() = default; 201e8d8bef9SDimitry Andric 202e8d8bef9SDimitry Andric private: 203e8d8bef9SDimitry Andric DevelopmentModeMLInlineAdvisor *getAdvisor() const { 204e8d8bef9SDimitry Andric return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor); 205e8d8bef9SDimitry Andric } 206e8d8bef9SDimitry Andric void recordInliningImpl() override { 207e8d8bef9SDimitry Andric MLInlineAdvice::recordInliningImpl(); 208e8d8bef9SDimitry Andric getAdvisor()->resetNativeSize(Caller); 209e8d8bef9SDimitry Andric int Reward = std::numeric_limits<int>::max(); 210e8d8bef9SDimitry Andric if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && 211e8d8bef9SDimitry Andric !getAdvisor()->isForcedToStop()) { 212e8d8bef9SDimitry Andric int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) + 213e8d8bef9SDimitry Andric *CalleeSizeEstimateBefore; 214e8d8bef9SDimitry Andric Reward = NativeSizeAfter - 215e8d8bef9SDimitry Andric (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); 216e8d8bef9SDimitry Andric getAdvisor()->updateNativeSizeEstimate(Reward); 217e8d8bef9SDimitry Andric } 218e8d8bef9SDimitry Andric log(Reward, /*Success=*/true); 219e8d8bef9SDimitry Andric } 220e8d8bef9SDimitry Andric 221e8d8bef9SDimitry Andric void recordInliningWithCalleeDeletedImpl() override { 222e8d8bef9SDimitry Andric MLInlineAdvice::recordInliningWithCalleeDeletedImpl(); 223e8d8bef9SDimitry Andric getAdvisor()->resetNativeSize(Caller); 224e8d8bef9SDimitry Andric if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && 225e8d8bef9SDimitry Andric !getAdvisor()->isForcedToStop()) { 226e8d8bef9SDimitry Andric int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller); 227e8d8bef9SDimitry Andric int Reward = NativeSizeAfter - 228e8d8bef9SDimitry Andric (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); 229e8d8bef9SDimitry Andric getAdvisor()->updateNativeSizeEstimate(Reward); 230e8d8bef9SDimitry Andric log(Reward, /*Success=*/true); 231e8d8bef9SDimitry Andric } 232e8d8bef9SDimitry Andric } 233e8d8bef9SDimitry Andric 234e8d8bef9SDimitry Andric void recordUnsuccessfulInliningImpl(const InlineResult &Result) override { 235e8d8bef9SDimitry Andric MLInlineAdvice::recordUnsuccessfulInliningImpl(Result); 236e8d8bef9SDimitry Andric log(NoReward, /*Success=*/false); 237e8d8bef9SDimitry Andric } 238e8d8bef9SDimitry Andric 239e8d8bef9SDimitry Andric void recordUnattemptedInliningImpl() override { 240e8d8bef9SDimitry Andric MLInlineAdvice::recordUnattemptedInliningImpl(); 241e8d8bef9SDimitry Andric log(NoReward, /*Success=*/false); 242e8d8bef9SDimitry Andric } 243e8d8bef9SDimitry Andric 244e8d8bef9SDimitry Andric void log(int64_t Reward, bool Success) { 245e8d8bef9SDimitry Andric if (Mandatory) 246e8d8bef9SDimitry Andric return; 247e8d8bef9SDimitry Andric InlineEvent Event; 248e8d8bef9SDimitry Andric Event.AdvisedDecision = isInliningRecommended(); 249e8d8bef9SDimitry Andric Event.DefaultDecision = DefaultDecision; 250e8d8bef9SDimitry Andric Event.Effect = Success; 251e8d8bef9SDimitry Andric Event.Reward = Reward; 252e8d8bef9SDimitry Andric Logger.logInlineEvent(Event, getAdvisor()->getModelRunner()); 253e8d8bef9SDimitry Andric } 254e8d8bef9SDimitry Andric 255e8d8bef9SDimitry Andric static const int64_t NoReward = 0; 256e8d8bef9SDimitry Andric TrainingLogger &Logger; 257e8d8bef9SDimitry Andric const Optional<size_t> CallerSizeEstimateBefore; 258e8d8bef9SDimitry Andric const Optional<size_t> CalleeSizeEstimateBefore; 259e8d8bef9SDimitry Andric const int64_t DefaultDecision; 260e8d8bef9SDimitry Andric const int64_t Mandatory; 261e8d8bef9SDimitry Andric }; 262e8d8bef9SDimitry Andric 263e8d8bef9SDimitry Andric /// A pseudo model runner. We use it to store feature values when collecting 264e8d8bef9SDimitry Andric /// logs for the default policy, but never ask it to 'run'. 265e8d8bef9SDimitry Andric class NoInferenceModelRunner : public MLModelRunner { 266e8d8bef9SDimitry Andric public: 267e8d8bef9SDimitry Andric NoInferenceModelRunner(LLVMContext &Ctx) 268e8d8bef9SDimitry Andric : MLModelRunner(Ctx), Features(NumberOfFeatures) {} 269e8d8bef9SDimitry Andric void setFeature(FeatureIndex Index, int64_t Value) override { 270e8d8bef9SDimitry Andric Features[static_cast<int>(Index)] = Value; 271e8d8bef9SDimitry Andric } 272e8d8bef9SDimitry Andric 273e8d8bef9SDimitry Andric int64_t getFeature(int Index) const override { return Features[Index]; } 274e8d8bef9SDimitry Andric bool run() override { 275e8d8bef9SDimitry Andric llvm_unreachable("We shouldn't call run on this model runner."); 276e8d8bef9SDimitry Andric } 277e8d8bef9SDimitry Andric 278e8d8bef9SDimitry Andric private: 279e8d8bef9SDimitry Andric InlineFeatures Features; 280e8d8bef9SDimitry Andric }; 281e8d8bef9SDimitry Andric 282e8d8bef9SDimitry Andric /// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs 283e8d8bef9SDimitry Andric /// to dynamically load and evaluate a TF SavedModel 284e8d8bef9SDimitry Andric /// (https://www.tensorflow.org/guide/saved_model). Runtime performance is 285e8d8bef9SDimitry Andric /// sacrificed for ease of use while training. 286e8d8bef9SDimitry Andric class ModelUnderTrainingRunner final : public MLModelRunner { 287e8d8bef9SDimitry Andric public: 288e8d8bef9SDimitry Andric ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath); 289e8d8bef9SDimitry Andric 290e8d8bef9SDimitry Andric bool run() override; 291e8d8bef9SDimitry Andric 292e8d8bef9SDimitry Andric // Disallows copy and assign. 293e8d8bef9SDimitry Andric ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete; 294e8d8bef9SDimitry Andric ModelUnderTrainingRunner & 295e8d8bef9SDimitry Andric operator=(const ModelUnderTrainingRunner &) = delete; 296e8d8bef9SDimitry Andric 297e8d8bef9SDimitry Andric void setFeature(FeatureIndex Index, int64_t Value) override; 298e8d8bef9SDimitry Andric int64_t getFeature(int Index) const override; 299e8d8bef9SDimitry Andric bool isValid() const { return !!Evaluator; } 300e8d8bef9SDimitry Andric 301e8d8bef9SDimitry Andric const std::vector<LoggedFeatureSpec> &outputLoggedFeatureSpecs() const { 302e8d8bef9SDimitry Andric return OutputSpecs; 303e8d8bef9SDimitry Andric } 304e8d8bef9SDimitry Andric 305e8d8bef9SDimitry Andric const Optional<TFModelEvaluator::EvaluationResult> & 306e8d8bef9SDimitry Andric lastEvaluationResult() const { 307e8d8bef9SDimitry Andric return LastEvaluationResult; 308e8d8bef9SDimitry Andric } 309e8d8bef9SDimitry Andric 310e8d8bef9SDimitry Andric private: 311e8d8bef9SDimitry Andric std::unique_ptr<TFModelEvaluator> Evaluator; 312e8d8bef9SDimitry Andric std::vector<LoggedFeatureSpec> OutputSpecs; 313e8d8bef9SDimitry Andric Optional<TFModelEvaluator::EvaluationResult> LastEvaluationResult; 314e8d8bef9SDimitry Andric 315e8d8bef9SDimitry Andric // The training framework needs some additional features. 316e8d8bef9SDimitry Andric const std::vector<TensorSpec> TrainingOnlyFeatures{ 317e8d8bef9SDimitry Andric TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}), 318e8d8bef9SDimitry Andric TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}), 319e8d8bef9SDimitry Andric TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}), 320e8d8bef9SDimitry Andric TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})}; 321e8d8bef9SDimitry Andric }; 322e8d8bef9SDimitry Andric } // namespace 323e8d8bef9SDimitry Andric 324e8d8bef9SDimitry Andric TrainingLogger::TrainingLogger(StringRef LogFileName, 325e8d8bef9SDimitry Andric const ModelUnderTrainingRunner *MUTR) 326e8d8bef9SDimitry Andric : LogFileName(LogFileName), MUTR(MUTR) { 327e8d8bef9SDimitry Andric // The first output is the inlining decision. 328e8d8bef9SDimitry Andric if (MUTR) 329e8d8bef9SDimitry Andric OutputCount = MUTR->outputLoggedFeatureSpecs().size(); 330e8d8bef9SDimitry Andric std::vector<LoggedFeatureSpec> FT; 331e8d8bef9SDimitry Andric 332e8d8bef9SDimitry Andric for (size_t I = 0; I < NumberOfFeatures; ++I) 333e8d8bef9SDimitry Andric FT.push_back( 334e8d8bef9SDimitry Andric {TensorSpec::createSpec<int64_t>(FeatureNameMap.at(I), {1}), None}); 335e8d8bef9SDimitry Andric if (MUTR && MUTR->outputLoggedFeatureSpecs().size() > 1) 336e8d8bef9SDimitry Andric append_range(FT, drop_begin(MUTR->outputLoggedFeatureSpecs())); 337e8d8bef9SDimitry Andric 338e8d8bef9SDimitry Andric DefaultDecisionPos = FT.size(); 339e8d8bef9SDimitry Andric FT.push_back( 340e8d8bef9SDimitry Andric {TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}), None}); 341e8d8bef9SDimitry Andric 342e8d8bef9SDimitry Andric DecisionPos = FT.size(); 343e8d8bef9SDimitry Andric FT.push_back({TensorSpec::createSpec<int64_t>(DecisionName, {1}), None}); 344e8d8bef9SDimitry Andric 345e8d8bef9SDimitry Andric L = std::make_unique<Logger>( 346e8d8bef9SDimitry Andric FT, TensorSpec::createSpec<int64_t>(RewardName, {1}), 347e8d8bef9SDimitry Andric InlineSizeEstimatorAnalysis::isEvaluatorRequested()); 348e8d8bef9SDimitry Andric } 349e8d8bef9SDimitry Andric 350e8d8bef9SDimitry Andric /// Log one inlining event. 351e8d8bef9SDimitry Andric void TrainingLogger::logInlineEvent(const InlineEvent &Event, 352e8d8bef9SDimitry Andric const MLModelRunner &ModelRunner) { 353e8d8bef9SDimitry Andric size_t CurrentFeature = 0; 354e8d8bef9SDimitry Andric for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature) { 355e8d8bef9SDimitry Andric int64_t F = ModelRunner.getFeature(CurrentFeature); 356*fe6060f1SDimitry Andric L->logInt64Value(CurrentFeature, &F); 357e8d8bef9SDimitry Andric } 358e8d8bef9SDimitry Andric 359e8d8bef9SDimitry Andric for (size_t I = 1; I < OutputCount; ++I) { 360e8d8bef9SDimitry Andric const auto &Result = *MUTR->lastEvaluationResult(); 361e8d8bef9SDimitry Andric const char *RawData = 362e8d8bef9SDimitry Andric reinterpret_cast<const char *>(Result.getUntypedTensorValue(I)); 363*fe6060f1SDimitry Andric L->logSpecifiedTensorValue(CurrentFeature, RawData); 364e8d8bef9SDimitry Andric ++CurrentFeature; 365e8d8bef9SDimitry Andric } 366e8d8bef9SDimitry Andric 367e8d8bef9SDimitry Andric assert(CurrentFeature == DefaultDecisionPos); 368*fe6060f1SDimitry Andric L->logInt64Value(DefaultDecisionPos, &Event.DefaultDecision); 369*fe6060f1SDimitry Andric L->logInt64Value(DecisionPos, &Event.AdvisedDecision); 370e8d8bef9SDimitry Andric if (InlineSizeEstimatorAnalysis::isEvaluatorRequested()) 371*fe6060f1SDimitry Andric L->logInt64Reward(Event.Reward); 372e8d8bef9SDimitry Andric 373e8d8bef9SDimitry Andric // For debugging / later use 374e8d8bef9SDimitry Andric Effects.push_back(Event.Effect); 375e8d8bef9SDimitry Andric } 376e8d8bef9SDimitry Andric 377e8d8bef9SDimitry Andric void TrainingLogger::print() { 378e8d8bef9SDimitry Andric std::error_code EC; 379e8d8bef9SDimitry Andric raw_fd_ostream OutFile(LogFileName, EC); 380e8d8bef9SDimitry Andric L->print(OutFile); 381e8d8bef9SDimitry Andric } 382e8d8bef9SDimitry Andric 383e8d8bef9SDimitry Andric DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor( 384e8d8bef9SDimitry Andric Module &M, ModuleAnalysisManager &MAM, 385e8d8bef9SDimitry Andric std::unique_ptr<MLModelRunner> ModelRunner, 386e8d8bef9SDimitry Andric std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference, 387e8d8bef9SDimitry Andric std::unique_ptr<TrainingLogger> Logger) 388e8d8bef9SDimitry Andric : MLInlineAdvisor(M, MAM, std::move(ModelRunner)), 389e8d8bef9SDimitry Andric GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference), 390e8d8bef9SDimitry Andric Logger(std::move(Logger)), 391e8d8bef9SDimitry Andric InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0), 392e8d8bef9SDimitry Andric CurrentNativeSize(InitialNativeSize) { 393e8d8bef9SDimitry Andric // We cannot have the case of neither inference nor logging. 394e8d8bef9SDimitry Andric assert(IsDoingInference || isLogging()); 395e8d8bef9SDimitry Andric } 396e8d8bef9SDimitry Andric 397e8d8bef9SDimitry Andric DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() { 398e8d8bef9SDimitry Andric if (isLogging()) 399e8d8bef9SDimitry Andric Logger->print(); 400e8d8bef9SDimitry Andric } 401e8d8bef9SDimitry Andric 402e8d8bef9SDimitry Andric Optional<size_t> 403e8d8bef9SDimitry Andric DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const { 404e8d8bef9SDimitry Andric if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) 405e8d8bef9SDimitry Andric return None; 406e8d8bef9SDimitry Andric auto &R = 407e8d8bef9SDimitry Andric FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F)); 408e8d8bef9SDimitry Andric if (!R) { 409e8d8bef9SDimitry Andric F.getParent()->getContext().emitError( 410e8d8bef9SDimitry Andric "Native size estimator is not present."); 411e8d8bef9SDimitry Andric return 0; 412e8d8bef9SDimitry Andric } 413e8d8bef9SDimitry Andric return *R; 414e8d8bef9SDimitry Andric } 415e8d8bef9SDimitry Andric 416e8d8bef9SDimitry Andric std::unique_ptr<MLInlineAdvice> 417e8d8bef9SDimitry Andric DevelopmentModeMLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) { 418e8d8bef9SDimitry Andric return std::make_unique<LoggingMLInlineAdvice>( 419e8d8bef9SDimitry Andric /*Advisor=*/this, 420e8d8bef9SDimitry Andric /*CB=*/CB, /*ORE=*/getCallerORE(CB), /*Recommendation=*/true, 421e8d8bef9SDimitry Andric /*Logger=*/*Logger, 422e8d8bef9SDimitry Andric /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), 423e8d8bef9SDimitry Andric /*CalleeSizeEstimateBefore=*/ 424e8d8bef9SDimitry Andric getNativeSizeEstimate(*CB.getCalledFunction()), 425e8d8bef9SDimitry Andric /*DefaultDecision=*/true, /*Mandatory*/ true); 426e8d8bef9SDimitry Andric } 427e8d8bef9SDimitry Andric 428e8d8bef9SDimitry Andric std::unique_ptr<MLInlineAdvice> 429e8d8bef9SDimitry Andric DevelopmentModeMLInlineAdvisor::getAdviceFromModel( 430e8d8bef9SDimitry Andric CallBase &CB, OptimizationRemarkEmitter &ORE) { 431e8d8bef9SDimitry Andric if (IsDoingInference && !isLogging()) 432e8d8bef9SDimitry Andric return MLInlineAdvisor::getAdviceFromModel(CB, ORE); 433e8d8bef9SDimitry Andric 434e8d8bef9SDimitry Andric bool DefaultAdvice = GetDefaultAdvice(CB); 435e8d8bef9SDimitry Andric auto Recommendation = IsDoingInference ? ModelRunner->run() : DefaultAdvice; 436e8d8bef9SDimitry Andric return std::make_unique<LoggingMLInlineAdvice>( 437e8d8bef9SDimitry Andric /*Advisor=*/this, 438e8d8bef9SDimitry Andric /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation, 439e8d8bef9SDimitry Andric /*Logger=*/*Logger, 440e8d8bef9SDimitry Andric /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), 441e8d8bef9SDimitry Andric /*CalleeSizeEstimateBefore=*/ 442e8d8bef9SDimitry Andric getNativeSizeEstimate(*CB.getCalledFunction()), 443e8d8bef9SDimitry Andric /*DefaultDecision=*/DefaultAdvice); 444e8d8bef9SDimitry Andric } 445e8d8bef9SDimitry Andric 446e8d8bef9SDimitry Andric size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() { 447e8d8bef9SDimitry Andric if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) 448e8d8bef9SDimitry Andric return 0; 449e8d8bef9SDimitry Andric size_t Ret = 0; 450e8d8bef9SDimitry Andric for (auto &F : M) { 451e8d8bef9SDimitry Andric if (F.isDeclaration()) 452e8d8bef9SDimitry Andric continue; 453e8d8bef9SDimitry Andric if (isFunctionDeleted(&F)) 454e8d8bef9SDimitry Andric continue; 455e8d8bef9SDimitry Andric Ret += *getNativeSizeEstimate(F); 456e8d8bef9SDimitry Andric } 457e8d8bef9SDimitry Andric return Ret; 458e8d8bef9SDimitry Andric } 459e8d8bef9SDimitry Andric 460e8d8bef9SDimitry Andric ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx, 461e8d8bef9SDimitry Andric const std::string &ModelPath) 462e8d8bef9SDimitry Andric : MLModelRunner(Ctx) { 463e8d8bef9SDimitry Andric std::vector<TensorSpec> InputSpecs; 464e8d8bef9SDimitry Andric for (size_t I = 0; I < NumberOfFeatures; ++I) 465e8d8bef9SDimitry Andric InputSpecs.push_back( 466e8d8bef9SDimitry Andric TensorSpec::createSpec<int64_t>(TFFeedPrefix + FeatureNameMap[I], {1})); 467e8d8bef9SDimitry Andric append_range(InputSpecs, TrainingOnlyFeatures); 468e8d8bef9SDimitry Andric if (auto MaybeOutSpecs = 469e8d8bef9SDimitry Andric loadOutputSpecs(Ctx, DecisionName, ModelPath, TFOutputSpecOverride)) 470e8d8bef9SDimitry Andric OutputSpecs = std::move(*MaybeOutSpecs); 471e8d8bef9SDimitry Andric else 472e8d8bef9SDimitry Andric return; 473e8d8bef9SDimitry Andric 474e8d8bef9SDimitry Andric Evaluator = std::make_unique<TFModelEvaluator>( 475e8d8bef9SDimitry Andric ModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I].Spec; }, 476e8d8bef9SDimitry Andric OutputSpecs.size()); 477e8d8bef9SDimitry Andric if (!Evaluator || !Evaluator->isValid()) { 478e8d8bef9SDimitry Andric Ctx.emitError("Failed to create inliner saved model evaluator"); 479e8d8bef9SDimitry Andric Evaluator.reset(); 480e8d8bef9SDimitry Andric return; 481e8d8bef9SDimitry Andric } 482e8d8bef9SDimitry Andric } 483e8d8bef9SDimitry Andric 484e8d8bef9SDimitry Andric bool ModelUnderTrainingRunner::run() { 485e8d8bef9SDimitry Andric LastEvaluationResult = Evaluator->evaluate(); 486e8d8bef9SDimitry Andric if (!LastEvaluationResult.hasValue()) { 487e8d8bef9SDimitry Andric Ctx.emitError("Error evaluating model."); 488e8d8bef9SDimitry Andric return false; 489e8d8bef9SDimitry Andric } 490e8d8bef9SDimitry Andric int64_t Decision = *LastEvaluationResult->getTensorValue<int64_t>(0); 491e8d8bef9SDimitry Andric return static_cast<bool>(Decision); 492e8d8bef9SDimitry Andric } 493e8d8bef9SDimitry Andric 494e8d8bef9SDimitry Andric int64_t ModelUnderTrainingRunner::getFeature(int Index) const { 495e8d8bef9SDimitry Andric return *Evaluator->getInput<int64_t>(Index); 496e8d8bef9SDimitry Andric } 497e8d8bef9SDimitry Andric 498e8d8bef9SDimitry Andric void ModelUnderTrainingRunner::setFeature(FeatureIndex Index, int64_t Value) { 499e8d8bef9SDimitry Andric size_t NumericIndex = static_cast<size_t>(Index); 500e8d8bef9SDimitry Andric *(Evaluator->getInput<int64_t>(NumericIndex)) = Value; 501e8d8bef9SDimitry Andric } 502e8d8bef9SDimitry Andric 503e8d8bef9SDimitry Andric std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor( 504e8d8bef9SDimitry Andric Module &M, ModuleAnalysisManager &MAM, 505e8d8bef9SDimitry Andric std::function<bool(CallBase &)> GetDefaultAdvice) { 506e8d8bef9SDimitry Andric auto &Ctx = M.getContext(); 507e8d8bef9SDimitry Andric std::unique_ptr<MLModelRunner> Runner; 508e8d8bef9SDimitry Andric ModelUnderTrainingRunner *MUTRPtr = nullptr; 509e8d8bef9SDimitry Andric bool IsDoingInference = false; 510e8d8bef9SDimitry Andric if (TFModelUnderTrainingPath.empty()) 511e8d8bef9SDimitry Andric Runner.reset(new NoInferenceModelRunner(Ctx)); 512e8d8bef9SDimitry Andric else { 513e8d8bef9SDimitry Andric auto MUTR = std::make_unique<ModelUnderTrainingRunner>( 514e8d8bef9SDimitry Andric Ctx, TFModelUnderTrainingPath); 515e8d8bef9SDimitry Andric if (!MUTR || !MUTR->isValid()) { 516e8d8bef9SDimitry Andric Ctx.emitError("Could not load the policy model from the provided path"); 517e8d8bef9SDimitry Andric return nullptr; 518e8d8bef9SDimitry Andric } 519e8d8bef9SDimitry Andric IsDoingInference = true; 520e8d8bef9SDimitry Andric MUTRPtr = MUTR.get(); 521e8d8bef9SDimitry Andric Runner = std::move(MUTR); 522e8d8bef9SDimitry Andric } 523e8d8bef9SDimitry Andric std::unique_ptr<TrainingLogger> Logger; 524e8d8bef9SDimitry Andric if (!TrainingLog.empty()) 525e8d8bef9SDimitry Andric Logger = std::make_unique<TrainingLogger>(TrainingLog, MUTRPtr); 526e8d8bef9SDimitry Andric 527e8d8bef9SDimitry Andric return std::make_unique<DevelopmentModeMLInlineAdvisor>( 528e8d8bef9SDimitry Andric M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference, 529e8d8bef9SDimitry Andric std::move(Logger)); 530e8d8bef9SDimitry Andric } 531e8d8bef9SDimitry Andric #endif // defined(LLVM_HAVE_TF_API) 532