xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/DependenceAnalysis.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
12 //
13 //            Practical Dependence Testing
14 //            Goff, Kennedy, Tseng
15 //            PLDI 1991
16 //
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
20 //
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
25 //
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
30 //
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
34 //
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
38 //
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
42 //
43 // Please note that this is work in progress and the interface is subject to
44 // change.
45 //
46 //===----------------------------------------------------------------------===//
47 //                                                                            //
48 //                   In memory of Ken Kennedy, 1945 - 2007                    //
49 //                                                                            //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/Analysis/AliasAnalysis.h"
55 #include "llvm/Analysis/Delinearization.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/InstIterator.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "da"
71 
72 //===----------------------------------------------------------------------===//
73 // statistics
74 
75 STATISTIC(TotalArrayPairs, "Array pairs tested");
76 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
77 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
78 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
79 STATISTIC(ZIVapplications, "ZIV applications");
80 STATISTIC(ZIVindependence, "ZIV independence");
81 STATISTIC(StrongSIVapplications, "Strong SIV applications");
82 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
83 STATISTIC(StrongSIVindependence, "Strong SIV independence");
84 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
85 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
86 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
87 STATISTIC(ExactSIVapplications, "Exact SIV applications");
88 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
89 STATISTIC(ExactSIVindependence, "Exact SIV independence");
90 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
91 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
92 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
93 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
94 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
95 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
96 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
97 STATISTIC(DeltaApplications, "Delta applications");
98 STATISTIC(DeltaSuccesses, "Delta successes");
99 STATISTIC(DeltaIndependence, "Delta independence");
100 STATISTIC(DeltaPropagations, "Delta propagations");
101 STATISTIC(GCDapplications, "GCD applications");
102 STATISTIC(GCDsuccesses, "GCD successes");
103 STATISTIC(GCDindependence, "GCD independence");
104 STATISTIC(BanerjeeApplications, "Banerjee applications");
105 STATISTIC(BanerjeeIndependence, "Banerjee independence");
106 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
107 
108 static cl::opt<bool>
109     Delinearize("da-delinearize", cl::init(true), cl::Hidden,
110                 cl::desc("Try to delinearize array references."));
111 static cl::opt<bool> DisableDelinearizationChecks(
112     "da-disable-delinearization-checks", cl::Hidden,
113     cl::desc(
114         "Disable checks that try to statically verify validity of "
115         "delinearized subscripts. Enabling this option may result in incorrect "
116         "dependence vectors for languages that allow the subscript of one "
117         "dimension to underflow or overflow into another dimension."));
118 
119 static cl::opt<unsigned> MIVMaxLevelThreshold(
120     "da-miv-max-level-threshold", cl::init(7), cl::Hidden,
121     cl::desc("Maximum depth allowed for the recursive algorithm used to "
122              "explore MIV direction vectors."));
123 
124 //===----------------------------------------------------------------------===//
125 // basics
126 
127 DependenceAnalysis::Result
128 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
129   auto &AA = FAM.getResult<AAManager>(F);
130   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
131   auto &LI = FAM.getResult<LoopAnalysis>(F);
132   return DependenceInfo(&F, &AA, &SE, &LI);
133 }
134 
135 AnalysisKey DependenceAnalysis::Key;
136 
137 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
138                       "Dependence Analysis", true, true)
139 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
140 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
141 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
142 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
143                     true, true)
144 
145 char DependenceAnalysisWrapperPass::ID = 0;
146 
147 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
148     : FunctionPass(ID) {
149   initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
150 }
151 
152 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
153   return new DependenceAnalysisWrapperPass();
154 }
155 
156 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
157   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
158   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
159   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
160   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
161   return false;
162 }
163 
164 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
165 
166 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
167 
168 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
169   AU.setPreservesAll();
170   AU.addRequiredTransitive<AAResultsWrapperPass>();
171   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
172   AU.addRequiredTransitive<LoopInfoWrapperPass>();
173 }
174 
175 // Used to test the dependence analyzer.
176 // Looks through the function, noting instructions that may access memory.
177 // Calls depends() on every possible pair and prints out the result.
178 // Ignores all other instructions.
179 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
180                                   ScalarEvolution &SE, bool NormalizeResults) {
181   auto *F = DA->getFunction();
182   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
183        ++SrcI) {
184     if (SrcI->mayReadOrWriteMemory()) {
185       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
186            DstI != DstE; ++DstI) {
187         if (DstI->mayReadOrWriteMemory()) {
188           OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
189           OS << "  da analyze - ";
190           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
191             // Normalize negative direction vectors if required by clients.
192             if (NormalizeResults && D->normalize(&SE))
193                 OS << "normalized - ";
194             D->dump(OS);
195             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
196               if (D->isSplitable(Level)) {
197                 OS << "  da analyze - split level = " << Level;
198                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
199                 OS << "!\n";
200               }
201             }
202           }
203           else
204             OS << "none!\n";
205         }
206       }
207     }
208   }
209 }
210 
211 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
212                                           const Module *) const {
213   dumpExampleDependence(OS, info.get(),
214                         getAnalysis<ScalarEvolutionWrapperPass>().getSE(), false);
215 }
216 
217 PreservedAnalyses
218 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
219   OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
220   dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F),
221                         FAM.getResult<ScalarEvolutionAnalysis>(F),
222                         NormalizeResults);
223   return PreservedAnalyses::all();
224 }
225 
226 //===----------------------------------------------------------------------===//
227 // Dependence methods
228 
229 // Returns true if this is an input dependence.
230 bool Dependence::isInput() const {
231   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
232 }
233 
234 
235 // Returns true if this is an output dependence.
236 bool Dependence::isOutput() const {
237   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
238 }
239 
240 
241 // Returns true if this is an flow (aka true)  dependence.
242 bool Dependence::isFlow() const {
243   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
244 }
245 
246 
247 // Returns true if this is an anti dependence.
248 bool Dependence::isAnti() const {
249   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
250 }
251 
252 
253 // Returns true if a particular level is scalar; that is,
254 // if no subscript in the source or destination mention the induction
255 // variable associated with the loop at this level.
256 // Leave this out of line, so it will serve as a virtual method anchor
257 bool Dependence::isScalar(unsigned level) const {
258   return false;
259 }
260 
261 
262 //===----------------------------------------------------------------------===//
263 // FullDependence methods
264 
265 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
266                                bool PossiblyLoopIndependent,
267                                unsigned CommonLevels)
268     : Dependence(Source, Destination), Levels(CommonLevels),
269       LoopIndependent(PossiblyLoopIndependent) {
270   Consistent = true;
271   if (CommonLevels)
272     DV = std::make_unique<DVEntry[]>(CommonLevels);
273 }
274 
275 // FIXME: in some cases the meaning of a negative direction vector
276 // may not be straightforward, e.g.,
277 // for (int i = 0; i < 32; ++i) {
278 //   Src:    A[i] = ...;
279 //   Dst:    use(A[31 - i]);
280 // }
281 // The dependency is
282 //   flow { Src[i] -> Dst[31 - i] : when i >= 16 } and
283 //   anti { Dst[i] -> Src[31 - i] : when i < 16 },
284 // -- hence a [<>].
285 // As long as a dependence result contains '>' ('<>', '<=>', "*"), it
286 // means that a reversed/normalized dependence needs to be considered
287 // as well. Nevertheless, current isDirectionNegative() only returns
288 // true with a '>' or '>=' dependency for ease of canonicalizing the
289 // dependency vector, since the reverse of '<>', '<=>' and "*" is itself.
290 bool FullDependence::isDirectionNegative() const {
291   for (unsigned Level = 1; Level <= Levels; ++Level) {
292     unsigned char Direction = DV[Level - 1].Direction;
293     if (Direction == Dependence::DVEntry::EQ)
294       continue;
295     if (Direction == Dependence::DVEntry::GT ||
296         Direction == Dependence::DVEntry::GE)
297       return true;
298     return false;
299   }
300   return false;
301 }
302 
303 bool FullDependence::normalize(ScalarEvolution *SE) {
304   if (!isDirectionNegative())
305     return false;
306 
307   LLVM_DEBUG(dbgs() << "Before normalizing negative direction vectors:\n";
308              dump(dbgs()););
309   std::swap(Src, Dst);
310   for (unsigned Level = 1; Level <= Levels; ++Level) {
311     unsigned char Direction = DV[Level - 1].Direction;
312     // Reverse the direction vector, this means LT becomes GT
313     // and GT becomes LT.
314     unsigned char RevDirection = Direction & Dependence::DVEntry::EQ;
315     if (Direction & Dependence::DVEntry::LT)
316       RevDirection |= Dependence::DVEntry::GT;
317     if (Direction & Dependence::DVEntry::GT)
318       RevDirection |= Dependence::DVEntry::LT;
319     DV[Level - 1].Direction = RevDirection;
320     // Reverse the dependence distance as well.
321     if (DV[Level - 1].Distance != nullptr)
322       DV[Level - 1].Distance =
323           SE->getNegativeSCEV(DV[Level - 1].Distance);
324   }
325 
326   LLVM_DEBUG(dbgs() << "After normalizing negative direction vectors:\n";
327              dump(dbgs()););
328   return true;
329 }
330 
331 // The rest are simple getters that hide the implementation.
332 
333 // getDirection - Returns the direction associated with a particular level.
334 unsigned FullDependence::getDirection(unsigned Level) const {
335   assert(0 < Level && Level <= Levels && "Level out of range");
336   return DV[Level - 1].Direction;
337 }
338 
339 
340 // Returns the distance (or NULL) associated with a particular level.
341 const SCEV *FullDependence::getDistance(unsigned Level) const {
342   assert(0 < Level && Level <= Levels && "Level out of range");
343   return DV[Level - 1].Distance;
344 }
345 
346 
347 // Returns true if a particular level is scalar; that is,
348 // if no subscript in the source or destination mention the induction
349 // variable associated with the loop at this level.
350 bool FullDependence::isScalar(unsigned Level) const {
351   assert(0 < Level && Level <= Levels && "Level out of range");
352   return DV[Level - 1].Scalar;
353 }
354 
355 
356 // Returns true if peeling the first iteration from this loop
357 // will break this dependence.
358 bool FullDependence::isPeelFirst(unsigned Level) const {
359   assert(0 < Level && Level <= Levels && "Level out of range");
360   return DV[Level - 1].PeelFirst;
361 }
362 
363 
364 // Returns true if peeling the last iteration from this loop
365 // will break this dependence.
366 bool FullDependence::isPeelLast(unsigned Level) const {
367   assert(0 < Level && Level <= Levels && "Level out of range");
368   return DV[Level - 1].PeelLast;
369 }
370 
371 
372 // Returns true if splitting this loop will break the dependence.
373 bool FullDependence::isSplitable(unsigned Level) const {
374   assert(0 < Level && Level <= Levels && "Level out of range");
375   return DV[Level - 1].Splitable;
376 }
377 
378 
379 //===----------------------------------------------------------------------===//
380 // DependenceInfo::Constraint methods
381 
382 // If constraint is a point <X, Y>, returns X.
383 // Otherwise assert.
384 const SCEV *DependenceInfo::Constraint::getX() const {
385   assert(Kind == Point && "Kind should be Point");
386   return A;
387 }
388 
389 
390 // If constraint is a point <X, Y>, returns Y.
391 // Otherwise assert.
392 const SCEV *DependenceInfo::Constraint::getY() const {
393   assert(Kind == Point && "Kind should be Point");
394   return B;
395 }
396 
397 
398 // If constraint is a line AX + BY = C, returns A.
399 // Otherwise assert.
400 const SCEV *DependenceInfo::Constraint::getA() const {
401   assert((Kind == Line || Kind == Distance) &&
402          "Kind should be Line (or Distance)");
403   return A;
404 }
405 
406 
407 // If constraint is a line AX + BY = C, returns B.
408 // Otherwise assert.
409 const SCEV *DependenceInfo::Constraint::getB() const {
410   assert((Kind == Line || Kind == Distance) &&
411          "Kind should be Line (or Distance)");
412   return B;
413 }
414 
415 
416 // If constraint is a line AX + BY = C, returns C.
417 // Otherwise assert.
418 const SCEV *DependenceInfo::Constraint::getC() const {
419   assert((Kind == Line || Kind == Distance) &&
420          "Kind should be Line (or Distance)");
421   return C;
422 }
423 
424 
425 // If constraint is a distance, returns D.
426 // Otherwise assert.
427 const SCEV *DependenceInfo::Constraint::getD() const {
428   assert(Kind == Distance && "Kind should be Distance");
429   return SE->getNegativeSCEV(C);
430 }
431 
432 
433 // Returns the loop associated with this constraint.
434 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
435   assert((Kind == Distance || Kind == Line || Kind == Point) &&
436          "Kind should be Distance, Line, or Point");
437   return AssociatedLoop;
438 }
439 
440 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
441                                           const Loop *CurLoop) {
442   Kind = Point;
443   A = X;
444   B = Y;
445   AssociatedLoop = CurLoop;
446 }
447 
448 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
449                                          const SCEV *CC, const Loop *CurLoop) {
450   Kind = Line;
451   A = AA;
452   B = BB;
453   C = CC;
454   AssociatedLoop = CurLoop;
455 }
456 
457 void DependenceInfo::Constraint::setDistance(const SCEV *D,
458                                              const Loop *CurLoop) {
459   Kind = Distance;
460   A = SE->getOne(D->getType());
461   B = SE->getNegativeSCEV(A);
462   C = SE->getNegativeSCEV(D);
463   AssociatedLoop = CurLoop;
464 }
465 
466 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
467 
468 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
469   SE = NewSE;
470   Kind = Any;
471 }
472 
473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
474 // For debugging purposes. Dumps the constraint out to OS.
475 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
476   if (isEmpty())
477     OS << " Empty\n";
478   else if (isAny())
479     OS << " Any\n";
480   else if (isPoint())
481     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
482   else if (isDistance())
483     OS << " Distance is " << *getD() <<
484       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
485   else if (isLine())
486     OS << " Line is " << *getA() << "*X + " <<
487       *getB() << "*Y = " << *getC() << "\n";
488   else
489     llvm_unreachable("unknown constraint type in Constraint::dump");
490 }
491 #endif
492 
493 
494 // Updates X with the intersection
495 // of the Constraints X and Y. Returns true if X has changed.
496 // Corresponds to Figure 4 from the paper
497 //
498 //            Practical Dependence Testing
499 //            Goff, Kennedy, Tseng
500 //            PLDI 1991
501 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
502   ++DeltaApplications;
503   LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
504   LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
505   LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
506   assert(!Y->isPoint() && "Y must not be a Point");
507   if (X->isAny()) {
508     if (Y->isAny())
509       return false;
510     *X = *Y;
511     return true;
512   }
513   if (X->isEmpty())
514     return false;
515   if (Y->isEmpty()) {
516     X->setEmpty();
517     return true;
518   }
519 
520   if (X->isDistance() && Y->isDistance()) {
521     LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
522     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
523       return false;
524     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
525       X->setEmpty();
526       ++DeltaSuccesses;
527       return true;
528     }
529     // Hmmm, interesting situation.
530     // I guess if either is constant, keep it and ignore the other.
531     if (isa<SCEVConstant>(Y->getD())) {
532       *X = *Y;
533       return true;
534     }
535     return false;
536   }
537 
538   // At this point, the pseudo-code in Figure 4 of the paper
539   // checks if (X->isPoint() && Y->isPoint()).
540   // This case can't occur in our implementation,
541   // since a Point can only arise as the result of intersecting
542   // two Line constraints, and the right-hand value, Y, is never
543   // the result of an intersection.
544   assert(!(X->isPoint() && Y->isPoint()) &&
545          "We shouldn't ever see X->isPoint() && Y->isPoint()");
546 
547   if (X->isLine() && Y->isLine()) {
548     LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
549     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
550     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
551     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
552       // slopes are equal, so lines are parallel
553       LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
554       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
555       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
556       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
557         return false;
558       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
559         X->setEmpty();
560         ++DeltaSuccesses;
561         return true;
562       }
563       return false;
564     }
565     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
566       // slopes differ, so lines intersect
567       LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
568       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
569       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
570       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
571       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
572       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
573       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
574       const SCEVConstant *C1A2_C2A1 =
575         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
576       const SCEVConstant *C1B2_C2B1 =
577         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
578       const SCEVConstant *A1B2_A2B1 =
579         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
580       const SCEVConstant *A2B1_A1B2 =
581         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
582       if (!C1B2_C2B1 || !C1A2_C2A1 ||
583           !A1B2_A2B1 || !A2B1_A1B2)
584         return false;
585       APInt Xtop = C1B2_C2B1->getAPInt();
586       APInt Xbot = A1B2_A2B1->getAPInt();
587       APInt Ytop = C1A2_C2A1->getAPInt();
588       APInt Ybot = A2B1_A1B2->getAPInt();
589       LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
590       LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
591       LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
592       LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
593       APInt Xq = Xtop; // these need to be initialized, even
594       APInt Xr = Xtop; // though they're just going to be overwritten
595       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
596       APInt Yq = Ytop;
597       APInt Yr = Ytop;
598       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
599       if (Xr != 0 || Yr != 0) {
600         X->setEmpty();
601         ++DeltaSuccesses;
602         return true;
603       }
604       LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
605       if (Xq.slt(0) || Yq.slt(0)) {
606         X->setEmpty();
607         ++DeltaSuccesses;
608         return true;
609       }
610       if (const SCEVConstant *CUB =
611           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
612         const APInt &UpperBound = CUB->getAPInt();
613         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
614         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
615           X->setEmpty();
616           ++DeltaSuccesses;
617           return true;
618         }
619       }
620       X->setPoint(SE->getConstant(Xq),
621                   SE->getConstant(Yq),
622                   X->getAssociatedLoop());
623       ++DeltaSuccesses;
624       return true;
625     }
626     return false;
627   }
628 
629   // if (X->isLine() && Y->isPoint()) This case can't occur.
630   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
631 
632   if (X->isPoint() && Y->isLine()) {
633     LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
634     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
635     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
636     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
637     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
638       return false;
639     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
640       X->setEmpty();
641       ++DeltaSuccesses;
642       return true;
643     }
644     return false;
645   }
646 
647   llvm_unreachable("shouldn't reach the end of Constraint intersection");
648   return false;
649 }
650 
651 
652 //===----------------------------------------------------------------------===//
653 // DependenceInfo methods
654 
655 // For debugging purposes. Dumps a dependence to OS.
656 void Dependence::dump(raw_ostream &OS) const {
657   bool Splitable = false;
658   if (isConfused())
659     OS << "confused";
660   else {
661     if (isConsistent())
662       OS << "consistent ";
663     if (isFlow())
664       OS << "flow";
665     else if (isOutput())
666       OS << "output";
667     else if (isAnti())
668       OS << "anti";
669     else if (isInput())
670       OS << "input";
671     unsigned Levels = getLevels();
672     OS << " [";
673     for (unsigned II = 1; II <= Levels; ++II) {
674       if (isSplitable(II))
675         Splitable = true;
676       if (isPeelFirst(II))
677         OS << 'p';
678       const SCEV *Distance = getDistance(II);
679       if (Distance)
680         OS << *Distance;
681       else if (isScalar(II))
682         OS << "S";
683       else {
684         unsigned Direction = getDirection(II);
685         if (Direction == DVEntry::ALL)
686           OS << "*";
687         else {
688           if (Direction & DVEntry::LT)
689             OS << "<";
690           if (Direction & DVEntry::EQ)
691             OS << "=";
692           if (Direction & DVEntry::GT)
693             OS << ">";
694         }
695       }
696       if (isPeelLast(II))
697         OS << 'p';
698       if (II < Levels)
699         OS << " ";
700     }
701     if (isLoopIndependent())
702       OS << "|<";
703     OS << "]";
704     if (Splitable)
705       OS << " splitable";
706   }
707   OS << "!\n";
708 }
709 
710 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
711 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
712 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
713 // Otherwise the underlying objects are checked to see if they point to
714 // different identifiable objects.
715 static AliasResult underlyingObjectsAlias(AAResults *AA,
716                                           const DataLayout &DL,
717                                           const MemoryLocation &LocA,
718                                           const MemoryLocation &LocB) {
719   // Check the original locations (minus size) for noalias, which can happen for
720   // tbaa, incompatible underlying object locations, etc.
721   MemoryLocation LocAS =
722       MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
723   MemoryLocation LocBS =
724       MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
725   if (AA->isNoAlias(LocAS, LocBS))
726     return AliasResult::NoAlias;
727 
728   // Check the underlying objects are the same
729   const Value *AObj = getUnderlyingObject(LocA.Ptr);
730   const Value *BObj = getUnderlyingObject(LocB.Ptr);
731 
732   // If the underlying objects are the same, they must alias
733   if (AObj == BObj)
734     return AliasResult::MustAlias;
735 
736   // We may have hit the recursion limit for underlying objects, or have
737   // underlying objects where we don't know they will alias.
738   if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
739     return AliasResult::MayAlias;
740 
741   // Otherwise we know the objects are different and both identified objects so
742   // must not alias.
743   return AliasResult::NoAlias;
744 }
745 
746 
747 // Returns true if the load or store can be analyzed. Atomic and volatile
748 // operations have properties which this analysis does not understand.
749 static
750 bool isLoadOrStore(const Instruction *I) {
751   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
752     return LI->isUnordered();
753   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
754     return SI->isUnordered();
755   return false;
756 }
757 
758 
759 // Examines the loop nesting of the Src and Dst
760 // instructions and establishes their shared loops. Sets the variables
761 // CommonLevels, SrcLevels, and MaxLevels.
762 // The source and destination instructions needn't be contained in the same
763 // loop. The routine establishNestingLevels finds the level of most deeply
764 // nested loop that contains them both, CommonLevels. An instruction that's
765 // not contained in a loop is at level = 0. MaxLevels is equal to the level
766 // of the source plus the level of the destination, minus CommonLevels.
767 // This lets us allocate vectors MaxLevels in length, with room for every
768 // distinct loop referenced in both the source and destination subscripts.
769 // The variable SrcLevels is the nesting depth of the source instruction.
770 // It's used to help calculate distinct loops referenced by the destination.
771 // Here's the map from loops to levels:
772 //            0 - unused
773 //            1 - outermost common loop
774 //          ... - other common loops
775 // CommonLevels - innermost common loop
776 //          ... - loops containing Src but not Dst
777 //    SrcLevels - innermost loop containing Src but not Dst
778 //          ... - loops containing Dst but not Src
779 //    MaxLevels - innermost loops containing Dst but not Src
780 // Consider the follow code fragment:
781 //   for (a = ...) {
782 //     for (b = ...) {
783 //       for (c = ...) {
784 //         for (d = ...) {
785 //           A[] = ...;
786 //         }
787 //       }
788 //       for (e = ...) {
789 //         for (f = ...) {
790 //           for (g = ...) {
791 //             ... = A[];
792 //           }
793 //         }
794 //       }
795 //     }
796 //   }
797 // If we're looking at the possibility of a dependence between the store
798 // to A (the Src) and the load from A (the Dst), we'll note that they
799 // have 2 loops in common, so CommonLevels will equal 2 and the direction
800 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
801 // A map from loop names to loop numbers would look like
802 //     a - 1
803 //     b - 2 = CommonLevels
804 //     c - 3
805 //     d - 4 = SrcLevels
806 //     e - 5
807 //     f - 6
808 //     g - 7 = MaxLevels
809 void DependenceInfo::establishNestingLevels(const Instruction *Src,
810                                             const Instruction *Dst) {
811   const BasicBlock *SrcBlock = Src->getParent();
812   const BasicBlock *DstBlock = Dst->getParent();
813   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
814   unsigned DstLevel = LI->getLoopDepth(DstBlock);
815   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
816   const Loop *DstLoop = LI->getLoopFor(DstBlock);
817   SrcLevels = SrcLevel;
818   MaxLevels = SrcLevel + DstLevel;
819   while (SrcLevel > DstLevel) {
820     SrcLoop = SrcLoop->getParentLoop();
821     SrcLevel--;
822   }
823   while (DstLevel > SrcLevel) {
824     DstLoop = DstLoop->getParentLoop();
825     DstLevel--;
826   }
827   while (SrcLoop != DstLoop) {
828     SrcLoop = SrcLoop->getParentLoop();
829     DstLoop = DstLoop->getParentLoop();
830     SrcLevel--;
831   }
832   CommonLevels = SrcLevel;
833   MaxLevels -= CommonLevels;
834 }
835 
836 
837 // Given one of the loops containing the source, return
838 // its level index in our numbering scheme.
839 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
840   return SrcLoop->getLoopDepth();
841 }
842 
843 
844 // Given one of the loops containing the destination,
845 // return its level index in our numbering scheme.
846 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
847   unsigned D = DstLoop->getLoopDepth();
848   if (D > CommonLevels)
849     // This tries to make sure that we assign unique numbers to src and dst when
850     // the memory accesses reside in different loops that have the same depth.
851     return D - CommonLevels + SrcLevels;
852   else
853     return D;
854 }
855 
856 
857 // Returns true if Expression is loop invariant in LoopNest.
858 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
859                                      const Loop *LoopNest) const {
860   // Unlike ScalarEvolution::isLoopInvariant() we consider an access outside of
861   // any loop as invariant, because we only consier expression evaluation at a
862   // specific position (where the array access takes place), and not across the
863   // entire function.
864   if (!LoopNest)
865     return true;
866 
867   // If the expression is invariant in the outermost loop of the loop nest, it
868   // is invariant anywhere in the loop nest.
869   return SE->isLoopInvariant(Expression, LoopNest->getOutermostLoop());
870 }
871 
872 
873 
874 // Finds the set of loops from the LoopNest that
875 // have a level <= CommonLevels and are referred to by the SCEV Expression.
876 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
877                                         const Loop *LoopNest,
878                                         SmallBitVector &Loops) const {
879   while (LoopNest) {
880     unsigned Level = LoopNest->getLoopDepth();
881     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
882       Loops.set(Level);
883     LoopNest = LoopNest->getParentLoop();
884   }
885 }
886 
887 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
888 
889   unsigned widestWidthSeen = 0;
890   Type *widestType;
891 
892   // Go through each pair and find the widest bit to which we need
893   // to extend all of them.
894   for (Subscript *Pair : Pairs) {
895     const SCEV *Src = Pair->Src;
896     const SCEV *Dst = Pair->Dst;
897     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
898     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
899     if (SrcTy == nullptr || DstTy == nullptr) {
900       assert(SrcTy == DstTy && "This function only unify integer types and "
901              "expect Src and Dst share the same type "
902              "otherwise.");
903       continue;
904     }
905     if (SrcTy->getBitWidth() > widestWidthSeen) {
906       widestWidthSeen = SrcTy->getBitWidth();
907       widestType = SrcTy;
908     }
909     if (DstTy->getBitWidth() > widestWidthSeen) {
910       widestWidthSeen = DstTy->getBitWidth();
911       widestType = DstTy;
912     }
913   }
914 
915 
916   assert(widestWidthSeen > 0);
917 
918   // Now extend each pair to the widest seen.
919   for (Subscript *Pair : Pairs) {
920     const SCEV *Src = Pair->Src;
921     const SCEV *Dst = Pair->Dst;
922     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
923     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
924     if (SrcTy == nullptr || DstTy == nullptr) {
925       assert(SrcTy == DstTy && "This function only unify integer types and "
926              "expect Src and Dst share the same type "
927              "otherwise.");
928       continue;
929     }
930     if (SrcTy->getBitWidth() < widestWidthSeen)
931       // Sign-extend Src to widestType
932       Pair->Src = SE->getSignExtendExpr(Src, widestType);
933     if (DstTy->getBitWidth() < widestWidthSeen) {
934       // Sign-extend Dst to widestType
935       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
936     }
937   }
938 }
939 
940 // removeMatchingExtensions - Examines a subscript pair.
941 // If the source and destination are identically sign (or zero)
942 // extended, it strips off the extension in an effect to simplify
943 // the actual analysis.
944 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
945   const SCEV *Src = Pair->Src;
946   const SCEV *Dst = Pair->Dst;
947   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
948       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
949     const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
950     const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
951     const SCEV *SrcCastOp = SrcCast->getOperand();
952     const SCEV *DstCastOp = DstCast->getOperand();
953     if (SrcCastOp->getType() == DstCastOp->getType()) {
954       Pair->Src = SrcCastOp;
955       Pair->Dst = DstCastOp;
956     }
957   }
958 }
959 
960 // Examine the scev and return true iff it's affine.
961 // Collect any loops mentioned in the set of "Loops".
962 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
963                                     SmallBitVector &Loops, bool IsSrc) {
964   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
965   if (!AddRec)
966     return isLoopInvariant(Expr, LoopNest);
967 
968   // The AddRec must depend on one of the containing loops. Otherwise,
969   // mapSrcLoop and mapDstLoop return indices outside the intended range. This
970   // can happen when a subscript in one loop references an IV from a sibling
971   // loop that could not be replaced with a concrete exit value by
972   // getSCEVAtScope.
973   const Loop *L = LoopNest;
974   while (L && AddRec->getLoop() != L)
975     L = L->getParentLoop();
976   if (!L)
977     return false;
978 
979   const SCEV *Start = AddRec->getStart();
980   const SCEV *Step = AddRec->getStepRecurrence(*SE);
981   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
982   if (!isa<SCEVCouldNotCompute>(UB)) {
983     if (SE->getTypeSizeInBits(Start->getType()) <
984         SE->getTypeSizeInBits(UB->getType())) {
985       if (!AddRec->getNoWrapFlags())
986         return false;
987     }
988   }
989   if (!isLoopInvariant(Step, LoopNest))
990     return false;
991   if (IsSrc)
992     Loops.set(mapSrcLoop(AddRec->getLoop()));
993   else
994     Loops.set(mapDstLoop(AddRec->getLoop()));
995   return checkSubscript(Start, LoopNest, Loops, IsSrc);
996 }
997 
998 // Examine the scev and return true iff it's linear.
999 // Collect any loops mentioned in the set of "Loops".
1000 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
1001                                        SmallBitVector &Loops) {
1002   return checkSubscript(Src, LoopNest, Loops, true);
1003 }
1004 
1005 // Examine the scev and return true iff it's linear.
1006 // Collect any loops mentioned in the set of "Loops".
1007 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
1008                                        SmallBitVector &Loops) {
1009   return checkSubscript(Dst, LoopNest, Loops, false);
1010 }
1011 
1012 
1013 // Examines the subscript pair (the Src and Dst SCEVs)
1014 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
1015 // Collects the associated loops in a set.
1016 DependenceInfo::Subscript::ClassificationKind
1017 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
1018                              const SCEV *Dst, const Loop *DstLoopNest,
1019                              SmallBitVector &Loops) {
1020   SmallBitVector SrcLoops(MaxLevels + 1);
1021   SmallBitVector DstLoops(MaxLevels + 1);
1022   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
1023     return Subscript::NonLinear;
1024   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
1025     return Subscript::NonLinear;
1026   Loops = SrcLoops;
1027   Loops |= DstLoops;
1028   unsigned N = Loops.count();
1029   if (N == 0)
1030     return Subscript::ZIV;
1031   if (N == 1)
1032     return Subscript::SIV;
1033   if (N == 2 && (SrcLoops.count() == 0 ||
1034                  DstLoops.count() == 0 ||
1035                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
1036     return Subscript::RDIV;
1037   return Subscript::MIV;
1038 }
1039 
1040 
1041 // A wrapper around SCEV::isKnownPredicate.
1042 // Looks for cases where we're interested in comparing for equality.
1043 // If both X and Y have been identically sign or zero extended,
1044 // it strips off the (confusing) extensions before invoking
1045 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
1046 // will be similarly updated.
1047 //
1048 // If SCEV::isKnownPredicate can't prove the predicate,
1049 // we try simple subtraction, which seems to help in some cases
1050 // involving symbolics.
1051 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
1052                                       const SCEV *Y) const {
1053   if (Pred == CmpInst::ICMP_EQ ||
1054       Pred == CmpInst::ICMP_NE) {
1055     if ((isa<SCEVSignExtendExpr>(X) &&
1056          isa<SCEVSignExtendExpr>(Y)) ||
1057         (isa<SCEVZeroExtendExpr>(X) &&
1058          isa<SCEVZeroExtendExpr>(Y))) {
1059       const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
1060       const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
1061       const SCEV *Xop = CX->getOperand();
1062       const SCEV *Yop = CY->getOperand();
1063       if (Xop->getType() == Yop->getType()) {
1064         X = Xop;
1065         Y = Yop;
1066       }
1067     }
1068   }
1069   if (SE->isKnownPredicate(Pred, X, Y))
1070     return true;
1071   // If SE->isKnownPredicate can't prove the condition,
1072   // we try the brute-force approach of subtracting
1073   // and testing the difference.
1074   // By testing with SE->isKnownPredicate first, we avoid
1075   // the possibility of overflow when the arguments are constants.
1076   const SCEV *Delta = SE->getMinusSCEV(X, Y);
1077   switch (Pred) {
1078   case CmpInst::ICMP_EQ:
1079     return Delta->isZero();
1080   case CmpInst::ICMP_NE:
1081     return SE->isKnownNonZero(Delta);
1082   case CmpInst::ICMP_SGE:
1083     return SE->isKnownNonNegative(Delta);
1084   case CmpInst::ICMP_SLE:
1085     return SE->isKnownNonPositive(Delta);
1086   case CmpInst::ICMP_SGT:
1087     return SE->isKnownPositive(Delta);
1088   case CmpInst::ICMP_SLT:
1089     return SE->isKnownNegative(Delta);
1090   default:
1091     llvm_unreachable("unexpected predicate in isKnownPredicate");
1092   }
1093 }
1094 
1095 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1096 /// with some extra checking if S is an AddRec and we can prove less-than using
1097 /// the loop bounds.
1098 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1099   // First unify to the same type
1100   auto *SType = dyn_cast<IntegerType>(S->getType());
1101   auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1102   if (!SType || !SizeType)
1103     return false;
1104   Type *MaxType =
1105       (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1106   S = SE->getTruncateOrZeroExtend(S, MaxType);
1107   Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1108 
1109   // Special check for addrecs using BE taken count
1110   const SCEV *Bound = SE->getMinusSCEV(S, Size);
1111   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1112     if (AddRec->isAffine()) {
1113       const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1114       if (!isa<SCEVCouldNotCompute>(BECount)) {
1115         const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1116         if (SE->isKnownNegative(Limit))
1117           return true;
1118       }
1119     }
1120   }
1121 
1122   // Check using normal isKnownNegative
1123   const SCEV *LimitedBound =
1124       SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1125   return SE->isKnownNegative(LimitedBound);
1126 }
1127 
1128 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1129   bool Inbounds = false;
1130   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1131     Inbounds = SrcGEP->isInBounds();
1132   if (Inbounds) {
1133     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1134       if (AddRec->isAffine()) {
1135         // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1136         // If both parts are NonNegative, the end result will be NonNegative
1137         if (SE->isKnownNonNegative(AddRec->getStart()) &&
1138             SE->isKnownNonNegative(AddRec->getOperand(1)))
1139           return true;
1140       }
1141     }
1142   }
1143 
1144   return SE->isKnownNonNegative(S);
1145 }
1146 
1147 // All subscripts are all the same type.
1148 // Loop bound may be smaller (e.g., a char).
1149 // Should zero extend loop bound, since it's always >= 0.
1150 // This routine collects upper bound and extends or truncates if needed.
1151 // Truncating is safe when subscripts are known not to wrap. Cases without
1152 // nowrap flags should have been rejected earlier.
1153 // Return null if no bound available.
1154 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1155   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1156     const SCEV *UB = SE->getBackedgeTakenCount(L);
1157     return SE->getTruncateOrZeroExtend(UB, T);
1158   }
1159   return nullptr;
1160 }
1161 
1162 
1163 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1164 // If the cast fails, returns NULL.
1165 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1166                                                               Type *T) const {
1167   if (const SCEV *UB = collectUpperBound(L, T))
1168     return dyn_cast<SCEVConstant>(UB);
1169   return nullptr;
1170 }
1171 
1172 
1173 // testZIV -
1174 // When we have a pair of subscripts of the form [c1] and [c2],
1175 // where c1 and c2 are both loop invariant, we attack it using
1176 // the ZIV test. Basically, we test by comparing the two values,
1177 // but there are actually three possible results:
1178 // 1) the values are equal, so there's a dependence
1179 // 2) the values are different, so there's no dependence
1180 // 3) the values might be equal, so we have to assume a dependence.
1181 //
1182 // Return true if dependence disproved.
1183 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1184                              FullDependence &Result) const {
1185   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
1186   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
1187   ++ZIVapplications;
1188   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1189     LLVM_DEBUG(dbgs() << "    provably dependent\n");
1190     return false; // provably dependent
1191   }
1192   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1193     LLVM_DEBUG(dbgs() << "    provably independent\n");
1194     ++ZIVindependence;
1195     return true; // provably independent
1196   }
1197   LLVM_DEBUG(dbgs() << "    possibly dependent\n");
1198   Result.Consistent = false;
1199   return false; // possibly dependent
1200 }
1201 
1202 
1203 // strongSIVtest -
1204 // From the paper, Practical Dependence Testing, Section 4.2.1
1205 //
1206 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1207 // where i is an induction variable, c1 and c2 are loop invariant,
1208 //  and a is a constant, we can solve it exactly using the Strong SIV test.
1209 //
1210 // Can prove independence. Failing that, can compute distance (and direction).
1211 // In the presence of symbolic terms, we can sometimes make progress.
1212 //
1213 // If there's a dependence,
1214 //
1215 //    c1 + a*i = c2 + a*i'
1216 //
1217 // The dependence distance is
1218 //
1219 //    d = i' - i = (c1 - c2)/a
1220 //
1221 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1222 // loop's upper bound. If a dependence exists, the dependence direction is
1223 // defined as
1224 //
1225 //                { < if d > 0
1226 //    direction = { = if d = 0
1227 //                { > if d < 0
1228 //
1229 // Return true if dependence disproved.
1230 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1231                                    const SCEV *DstConst, const Loop *CurLoop,
1232                                    unsigned Level, FullDependence &Result,
1233                                    Constraint &NewConstraint) const {
1234   LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1235   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1236   LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1237   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1238   LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1239   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1240   LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1241   ++StrongSIVapplications;
1242   assert(0 < Level && Level <= CommonLevels && "level out of range");
1243   Level--;
1244 
1245   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1246   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
1247   LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1248 
1249   // check that |Delta| < iteration count
1250   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1251     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1252     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1253     const SCEV *AbsDelta =
1254       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1255     const SCEV *AbsCoeff =
1256       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1257     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1258     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1259       // Distance greater than trip count - no dependence
1260       ++StrongSIVindependence;
1261       ++StrongSIVsuccesses;
1262       return true;
1263     }
1264   }
1265 
1266   // Can we compute distance?
1267   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1268     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1269     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1270     APInt Distance  = ConstDelta; // these need to be initialized
1271     APInt Remainder = ConstDelta;
1272     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1273     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1274     LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1275     // Make sure Coeff divides Delta exactly
1276     if (Remainder != 0) {
1277       // Coeff doesn't divide Distance, no dependence
1278       ++StrongSIVindependence;
1279       ++StrongSIVsuccesses;
1280       return true;
1281     }
1282     Result.DV[Level].Distance = SE->getConstant(Distance);
1283     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1284     if (Distance.sgt(0))
1285       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1286     else if (Distance.slt(0))
1287       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1288     else
1289       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1290     ++StrongSIVsuccesses;
1291   }
1292   else if (Delta->isZero()) {
1293     // since 0/X == 0
1294     Result.DV[Level].Distance = Delta;
1295     NewConstraint.setDistance(Delta, CurLoop);
1296     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1297     ++StrongSIVsuccesses;
1298   }
1299   else {
1300     if (Coeff->isOne()) {
1301       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1302       Result.DV[Level].Distance = Delta; // since X/1 == X
1303       NewConstraint.setDistance(Delta, CurLoop);
1304     }
1305     else {
1306       Result.Consistent = false;
1307       NewConstraint.setLine(Coeff,
1308                             SE->getNegativeSCEV(Coeff),
1309                             SE->getNegativeSCEV(Delta), CurLoop);
1310     }
1311 
1312     // maybe we can get a useful direction
1313     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1314     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1315     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1316     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1317     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1318     // The double negatives above are confusing.
1319     // It helps to read !SE->isKnownNonZero(Delta)
1320     // as "Delta might be Zero"
1321     unsigned NewDirection = Dependence::DVEntry::NONE;
1322     if ((DeltaMaybePositive && CoeffMaybePositive) ||
1323         (DeltaMaybeNegative && CoeffMaybeNegative))
1324       NewDirection = Dependence::DVEntry::LT;
1325     if (DeltaMaybeZero)
1326       NewDirection |= Dependence::DVEntry::EQ;
1327     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1328         (DeltaMaybePositive && CoeffMaybeNegative))
1329       NewDirection |= Dependence::DVEntry::GT;
1330     if (NewDirection < Result.DV[Level].Direction)
1331       ++StrongSIVsuccesses;
1332     Result.DV[Level].Direction &= NewDirection;
1333   }
1334   return false;
1335 }
1336 
1337 
1338 // weakCrossingSIVtest -
1339 // From the paper, Practical Dependence Testing, Section 4.2.2
1340 //
1341 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1342 // where i is an induction variable, c1 and c2 are loop invariant,
1343 // and a is a constant, we can solve it exactly using the
1344 // Weak-Crossing SIV test.
1345 //
1346 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1347 // the two lines, where i = i', yielding
1348 //
1349 //    c1 + a*i = c2 - a*i
1350 //    2a*i = c2 - c1
1351 //    i = (c2 - c1)/2a
1352 //
1353 // If i < 0, there is no dependence.
1354 // If i > upperbound, there is no dependence.
1355 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1356 // If i = upperbound, there's a dependence with distance = 0.
1357 // If i is integral, there's a dependence (all directions).
1358 // If the non-integer part = 1/2, there's a dependence (<> directions).
1359 // Otherwise, there's no dependence.
1360 //
1361 // Can prove independence. Failing that,
1362 // can sometimes refine the directions.
1363 // Can determine iteration for splitting.
1364 //
1365 // Return true if dependence disproved.
1366 bool DependenceInfo::weakCrossingSIVtest(
1367     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1368     const Loop *CurLoop, unsigned Level, FullDependence &Result,
1369     Constraint &NewConstraint, const SCEV *&SplitIter) const {
1370   LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1371   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1372   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1373   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1374   ++WeakCrossingSIVapplications;
1375   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1376   Level--;
1377   Result.Consistent = false;
1378   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1379   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1380   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1381   if (Delta->isZero()) {
1382     Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
1383     Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
1384     ++WeakCrossingSIVsuccesses;
1385     if (!Result.DV[Level].Direction) {
1386       ++WeakCrossingSIVindependence;
1387       return true;
1388     }
1389     Result.DV[Level].Distance = Delta; // = 0
1390     return false;
1391   }
1392   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1393   if (!ConstCoeff)
1394     return false;
1395 
1396   Result.DV[Level].Splitable = true;
1397   if (SE->isKnownNegative(ConstCoeff)) {
1398     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1399     assert(ConstCoeff &&
1400            "dynamic cast of negative of ConstCoeff should yield constant");
1401     Delta = SE->getNegativeSCEV(Delta);
1402   }
1403   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1404 
1405   // compute SplitIter for use by DependenceInfo::getSplitIteration()
1406   SplitIter = SE->getUDivExpr(
1407       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1408       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1409   LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1410 
1411   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1412   if (!ConstDelta)
1413     return false;
1414 
1415   // We're certain that ConstCoeff > 0; therefore,
1416   // if Delta < 0, then no dependence.
1417   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1418   LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1419   if (SE->isKnownNegative(Delta)) {
1420     // No dependence, Delta < 0
1421     ++WeakCrossingSIVindependence;
1422     ++WeakCrossingSIVsuccesses;
1423     return true;
1424   }
1425 
1426   // We're certain that Delta > 0 and ConstCoeff > 0.
1427   // Check Delta/(2*ConstCoeff) against upper loop bound
1428   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1429     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1430     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1431     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1432                                     ConstantTwo);
1433     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1434     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1435       // Delta too big, no dependence
1436       ++WeakCrossingSIVindependence;
1437       ++WeakCrossingSIVsuccesses;
1438       return true;
1439     }
1440     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1441       // i = i' = UB
1442       Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
1443       Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
1444       ++WeakCrossingSIVsuccesses;
1445       if (!Result.DV[Level].Direction) {
1446         ++WeakCrossingSIVindependence;
1447         return true;
1448       }
1449       Result.DV[Level].Splitable = false;
1450       Result.DV[Level].Distance = SE->getZero(Delta->getType());
1451       return false;
1452     }
1453   }
1454 
1455   // check that Coeff divides Delta
1456   APInt APDelta = ConstDelta->getAPInt();
1457   APInt APCoeff = ConstCoeff->getAPInt();
1458   APInt Distance = APDelta; // these need to be initialzed
1459   APInt Remainder = APDelta;
1460   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1461   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1462   if (Remainder != 0) {
1463     // Coeff doesn't divide Delta, no dependence
1464     ++WeakCrossingSIVindependence;
1465     ++WeakCrossingSIVsuccesses;
1466     return true;
1467   }
1468   LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1469 
1470   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1471   APInt Two = APInt(Distance.getBitWidth(), 2, true);
1472   Remainder = Distance.srem(Two);
1473   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1474   if (Remainder != 0) {
1475     // Equal direction isn't possible
1476     Result.DV[Level].Direction &= ~Dependence::DVEntry::EQ;
1477     ++WeakCrossingSIVsuccesses;
1478   }
1479   return false;
1480 }
1481 
1482 
1483 // Kirch's algorithm, from
1484 //
1485 //        Optimizing Supercompilers for Supercomputers
1486 //        Michael Wolfe
1487 //        MIT Press, 1989
1488 //
1489 // Program 2.1, page 29.
1490 // Computes the GCD of AM and BM.
1491 // Also finds a solution to the equation ax - by = gcd(a, b).
1492 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1493 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1494                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1495   APInt A0(Bits, 1, true), A1(Bits, 0, true);
1496   APInt B0(Bits, 0, true), B1(Bits, 1, true);
1497   APInt G0 = AM.abs();
1498   APInt G1 = BM.abs();
1499   APInt Q = G0; // these need to be initialized
1500   APInt R = G0;
1501   APInt::sdivrem(G0, G1, Q, R);
1502   while (R != 0) {
1503     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1504     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1505     G0 = G1; G1 = R;
1506     APInt::sdivrem(G0, G1, Q, R);
1507   }
1508   G = G1;
1509   LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1510   X = AM.slt(0) ? -A1 : A1;
1511   Y = BM.slt(0) ? B1 : -B1;
1512 
1513   // make sure gcd divides Delta
1514   R = Delta.srem(G);
1515   if (R != 0)
1516     return true; // gcd doesn't divide Delta, no dependence
1517   Q = Delta.sdiv(G);
1518   return false;
1519 }
1520 
1521 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1522   APInt Q = A; // these need to be initialized
1523   APInt R = A;
1524   APInt::sdivrem(A, B, Q, R);
1525   if (R == 0)
1526     return Q;
1527   if ((A.sgt(0) && B.sgt(0)) ||
1528       (A.slt(0) && B.slt(0)))
1529     return Q;
1530   else
1531     return Q - 1;
1532 }
1533 
1534 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1535   APInt Q = A; // these need to be initialized
1536   APInt R = A;
1537   APInt::sdivrem(A, B, Q, R);
1538   if (R == 0)
1539     return Q;
1540   if ((A.sgt(0) && B.sgt(0)) ||
1541       (A.slt(0) && B.slt(0)))
1542     return Q + 1;
1543   else
1544     return Q;
1545 }
1546 
1547 // exactSIVtest -
1548 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1549 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1550 // and a2 are constant, we can solve it exactly using an algorithm developed
1551 // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
1552 //
1553 //        Dependence Analysis for Supercomputing
1554 //        Utpal Banerjee
1555 //        Kluwer Academic Publishers, 1988
1556 //
1557 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1558 // so use them if possible. They're also a bit better with symbolics and,
1559 // in the case of the strong SIV test, can compute Distances.
1560 //
1561 // Return true if dependence disproved.
1562 //
1563 // This is a modified version of the original Banerjee algorithm. The original
1564 // only tested whether Dst depends on Src. This algorithm extends that and
1565 // returns all the dependencies that exist between Dst and Src.
1566 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1567                                   const SCEV *SrcConst, const SCEV *DstConst,
1568                                   const Loop *CurLoop, unsigned Level,
1569                                   FullDependence &Result,
1570                                   Constraint &NewConstraint) const {
1571   LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1572   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1573   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1574   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1575   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1576   ++ExactSIVapplications;
1577   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1578   Level--;
1579   Result.Consistent = false;
1580   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1581   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1582   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
1583                         CurLoop);
1584   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1585   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1586   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1587   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1588     return false;
1589 
1590   // find gcd
1591   APInt G, X, Y;
1592   APInt AM = ConstSrcCoeff->getAPInt();
1593   APInt BM = ConstDstCoeff->getAPInt();
1594   APInt CM = ConstDelta->getAPInt();
1595   unsigned Bits = AM.getBitWidth();
1596   if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1597     // gcd doesn't divide Delta, no dependence
1598     ++ExactSIVindependence;
1599     ++ExactSIVsuccesses;
1600     return true;
1601   }
1602 
1603   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1604 
1605   // since SCEV construction normalizes, LM = 0
1606   APInt UM(Bits, 1, true);
1607   bool UMValid = false;
1608   // UM is perhaps unavailable, let's check
1609   if (const SCEVConstant *CUB =
1610           collectConstantUpperBound(CurLoop, Delta->getType())) {
1611     UM = CUB->getAPInt();
1612     LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1613     UMValid = true;
1614   }
1615 
1616   APInt TU(APInt::getSignedMaxValue(Bits));
1617   APInt TL(APInt::getSignedMinValue(Bits));
1618   APInt TC = CM.sdiv(G);
1619   APInt TX = X * TC;
1620   APInt TY = Y * TC;
1621   LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
1622   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
1623   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
1624 
1625   SmallVector<APInt, 2> TLVec, TUVec;
1626   APInt TB = BM.sdiv(G);
1627   if (TB.sgt(0)) {
1628     TLVec.push_back(ceilingOfQuotient(-TX, TB));
1629     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1630     // New bound check - modification to Banerjee's e3 check
1631     if (UMValid) {
1632       TUVec.push_back(floorOfQuotient(UM - TX, TB));
1633       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1634     }
1635   } else {
1636     TUVec.push_back(floorOfQuotient(-TX, TB));
1637     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1638     // New bound check - modification to Banerjee's e3 check
1639     if (UMValid) {
1640       TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
1641       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1642     }
1643   }
1644 
1645   APInt TA = AM.sdiv(G);
1646   if (TA.sgt(0)) {
1647     if (UMValid) {
1648       TUVec.push_back(floorOfQuotient(UM - TY, TA));
1649       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1650     }
1651     // New bound check - modification to Banerjee's e3 check
1652     TLVec.push_back(ceilingOfQuotient(-TY, TA));
1653     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1654   } else {
1655     if (UMValid) {
1656       TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
1657       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1658     }
1659     // New bound check - modification to Banerjee's e3 check
1660     TUVec.push_back(floorOfQuotient(-TY, TA));
1661     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1662   }
1663 
1664   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
1665   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
1666 
1667   if (TLVec.empty() || TUVec.empty())
1668     return false;
1669   TL = APIntOps::smax(TLVec.front(), TLVec.back());
1670   TU = APIntOps::smin(TUVec.front(), TUVec.back());
1671   LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1672   LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1673 
1674   if (TL.sgt(TU)) {
1675     ++ExactSIVindependence;
1676     ++ExactSIVsuccesses;
1677     return true;
1678   }
1679 
1680   // explore directions
1681   unsigned NewDirection = Dependence::DVEntry::NONE;
1682   APInt LowerDistance, UpperDistance;
1683   if (TA.sgt(TB)) {
1684     LowerDistance = (TY - TX) + (TA - TB) * TL;
1685     UpperDistance = (TY - TX) + (TA - TB) * TU;
1686   } else {
1687     LowerDistance = (TY - TX) + (TA - TB) * TU;
1688     UpperDistance = (TY - TX) + (TA - TB) * TL;
1689   }
1690 
1691   LLVM_DEBUG(dbgs() << "\t    LowerDistance = " << LowerDistance << "\n");
1692   LLVM_DEBUG(dbgs() << "\t    UpperDistance = " << UpperDistance << "\n");
1693 
1694   APInt Zero(Bits, 0, true);
1695   if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
1696     NewDirection |= Dependence::DVEntry::EQ;
1697     ++ExactSIVsuccesses;
1698   }
1699   if (LowerDistance.slt(0)) {
1700     NewDirection |= Dependence::DVEntry::GT;
1701     ++ExactSIVsuccesses;
1702   }
1703   if (UpperDistance.sgt(0)) {
1704     NewDirection |= Dependence::DVEntry::LT;
1705     ++ExactSIVsuccesses;
1706   }
1707 
1708   // finished
1709   Result.DV[Level].Direction &= NewDirection;
1710   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1711     ++ExactSIVindependence;
1712   LLVM_DEBUG(dbgs() << "\t    Result = ");
1713   LLVM_DEBUG(Result.dump(dbgs()));
1714   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1715 }
1716 
1717 
1718 // Return true if the divisor evenly divides the dividend.
1719 static
1720 bool isRemainderZero(const SCEVConstant *Dividend,
1721                      const SCEVConstant *Divisor) {
1722   const APInt &ConstDividend = Dividend->getAPInt();
1723   const APInt &ConstDivisor = Divisor->getAPInt();
1724   return ConstDividend.srem(ConstDivisor) == 0;
1725 }
1726 
1727 
1728 // weakZeroSrcSIVtest -
1729 // From the paper, Practical Dependence Testing, Section 4.2.2
1730 //
1731 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1732 // where i is an induction variable, c1 and c2 are loop invariant,
1733 // and a is a constant, we can solve it exactly using the
1734 // Weak-Zero SIV test.
1735 //
1736 // Given
1737 //
1738 //    c1 = c2 + a*i
1739 //
1740 // we get
1741 //
1742 //    (c1 - c2)/a = i
1743 //
1744 // If i is not an integer, there's no dependence.
1745 // If i < 0 or > UB, there's no dependence.
1746 // If i = 0, the direction is >= and peeling the
1747 // 1st iteration will break the dependence.
1748 // If i = UB, the direction is <= and peeling the
1749 // last iteration will break the dependence.
1750 // Otherwise, the direction is *.
1751 //
1752 // Can prove independence. Failing that, we can sometimes refine
1753 // the directions. Can sometimes show that first or last
1754 // iteration carries all the dependences (so worth peeling).
1755 //
1756 // (see also weakZeroDstSIVtest)
1757 //
1758 // Return true if dependence disproved.
1759 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1760                                         const SCEV *SrcConst,
1761                                         const SCEV *DstConst,
1762                                         const Loop *CurLoop, unsigned Level,
1763                                         FullDependence &Result,
1764                                         Constraint &NewConstraint) const {
1765   // For the WeakSIV test, it's possible the loop isn't common to
1766   // the Src and Dst loops. If it isn't, then there's no need to
1767   // record a direction.
1768   LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1769   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1770   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1771   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1772   ++WeakZeroSIVapplications;
1773   assert(0 < Level && Level <= MaxLevels && "Level out of range");
1774   Level--;
1775   Result.Consistent = false;
1776   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1777   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1778                         CurLoop);
1779   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1780   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1781     if (Level < CommonLevels) {
1782       Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1783       Result.DV[Level].PeelFirst = true;
1784       ++WeakZeroSIVsuccesses;
1785     }
1786     return false; // dependences caused by first iteration
1787   }
1788   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1789   if (!ConstCoeff)
1790     return false;
1791   const SCEV *AbsCoeff =
1792     SE->isKnownNegative(ConstCoeff) ?
1793     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1794   const SCEV *NewDelta =
1795     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1796 
1797   // check that Delta/SrcCoeff < iteration count
1798   // really check NewDelta < count*AbsCoeff
1799   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1800     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1801     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1802     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1803       ++WeakZeroSIVindependence;
1804       ++WeakZeroSIVsuccesses;
1805       return true;
1806     }
1807     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1808       // dependences caused by last iteration
1809       if (Level < CommonLevels) {
1810         Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1811         Result.DV[Level].PeelLast = true;
1812         ++WeakZeroSIVsuccesses;
1813       }
1814       return false;
1815     }
1816   }
1817 
1818   // check that Delta/SrcCoeff >= 0
1819   // really check that NewDelta >= 0
1820   if (SE->isKnownNegative(NewDelta)) {
1821     // No dependence, newDelta < 0
1822     ++WeakZeroSIVindependence;
1823     ++WeakZeroSIVsuccesses;
1824     return true;
1825   }
1826 
1827   // if SrcCoeff doesn't divide Delta, then no dependence
1828   if (isa<SCEVConstant>(Delta) &&
1829       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1830     ++WeakZeroSIVindependence;
1831     ++WeakZeroSIVsuccesses;
1832     return true;
1833   }
1834   return false;
1835 }
1836 
1837 
1838 // weakZeroDstSIVtest -
1839 // From the paper, Practical Dependence Testing, Section 4.2.2
1840 //
1841 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1842 // where i is an induction variable, c1 and c2 are loop invariant,
1843 // and a is a constant, we can solve it exactly using the
1844 // Weak-Zero SIV test.
1845 //
1846 // Given
1847 //
1848 //    c1 + a*i = c2
1849 //
1850 // we get
1851 //
1852 //    i = (c2 - c1)/a
1853 //
1854 // If i is not an integer, there's no dependence.
1855 // If i < 0 or > UB, there's no dependence.
1856 // If i = 0, the direction is <= and peeling the
1857 // 1st iteration will break the dependence.
1858 // If i = UB, the direction is >= and peeling the
1859 // last iteration will break the dependence.
1860 // Otherwise, the direction is *.
1861 //
1862 // Can prove independence. Failing that, we can sometimes refine
1863 // the directions. Can sometimes show that first or last
1864 // iteration carries all the dependences (so worth peeling).
1865 //
1866 // (see also weakZeroSrcSIVtest)
1867 //
1868 // Return true if dependence disproved.
1869 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1870                                         const SCEV *SrcConst,
1871                                         const SCEV *DstConst,
1872                                         const Loop *CurLoop, unsigned Level,
1873                                         FullDependence &Result,
1874                                         Constraint &NewConstraint) const {
1875   // For the WeakSIV test, it's possible the loop isn't common to the
1876   // Src and Dst loops. If it isn't, then there's no need to record a direction.
1877   LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1878   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1879   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1880   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1881   ++WeakZeroSIVapplications;
1882   assert(0 < Level && Level <= SrcLevels && "Level out of range");
1883   Level--;
1884   Result.Consistent = false;
1885   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1886   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1887                         CurLoop);
1888   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1889   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1890     if (Level < CommonLevels) {
1891       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1892       Result.DV[Level].PeelFirst = true;
1893       ++WeakZeroSIVsuccesses;
1894     }
1895     return false; // dependences caused by first iteration
1896   }
1897   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1898   if (!ConstCoeff)
1899     return false;
1900   const SCEV *AbsCoeff =
1901     SE->isKnownNegative(ConstCoeff) ?
1902     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1903   const SCEV *NewDelta =
1904     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1905 
1906   // check that Delta/SrcCoeff < iteration count
1907   // really check NewDelta < count*AbsCoeff
1908   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1909     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1910     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1911     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1912       ++WeakZeroSIVindependence;
1913       ++WeakZeroSIVsuccesses;
1914       return true;
1915     }
1916     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1917       // dependences caused by last iteration
1918       if (Level < CommonLevels) {
1919         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1920         Result.DV[Level].PeelLast = true;
1921         ++WeakZeroSIVsuccesses;
1922       }
1923       return false;
1924     }
1925   }
1926 
1927   // check that Delta/SrcCoeff >= 0
1928   // really check that NewDelta >= 0
1929   if (SE->isKnownNegative(NewDelta)) {
1930     // No dependence, newDelta < 0
1931     ++WeakZeroSIVindependence;
1932     ++WeakZeroSIVsuccesses;
1933     return true;
1934   }
1935 
1936   // if SrcCoeff doesn't divide Delta, then no dependence
1937   if (isa<SCEVConstant>(Delta) &&
1938       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1939     ++WeakZeroSIVindependence;
1940     ++WeakZeroSIVsuccesses;
1941     return true;
1942   }
1943   return false;
1944 }
1945 
1946 
1947 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1948 // Things of the form [c1 + a*i] and [c2 + b*j],
1949 // where i and j are induction variable, c1 and c2 are loop invariant,
1950 // and a and b are constants.
1951 // Returns true if any possible dependence is disproved.
1952 // Marks the result as inconsistent.
1953 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1954 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1955                                    const SCEV *SrcConst, const SCEV *DstConst,
1956                                    const Loop *SrcLoop, const Loop *DstLoop,
1957                                    FullDependence &Result) const {
1958   LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1959   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1960   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1961   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1962   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1963   ++ExactRDIVapplications;
1964   Result.Consistent = false;
1965   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1966   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1967   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1968   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1969   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1970   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1971     return false;
1972 
1973   // find gcd
1974   APInt G, X, Y;
1975   APInt AM = ConstSrcCoeff->getAPInt();
1976   APInt BM = ConstDstCoeff->getAPInt();
1977   APInt CM = ConstDelta->getAPInt();
1978   unsigned Bits = AM.getBitWidth();
1979   if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1980     // gcd doesn't divide Delta, no dependence
1981     ++ExactRDIVindependence;
1982     return true;
1983   }
1984 
1985   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1986 
1987   // since SCEV construction seems to normalize, LM = 0
1988   APInt SrcUM(Bits, 1, true);
1989   bool SrcUMvalid = false;
1990   // SrcUM is perhaps unavailable, let's check
1991   if (const SCEVConstant *UpperBound =
1992           collectConstantUpperBound(SrcLoop, Delta->getType())) {
1993     SrcUM = UpperBound->getAPInt();
1994     LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1995     SrcUMvalid = true;
1996   }
1997 
1998   APInt DstUM(Bits, 1, true);
1999   bool DstUMvalid = false;
2000   // UM is perhaps unavailable, let's check
2001   if (const SCEVConstant *UpperBound =
2002           collectConstantUpperBound(DstLoop, Delta->getType())) {
2003     DstUM = UpperBound->getAPInt();
2004     LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
2005     DstUMvalid = true;
2006   }
2007 
2008   APInt TU(APInt::getSignedMaxValue(Bits));
2009   APInt TL(APInt::getSignedMinValue(Bits));
2010   APInt TC = CM.sdiv(G);
2011   APInt TX = X * TC;
2012   APInt TY = Y * TC;
2013   LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
2014   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
2015   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
2016 
2017   SmallVector<APInt, 2> TLVec, TUVec;
2018   APInt TB = BM.sdiv(G);
2019   if (TB.sgt(0)) {
2020     TLVec.push_back(ceilingOfQuotient(-TX, TB));
2021     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
2022     if (SrcUMvalid) {
2023       TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
2024       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
2025     }
2026   } else {
2027     TUVec.push_back(floorOfQuotient(-TX, TB));
2028     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
2029     if (SrcUMvalid) {
2030       TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
2031       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
2032     }
2033   }
2034 
2035   APInt TA = AM.sdiv(G);
2036   if (TA.sgt(0)) {
2037     TLVec.push_back(ceilingOfQuotient(-TY, TA));
2038     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
2039     if (DstUMvalid) {
2040       TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
2041       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
2042     }
2043   } else {
2044     TUVec.push_back(floorOfQuotient(-TY, TA));
2045     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
2046     if (DstUMvalid) {
2047       TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
2048       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
2049     }
2050   }
2051 
2052   if (TLVec.empty() || TUVec.empty())
2053     return false;
2054 
2055   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
2056   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
2057 
2058   TL = APIntOps::smax(TLVec.front(), TLVec.back());
2059   TU = APIntOps::smin(TUVec.front(), TUVec.back());
2060   LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
2061   LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
2062 
2063   if (TL.sgt(TU))
2064     ++ExactRDIVindependence;
2065   return TL.sgt(TU);
2066 }
2067 
2068 
2069 // symbolicRDIVtest -
2070 // In Section 4.5 of the Practical Dependence Testing paper,the authors
2071 // introduce a special case of Banerjee's Inequalities (also called the
2072 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
2073 // particularly cases with symbolics. Since it's only able to disprove
2074 // dependence (not compute distances or directions), we'll use it as a
2075 // fall back for the other tests.
2076 //
2077 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2078 // where i and j are induction variables and c1 and c2 are loop invariants,
2079 // we can use the symbolic tests to disprove some dependences, serving as a
2080 // backup for the RDIV test. Note that i and j can be the same variable,
2081 // letting this test serve as a backup for the various SIV tests.
2082 //
2083 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2084 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2085 // loop bounds for the i and j loops, respectively. So, ...
2086 //
2087 // c1 + a1*i = c2 + a2*j
2088 // a1*i - a2*j = c2 - c1
2089 //
2090 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2091 // range of the maximum and minimum possible values of a1*i - a2*j.
2092 // Considering the signs of a1 and a2, we have 4 possible cases:
2093 //
2094 // 1) If a1 >= 0 and a2 >= 0, then
2095 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2096 //              -a2*N2 <= c2 - c1 <= a1*N1
2097 //
2098 // 2) If a1 >= 0 and a2 <= 0, then
2099 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2100 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
2101 //
2102 // 3) If a1 <= 0 and a2 >= 0, then
2103 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2104 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
2105 //
2106 // 4) If a1 <= 0 and a2 <= 0, then
2107 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
2108 //        a1*N1         <= c2 - c1 <=       -a2*N2
2109 //
2110 // return true if dependence disproved
2111 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2112                                       const SCEV *C1, const SCEV *C2,
2113                                       const Loop *Loop1,
2114                                       const Loop *Loop2) const {
2115   ++SymbolicRDIVapplications;
2116   LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2117   LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
2118   LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2119   LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
2120   LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
2121   LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
2122   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2123   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2124   LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
2125   LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
2126   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2127   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2128   LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
2129   LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
2130   if (SE->isKnownNonNegative(A1)) {
2131     if (SE->isKnownNonNegative(A2)) {
2132       // A1 >= 0 && A2 >= 0
2133       if (N1) {
2134         // make sure that c2 - c1 <= a1*N1
2135         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2136         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2137         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2138           ++SymbolicRDIVindependence;
2139           return true;
2140         }
2141       }
2142       if (N2) {
2143         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2144         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2145         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2146         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2147           ++SymbolicRDIVindependence;
2148           return true;
2149         }
2150       }
2151     }
2152     else if (SE->isKnownNonPositive(A2)) {
2153       // a1 >= 0 && a2 <= 0
2154       if (N1 && N2) {
2155         // make sure that c2 - c1 <= a1*N1 - a2*N2
2156         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2157         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2158         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2159         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2160         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2161           ++SymbolicRDIVindependence;
2162           return true;
2163         }
2164       }
2165       // make sure that 0 <= c2 - c1
2166       if (SE->isKnownNegative(C2_C1)) {
2167         ++SymbolicRDIVindependence;
2168         return true;
2169       }
2170     }
2171   }
2172   else if (SE->isKnownNonPositive(A1)) {
2173     if (SE->isKnownNonNegative(A2)) {
2174       // a1 <= 0 && a2 >= 0
2175       if (N1 && N2) {
2176         // make sure that a1*N1 - a2*N2 <= c2 - c1
2177         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2178         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2179         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2180         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2181         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2182           ++SymbolicRDIVindependence;
2183           return true;
2184         }
2185       }
2186       // make sure that c2 - c1 <= 0
2187       if (SE->isKnownPositive(C2_C1)) {
2188         ++SymbolicRDIVindependence;
2189         return true;
2190       }
2191     }
2192     else if (SE->isKnownNonPositive(A2)) {
2193       // a1 <= 0 && a2 <= 0
2194       if (N1) {
2195         // make sure that a1*N1 <= c2 - c1
2196         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2197         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2198         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2199           ++SymbolicRDIVindependence;
2200           return true;
2201         }
2202       }
2203       if (N2) {
2204         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2205         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2206         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2207         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2208           ++SymbolicRDIVindependence;
2209           return true;
2210         }
2211       }
2212     }
2213   }
2214   return false;
2215 }
2216 
2217 
2218 // testSIV -
2219 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2220 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2221 // a2 are constant, we attack it with an SIV test. While they can all be
2222 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2223 // they apply; they're cheaper and sometimes more precise.
2224 //
2225 // Return true if dependence disproved.
2226 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2227                              FullDependence &Result, Constraint &NewConstraint,
2228                              const SCEV *&SplitIter) const {
2229   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2230   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2231   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2232   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2233   if (SrcAddRec && DstAddRec) {
2234     const SCEV *SrcConst = SrcAddRec->getStart();
2235     const SCEV *DstConst = DstAddRec->getStart();
2236     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2237     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2238     const Loop *CurLoop = SrcAddRec->getLoop();
2239     assert(CurLoop == DstAddRec->getLoop() &&
2240            "both loops in SIV should be same");
2241     Level = mapSrcLoop(CurLoop);
2242     bool disproven;
2243     if (SrcCoeff == DstCoeff)
2244       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2245                                 Level, Result, NewConstraint);
2246     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2247       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2248                                       Level, Result, NewConstraint, SplitIter);
2249     else
2250       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2251                                Level, Result, NewConstraint);
2252     return disproven ||
2253       gcdMIVtest(Src, Dst, Result) ||
2254       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2255   }
2256   if (SrcAddRec) {
2257     const SCEV *SrcConst = SrcAddRec->getStart();
2258     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2259     const SCEV *DstConst = Dst;
2260     const Loop *CurLoop = SrcAddRec->getLoop();
2261     Level = mapSrcLoop(CurLoop);
2262     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2263                               Level, Result, NewConstraint) ||
2264       gcdMIVtest(Src, Dst, Result);
2265   }
2266   if (DstAddRec) {
2267     const SCEV *DstConst = DstAddRec->getStart();
2268     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2269     const SCEV *SrcConst = Src;
2270     const Loop *CurLoop = DstAddRec->getLoop();
2271     Level = mapDstLoop(CurLoop);
2272     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2273                               CurLoop, Level, Result, NewConstraint) ||
2274       gcdMIVtest(Src, Dst, Result);
2275   }
2276   llvm_unreachable("SIV test expected at least one AddRec");
2277   return false;
2278 }
2279 
2280 
2281 // testRDIV -
2282 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2283 // where i and j are induction variables, c1 and c2 are loop invariant,
2284 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2285 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2286 // It doesn't make sense to talk about distance or direction in this case,
2287 // so there's no point in making special versions of the Strong SIV test or
2288 // the Weak-crossing SIV test.
2289 //
2290 // With minor algebra, this test can also be used for things like
2291 // [c1 + a1*i + a2*j][c2].
2292 //
2293 // Return true if dependence disproved.
2294 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2295                               FullDependence &Result) const {
2296   // we have 3 possible situations here:
2297   //   1) [a*i + b] and [c*j + d]
2298   //   2) [a*i + c*j + b] and [d]
2299   //   3) [b] and [a*i + c*j + d]
2300   // We need to find what we've got and get organized
2301 
2302   const SCEV *SrcConst, *DstConst;
2303   const SCEV *SrcCoeff, *DstCoeff;
2304   const Loop *SrcLoop, *DstLoop;
2305 
2306   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2307   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2308   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2309   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2310   if (SrcAddRec && DstAddRec) {
2311     SrcConst = SrcAddRec->getStart();
2312     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2313     SrcLoop = SrcAddRec->getLoop();
2314     DstConst = DstAddRec->getStart();
2315     DstCoeff = DstAddRec->getStepRecurrence(*SE);
2316     DstLoop = DstAddRec->getLoop();
2317   }
2318   else if (SrcAddRec) {
2319     if (const SCEVAddRecExpr *tmpAddRec =
2320         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2321       SrcConst = tmpAddRec->getStart();
2322       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2323       SrcLoop = tmpAddRec->getLoop();
2324       DstConst = Dst;
2325       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2326       DstLoop = SrcAddRec->getLoop();
2327     }
2328     else
2329       llvm_unreachable("RDIV reached by surprising SCEVs");
2330   }
2331   else if (DstAddRec) {
2332     if (const SCEVAddRecExpr *tmpAddRec =
2333         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2334       DstConst = tmpAddRec->getStart();
2335       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2336       DstLoop = tmpAddRec->getLoop();
2337       SrcConst = Src;
2338       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2339       SrcLoop = DstAddRec->getLoop();
2340     }
2341     else
2342       llvm_unreachable("RDIV reached by surprising SCEVs");
2343   }
2344   else
2345     llvm_unreachable("RDIV expected at least one AddRec");
2346   return exactRDIVtest(SrcCoeff, DstCoeff,
2347                        SrcConst, DstConst,
2348                        SrcLoop, DstLoop,
2349                        Result) ||
2350     gcdMIVtest(Src, Dst, Result) ||
2351     symbolicRDIVtest(SrcCoeff, DstCoeff,
2352                      SrcConst, DstConst,
2353                      SrcLoop, DstLoop);
2354 }
2355 
2356 
2357 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2358 // Return true if dependence disproved.
2359 // Can sometimes refine direction vectors.
2360 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2361                              const SmallBitVector &Loops,
2362                              FullDependence &Result) const {
2363   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2364   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2365   Result.Consistent = false;
2366   return gcdMIVtest(Src, Dst, Result) ||
2367     banerjeeMIVtest(Src, Dst, Loops, Result);
2368 }
2369 
2370 
2371 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2372 // in this case 10. If there is no constant part, returns NULL.
2373 static
2374 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2375   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2376     return Constant;
2377   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2378     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2379       return Constant;
2380   return nullptr;
2381 }
2382 
2383 
2384 //===----------------------------------------------------------------------===//
2385 // gcdMIVtest -
2386 // Tests an MIV subscript pair for dependence.
2387 // Returns true if any possible dependence is disproved.
2388 // Marks the result as inconsistent.
2389 // Can sometimes disprove the equal direction for 1 or more loops,
2390 // as discussed in Michael Wolfe's book,
2391 // High Performance Compilers for Parallel Computing, page 235.
2392 //
2393 // We spend some effort (code!) to handle cases like
2394 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2395 // but M and N are just loop-invariant variables.
2396 // This should help us handle linearized subscripts;
2397 // also makes this test a useful backup to the various SIV tests.
2398 //
2399 // It occurs to me that the presence of loop-invariant variables
2400 // changes the nature of the test from "greatest common divisor"
2401 // to "a common divisor".
2402 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2403                                 FullDependence &Result) const {
2404   LLVM_DEBUG(dbgs() << "starting gcd\n");
2405   ++GCDapplications;
2406   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2407   APInt RunningGCD = APInt::getZero(BitWidth);
2408 
2409   // Examine Src coefficients.
2410   // Compute running GCD and record source constant.
2411   // Because we're looking for the constant at the end of the chain,
2412   // we can't quit the loop just because the GCD == 1.
2413   const SCEV *Coefficients = Src;
2414   while (const SCEVAddRecExpr *AddRec =
2415          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2416     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2417     // If the coefficient is the product of a constant and other stuff,
2418     // we can use the constant in the GCD computation.
2419     const auto *Constant = getConstantPart(Coeff);
2420     if (!Constant)
2421       return false;
2422     APInt ConstCoeff = Constant->getAPInt();
2423     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2424     Coefficients = AddRec->getStart();
2425   }
2426   const SCEV *SrcConst = Coefficients;
2427 
2428   // Examine Dst coefficients.
2429   // Compute running GCD and record destination constant.
2430   // Because we're looking for the constant at the end of the chain,
2431   // we can't quit the loop just because the GCD == 1.
2432   Coefficients = Dst;
2433   while (const SCEVAddRecExpr *AddRec =
2434          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2435     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2436     // If the coefficient is the product of a constant and other stuff,
2437     // we can use the constant in the GCD computation.
2438     const auto *Constant = getConstantPart(Coeff);
2439     if (!Constant)
2440       return false;
2441     APInt ConstCoeff = Constant->getAPInt();
2442     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2443     Coefficients = AddRec->getStart();
2444   }
2445   const SCEV *DstConst = Coefficients;
2446 
2447   APInt ExtraGCD = APInt::getZero(BitWidth);
2448   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2449   LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2450   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2451   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2452     // If Delta is a sum of products, we may be able to make further progress.
2453     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2454       const SCEV *Operand = Sum->getOperand(Op);
2455       if (isa<SCEVConstant>(Operand)) {
2456         assert(!Constant && "Surprised to find multiple constants");
2457         Constant = cast<SCEVConstant>(Operand);
2458       }
2459       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2460         // Search for constant operand to participate in GCD;
2461         // If none found; return false.
2462         const SCEVConstant *ConstOp = getConstantPart(Product);
2463         if (!ConstOp)
2464           return false;
2465         APInt ConstOpValue = ConstOp->getAPInt();
2466         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2467                                                    ConstOpValue.abs());
2468       }
2469       else
2470         return false;
2471     }
2472   }
2473   if (!Constant)
2474     return false;
2475   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2476   LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2477   if (ConstDelta == 0)
2478     return false;
2479   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2480   LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2481   APInt Remainder = ConstDelta.srem(RunningGCD);
2482   if (Remainder != 0) {
2483     ++GCDindependence;
2484     return true;
2485   }
2486 
2487   // Try to disprove equal directions.
2488   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2489   // the code above can't disprove the dependence because the GCD = 1.
2490   // So we consider what happen if i = i' and what happens if j = j'.
2491   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2492   // which is infeasible, so we can disallow the = direction for the i level.
2493   // Setting j = j' doesn't help matters, so we end up with a direction vector
2494   // of [<>, *]
2495   //
2496   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2497   // we need to remember that the constant part is 5 and the RunningGCD should
2498   // be initialized to ExtraGCD = 30.
2499   LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2500 
2501   bool Improved = false;
2502   Coefficients = Src;
2503   while (const SCEVAddRecExpr *AddRec =
2504          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2505     Coefficients = AddRec->getStart();
2506     const Loop *CurLoop = AddRec->getLoop();
2507     RunningGCD = ExtraGCD;
2508     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2509     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2510     const SCEV *Inner = Src;
2511     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2512       AddRec = cast<SCEVAddRecExpr>(Inner);
2513       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2514       if (CurLoop == AddRec->getLoop())
2515         ; // SrcCoeff == Coeff
2516       else {
2517         // If the coefficient is the product of a constant and other stuff,
2518         // we can use the constant in the GCD computation.
2519         Constant = getConstantPart(Coeff);
2520         if (!Constant)
2521           return false;
2522         APInt ConstCoeff = Constant->getAPInt();
2523         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2524       }
2525       Inner = AddRec->getStart();
2526     }
2527     Inner = Dst;
2528     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2529       AddRec = cast<SCEVAddRecExpr>(Inner);
2530       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2531       if (CurLoop == AddRec->getLoop())
2532         DstCoeff = Coeff;
2533       else {
2534         // If the coefficient is the product of a constant and other stuff,
2535         // we can use the constant in the GCD computation.
2536         Constant = getConstantPart(Coeff);
2537         if (!Constant)
2538           return false;
2539         APInt ConstCoeff = Constant->getAPInt();
2540         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2541       }
2542       Inner = AddRec->getStart();
2543     }
2544     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2545     // If the coefficient is the product of a constant and other stuff,
2546     // we can use the constant in the GCD computation.
2547     Constant = getConstantPart(Delta);
2548     if (!Constant)
2549       // The difference of the two coefficients might not be a product
2550       // or constant, in which case we give up on this direction.
2551       continue;
2552     APInt ConstCoeff = Constant->getAPInt();
2553     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2554     LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2555     if (RunningGCD != 0) {
2556       Remainder = ConstDelta.srem(RunningGCD);
2557       LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2558       if (Remainder != 0) {
2559         unsigned Level = mapSrcLoop(CurLoop);
2560         Result.DV[Level - 1].Direction &= ~Dependence::DVEntry::EQ;
2561         Improved = true;
2562       }
2563     }
2564   }
2565   if (Improved)
2566     ++GCDsuccesses;
2567   LLVM_DEBUG(dbgs() << "all done\n");
2568   return false;
2569 }
2570 
2571 
2572 //===----------------------------------------------------------------------===//
2573 // banerjeeMIVtest -
2574 // Use Banerjee's Inequalities to test an MIV subscript pair.
2575 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2576 // Generally follows the discussion in Section 2.5.2 of
2577 //
2578 //    Optimizing Supercompilers for Supercomputers
2579 //    Michael Wolfe
2580 //
2581 // The inequalities given on page 25 are simplified in that loops are
2582 // normalized so that the lower bound is always 0 and the stride is always 1.
2583 // For example, Wolfe gives
2584 //
2585 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2586 //
2587 // where A_k is the coefficient of the kth index in the source subscript,
2588 // B_k is the coefficient of the kth index in the destination subscript,
2589 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2590 // index, and N_k is the stride of the kth index. Since all loops are normalized
2591 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2592 // equation to
2593 //
2594 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2595 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2596 //
2597 // Similar simplifications are possible for the other equations.
2598 //
2599 // When we can't determine the number of iterations for a loop,
2600 // we use NULL as an indicator for the worst case, infinity.
2601 // When computing the upper bound, NULL denotes +inf;
2602 // for the lower bound, NULL denotes -inf.
2603 //
2604 // Return true if dependence disproved.
2605 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2606                                      const SmallBitVector &Loops,
2607                                      FullDependence &Result) const {
2608   LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2609   ++BanerjeeApplications;
2610   LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
2611   const SCEV *A0;
2612   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2613   LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2614   const SCEV *B0;
2615   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2616   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2617   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2618   LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2619 
2620   // Compute bounds for all the * directions.
2621   LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2622   for (unsigned K = 1; K <= MaxLevels; ++K) {
2623     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2624     Bound[K].Direction = Dependence::DVEntry::ALL;
2625     Bound[K].DirSet = Dependence::DVEntry::NONE;
2626     findBoundsALL(A, B, Bound, K);
2627 #ifndef NDEBUG
2628     LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
2629     if (Bound[K].Lower[Dependence::DVEntry::ALL])
2630       LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2631     else
2632       LLVM_DEBUG(dbgs() << "-inf\t");
2633     if (Bound[K].Upper[Dependence::DVEntry::ALL])
2634       LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2635     else
2636       LLVM_DEBUG(dbgs() << "+inf\n");
2637 #endif
2638   }
2639 
2640   // Test the *, *, *, ... case.
2641   bool Disproved = false;
2642   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2643     // Explore the direction vector hierarchy.
2644     unsigned DepthExpanded = 0;
2645     unsigned NewDeps = exploreDirections(1, A, B, Bound,
2646                                          Loops, DepthExpanded, Delta);
2647     if (NewDeps > 0) {
2648       bool Improved = false;
2649       for (unsigned K = 1; K <= CommonLevels; ++K) {
2650         if (Loops[K]) {
2651           unsigned Old = Result.DV[K - 1].Direction;
2652           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2653           Improved |= Old != Result.DV[K - 1].Direction;
2654           if (!Result.DV[K - 1].Direction) {
2655             Improved = false;
2656             Disproved = true;
2657             break;
2658           }
2659         }
2660       }
2661       if (Improved)
2662         ++BanerjeeSuccesses;
2663     }
2664     else {
2665       ++BanerjeeIndependence;
2666       Disproved = true;
2667     }
2668   }
2669   else {
2670     ++BanerjeeIndependence;
2671     Disproved = true;
2672   }
2673   delete [] Bound;
2674   delete [] A;
2675   delete [] B;
2676   return Disproved;
2677 }
2678 
2679 
2680 // Hierarchically expands the direction vector
2681 // search space, combining the directions of discovered dependences
2682 // in the DirSet field of Bound. Returns the number of distinct
2683 // dependences discovered. If the dependence is disproved,
2684 // it will return 0.
2685 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2686                                            CoefficientInfo *B, BoundInfo *Bound,
2687                                            const SmallBitVector &Loops,
2688                                            unsigned &DepthExpanded,
2689                                            const SCEV *Delta) const {
2690   // This algorithm has worst case complexity of O(3^n), where 'n' is the number
2691   // of common loop levels. To avoid excessive compile-time, pessimize all the
2692   // results and immediately return when the number of common levels is beyond
2693   // the given threshold.
2694   if (CommonLevels > MIVMaxLevelThreshold) {
2695     LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
2696                          "direction exploration is terminated.\n");
2697     for (unsigned K = 1; K <= CommonLevels; ++K)
2698       if (Loops[K])
2699         Bound[K].DirSet = Dependence::DVEntry::ALL;
2700     return 1;
2701   }
2702 
2703   if (Level > CommonLevels) {
2704     // record result
2705     LLVM_DEBUG(dbgs() << "\t[");
2706     for (unsigned K = 1; K <= CommonLevels; ++K) {
2707       if (Loops[K]) {
2708         Bound[K].DirSet |= Bound[K].Direction;
2709 #ifndef NDEBUG
2710         switch (Bound[K].Direction) {
2711         case Dependence::DVEntry::LT:
2712           LLVM_DEBUG(dbgs() << " <");
2713           break;
2714         case Dependence::DVEntry::EQ:
2715           LLVM_DEBUG(dbgs() << " =");
2716           break;
2717         case Dependence::DVEntry::GT:
2718           LLVM_DEBUG(dbgs() << " >");
2719           break;
2720         case Dependence::DVEntry::ALL:
2721           LLVM_DEBUG(dbgs() << " *");
2722           break;
2723         default:
2724           llvm_unreachable("unexpected Bound[K].Direction");
2725         }
2726 #endif
2727       }
2728     }
2729     LLVM_DEBUG(dbgs() << " ]\n");
2730     return 1;
2731   }
2732   if (Loops[Level]) {
2733     if (Level > DepthExpanded) {
2734       DepthExpanded = Level;
2735       // compute bounds for <, =, > at current level
2736       findBoundsLT(A, B, Bound, Level);
2737       findBoundsGT(A, B, Bound, Level);
2738       findBoundsEQ(A, B, Bound, Level);
2739 #ifndef NDEBUG
2740       LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2741       LLVM_DEBUG(dbgs() << "\t    <\t");
2742       if (Bound[Level].Lower[Dependence::DVEntry::LT])
2743         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2744                           << '\t');
2745       else
2746         LLVM_DEBUG(dbgs() << "-inf\t");
2747       if (Bound[Level].Upper[Dependence::DVEntry::LT])
2748         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2749                           << '\n');
2750       else
2751         LLVM_DEBUG(dbgs() << "+inf\n");
2752       LLVM_DEBUG(dbgs() << "\t    =\t");
2753       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2754         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2755                           << '\t');
2756       else
2757         LLVM_DEBUG(dbgs() << "-inf\t");
2758       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2759         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2760                           << '\n');
2761       else
2762         LLVM_DEBUG(dbgs() << "+inf\n");
2763       LLVM_DEBUG(dbgs() << "\t    >\t");
2764       if (Bound[Level].Lower[Dependence::DVEntry::GT])
2765         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2766                           << '\t');
2767       else
2768         LLVM_DEBUG(dbgs() << "-inf\t");
2769       if (Bound[Level].Upper[Dependence::DVEntry::GT])
2770         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2771                           << '\n');
2772       else
2773         LLVM_DEBUG(dbgs() << "+inf\n");
2774 #endif
2775     }
2776 
2777     unsigned NewDeps = 0;
2778 
2779     // test bounds for <, *, *, ...
2780     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2781       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2782                                    Loops, DepthExpanded, Delta);
2783 
2784     // Test bounds for =, *, *, ...
2785     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2786       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2787                                    Loops, DepthExpanded, Delta);
2788 
2789     // test bounds for >, *, *, ...
2790     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2791       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2792                                    Loops, DepthExpanded, Delta);
2793 
2794     Bound[Level].Direction = Dependence::DVEntry::ALL;
2795     return NewDeps;
2796   }
2797   else
2798     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2799 }
2800 
2801 
2802 // Returns true iff the current bounds are plausible.
2803 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2804                                 BoundInfo *Bound, const SCEV *Delta) const {
2805   Bound[Level].Direction = DirKind;
2806   if (const SCEV *LowerBound = getLowerBound(Bound))
2807     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2808       return false;
2809   if (const SCEV *UpperBound = getUpperBound(Bound))
2810     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2811       return false;
2812   return true;
2813 }
2814 
2815 
2816 // Computes the upper and lower bounds for level K
2817 // using the * direction. Records them in Bound.
2818 // Wolfe gives the equations
2819 //
2820 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2821 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2822 //
2823 // Since we normalize loops, we can simplify these equations to
2824 //
2825 //    LB^*_k = (A^-_k - B^+_k)U_k
2826 //    UB^*_k = (A^+_k - B^-_k)U_k
2827 //
2828 // We must be careful to handle the case where the upper bound is unknown.
2829 // Note that the lower bound is always <= 0
2830 // and the upper bound is always >= 0.
2831 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2832                                    BoundInfo *Bound, unsigned K) const {
2833   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2834   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2835   if (Bound[K].Iterations) {
2836     Bound[K].Lower[Dependence::DVEntry::ALL] =
2837       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2838                      Bound[K].Iterations);
2839     Bound[K].Upper[Dependence::DVEntry::ALL] =
2840       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2841                      Bound[K].Iterations);
2842   }
2843   else {
2844     // If the difference is 0, we won't need to know the number of iterations.
2845     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2846       Bound[K].Lower[Dependence::DVEntry::ALL] =
2847           SE->getZero(A[K].Coeff->getType());
2848     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2849       Bound[K].Upper[Dependence::DVEntry::ALL] =
2850           SE->getZero(A[K].Coeff->getType());
2851   }
2852 }
2853 
2854 
2855 // Computes the upper and lower bounds for level K
2856 // using the = direction. Records them in Bound.
2857 // Wolfe gives the equations
2858 //
2859 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2860 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2861 //
2862 // Since we normalize loops, we can simplify these equations to
2863 //
2864 //    LB^=_k = (A_k - B_k)^- U_k
2865 //    UB^=_k = (A_k - B_k)^+ U_k
2866 //
2867 // We must be careful to handle the case where the upper bound is unknown.
2868 // Note that the lower bound is always <= 0
2869 // and the upper bound is always >= 0.
2870 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2871                                   BoundInfo *Bound, unsigned K) const {
2872   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2873   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2874   if (Bound[K].Iterations) {
2875     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2876     const SCEV *NegativePart = getNegativePart(Delta);
2877     Bound[K].Lower[Dependence::DVEntry::EQ] =
2878       SE->getMulExpr(NegativePart, Bound[K].Iterations);
2879     const SCEV *PositivePart = getPositivePart(Delta);
2880     Bound[K].Upper[Dependence::DVEntry::EQ] =
2881       SE->getMulExpr(PositivePart, Bound[K].Iterations);
2882   }
2883   else {
2884     // If the positive/negative part of the difference is 0,
2885     // we won't need to know the number of iterations.
2886     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2887     const SCEV *NegativePart = getNegativePart(Delta);
2888     if (NegativePart->isZero())
2889       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2890     const SCEV *PositivePart = getPositivePart(Delta);
2891     if (PositivePart->isZero())
2892       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2893   }
2894 }
2895 
2896 
2897 // Computes the upper and lower bounds for level K
2898 // using the < direction. Records them in Bound.
2899 // Wolfe gives the equations
2900 //
2901 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2902 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2903 //
2904 // Since we normalize loops, we can simplify these equations to
2905 //
2906 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2907 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2908 //
2909 // We must be careful to handle the case where the upper bound is unknown.
2910 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2911                                   BoundInfo *Bound, unsigned K) const {
2912   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2913   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2914   if (Bound[K].Iterations) {
2915     const SCEV *Iter_1 = SE->getMinusSCEV(
2916         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2917     const SCEV *NegPart =
2918       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2919     Bound[K].Lower[Dependence::DVEntry::LT] =
2920       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2921     const SCEV *PosPart =
2922       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2923     Bound[K].Upper[Dependence::DVEntry::LT] =
2924       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2925   }
2926   else {
2927     // If the positive/negative part of the difference is 0,
2928     // we won't need to know the number of iterations.
2929     const SCEV *NegPart =
2930       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2931     if (NegPart->isZero())
2932       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2933     const SCEV *PosPart =
2934       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2935     if (PosPart->isZero())
2936       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2937   }
2938 }
2939 
2940 
2941 // Computes the upper and lower bounds for level K
2942 // using the > direction. Records them in Bound.
2943 // Wolfe gives the equations
2944 //
2945 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2946 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2947 //
2948 // Since we normalize loops, we can simplify these equations to
2949 //
2950 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2951 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2952 //
2953 // We must be careful to handle the case where the upper bound is unknown.
2954 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2955                                   BoundInfo *Bound, unsigned K) const {
2956   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2957   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2958   if (Bound[K].Iterations) {
2959     const SCEV *Iter_1 = SE->getMinusSCEV(
2960         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2961     const SCEV *NegPart =
2962       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2963     Bound[K].Lower[Dependence::DVEntry::GT] =
2964       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2965     const SCEV *PosPart =
2966       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2967     Bound[K].Upper[Dependence::DVEntry::GT] =
2968       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2969   }
2970   else {
2971     // If the positive/negative part of the difference is 0,
2972     // we won't need to know the number of iterations.
2973     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2974     if (NegPart->isZero())
2975       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2976     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2977     if (PosPart->isZero())
2978       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2979   }
2980 }
2981 
2982 
2983 // X^+ = max(X, 0)
2984 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2985   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2986 }
2987 
2988 
2989 // X^- = min(X, 0)
2990 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2991   return SE->getSMinExpr(X, SE->getZero(X->getType()));
2992 }
2993 
2994 
2995 // Walks through the subscript,
2996 // collecting each coefficient, the associated loop bounds,
2997 // and recording its positive and negative parts for later use.
2998 DependenceInfo::CoefficientInfo *
2999 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
3000                                  const SCEV *&Constant) const {
3001   const SCEV *Zero = SE->getZero(Subscript->getType());
3002   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
3003   for (unsigned K = 1; K <= MaxLevels; ++K) {
3004     CI[K].Coeff = Zero;
3005     CI[K].PosPart = Zero;
3006     CI[K].NegPart = Zero;
3007     CI[K].Iterations = nullptr;
3008   }
3009   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
3010     const Loop *L = AddRec->getLoop();
3011     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
3012     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
3013     CI[K].PosPart = getPositivePart(CI[K].Coeff);
3014     CI[K].NegPart = getNegativePart(CI[K].Coeff);
3015     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
3016     Subscript = AddRec->getStart();
3017   }
3018   Constant = Subscript;
3019 #ifndef NDEBUG
3020   LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
3021   for (unsigned K = 1; K <= MaxLevels; ++K) {
3022     LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
3023     LLVM_DEBUG(dbgs() << "\tPos Part = ");
3024     LLVM_DEBUG(dbgs() << *CI[K].PosPart);
3025     LLVM_DEBUG(dbgs() << "\tNeg Part = ");
3026     LLVM_DEBUG(dbgs() << *CI[K].NegPart);
3027     LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
3028     if (CI[K].Iterations)
3029       LLVM_DEBUG(dbgs() << *CI[K].Iterations);
3030     else
3031       LLVM_DEBUG(dbgs() << "+inf");
3032     LLVM_DEBUG(dbgs() << '\n');
3033   }
3034   LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
3035 #endif
3036   return CI;
3037 }
3038 
3039 
3040 // Looks through all the bounds info and
3041 // computes the lower bound given the current direction settings
3042 // at each level. If the lower bound for any level is -inf,
3043 // the result is -inf.
3044 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
3045   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
3046   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
3047     if (Bound[K].Lower[Bound[K].Direction])
3048       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
3049     else
3050       Sum = nullptr;
3051   }
3052   return Sum;
3053 }
3054 
3055 
3056 // Looks through all the bounds info and
3057 // computes the upper bound given the current direction settings
3058 // at each level. If the upper bound at any level is +inf,
3059 // the result is +inf.
3060 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
3061   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
3062   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
3063     if (Bound[K].Upper[Bound[K].Direction])
3064       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
3065     else
3066       Sum = nullptr;
3067   }
3068   return Sum;
3069 }
3070 
3071 
3072 //===----------------------------------------------------------------------===//
3073 // Constraint manipulation for Delta test.
3074 
3075 // Given a linear SCEV,
3076 // return the coefficient (the step)
3077 // corresponding to the specified loop.
3078 // If there isn't one, return 0.
3079 // For example, given a*i + b*j + c*k, finding the coefficient
3080 // corresponding to the j loop would yield b.
3081 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
3082                                             const Loop *TargetLoop) const {
3083   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3084   if (!AddRec)
3085     return SE->getZero(Expr->getType());
3086   if (AddRec->getLoop() == TargetLoop)
3087     return AddRec->getStepRecurrence(*SE);
3088   return findCoefficient(AddRec->getStart(), TargetLoop);
3089 }
3090 
3091 
3092 // Given a linear SCEV,
3093 // return the SCEV given by zeroing out the coefficient
3094 // corresponding to the specified loop.
3095 // For example, given a*i + b*j + c*k, zeroing the coefficient
3096 // corresponding to the j loop would yield a*i + c*k.
3097 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
3098                                             const Loop *TargetLoop) const {
3099   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3100   if (!AddRec)
3101     return Expr; // ignore
3102   if (AddRec->getLoop() == TargetLoop)
3103     return AddRec->getStart();
3104   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3105                            AddRec->getStepRecurrence(*SE),
3106                            AddRec->getLoop(),
3107                            AddRec->getNoWrapFlags());
3108 }
3109 
3110 
3111 // Given a linear SCEV Expr,
3112 // return the SCEV given by adding some Value to the
3113 // coefficient corresponding to the specified TargetLoop.
3114 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3115 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3116 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3117                                              const Loop *TargetLoop,
3118                                              const SCEV *Value) const {
3119   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3120   if (!AddRec) // create a new addRec
3121     return SE->getAddRecExpr(Expr,
3122                              Value,
3123                              TargetLoop,
3124                              SCEV::FlagAnyWrap); // Worst case, with no info.
3125   if (AddRec->getLoop() == TargetLoop) {
3126     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3127     if (Sum->isZero())
3128       return AddRec->getStart();
3129     return SE->getAddRecExpr(AddRec->getStart(),
3130                              Sum,
3131                              AddRec->getLoop(),
3132                              AddRec->getNoWrapFlags());
3133   }
3134   if (SE->isLoopInvariant(AddRec, TargetLoop))
3135     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3136   return SE->getAddRecExpr(
3137       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3138       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3139       AddRec->getNoWrapFlags());
3140 }
3141 
3142 
3143 // Review the constraints, looking for opportunities
3144 // to simplify a subscript pair (Src and Dst).
3145 // Return true if some simplification occurs.
3146 // If the simplification isn't exact (that is, if it is conservative
3147 // in terms of dependence), set consistent to false.
3148 // Corresponds to Figure 5 from the paper
3149 //
3150 //            Practical Dependence Testing
3151 //            Goff, Kennedy, Tseng
3152 //            PLDI 1991
3153 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3154                                SmallBitVector &Loops,
3155                                SmallVectorImpl<Constraint> &Constraints,
3156                                bool &Consistent) {
3157   bool Result = false;
3158   for (unsigned LI : Loops.set_bits()) {
3159     LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
3160     LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3161     if (Constraints[LI].isDistance())
3162       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3163     else if (Constraints[LI].isLine())
3164       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3165     else if (Constraints[LI].isPoint())
3166       Result |= propagatePoint(Src, Dst, Constraints[LI]);
3167   }
3168   return Result;
3169 }
3170 
3171 
3172 // Attempt to propagate a distance
3173 // constraint into a subscript pair (Src and Dst).
3174 // Return true if some simplification occurs.
3175 // If the simplification isn't exact (that is, if it is conservative
3176 // in terms of dependence), set consistent to false.
3177 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3178                                        Constraint &CurConstraint,
3179                                        bool &Consistent) {
3180   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3181   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3182   const SCEV *A_K = findCoefficient(Src, CurLoop);
3183   if (A_K->isZero())
3184     return false;
3185   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3186   Src = SE->getMinusSCEV(Src, DA_K);
3187   Src = zeroCoefficient(Src, CurLoop);
3188   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3189   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3190   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3191   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3192   if (!findCoefficient(Dst, CurLoop)->isZero())
3193     Consistent = false;
3194   return true;
3195 }
3196 
3197 
3198 // Attempt to propagate a line
3199 // constraint into a subscript pair (Src and Dst).
3200 // Return true if some simplification occurs.
3201 // If the simplification isn't exact (that is, if it is conservative
3202 // in terms of dependence), set consistent to false.
3203 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3204                                    Constraint &CurConstraint,
3205                                    bool &Consistent) {
3206   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3207   const SCEV *A = CurConstraint.getA();
3208   const SCEV *B = CurConstraint.getB();
3209   const SCEV *C = CurConstraint.getC();
3210   LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3211                     << "\n");
3212   LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3213   LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3214   if (A->isZero()) {
3215     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3216     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3217     if (!Bconst || !Cconst) return false;
3218     APInt Beta = Bconst->getAPInt();
3219     APInt Charlie = Cconst->getAPInt();
3220     APInt CdivB = Charlie.sdiv(Beta);
3221     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3222     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3223     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3224     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3225     Dst = zeroCoefficient(Dst, CurLoop);
3226     if (!findCoefficient(Src, CurLoop)->isZero())
3227       Consistent = false;
3228   }
3229   else if (B->isZero()) {
3230     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3231     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3232     if (!Aconst || !Cconst) return false;
3233     APInt Alpha = Aconst->getAPInt();
3234     APInt Charlie = Cconst->getAPInt();
3235     APInt CdivA = Charlie.sdiv(Alpha);
3236     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3237     const SCEV *A_K = findCoefficient(Src, CurLoop);
3238     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3239     Src = zeroCoefficient(Src, CurLoop);
3240     if (!findCoefficient(Dst, CurLoop)->isZero())
3241       Consistent = false;
3242   }
3243   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3244     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3245     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3246     if (!Aconst || !Cconst) return false;
3247     APInt Alpha = Aconst->getAPInt();
3248     APInt Charlie = Cconst->getAPInt();
3249     APInt CdivA = Charlie.sdiv(Alpha);
3250     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3251     const SCEV *A_K = findCoefficient(Src, CurLoop);
3252     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3253     Src = zeroCoefficient(Src, CurLoop);
3254     Dst = addToCoefficient(Dst, CurLoop, A_K);
3255     if (!findCoefficient(Dst, CurLoop)->isZero())
3256       Consistent = false;
3257   }
3258   else {
3259     // paper is incorrect here, or perhaps just misleading
3260     const SCEV *A_K = findCoefficient(Src, CurLoop);
3261     Src = SE->getMulExpr(Src, A);
3262     Dst = SE->getMulExpr(Dst, A);
3263     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3264     Src = zeroCoefficient(Src, CurLoop);
3265     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3266     if (!findCoefficient(Dst, CurLoop)->isZero())
3267       Consistent = false;
3268   }
3269   LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3270   LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3271   return true;
3272 }
3273 
3274 
3275 // Attempt to propagate a point
3276 // constraint into a subscript pair (Src and Dst).
3277 // Return true if some simplification occurs.
3278 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3279                                     Constraint &CurConstraint) {
3280   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3281   const SCEV *A_K = findCoefficient(Src, CurLoop);
3282   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3283   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3284   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3285   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3286   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3287   Src = zeroCoefficient(Src, CurLoop);
3288   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3289   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3290   Dst = zeroCoefficient(Dst, CurLoop);
3291   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3292   return true;
3293 }
3294 
3295 
3296 // Update direction vector entry based on the current constraint.
3297 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3298                                      const Constraint &CurConstraint) const {
3299   LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3300   LLVM_DEBUG(CurConstraint.dump(dbgs()));
3301   if (CurConstraint.isAny())
3302     ; // use defaults
3303   else if (CurConstraint.isDistance()) {
3304     // this one is consistent, the others aren't
3305     Level.Scalar = false;
3306     Level.Distance = CurConstraint.getD();
3307     unsigned NewDirection = Dependence::DVEntry::NONE;
3308     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3309       NewDirection = Dependence::DVEntry::EQ;
3310     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3311       NewDirection |= Dependence::DVEntry::LT;
3312     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3313       NewDirection |= Dependence::DVEntry::GT;
3314     Level.Direction &= NewDirection;
3315   }
3316   else if (CurConstraint.isLine()) {
3317     Level.Scalar = false;
3318     Level.Distance = nullptr;
3319     // direction should be accurate
3320   }
3321   else if (CurConstraint.isPoint()) {
3322     Level.Scalar = false;
3323     Level.Distance = nullptr;
3324     unsigned NewDirection = Dependence::DVEntry::NONE;
3325     if (!isKnownPredicate(CmpInst::ICMP_NE,
3326                           CurConstraint.getY(),
3327                           CurConstraint.getX()))
3328       // if X may be = Y
3329       NewDirection |= Dependence::DVEntry::EQ;
3330     if (!isKnownPredicate(CmpInst::ICMP_SLE,
3331                           CurConstraint.getY(),
3332                           CurConstraint.getX()))
3333       // if Y may be > X
3334       NewDirection |= Dependence::DVEntry::LT;
3335     if (!isKnownPredicate(CmpInst::ICMP_SGE,
3336                           CurConstraint.getY(),
3337                           CurConstraint.getX()))
3338       // if Y may be < X
3339       NewDirection |= Dependence::DVEntry::GT;
3340     Level.Direction &= NewDirection;
3341   }
3342   else
3343     llvm_unreachable("constraint has unexpected kind");
3344 }
3345 
3346 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3347 /// source and destination array references are recurrences on a nested loop,
3348 /// this function flattens the nested recurrences into separate recurrences
3349 /// for each loop level.
3350 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3351                                     SmallVectorImpl<Subscript> &Pair) {
3352   assert(isLoadOrStore(Src) && "instruction is not load or store");
3353   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3354   Value *SrcPtr = getLoadStorePointerOperand(Src);
3355   Value *DstPtr = getLoadStorePointerOperand(Dst);
3356   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3357   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3358   const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3359   const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3360   const SCEVUnknown *SrcBase =
3361       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3362   const SCEVUnknown *DstBase =
3363       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3364 
3365   if (!SrcBase || !DstBase || SrcBase != DstBase)
3366     return false;
3367 
3368   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3369 
3370   if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3371                                SrcSubscripts, DstSubscripts) &&
3372       !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3373                                     SrcSubscripts, DstSubscripts))
3374     return false;
3375 
3376   int Size = SrcSubscripts.size();
3377   LLVM_DEBUG({
3378     dbgs() << "\nSrcSubscripts: ";
3379     for (int I = 0; I < Size; I++)
3380       dbgs() << *SrcSubscripts[I];
3381     dbgs() << "\nDstSubscripts: ";
3382     for (int I = 0; I < Size; I++)
3383       dbgs() << *DstSubscripts[I];
3384   });
3385 
3386   // The delinearization transforms a single-subscript MIV dependence test into
3387   // a multi-subscript SIV dependence test that is easier to compute. So we
3388   // resize Pair to contain as many pairs of subscripts as the delinearization
3389   // has found, and then initialize the pairs following the delinearization.
3390   Pair.resize(Size);
3391   for (int I = 0; I < Size; ++I) {
3392     Pair[I].Src = SrcSubscripts[I];
3393     Pair[I].Dst = DstSubscripts[I];
3394     unifySubscriptType(&Pair[I]);
3395   }
3396 
3397   return true;
3398 }
3399 
3400 /// Try to delinearize \p SrcAccessFn and \p DstAccessFn if the underlying
3401 /// arrays accessed are fixed-size arrays. Return true if delinearization was
3402 /// successful.
3403 bool DependenceInfo::tryDelinearizeFixedSize(
3404     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3405     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3406     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3407   LLVM_DEBUG({
3408     const SCEVUnknown *SrcBase =
3409         dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3410     const SCEVUnknown *DstBase =
3411         dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3412     assert(SrcBase && DstBase && SrcBase == DstBase &&
3413            "expected src and dst scev unknowns to be equal");
3414     });
3415 
3416   SmallVector<int, 4> SrcSizes;
3417   SmallVector<int, 4> DstSizes;
3418   if (!tryDelinearizeFixedSizeImpl(SE, Src, SrcAccessFn, SrcSubscripts,
3419                                    SrcSizes) ||
3420       !tryDelinearizeFixedSizeImpl(SE, Dst, DstAccessFn, DstSubscripts,
3421                                    DstSizes))
3422     return false;
3423 
3424   // Check that the two size arrays are non-empty and equal in length and
3425   // value.
3426   if (SrcSizes.size() != DstSizes.size() ||
3427       !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3428     SrcSubscripts.clear();
3429     DstSubscripts.clear();
3430     return false;
3431   }
3432 
3433   assert(SrcSubscripts.size() == DstSubscripts.size() &&
3434          "Expected equal number of entries in the list of SrcSubscripts and "
3435          "DstSubscripts.");
3436 
3437   Value *SrcPtr = getLoadStorePointerOperand(Src);
3438   Value *DstPtr = getLoadStorePointerOperand(Dst);
3439 
3440   // In general we cannot safely assume that the subscripts recovered from GEPs
3441   // are in the range of values defined for their corresponding array
3442   // dimensions. For example some C language usage/interpretation make it
3443   // impossible to verify this at compile-time. As such we can only delinearize
3444   // iff the subscripts are positive and are less than the range of the
3445   // dimension.
3446   if (!DisableDelinearizationChecks) {
3447     auto AllIndicesInRange = [&](SmallVector<int, 4> &DimensionSizes,
3448                                  SmallVectorImpl<const SCEV *> &Subscripts,
3449                                  Value *Ptr) {
3450       size_t SSize = Subscripts.size();
3451       for (size_t I = 1; I < SSize; ++I) {
3452         const SCEV *S = Subscripts[I];
3453         if (!isKnownNonNegative(S, Ptr))
3454           return false;
3455         if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
3456           const SCEV *Range = SE->getConstant(
3457               ConstantInt::get(SType, DimensionSizes[I - 1], false));
3458           if (!isKnownLessThan(S, Range))
3459             return false;
3460         }
3461       }
3462       return true;
3463     };
3464 
3465     if (!AllIndicesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
3466         !AllIndicesInRange(DstSizes, DstSubscripts, DstPtr)) {
3467       SrcSubscripts.clear();
3468       DstSubscripts.clear();
3469       return false;
3470     }
3471   }
3472   LLVM_DEBUG({
3473     dbgs() << "Delinearized subscripts of fixed-size array\n"
3474            << "SrcGEP:" << *SrcPtr << "\n"
3475            << "DstGEP:" << *DstPtr << "\n";
3476   });
3477   return true;
3478 }
3479 
3480 bool DependenceInfo::tryDelinearizeParametricSize(
3481     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3482     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3483     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3484 
3485   Value *SrcPtr = getLoadStorePointerOperand(Src);
3486   Value *DstPtr = getLoadStorePointerOperand(Dst);
3487   const SCEVUnknown *SrcBase =
3488       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3489   const SCEVUnknown *DstBase =
3490       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3491   assert(SrcBase && DstBase && SrcBase == DstBase &&
3492          "expected src and dst scev unknowns to be equal");
3493 
3494   const SCEV *ElementSize = SE->getElementSize(Src);
3495   if (ElementSize != SE->getElementSize(Dst))
3496     return false;
3497 
3498   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3499   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3500 
3501   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3502   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3503   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3504     return false;
3505 
3506   // First step: collect parametric terms in both array references.
3507   SmallVector<const SCEV *, 4> Terms;
3508   collectParametricTerms(*SE, SrcAR, Terms);
3509   collectParametricTerms(*SE, DstAR, Terms);
3510 
3511   // Second step: find subscript sizes.
3512   SmallVector<const SCEV *, 4> Sizes;
3513   findArrayDimensions(*SE, Terms, Sizes, ElementSize);
3514 
3515   // Third step: compute the access functions for each subscript.
3516   computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes);
3517   computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes);
3518 
3519   // Fail when there is only a subscript: that's a linearized access function.
3520   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3521       SrcSubscripts.size() != DstSubscripts.size())
3522     return false;
3523 
3524   size_t Size = SrcSubscripts.size();
3525 
3526   // Statically check that the array bounds are in-range. The first subscript we
3527   // don't have a size for and it cannot overflow into another subscript, so is
3528   // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3529   // and dst.
3530   // FIXME: It may be better to record these sizes and add them as constraints
3531   // to the dependency checks.
3532   if (!DisableDelinearizationChecks)
3533     for (size_t I = 1; I < Size; ++I) {
3534       if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3535         return false;
3536 
3537       if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3538         return false;
3539 
3540       if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3541         return false;
3542 
3543       if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3544         return false;
3545     }
3546 
3547   return true;
3548 }
3549 
3550 //===----------------------------------------------------------------------===//
3551 
3552 #ifndef NDEBUG
3553 // For debugging purposes, dump a small bit vector to dbgs().
3554 static void dumpSmallBitVector(SmallBitVector &BV) {
3555   dbgs() << "{";
3556   for (unsigned VI : BV.set_bits()) {
3557     dbgs() << VI;
3558     if (BV.find_next(VI) >= 0)
3559       dbgs() << ' ';
3560   }
3561   dbgs() << "}\n";
3562 }
3563 #endif
3564 
3565 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3566                                 FunctionAnalysisManager::Invalidator &Inv) {
3567   // Check if the analysis itself has been invalidated.
3568   auto PAC = PA.getChecker<DependenceAnalysis>();
3569   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3570     return true;
3571 
3572   // Check transitive dependencies.
3573   return Inv.invalidate<AAManager>(F, PA) ||
3574          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3575          Inv.invalidate<LoopAnalysis>(F, PA);
3576 }
3577 
3578 // depends -
3579 // Returns NULL if there is no dependence.
3580 // Otherwise, return a Dependence with as many details as possible.
3581 // Corresponds to Section 3.1 in the paper
3582 //
3583 //            Practical Dependence Testing
3584 //            Goff, Kennedy, Tseng
3585 //            PLDI 1991
3586 //
3587 // Care is required to keep the routine below, getSplitIteration(),
3588 // up to date with respect to this routine.
3589 std::unique_ptr<Dependence>
3590 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3591                         bool PossiblyLoopIndependent) {
3592   if (Src == Dst)
3593     PossiblyLoopIndependent = false;
3594 
3595   if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3596     // if both instructions don't reference memory, there's no dependence
3597     return nullptr;
3598 
3599   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3600     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3601     LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3602     return std::make_unique<Dependence>(Src, Dst);
3603   }
3604 
3605   assert(isLoadOrStore(Src) && "instruction is not load or store");
3606   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3607   Value *SrcPtr = getLoadStorePointerOperand(Src);
3608   Value *DstPtr = getLoadStorePointerOperand(Dst);
3609 
3610   switch (underlyingObjectsAlias(AA, F->getDataLayout(),
3611                                  MemoryLocation::get(Dst),
3612                                  MemoryLocation::get(Src))) {
3613   case AliasResult::MayAlias:
3614   case AliasResult::PartialAlias:
3615     // cannot analyse objects if we don't understand their aliasing.
3616     LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3617     return std::make_unique<Dependence>(Src, Dst);
3618   case AliasResult::NoAlias:
3619     // If the objects noalias, they are distinct, accesses are independent.
3620     LLVM_DEBUG(dbgs() << "no alias\n");
3621     return nullptr;
3622   case AliasResult::MustAlias:
3623     break; // The underlying objects alias; test accesses for dependence.
3624   }
3625 
3626   // establish loop nesting levels
3627   establishNestingLevels(Src, Dst);
3628   LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3629   LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3630 
3631   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3632   ++TotalArrayPairs;
3633 
3634   unsigned Pairs = 1;
3635   SmallVector<Subscript, 2> Pair(Pairs);
3636   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3637   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3638   LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3639   LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3640   if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
3641     // If two pointers have different bases, trying to analyze indexes won't
3642     // work; we can't compare them to each other. This can happen, for example,
3643     // if one is produced by an LCSSA PHI node.
3644     //
3645     // We check this upfront so we don't crash in cases where getMinusSCEV()
3646     // returns a SCEVCouldNotCompute.
3647     LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
3648     return std::make_unique<Dependence>(Src, Dst);
3649   }
3650   Pair[0].Src = SrcSCEV;
3651   Pair[0].Dst = DstSCEV;
3652 
3653   if (Delinearize) {
3654     if (tryDelinearize(Src, Dst, Pair)) {
3655       LLVM_DEBUG(dbgs() << "    delinearized\n");
3656       Pairs = Pair.size();
3657     }
3658   }
3659 
3660   for (unsigned P = 0; P < Pairs; ++P) {
3661     Pair[P].Loops.resize(MaxLevels + 1);
3662     Pair[P].GroupLoops.resize(MaxLevels + 1);
3663     Pair[P].Group.resize(Pairs);
3664     removeMatchingExtensions(&Pair[P]);
3665     Pair[P].Classification =
3666       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3667                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3668                    Pair[P].Loops);
3669     Pair[P].GroupLoops = Pair[P].Loops;
3670     Pair[P].Group.set(P);
3671     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
3672     LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3673     LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3674     LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3675     LLVM_DEBUG(dbgs() << "\tloops = ");
3676     LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3677   }
3678 
3679   SmallBitVector Separable(Pairs);
3680   SmallBitVector Coupled(Pairs);
3681 
3682   // Partition subscripts into separable and minimally-coupled groups
3683   // Algorithm in paper is algorithmically better;
3684   // this may be faster in practice. Check someday.
3685   //
3686   // Here's an example of how it works. Consider this code:
3687   //
3688   //   for (i = ...) {
3689   //     for (j = ...) {
3690   //       for (k = ...) {
3691   //         for (l = ...) {
3692   //           for (m = ...) {
3693   //             A[i][j][k][m] = ...;
3694   //             ... = A[0][j][l][i + j];
3695   //           }
3696   //         }
3697   //       }
3698   //     }
3699   //   }
3700   //
3701   // There are 4 subscripts here:
3702   //    0 [i] and [0]
3703   //    1 [j] and [j]
3704   //    2 [k] and [l]
3705   //    3 [m] and [i + j]
3706   //
3707   // We've already classified each subscript pair as ZIV, SIV, etc.,
3708   // and collected all the loops mentioned by pair P in Pair[P].Loops.
3709   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3710   // and set Pair[P].Group = {P}.
3711   //
3712   //      Src Dst    Classification Loops  GroupLoops Group
3713   //    0 [i] [0]         SIV       {1}      {1}        {0}
3714   //    1 [j] [j]         SIV       {2}      {2}        {1}
3715   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3716   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3717   //
3718   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3719   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3720   //
3721   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3722   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3723   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3724   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3725   // to either Separable or Coupled).
3726   //
3727   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3728   // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3729   // so Pair[3].Group = {0, 1, 3} and Done = false.
3730   //
3731   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3732   // Since Done remains true, we add 2 to the set of Separable pairs.
3733   //
3734   // Finally, we consider 3. There's nothing to compare it with,
3735   // so Done remains true and we add it to the Coupled set.
3736   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3737   //
3738   // In the end, we've got 1 separable subscript and 1 coupled group.
3739   for (unsigned SI = 0; SI < Pairs; ++SI) {
3740     if (Pair[SI].Classification == Subscript::NonLinear) {
3741       // ignore these, but collect loops for later
3742       ++NonlinearSubscriptPairs;
3743       collectCommonLoops(Pair[SI].Src,
3744                          LI->getLoopFor(Src->getParent()),
3745                          Pair[SI].Loops);
3746       collectCommonLoops(Pair[SI].Dst,
3747                          LI->getLoopFor(Dst->getParent()),
3748                          Pair[SI].Loops);
3749       Result.Consistent = false;
3750     } else if (Pair[SI].Classification == Subscript::ZIV) {
3751       // always separable
3752       Separable.set(SI);
3753     }
3754     else {
3755       // SIV, RDIV, or MIV, so check for coupled group
3756       bool Done = true;
3757       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3758         SmallBitVector Intersection = Pair[SI].GroupLoops;
3759         Intersection &= Pair[SJ].GroupLoops;
3760         if (Intersection.any()) {
3761           // accumulate set of all the loops in group
3762           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3763           // accumulate set of all subscripts in group
3764           Pair[SJ].Group |= Pair[SI].Group;
3765           Done = false;
3766         }
3767       }
3768       if (Done) {
3769         if (Pair[SI].Group.count() == 1) {
3770           Separable.set(SI);
3771           ++SeparableSubscriptPairs;
3772         }
3773         else {
3774           Coupled.set(SI);
3775           ++CoupledSubscriptPairs;
3776         }
3777       }
3778     }
3779   }
3780 
3781   LLVM_DEBUG(dbgs() << "    Separable = ");
3782   LLVM_DEBUG(dumpSmallBitVector(Separable));
3783   LLVM_DEBUG(dbgs() << "    Coupled = ");
3784   LLVM_DEBUG(dumpSmallBitVector(Coupled));
3785 
3786   Constraint NewConstraint;
3787   NewConstraint.setAny(SE);
3788 
3789   // test separable subscripts
3790   for (unsigned SI : Separable.set_bits()) {
3791     LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3792     switch (Pair[SI].Classification) {
3793     case Subscript::ZIV:
3794       LLVM_DEBUG(dbgs() << ", ZIV\n");
3795       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3796         return nullptr;
3797       break;
3798     case Subscript::SIV: {
3799       LLVM_DEBUG(dbgs() << ", SIV\n");
3800       unsigned Level;
3801       const SCEV *SplitIter = nullptr;
3802       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3803                   SplitIter))
3804         return nullptr;
3805       break;
3806     }
3807     case Subscript::RDIV:
3808       LLVM_DEBUG(dbgs() << ", RDIV\n");
3809       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3810         return nullptr;
3811       break;
3812     case Subscript::MIV:
3813       LLVM_DEBUG(dbgs() << ", MIV\n");
3814       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3815         return nullptr;
3816       break;
3817     default:
3818       llvm_unreachable("subscript has unexpected classification");
3819     }
3820   }
3821 
3822   if (Coupled.count()) {
3823     // test coupled subscript groups
3824     LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3825     LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3826     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3827     for (unsigned II = 0; II <= MaxLevels; ++II)
3828       Constraints[II].setAny(SE);
3829     for (unsigned SI : Coupled.set_bits()) {
3830       LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3831       SmallBitVector Group(Pair[SI].Group);
3832       SmallBitVector Sivs(Pairs);
3833       SmallBitVector Mivs(Pairs);
3834       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3835       SmallVector<Subscript *, 4> PairsInGroup;
3836       for (unsigned SJ : Group.set_bits()) {
3837         LLVM_DEBUG(dbgs() << SJ << " ");
3838         if (Pair[SJ].Classification == Subscript::SIV)
3839           Sivs.set(SJ);
3840         else
3841           Mivs.set(SJ);
3842         PairsInGroup.push_back(&Pair[SJ]);
3843       }
3844       unifySubscriptType(PairsInGroup);
3845       LLVM_DEBUG(dbgs() << "}\n");
3846       while (Sivs.any()) {
3847         bool Changed = false;
3848         for (unsigned SJ : Sivs.set_bits()) {
3849           LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3850           // SJ is an SIV subscript that's part of the current coupled group
3851           unsigned Level;
3852           const SCEV *SplitIter = nullptr;
3853           LLVM_DEBUG(dbgs() << "SIV\n");
3854           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3855                       SplitIter))
3856             return nullptr;
3857           ConstrainedLevels.set(Level);
3858           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3859             if (Constraints[Level].isEmpty()) {
3860               ++DeltaIndependence;
3861               return nullptr;
3862             }
3863             Changed = true;
3864           }
3865           Sivs.reset(SJ);
3866         }
3867         if (Changed) {
3868           // propagate, possibly creating new SIVs and ZIVs
3869           LLVM_DEBUG(dbgs() << "    propagating\n");
3870           LLVM_DEBUG(dbgs() << "\tMivs = ");
3871           LLVM_DEBUG(dumpSmallBitVector(Mivs));
3872           for (unsigned SJ : Mivs.set_bits()) {
3873             // SJ is an MIV subscript that's part of the current coupled group
3874             LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3875             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3876                           Constraints, Result.Consistent)) {
3877               LLVM_DEBUG(dbgs() << "\t    Changed\n");
3878               ++DeltaPropagations;
3879               Pair[SJ].Classification =
3880                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3881                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3882                              Pair[SJ].Loops);
3883               switch (Pair[SJ].Classification) {
3884               case Subscript::ZIV:
3885                 LLVM_DEBUG(dbgs() << "ZIV\n");
3886                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3887                   return nullptr;
3888                 Mivs.reset(SJ);
3889                 break;
3890               case Subscript::SIV:
3891                 Sivs.set(SJ);
3892                 Mivs.reset(SJ);
3893                 break;
3894               case Subscript::RDIV:
3895               case Subscript::MIV:
3896                 break;
3897               default:
3898                 llvm_unreachable("bad subscript classification");
3899               }
3900             }
3901           }
3902         }
3903       }
3904 
3905       // test & propagate remaining RDIVs
3906       for (unsigned SJ : Mivs.set_bits()) {
3907         if (Pair[SJ].Classification == Subscript::RDIV) {
3908           LLVM_DEBUG(dbgs() << "RDIV test\n");
3909           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3910             return nullptr;
3911           // I don't yet understand how to propagate RDIV results
3912           Mivs.reset(SJ);
3913         }
3914       }
3915 
3916       // test remaining MIVs
3917       // This code is temporary.
3918       // Better to somehow test all remaining subscripts simultaneously.
3919       for (unsigned SJ : Mivs.set_bits()) {
3920         if (Pair[SJ].Classification == Subscript::MIV) {
3921           LLVM_DEBUG(dbgs() << "MIV test\n");
3922           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3923             return nullptr;
3924         }
3925         else
3926           llvm_unreachable("expected only MIV subscripts at this point");
3927       }
3928 
3929       // update Result.DV from constraint vector
3930       LLVM_DEBUG(dbgs() << "    updating\n");
3931       for (unsigned SJ : ConstrainedLevels.set_bits()) {
3932         if (SJ > CommonLevels)
3933           break;
3934         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3935         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3936           return nullptr;
3937       }
3938     }
3939   }
3940 
3941   // Make sure the Scalar flags are set correctly.
3942   SmallBitVector CompleteLoops(MaxLevels + 1);
3943   for (unsigned SI = 0; SI < Pairs; ++SI)
3944     CompleteLoops |= Pair[SI].Loops;
3945   for (unsigned II = 1; II <= CommonLevels; ++II)
3946     if (CompleteLoops[II])
3947       Result.DV[II - 1].Scalar = false;
3948 
3949   if (PossiblyLoopIndependent) {
3950     // Make sure the LoopIndependent flag is set correctly.
3951     // All directions must include equal, otherwise no
3952     // loop-independent dependence is possible.
3953     for (unsigned II = 1; II <= CommonLevels; ++II) {
3954       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3955         Result.LoopIndependent = false;
3956         break;
3957       }
3958     }
3959   }
3960   else {
3961     // On the other hand, if all directions are equal and there's no
3962     // loop-independent dependence possible, then no dependence exists.
3963     bool AllEqual = true;
3964     for (unsigned II = 1; II <= CommonLevels; ++II) {
3965       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3966         AllEqual = false;
3967         break;
3968       }
3969     }
3970     if (AllEqual)
3971       return nullptr;
3972   }
3973 
3974   return std::make_unique<FullDependence>(std::move(Result));
3975 }
3976 
3977 //===----------------------------------------------------------------------===//
3978 // getSplitIteration -
3979 // Rather than spend rarely-used space recording the splitting iteration
3980 // during the Weak-Crossing SIV test, we re-compute it on demand.
3981 // The re-computation is basically a repeat of the entire dependence test,
3982 // though simplified since we know that the dependence exists.
3983 // It's tedious, since we must go through all propagations, etc.
3984 //
3985 // Care is required to keep this code up to date with respect to the routine
3986 // above, depends().
3987 //
3988 // Generally, the dependence analyzer will be used to build
3989 // a dependence graph for a function (basically a map from instructions
3990 // to dependences). Looking for cycles in the graph shows us loops
3991 // that cannot be trivially vectorized/parallelized.
3992 //
3993 // We can try to improve the situation by examining all the dependences
3994 // that make up the cycle, looking for ones we can break.
3995 // Sometimes, peeling the first or last iteration of a loop will break
3996 // dependences, and we've got flags for those possibilities.
3997 // Sometimes, splitting a loop at some other iteration will do the trick,
3998 // and we've got a flag for that case. Rather than waste the space to
3999 // record the exact iteration (since we rarely know), we provide
4000 // a method that calculates the iteration. It's a drag that it must work
4001 // from scratch, but wonderful in that it's possible.
4002 //
4003 // Here's an example:
4004 //
4005 //    for (i = 0; i < 10; i++)
4006 //        A[i] = ...
4007 //        ... = A[11 - i]
4008 //
4009 // There's a loop-carried flow dependence from the store to the load,
4010 // found by the weak-crossing SIV test. The dependence will have a flag,
4011 // indicating that the dependence can be broken by splitting the loop.
4012 // Calling getSplitIteration will return 5.
4013 // Splitting the loop breaks the dependence, like so:
4014 //
4015 //    for (i = 0; i <= 5; i++)
4016 //        A[i] = ...
4017 //        ... = A[11 - i]
4018 //    for (i = 6; i < 10; i++)
4019 //        A[i] = ...
4020 //        ... = A[11 - i]
4021 //
4022 // breaks the dependence and allows us to vectorize/parallelize
4023 // both loops.
4024 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
4025                                               unsigned SplitLevel) {
4026   assert(Dep.isSplitable(SplitLevel) &&
4027          "Dep should be splitable at SplitLevel");
4028   Instruction *Src = Dep.getSrc();
4029   Instruction *Dst = Dep.getDst();
4030   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
4031   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
4032   assert(isLoadOrStore(Src));
4033   assert(isLoadOrStore(Dst));
4034   Value *SrcPtr = getLoadStorePointerOperand(Src);
4035   Value *DstPtr = getLoadStorePointerOperand(Dst);
4036   assert(underlyingObjectsAlias(
4037              AA, F->getDataLayout(), MemoryLocation::get(Dst),
4038              MemoryLocation::get(Src)) == AliasResult::MustAlias);
4039 
4040   // establish loop nesting levels
4041   establishNestingLevels(Src, Dst);
4042 
4043   FullDependence Result(Src, Dst, false, CommonLevels);
4044 
4045   unsigned Pairs = 1;
4046   SmallVector<Subscript, 2> Pair(Pairs);
4047   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
4048   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
4049   Pair[0].Src = SrcSCEV;
4050   Pair[0].Dst = DstSCEV;
4051 
4052   if (Delinearize) {
4053     if (tryDelinearize(Src, Dst, Pair)) {
4054       LLVM_DEBUG(dbgs() << "    delinearized\n");
4055       Pairs = Pair.size();
4056     }
4057   }
4058 
4059   for (unsigned P = 0; P < Pairs; ++P) {
4060     Pair[P].Loops.resize(MaxLevels + 1);
4061     Pair[P].GroupLoops.resize(MaxLevels + 1);
4062     Pair[P].Group.resize(Pairs);
4063     removeMatchingExtensions(&Pair[P]);
4064     Pair[P].Classification =
4065       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
4066                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
4067                    Pair[P].Loops);
4068     Pair[P].GroupLoops = Pair[P].Loops;
4069     Pair[P].Group.set(P);
4070   }
4071 
4072   SmallBitVector Separable(Pairs);
4073   SmallBitVector Coupled(Pairs);
4074 
4075   // partition subscripts into separable and minimally-coupled groups
4076   for (unsigned SI = 0; SI < Pairs; ++SI) {
4077     if (Pair[SI].Classification == Subscript::NonLinear) {
4078       // ignore these, but collect loops for later
4079       collectCommonLoops(Pair[SI].Src,
4080                          LI->getLoopFor(Src->getParent()),
4081                          Pair[SI].Loops);
4082       collectCommonLoops(Pair[SI].Dst,
4083                          LI->getLoopFor(Dst->getParent()),
4084                          Pair[SI].Loops);
4085       Result.Consistent = false;
4086     }
4087     else if (Pair[SI].Classification == Subscript::ZIV)
4088       Separable.set(SI);
4089     else {
4090       // SIV, RDIV, or MIV, so check for coupled group
4091       bool Done = true;
4092       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
4093         SmallBitVector Intersection = Pair[SI].GroupLoops;
4094         Intersection &= Pair[SJ].GroupLoops;
4095         if (Intersection.any()) {
4096           // accumulate set of all the loops in group
4097           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
4098           // accumulate set of all subscripts in group
4099           Pair[SJ].Group |= Pair[SI].Group;
4100           Done = false;
4101         }
4102       }
4103       if (Done) {
4104         if (Pair[SI].Group.count() == 1)
4105           Separable.set(SI);
4106         else
4107           Coupled.set(SI);
4108       }
4109     }
4110   }
4111 
4112   Constraint NewConstraint;
4113   NewConstraint.setAny(SE);
4114 
4115   // test separable subscripts
4116   for (unsigned SI : Separable.set_bits()) {
4117     switch (Pair[SI].Classification) {
4118     case Subscript::SIV: {
4119       unsigned Level;
4120       const SCEV *SplitIter = nullptr;
4121       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4122                      Result, NewConstraint, SplitIter);
4123       if (Level == SplitLevel) {
4124         assert(SplitIter != nullptr);
4125         return SplitIter;
4126       }
4127       break;
4128     }
4129     case Subscript::ZIV:
4130     case Subscript::RDIV:
4131     case Subscript::MIV:
4132       break;
4133     default:
4134       llvm_unreachable("subscript has unexpected classification");
4135     }
4136   }
4137 
4138   if (Coupled.count()) {
4139     // test coupled subscript groups
4140     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4141     for (unsigned II = 0; II <= MaxLevels; ++II)
4142       Constraints[II].setAny(SE);
4143     for (unsigned SI : Coupled.set_bits()) {
4144       SmallBitVector Group(Pair[SI].Group);
4145       SmallBitVector Sivs(Pairs);
4146       SmallBitVector Mivs(Pairs);
4147       SmallBitVector ConstrainedLevels(MaxLevels + 1);
4148       for (unsigned SJ : Group.set_bits()) {
4149         if (Pair[SJ].Classification == Subscript::SIV)
4150           Sivs.set(SJ);
4151         else
4152           Mivs.set(SJ);
4153       }
4154       while (Sivs.any()) {
4155         bool Changed = false;
4156         for (unsigned SJ : Sivs.set_bits()) {
4157           // SJ is an SIV subscript that's part of the current coupled group
4158           unsigned Level;
4159           const SCEV *SplitIter = nullptr;
4160           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4161                          Result, NewConstraint, SplitIter);
4162           if (Level == SplitLevel && SplitIter)
4163             return SplitIter;
4164           ConstrainedLevels.set(Level);
4165           if (intersectConstraints(&Constraints[Level], &NewConstraint))
4166             Changed = true;
4167           Sivs.reset(SJ);
4168         }
4169         if (Changed) {
4170           // propagate, possibly creating new SIVs and ZIVs
4171           for (unsigned SJ : Mivs.set_bits()) {
4172             // SJ is an MIV subscript that's part of the current coupled group
4173             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4174                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
4175               Pair[SJ].Classification =
4176                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4177                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4178                              Pair[SJ].Loops);
4179               switch (Pair[SJ].Classification) {
4180               case Subscript::ZIV:
4181                 Mivs.reset(SJ);
4182                 break;
4183               case Subscript::SIV:
4184                 Sivs.set(SJ);
4185                 Mivs.reset(SJ);
4186                 break;
4187               case Subscript::RDIV:
4188               case Subscript::MIV:
4189                 break;
4190               default:
4191                 llvm_unreachable("bad subscript classification");
4192               }
4193             }
4194           }
4195         }
4196       }
4197     }
4198   }
4199   llvm_unreachable("somehow reached end of routine");
4200   return nullptr;
4201 }
4202