1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory 10 // accesses. Currently, it is an (incomplete) implementation of the approach 11 // described in 12 // 13 // Practical Dependence Testing 14 // Goff, Kennedy, Tseng 15 // PLDI 1991 16 // 17 // There's a single entry point that analyzes the dependence between a pair 18 // of memory references in a function, returning either NULL, for no dependence, 19 // or a more-or-less detailed description of the dependence between them. 20 // 21 // Currently, the implementation cannot propagate constraints between 22 // coupled RDIV subscripts and lacks a multi-subscript MIV test. 23 // Both of these are conservative weaknesses; 24 // that is, not a source of correctness problems. 25 // 26 // Since Clang linearizes some array subscripts, the dependence 27 // analysis is using SCEV->delinearize to recover the representation of multiple 28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The 29 // delinearization is controlled by the flag -da-delinearize. 30 // 31 // We should pay some careful attention to the possibility of integer overflow 32 // in the implementation of the various tests. This could happen with Add, 33 // Subtract, or Multiply, with both APInt's and SCEV's. 34 // 35 // Some non-linear subscript pairs can be handled by the GCD test 36 // (and perhaps other tests). 37 // Should explore how often these things occur. 38 // 39 // Finally, it seems like certain test cases expose weaknesses in the SCEV 40 // simplification, especially in the handling of sign and zero extensions. 41 // It could be useful to spend time exploring these. 42 // 43 // Please note that this is work in progress and the interface is subject to 44 // change. 45 // 46 //===----------------------------------------------------------------------===// 47 // // 48 // In memory of Ken Kennedy, 1945 - 2007 // 49 // // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Analysis/DependenceAnalysis.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/AliasAnalysis.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/ScalarEvolution.h" 58 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/Config/llvm-config.h" 61 #include "llvm/IR/InstIterator.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Operator.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/raw_ostream.h" 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "da" 73 74 //===----------------------------------------------------------------------===// 75 // statistics 76 77 STATISTIC(TotalArrayPairs, "Array pairs tested"); 78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs"); 79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs"); 80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs"); 81 STATISTIC(ZIVapplications, "ZIV applications"); 82 STATISTIC(ZIVindependence, "ZIV independence"); 83 STATISTIC(StrongSIVapplications, "Strong SIV applications"); 84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes"); 85 STATISTIC(StrongSIVindependence, "Strong SIV independence"); 86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications"); 87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes"); 88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence"); 89 STATISTIC(ExactSIVapplications, "Exact SIV applications"); 90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes"); 91 STATISTIC(ExactSIVindependence, "Exact SIV independence"); 92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications"); 93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes"); 94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence"); 95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications"); 96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence"); 97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications"); 98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence"); 99 STATISTIC(DeltaApplications, "Delta applications"); 100 STATISTIC(DeltaSuccesses, "Delta successes"); 101 STATISTIC(DeltaIndependence, "Delta independence"); 102 STATISTIC(DeltaPropagations, "Delta propagations"); 103 STATISTIC(GCDapplications, "GCD applications"); 104 STATISTIC(GCDsuccesses, "GCD successes"); 105 STATISTIC(GCDindependence, "GCD independence"); 106 STATISTIC(BanerjeeApplications, "Banerjee applications"); 107 STATISTIC(BanerjeeIndependence, "Banerjee independence"); 108 STATISTIC(BanerjeeSuccesses, "Banerjee successes"); 109 110 static cl::opt<bool> 111 Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore, 112 cl::desc("Try to delinearize array references.")); 113 static cl::opt<bool> DisableDelinearizationChecks( 114 "da-disable-delinearization-checks", cl::init(false), cl::Hidden, 115 cl::ZeroOrMore, 116 cl::desc( 117 "Disable checks that try to statically verify validity of " 118 "delinearized subscripts. Enabling this option may result in incorrect " 119 "dependence vectors for languages that allow the subscript of one " 120 "dimension to underflow or overflow into another dimension.")); 121 122 //===----------------------------------------------------------------------===// 123 // basics 124 125 DependenceAnalysis::Result 126 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { 127 auto &AA = FAM.getResult<AAManager>(F); 128 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); 129 auto &LI = FAM.getResult<LoopAnalysis>(F); 130 return DependenceInfo(&F, &AA, &SE, &LI); 131 } 132 133 AnalysisKey DependenceAnalysis::Key; 134 135 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da", 136 "Dependence Analysis", true, true) 137 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 138 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 140 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis", 141 true, true) 142 143 char DependenceAnalysisWrapperPass::ID = 0; 144 145 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass() 146 : FunctionPass(ID) { 147 initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry()); 148 } 149 150 FunctionPass *llvm::createDependenceAnalysisWrapperPass() { 151 return new DependenceAnalysisWrapperPass(); 152 } 153 154 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) { 155 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 156 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 157 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 158 info.reset(new DependenceInfo(&F, &AA, &SE, &LI)); 159 return false; 160 } 161 162 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; } 163 164 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); } 165 166 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 AU.addRequiredTransitive<AAResultsWrapperPass>(); 169 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 170 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 171 } 172 173 // Used to test the dependence analyzer. 174 // Looks through the function, noting instructions that may access memory. 175 // Calls depends() on every possible pair and prints out the result. 176 // Ignores all other instructions. 177 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) { 178 auto *F = DA->getFunction(); 179 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE; 180 ++SrcI) { 181 if (SrcI->mayReadOrWriteMemory()) { 182 for (inst_iterator DstI = SrcI, DstE = inst_end(F); 183 DstI != DstE; ++DstI) { 184 if (DstI->mayReadOrWriteMemory()) { 185 OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n"; 186 OS << " da analyze - "; 187 if (auto D = DA->depends(&*SrcI, &*DstI, true)) { 188 D->dump(OS); 189 for (unsigned Level = 1; Level <= D->getLevels(); Level++) { 190 if (D->isSplitable(Level)) { 191 OS << " da analyze - split level = " << Level; 192 OS << ", iteration = " << *DA->getSplitIteration(*D, Level); 193 OS << "!\n"; 194 } 195 } 196 } 197 else 198 OS << "none!\n"; 199 } 200 } 201 } 202 } 203 } 204 205 void DependenceAnalysisWrapperPass::print(raw_ostream &OS, 206 const Module *) const { 207 dumpExampleDependence(OS, info.get()); 208 } 209 210 PreservedAnalyses 211 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) { 212 OS << "'Dependence Analysis' for function '" << F.getName() << "':\n"; 213 dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F)); 214 return PreservedAnalyses::all(); 215 } 216 217 //===----------------------------------------------------------------------===// 218 // Dependence methods 219 220 // Returns true if this is an input dependence. 221 bool Dependence::isInput() const { 222 return Src->mayReadFromMemory() && Dst->mayReadFromMemory(); 223 } 224 225 226 // Returns true if this is an output dependence. 227 bool Dependence::isOutput() const { 228 return Src->mayWriteToMemory() && Dst->mayWriteToMemory(); 229 } 230 231 232 // Returns true if this is an flow (aka true) dependence. 233 bool Dependence::isFlow() const { 234 return Src->mayWriteToMemory() && Dst->mayReadFromMemory(); 235 } 236 237 238 // Returns true if this is an anti dependence. 239 bool Dependence::isAnti() const { 240 return Src->mayReadFromMemory() && Dst->mayWriteToMemory(); 241 } 242 243 244 // Returns true if a particular level is scalar; that is, 245 // if no subscript in the source or destination mention the induction 246 // variable associated with the loop at this level. 247 // Leave this out of line, so it will serve as a virtual method anchor 248 bool Dependence::isScalar(unsigned level) const { 249 return false; 250 } 251 252 253 //===----------------------------------------------------------------------===// 254 // FullDependence methods 255 256 FullDependence::FullDependence(Instruction *Source, Instruction *Destination, 257 bool PossiblyLoopIndependent, 258 unsigned CommonLevels) 259 : Dependence(Source, Destination), Levels(CommonLevels), 260 LoopIndependent(PossiblyLoopIndependent) { 261 Consistent = true; 262 if (CommonLevels) 263 DV = std::make_unique<DVEntry[]>(CommonLevels); 264 } 265 266 // The rest are simple getters that hide the implementation. 267 268 // getDirection - Returns the direction associated with a particular level. 269 unsigned FullDependence::getDirection(unsigned Level) const { 270 assert(0 < Level && Level <= Levels && "Level out of range"); 271 return DV[Level - 1].Direction; 272 } 273 274 275 // Returns the distance (or NULL) associated with a particular level. 276 const SCEV *FullDependence::getDistance(unsigned Level) const { 277 assert(0 < Level && Level <= Levels && "Level out of range"); 278 return DV[Level - 1].Distance; 279 } 280 281 282 // Returns true if a particular level is scalar; that is, 283 // if no subscript in the source or destination mention the induction 284 // variable associated with the loop at this level. 285 bool FullDependence::isScalar(unsigned Level) const { 286 assert(0 < Level && Level <= Levels && "Level out of range"); 287 return DV[Level - 1].Scalar; 288 } 289 290 291 // Returns true if peeling the first iteration from this loop 292 // will break this dependence. 293 bool FullDependence::isPeelFirst(unsigned Level) const { 294 assert(0 < Level && Level <= Levels && "Level out of range"); 295 return DV[Level - 1].PeelFirst; 296 } 297 298 299 // Returns true if peeling the last iteration from this loop 300 // will break this dependence. 301 bool FullDependence::isPeelLast(unsigned Level) const { 302 assert(0 < Level && Level <= Levels && "Level out of range"); 303 return DV[Level - 1].PeelLast; 304 } 305 306 307 // Returns true if splitting this loop will break the dependence. 308 bool FullDependence::isSplitable(unsigned Level) const { 309 assert(0 < Level && Level <= Levels && "Level out of range"); 310 return DV[Level - 1].Splitable; 311 } 312 313 314 //===----------------------------------------------------------------------===// 315 // DependenceInfo::Constraint methods 316 317 // If constraint is a point <X, Y>, returns X. 318 // Otherwise assert. 319 const SCEV *DependenceInfo::Constraint::getX() const { 320 assert(Kind == Point && "Kind should be Point"); 321 return A; 322 } 323 324 325 // If constraint is a point <X, Y>, returns Y. 326 // Otherwise assert. 327 const SCEV *DependenceInfo::Constraint::getY() const { 328 assert(Kind == Point && "Kind should be Point"); 329 return B; 330 } 331 332 333 // If constraint is a line AX + BY = C, returns A. 334 // Otherwise assert. 335 const SCEV *DependenceInfo::Constraint::getA() const { 336 assert((Kind == Line || Kind == Distance) && 337 "Kind should be Line (or Distance)"); 338 return A; 339 } 340 341 342 // If constraint is a line AX + BY = C, returns B. 343 // Otherwise assert. 344 const SCEV *DependenceInfo::Constraint::getB() const { 345 assert((Kind == Line || Kind == Distance) && 346 "Kind should be Line (or Distance)"); 347 return B; 348 } 349 350 351 // If constraint is a line AX + BY = C, returns C. 352 // Otherwise assert. 353 const SCEV *DependenceInfo::Constraint::getC() const { 354 assert((Kind == Line || Kind == Distance) && 355 "Kind should be Line (or Distance)"); 356 return C; 357 } 358 359 360 // If constraint is a distance, returns D. 361 // Otherwise assert. 362 const SCEV *DependenceInfo::Constraint::getD() const { 363 assert(Kind == Distance && "Kind should be Distance"); 364 return SE->getNegativeSCEV(C); 365 } 366 367 368 // Returns the loop associated with this constraint. 369 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const { 370 assert((Kind == Distance || Kind == Line || Kind == Point) && 371 "Kind should be Distance, Line, or Point"); 372 return AssociatedLoop; 373 } 374 375 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y, 376 const Loop *CurLoop) { 377 Kind = Point; 378 A = X; 379 B = Y; 380 AssociatedLoop = CurLoop; 381 } 382 383 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB, 384 const SCEV *CC, const Loop *CurLoop) { 385 Kind = Line; 386 A = AA; 387 B = BB; 388 C = CC; 389 AssociatedLoop = CurLoop; 390 } 391 392 void DependenceInfo::Constraint::setDistance(const SCEV *D, 393 const Loop *CurLoop) { 394 Kind = Distance; 395 A = SE->getOne(D->getType()); 396 B = SE->getNegativeSCEV(A); 397 C = SE->getNegativeSCEV(D); 398 AssociatedLoop = CurLoop; 399 } 400 401 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; } 402 403 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) { 404 SE = NewSE; 405 Kind = Any; 406 } 407 408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 409 // For debugging purposes. Dumps the constraint out to OS. 410 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const { 411 if (isEmpty()) 412 OS << " Empty\n"; 413 else if (isAny()) 414 OS << " Any\n"; 415 else if (isPoint()) 416 OS << " Point is <" << *getX() << ", " << *getY() << ">\n"; 417 else if (isDistance()) 418 OS << " Distance is " << *getD() << 419 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n"; 420 else if (isLine()) 421 OS << " Line is " << *getA() << "*X + " << 422 *getB() << "*Y = " << *getC() << "\n"; 423 else 424 llvm_unreachable("unknown constraint type in Constraint::dump"); 425 } 426 #endif 427 428 429 // Updates X with the intersection 430 // of the Constraints X and Y. Returns true if X has changed. 431 // Corresponds to Figure 4 from the paper 432 // 433 // Practical Dependence Testing 434 // Goff, Kennedy, Tseng 435 // PLDI 1991 436 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) { 437 ++DeltaApplications; 438 LLVM_DEBUG(dbgs() << "\tintersect constraints\n"); 439 LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs())); 440 LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs())); 441 assert(!Y->isPoint() && "Y must not be a Point"); 442 if (X->isAny()) { 443 if (Y->isAny()) 444 return false; 445 *X = *Y; 446 return true; 447 } 448 if (X->isEmpty()) 449 return false; 450 if (Y->isEmpty()) { 451 X->setEmpty(); 452 return true; 453 } 454 455 if (X->isDistance() && Y->isDistance()) { 456 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n"); 457 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD())) 458 return false; 459 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) { 460 X->setEmpty(); 461 ++DeltaSuccesses; 462 return true; 463 } 464 // Hmmm, interesting situation. 465 // I guess if either is constant, keep it and ignore the other. 466 if (isa<SCEVConstant>(Y->getD())) { 467 *X = *Y; 468 return true; 469 } 470 return false; 471 } 472 473 // At this point, the pseudo-code in Figure 4 of the paper 474 // checks if (X->isPoint() && Y->isPoint()). 475 // This case can't occur in our implementation, 476 // since a Point can only arise as the result of intersecting 477 // two Line constraints, and the right-hand value, Y, is never 478 // the result of an intersection. 479 assert(!(X->isPoint() && Y->isPoint()) && 480 "We shouldn't ever see X->isPoint() && Y->isPoint()"); 481 482 if (X->isLine() && Y->isLine()) { 483 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n"); 484 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB()); 485 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA()); 486 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) { 487 // slopes are equal, so lines are parallel 488 LLVM_DEBUG(dbgs() << "\t\tsame slope\n"); 489 Prod1 = SE->getMulExpr(X->getC(), Y->getB()); 490 Prod2 = SE->getMulExpr(X->getB(), Y->getC()); 491 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) 492 return false; 493 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { 494 X->setEmpty(); 495 ++DeltaSuccesses; 496 return true; 497 } 498 return false; 499 } 500 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { 501 // slopes differ, so lines intersect 502 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n"); 503 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB()); 504 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA()); 505 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB()); 506 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA()); 507 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB()); 508 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB()); 509 const SCEVConstant *C1A2_C2A1 = 510 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1)); 511 const SCEVConstant *C1B2_C2B1 = 512 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1)); 513 const SCEVConstant *A1B2_A2B1 = 514 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1)); 515 const SCEVConstant *A2B1_A1B2 = 516 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2)); 517 if (!C1B2_C2B1 || !C1A2_C2A1 || 518 !A1B2_A2B1 || !A2B1_A1B2) 519 return false; 520 APInt Xtop = C1B2_C2B1->getAPInt(); 521 APInt Xbot = A1B2_A2B1->getAPInt(); 522 APInt Ytop = C1A2_C2A1->getAPInt(); 523 APInt Ybot = A2B1_A1B2->getAPInt(); 524 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n"); 525 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n"); 526 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n"); 527 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n"); 528 APInt Xq = Xtop; // these need to be initialized, even 529 APInt Xr = Xtop; // though they're just going to be overwritten 530 APInt::sdivrem(Xtop, Xbot, Xq, Xr); 531 APInt Yq = Ytop; 532 APInt Yr = Ytop; 533 APInt::sdivrem(Ytop, Ybot, Yq, Yr); 534 if (Xr != 0 || Yr != 0) { 535 X->setEmpty(); 536 ++DeltaSuccesses; 537 return true; 538 } 539 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n"); 540 if (Xq.slt(0) || Yq.slt(0)) { 541 X->setEmpty(); 542 ++DeltaSuccesses; 543 return true; 544 } 545 if (const SCEVConstant *CUB = 546 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) { 547 const APInt &UpperBound = CUB->getAPInt(); 548 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n"); 549 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) { 550 X->setEmpty(); 551 ++DeltaSuccesses; 552 return true; 553 } 554 } 555 X->setPoint(SE->getConstant(Xq), 556 SE->getConstant(Yq), 557 X->getAssociatedLoop()); 558 ++DeltaSuccesses; 559 return true; 560 } 561 return false; 562 } 563 564 // if (X->isLine() && Y->isPoint()) This case can't occur. 565 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur"); 566 567 if (X->isPoint() && Y->isLine()) { 568 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n"); 569 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX()); 570 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY()); 571 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1); 572 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC())) 573 return false; 574 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) { 575 X->setEmpty(); 576 ++DeltaSuccesses; 577 return true; 578 } 579 return false; 580 } 581 582 llvm_unreachable("shouldn't reach the end of Constraint intersection"); 583 return false; 584 } 585 586 587 //===----------------------------------------------------------------------===// 588 // DependenceInfo methods 589 590 // For debugging purposes. Dumps a dependence to OS. 591 void Dependence::dump(raw_ostream &OS) const { 592 bool Splitable = false; 593 if (isConfused()) 594 OS << "confused"; 595 else { 596 if (isConsistent()) 597 OS << "consistent "; 598 if (isFlow()) 599 OS << "flow"; 600 else if (isOutput()) 601 OS << "output"; 602 else if (isAnti()) 603 OS << "anti"; 604 else if (isInput()) 605 OS << "input"; 606 unsigned Levels = getLevels(); 607 OS << " ["; 608 for (unsigned II = 1; II <= Levels; ++II) { 609 if (isSplitable(II)) 610 Splitable = true; 611 if (isPeelFirst(II)) 612 OS << 'p'; 613 const SCEV *Distance = getDistance(II); 614 if (Distance) 615 OS << *Distance; 616 else if (isScalar(II)) 617 OS << "S"; 618 else { 619 unsigned Direction = getDirection(II); 620 if (Direction == DVEntry::ALL) 621 OS << "*"; 622 else { 623 if (Direction & DVEntry::LT) 624 OS << "<"; 625 if (Direction & DVEntry::EQ) 626 OS << "="; 627 if (Direction & DVEntry::GT) 628 OS << ">"; 629 } 630 } 631 if (isPeelLast(II)) 632 OS << 'p'; 633 if (II < Levels) 634 OS << " "; 635 } 636 if (isLoopIndependent()) 637 OS << "|<"; 638 OS << "]"; 639 if (Splitable) 640 OS << " splitable"; 641 } 642 OS << "!\n"; 643 } 644 645 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their 646 // underlaying objects. If LocA and LocB are known to not alias (for any reason: 647 // tbaa, non-overlapping regions etc), then it is known there is no dependecy. 648 // Otherwise the underlying objects are checked to see if they point to 649 // different identifiable objects. 650 static AliasResult underlyingObjectsAlias(AAResults *AA, 651 const DataLayout &DL, 652 const MemoryLocation &LocA, 653 const MemoryLocation &LocB) { 654 // Check the original locations (minus size) for noalias, which can happen for 655 // tbaa, incompatible underlying object locations, etc. 656 MemoryLocation LocAS(LocA.Ptr, LocationSize::unknown(), LocA.AATags); 657 MemoryLocation LocBS(LocB.Ptr, LocationSize::unknown(), LocB.AATags); 658 if (AA->alias(LocAS, LocBS) == NoAlias) 659 return NoAlias; 660 661 // Check the underlying objects are the same 662 const Value *AObj = GetUnderlyingObject(LocA.Ptr, DL); 663 const Value *BObj = GetUnderlyingObject(LocB.Ptr, DL); 664 665 // If the underlying objects are the same, they must alias 666 if (AObj == BObj) 667 return MustAlias; 668 669 // We may have hit the recursion limit for underlying objects, or have 670 // underlying objects where we don't know they will alias. 671 if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj)) 672 return MayAlias; 673 674 // Otherwise we know the objects are different and both identified objects so 675 // must not alias. 676 return NoAlias; 677 } 678 679 680 // Returns true if the load or store can be analyzed. Atomic and volatile 681 // operations have properties which this analysis does not understand. 682 static 683 bool isLoadOrStore(const Instruction *I) { 684 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 685 return LI->isUnordered(); 686 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 687 return SI->isUnordered(); 688 return false; 689 } 690 691 692 // Examines the loop nesting of the Src and Dst 693 // instructions and establishes their shared loops. Sets the variables 694 // CommonLevels, SrcLevels, and MaxLevels. 695 // The source and destination instructions needn't be contained in the same 696 // loop. The routine establishNestingLevels finds the level of most deeply 697 // nested loop that contains them both, CommonLevels. An instruction that's 698 // not contained in a loop is at level = 0. MaxLevels is equal to the level 699 // of the source plus the level of the destination, minus CommonLevels. 700 // This lets us allocate vectors MaxLevels in length, with room for every 701 // distinct loop referenced in both the source and destination subscripts. 702 // The variable SrcLevels is the nesting depth of the source instruction. 703 // It's used to help calculate distinct loops referenced by the destination. 704 // Here's the map from loops to levels: 705 // 0 - unused 706 // 1 - outermost common loop 707 // ... - other common loops 708 // CommonLevels - innermost common loop 709 // ... - loops containing Src but not Dst 710 // SrcLevels - innermost loop containing Src but not Dst 711 // ... - loops containing Dst but not Src 712 // MaxLevels - innermost loops containing Dst but not Src 713 // Consider the follow code fragment: 714 // for (a = ...) { 715 // for (b = ...) { 716 // for (c = ...) { 717 // for (d = ...) { 718 // A[] = ...; 719 // } 720 // } 721 // for (e = ...) { 722 // for (f = ...) { 723 // for (g = ...) { 724 // ... = A[]; 725 // } 726 // } 727 // } 728 // } 729 // } 730 // If we're looking at the possibility of a dependence between the store 731 // to A (the Src) and the load from A (the Dst), we'll note that they 732 // have 2 loops in common, so CommonLevels will equal 2 and the direction 733 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. 734 // A map from loop names to loop numbers would look like 735 // a - 1 736 // b - 2 = CommonLevels 737 // c - 3 738 // d - 4 = SrcLevels 739 // e - 5 740 // f - 6 741 // g - 7 = MaxLevels 742 void DependenceInfo::establishNestingLevels(const Instruction *Src, 743 const Instruction *Dst) { 744 const BasicBlock *SrcBlock = Src->getParent(); 745 const BasicBlock *DstBlock = Dst->getParent(); 746 unsigned SrcLevel = LI->getLoopDepth(SrcBlock); 747 unsigned DstLevel = LI->getLoopDepth(DstBlock); 748 const Loop *SrcLoop = LI->getLoopFor(SrcBlock); 749 const Loop *DstLoop = LI->getLoopFor(DstBlock); 750 SrcLevels = SrcLevel; 751 MaxLevels = SrcLevel + DstLevel; 752 while (SrcLevel > DstLevel) { 753 SrcLoop = SrcLoop->getParentLoop(); 754 SrcLevel--; 755 } 756 while (DstLevel > SrcLevel) { 757 DstLoop = DstLoop->getParentLoop(); 758 DstLevel--; 759 } 760 while (SrcLoop != DstLoop) { 761 SrcLoop = SrcLoop->getParentLoop(); 762 DstLoop = DstLoop->getParentLoop(); 763 SrcLevel--; 764 } 765 CommonLevels = SrcLevel; 766 MaxLevels -= CommonLevels; 767 } 768 769 770 // Given one of the loops containing the source, return 771 // its level index in our numbering scheme. 772 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const { 773 return SrcLoop->getLoopDepth(); 774 } 775 776 777 // Given one of the loops containing the destination, 778 // return its level index in our numbering scheme. 779 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const { 780 unsigned D = DstLoop->getLoopDepth(); 781 if (D > CommonLevels) 782 return D - CommonLevels + SrcLevels; 783 else 784 return D; 785 } 786 787 788 // Returns true if Expression is loop invariant in LoopNest. 789 bool DependenceInfo::isLoopInvariant(const SCEV *Expression, 790 const Loop *LoopNest) const { 791 if (!LoopNest) 792 return true; 793 return SE->isLoopInvariant(Expression, LoopNest) && 794 isLoopInvariant(Expression, LoopNest->getParentLoop()); 795 } 796 797 798 799 // Finds the set of loops from the LoopNest that 800 // have a level <= CommonLevels and are referred to by the SCEV Expression. 801 void DependenceInfo::collectCommonLoops(const SCEV *Expression, 802 const Loop *LoopNest, 803 SmallBitVector &Loops) const { 804 while (LoopNest) { 805 unsigned Level = LoopNest->getLoopDepth(); 806 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest)) 807 Loops.set(Level); 808 LoopNest = LoopNest->getParentLoop(); 809 } 810 } 811 812 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) { 813 814 unsigned widestWidthSeen = 0; 815 Type *widestType; 816 817 // Go through each pair and find the widest bit to which we need 818 // to extend all of them. 819 for (Subscript *Pair : Pairs) { 820 const SCEV *Src = Pair->Src; 821 const SCEV *Dst = Pair->Dst; 822 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); 823 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); 824 if (SrcTy == nullptr || DstTy == nullptr) { 825 assert(SrcTy == DstTy && "This function only unify integer types and " 826 "expect Src and Dst share the same type " 827 "otherwise."); 828 continue; 829 } 830 if (SrcTy->getBitWidth() > widestWidthSeen) { 831 widestWidthSeen = SrcTy->getBitWidth(); 832 widestType = SrcTy; 833 } 834 if (DstTy->getBitWidth() > widestWidthSeen) { 835 widestWidthSeen = DstTy->getBitWidth(); 836 widestType = DstTy; 837 } 838 } 839 840 841 assert(widestWidthSeen > 0); 842 843 // Now extend each pair to the widest seen. 844 for (Subscript *Pair : Pairs) { 845 const SCEV *Src = Pair->Src; 846 const SCEV *Dst = Pair->Dst; 847 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); 848 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); 849 if (SrcTy == nullptr || DstTy == nullptr) { 850 assert(SrcTy == DstTy && "This function only unify integer types and " 851 "expect Src and Dst share the same type " 852 "otherwise."); 853 continue; 854 } 855 if (SrcTy->getBitWidth() < widestWidthSeen) 856 // Sign-extend Src to widestType 857 Pair->Src = SE->getSignExtendExpr(Src, widestType); 858 if (DstTy->getBitWidth() < widestWidthSeen) { 859 // Sign-extend Dst to widestType 860 Pair->Dst = SE->getSignExtendExpr(Dst, widestType); 861 } 862 } 863 } 864 865 // removeMatchingExtensions - Examines a subscript pair. 866 // If the source and destination are identically sign (or zero) 867 // extended, it strips off the extension in an effect to simplify 868 // the actual analysis. 869 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) { 870 const SCEV *Src = Pair->Src; 871 const SCEV *Dst = Pair->Dst; 872 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) || 873 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) { 874 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src); 875 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst); 876 const SCEV *SrcCastOp = SrcCast->getOperand(); 877 const SCEV *DstCastOp = DstCast->getOperand(); 878 if (SrcCastOp->getType() == DstCastOp->getType()) { 879 Pair->Src = SrcCastOp; 880 Pair->Dst = DstCastOp; 881 } 882 } 883 } 884 885 // Examine the scev and return true iff it's linear. 886 // Collect any loops mentioned in the set of "Loops". 887 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest, 888 SmallBitVector &Loops, bool IsSrc) { 889 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); 890 if (!AddRec) 891 return isLoopInvariant(Expr, LoopNest); 892 const SCEV *Start = AddRec->getStart(); 893 const SCEV *Step = AddRec->getStepRecurrence(*SE); 894 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop()); 895 if (!isa<SCEVCouldNotCompute>(UB)) { 896 if (SE->getTypeSizeInBits(Start->getType()) < 897 SE->getTypeSizeInBits(UB->getType())) { 898 if (!AddRec->getNoWrapFlags()) 899 return false; 900 } 901 } 902 if (!isLoopInvariant(Step, LoopNest)) 903 return false; 904 if (IsSrc) 905 Loops.set(mapSrcLoop(AddRec->getLoop())); 906 else 907 Loops.set(mapDstLoop(AddRec->getLoop())); 908 return checkSubscript(Start, LoopNest, Loops, IsSrc); 909 } 910 911 // Examine the scev and return true iff it's linear. 912 // Collect any loops mentioned in the set of "Loops". 913 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest, 914 SmallBitVector &Loops) { 915 return checkSubscript(Src, LoopNest, Loops, true); 916 } 917 918 // Examine the scev and return true iff it's linear. 919 // Collect any loops mentioned in the set of "Loops". 920 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest, 921 SmallBitVector &Loops) { 922 return checkSubscript(Dst, LoopNest, Loops, false); 923 } 924 925 926 // Examines the subscript pair (the Src and Dst SCEVs) 927 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. 928 // Collects the associated loops in a set. 929 DependenceInfo::Subscript::ClassificationKind 930 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest, 931 const SCEV *Dst, const Loop *DstLoopNest, 932 SmallBitVector &Loops) { 933 SmallBitVector SrcLoops(MaxLevels + 1); 934 SmallBitVector DstLoops(MaxLevels + 1); 935 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops)) 936 return Subscript::NonLinear; 937 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops)) 938 return Subscript::NonLinear; 939 Loops = SrcLoops; 940 Loops |= DstLoops; 941 unsigned N = Loops.count(); 942 if (N == 0) 943 return Subscript::ZIV; 944 if (N == 1) 945 return Subscript::SIV; 946 if (N == 2 && (SrcLoops.count() == 0 || 947 DstLoops.count() == 0 || 948 (SrcLoops.count() == 1 && DstLoops.count() == 1))) 949 return Subscript::RDIV; 950 return Subscript::MIV; 951 } 952 953 954 // A wrapper around SCEV::isKnownPredicate. 955 // Looks for cases where we're interested in comparing for equality. 956 // If both X and Y have been identically sign or zero extended, 957 // it strips off the (confusing) extensions before invoking 958 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package 959 // will be similarly updated. 960 // 961 // If SCEV::isKnownPredicate can't prove the predicate, 962 // we try simple subtraction, which seems to help in some cases 963 // involving symbolics. 964 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X, 965 const SCEV *Y) const { 966 if (Pred == CmpInst::ICMP_EQ || 967 Pred == CmpInst::ICMP_NE) { 968 if ((isa<SCEVSignExtendExpr>(X) && 969 isa<SCEVSignExtendExpr>(Y)) || 970 (isa<SCEVZeroExtendExpr>(X) && 971 isa<SCEVZeroExtendExpr>(Y))) { 972 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X); 973 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y); 974 const SCEV *Xop = CX->getOperand(); 975 const SCEV *Yop = CY->getOperand(); 976 if (Xop->getType() == Yop->getType()) { 977 X = Xop; 978 Y = Yop; 979 } 980 } 981 } 982 if (SE->isKnownPredicate(Pred, X, Y)) 983 return true; 984 // If SE->isKnownPredicate can't prove the condition, 985 // we try the brute-force approach of subtracting 986 // and testing the difference. 987 // By testing with SE->isKnownPredicate first, we avoid 988 // the possibility of overflow when the arguments are constants. 989 const SCEV *Delta = SE->getMinusSCEV(X, Y); 990 switch (Pred) { 991 case CmpInst::ICMP_EQ: 992 return Delta->isZero(); 993 case CmpInst::ICMP_NE: 994 return SE->isKnownNonZero(Delta); 995 case CmpInst::ICMP_SGE: 996 return SE->isKnownNonNegative(Delta); 997 case CmpInst::ICMP_SLE: 998 return SE->isKnownNonPositive(Delta); 999 case CmpInst::ICMP_SGT: 1000 return SE->isKnownPositive(Delta); 1001 case CmpInst::ICMP_SLT: 1002 return SE->isKnownNegative(Delta); 1003 default: 1004 llvm_unreachable("unexpected predicate in isKnownPredicate"); 1005 } 1006 } 1007 1008 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1)) 1009 /// with some extra checking if S is an AddRec and we can prove less-than using 1010 /// the loop bounds. 1011 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const { 1012 // First unify to the same type 1013 auto *SType = dyn_cast<IntegerType>(S->getType()); 1014 auto *SizeType = dyn_cast<IntegerType>(Size->getType()); 1015 if (!SType || !SizeType) 1016 return false; 1017 Type *MaxType = 1018 (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType; 1019 S = SE->getTruncateOrZeroExtend(S, MaxType); 1020 Size = SE->getTruncateOrZeroExtend(Size, MaxType); 1021 1022 // Special check for addrecs using BE taken count 1023 const SCEV *Bound = SE->getMinusSCEV(S, Size); 1024 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) { 1025 if (AddRec->isAffine()) { 1026 const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop()); 1027 if (!isa<SCEVCouldNotCompute>(BECount)) { 1028 const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE); 1029 if (SE->isKnownNegative(Limit)) 1030 return true; 1031 } 1032 } 1033 } 1034 1035 // Check using normal isKnownNegative 1036 const SCEV *LimitedBound = 1037 SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType()))); 1038 return SE->isKnownNegative(LimitedBound); 1039 } 1040 1041 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const { 1042 bool Inbounds = false; 1043 if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr)) 1044 Inbounds = SrcGEP->isInBounds(); 1045 if (Inbounds) { 1046 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 1047 if (AddRec->isAffine()) { 1048 // We know S is for Ptr, the operand on a load/store, so doesn't wrap. 1049 // If both parts are NonNegative, the end result will be NonNegative 1050 if (SE->isKnownNonNegative(AddRec->getStart()) && 1051 SE->isKnownNonNegative(AddRec->getOperand(1))) 1052 return true; 1053 } 1054 } 1055 } 1056 1057 return SE->isKnownNonNegative(S); 1058 } 1059 1060 // All subscripts are all the same type. 1061 // Loop bound may be smaller (e.g., a char). 1062 // Should zero extend loop bound, since it's always >= 0. 1063 // This routine collects upper bound and extends or truncates if needed. 1064 // Truncating is safe when subscripts are known not to wrap. Cases without 1065 // nowrap flags should have been rejected earlier. 1066 // Return null if no bound available. 1067 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const { 1068 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 1069 const SCEV *UB = SE->getBackedgeTakenCount(L); 1070 return SE->getTruncateOrZeroExtend(UB, T); 1071 } 1072 return nullptr; 1073 } 1074 1075 1076 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant. 1077 // If the cast fails, returns NULL. 1078 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L, 1079 Type *T) const { 1080 if (const SCEV *UB = collectUpperBound(L, T)) 1081 return dyn_cast<SCEVConstant>(UB); 1082 return nullptr; 1083 } 1084 1085 1086 // testZIV - 1087 // When we have a pair of subscripts of the form [c1] and [c2], 1088 // where c1 and c2 are both loop invariant, we attack it using 1089 // the ZIV test. Basically, we test by comparing the two values, 1090 // but there are actually three possible results: 1091 // 1) the values are equal, so there's a dependence 1092 // 2) the values are different, so there's no dependence 1093 // 3) the values might be equal, so we have to assume a dependence. 1094 // 1095 // Return true if dependence disproved. 1096 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst, 1097 FullDependence &Result) const { 1098 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n"); 1099 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n"); 1100 ++ZIVapplications; 1101 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) { 1102 LLVM_DEBUG(dbgs() << " provably dependent\n"); 1103 return false; // provably dependent 1104 } 1105 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) { 1106 LLVM_DEBUG(dbgs() << " provably independent\n"); 1107 ++ZIVindependence; 1108 return true; // provably independent 1109 } 1110 LLVM_DEBUG(dbgs() << " possibly dependent\n"); 1111 Result.Consistent = false; 1112 return false; // possibly dependent 1113 } 1114 1115 1116 // strongSIVtest - 1117 // From the paper, Practical Dependence Testing, Section 4.2.1 1118 // 1119 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i], 1120 // where i is an induction variable, c1 and c2 are loop invariant, 1121 // and a is a constant, we can solve it exactly using the Strong SIV test. 1122 // 1123 // Can prove independence. Failing that, can compute distance (and direction). 1124 // In the presence of symbolic terms, we can sometimes make progress. 1125 // 1126 // If there's a dependence, 1127 // 1128 // c1 + a*i = c2 + a*i' 1129 // 1130 // The dependence distance is 1131 // 1132 // d = i' - i = (c1 - c2)/a 1133 // 1134 // A dependence only exists if d is an integer and abs(d) <= U, where U is the 1135 // loop's upper bound. If a dependence exists, the dependence direction is 1136 // defined as 1137 // 1138 // { < if d > 0 1139 // direction = { = if d = 0 1140 // { > if d < 0 1141 // 1142 // Return true if dependence disproved. 1143 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst, 1144 const SCEV *DstConst, const Loop *CurLoop, 1145 unsigned Level, FullDependence &Result, 1146 Constraint &NewConstraint) const { 1147 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n"); 1148 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff); 1149 LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n"); 1150 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst); 1151 LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n"); 1152 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst); 1153 LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n"); 1154 ++StrongSIVapplications; 1155 assert(0 < Level && Level <= CommonLevels && "level out of range"); 1156 Level--; 1157 1158 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); 1159 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta); 1160 LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n"); 1161 1162 // check that |Delta| < iteration count 1163 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { 1164 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound); 1165 LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n"); 1166 const SCEV *AbsDelta = 1167 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta); 1168 const SCEV *AbsCoeff = 1169 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff); 1170 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff); 1171 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) { 1172 // Distance greater than trip count - no dependence 1173 ++StrongSIVindependence; 1174 ++StrongSIVsuccesses; 1175 return true; 1176 } 1177 } 1178 1179 // Can we compute distance? 1180 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) { 1181 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt(); 1182 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt(); 1183 APInt Distance = ConstDelta; // these need to be initialized 1184 APInt Remainder = ConstDelta; 1185 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder); 1186 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n"); 1187 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); 1188 // Make sure Coeff divides Delta exactly 1189 if (Remainder != 0) { 1190 // Coeff doesn't divide Distance, no dependence 1191 ++StrongSIVindependence; 1192 ++StrongSIVsuccesses; 1193 return true; 1194 } 1195 Result.DV[Level].Distance = SE->getConstant(Distance); 1196 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop); 1197 if (Distance.sgt(0)) 1198 Result.DV[Level].Direction &= Dependence::DVEntry::LT; 1199 else if (Distance.slt(0)) 1200 Result.DV[Level].Direction &= Dependence::DVEntry::GT; 1201 else 1202 Result.DV[Level].Direction &= Dependence::DVEntry::EQ; 1203 ++StrongSIVsuccesses; 1204 } 1205 else if (Delta->isZero()) { 1206 // since 0/X == 0 1207 Result.DV[Level].Distance = Delta; 1208 NewConstraint.setDistance(Delta, CurLoop); 1209 Result.DV[Level].Direction &= Dependence::DVEntry::EQ; 1210 ++StrongSIVsuccesses; 1211 } 1212 else { 1213 if (Coeff->isOne()) { 1214 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n"); 1215 Result.DV[Level].Distance = Delta; // since X/1 == X 1216 NewConstraint.setDistance(Delta, CurLoop); 1217 } 1218 else { 1219 Result.Consistent = false; 1220 NewConstraint.setLine(Coeff, 1221 SE->getNegativeSCEV(Coeff), 1222 SE->getNegativeSCEV(Delta), CurLoop); 1223 } 1224 1225 // maybe we can get a useful direction 1226 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta); 1227 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta); 1228 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta); 1229 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff); 1230 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff); 1231 // The double negatives above are confusing. 1232 // It helps to read !SE->isKnownNonZero(Delta) 1233 // as "Delta might be Zero" 1234 unsigned NewDirection = Dependence::DVEntry::NONE; 1235 if ((DeltaMaybePositive && CoeffMaybePositive) || 1236 (DeltaMaybeNegative && CoeffMaybeNegative)) 1237 NewDirection = Dependence::DVEntry::LT; 1238 if (DeltaMaybeZero) 1239 NewDirection |= Dependence::DVEntry::EQ; 1240 if ((DeltaMaybeNegative && CoeffMaybePositive) || 1241 (DeltaMaybePositive && CoeffMaybeNegative)) 1242 NewDirection |= Dependence::DVEntry::GT; 1243 if (NewDirection < Result.DV[Level].Direction) 1244 ++StrongSIVsuccesses; 1245 Result.DV[Level].Direction &= NewDirection; 1246 } 1247 return false; 1248 } 1249 1250 1251 // weakCrossingSIVtest - 1252 // From the paper, Practical Dependence Testing, Section 4.2.2 1253 // 1254 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i], 1255 // where i is an induction variable, c1 and c2 are loop invariant, 1256 // and a is a constant, we can solve it exactly using the 1257 // Weak-Crossing SIV test. 1258 // 1259 // Given c1 + a*i = c2 - a*i', we can look for the intersection of 1260 // the two lines, where i = i', yielding 1261 // 1262 // c1 + a*i = c2 - a*i 1263 // 2a*i = c2 - c1 1264 // i = (c2 - c1)/2a 1265 // 1266 // If i < 0, there is no dependence. 1267 // If i > upperbound, there is no dependence. 1268 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0. 1269 // If i = upperbound, there's a dependence with distance = 0. 1270 // If i is integral, there's a dependence (all directions). 1271 // If the non-integer part = 1/2, there's a dependence (<> directions). 1272 // Otherwise, there's no dependence. 1273 // 1274 // Can prove independence. Failing that, 1275 // can sometimes refine the directions. 1276 // Can determine iteration for splitting. 1277 // 1278 // Return true if dependence disproved. 1279 bool DependenceInfo::weakCrossingSIVtest( 1280 const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst, 1281 const Loop *CurLoop, unsigned Level, FullDependence &Result, 1282 Constraint &NewConstraint, const SCEV *&SplitIter) const { 1283 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n"); 1284 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n"); 1285 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1286 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1287 ++WeakCrossingSIVapplications; 1288 assert(0 < Level && Level <= CommonLevels && "Level out of range"); 1289 Level--; 1290 Result.Consistent = false; 1291 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 1292 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1293 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop); 1294 if (Delta->isZero()) { 1295 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); 1296 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); 1297 ++WeakCrossingSIVsuccesses; 1298 if (!Result.DV[Level].Direction) { 1299 ++WeakCrossingSIVindependence; 1300 return true; 1301 } 1302 Result.DV[Level].Distance = Delta; // = 0 1303 return false; 1304 } 1305 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff); 1306 if (!ConstCoeff) 1307 return false; 1308 1309 Result.DV[Level].Splitable = true; 1310 if (SE->isKnownNegative(ConstCoeff)) { 1311 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff)); 1312 assert(ConstCoeff && 1313 "dynamic cast of negative of ConstCoeff should yield constant"); 1314 Delta = SE->getNegativeSCEV(Delta); 1315 } 1316 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive"); 1317 1318 // compute SplitIter for use by DependenceInfo::getSplitIteration() 1319 SplitIter = SE->getUDivExpr( 1320 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta), 1321 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff)); 1322 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n"); 1323 1324 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); 1325 if (!ConstDelta) 1326 return false; 1327 1328 // We're certain that ConstCoeff > 0; therefore, 1329 // if Delta < 0, then no dependence. 1330 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1331 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n"); 1332 if (SE->isKnownNegative(Delta)) { 1333 // No dependence, Delta < 0 1334 ++WeakCrossingSIVindependence; 1335 ++WeakCrossingSIVsuccesses; 1336 return true; 1337 } 1338 1339 // We're certain that Delta > 0 and ConstCoeff > 0. 1340 // Check Delta/(2*ConstCoeff) against upper loop bound 1341 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { 1342 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); 1343 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2); 1344 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound), 1345 ConstantTwo); 1346 LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n"); 1347 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) { 1348 // Delta too big, no dependence 1349 ++WeakCrossingSIVindependence; 1350 ++WeakCrossingSIVsuccesses; 1351 return true; 1352 } 1353 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) { 1354 // i = i' = UB 1355 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); 1356 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); 1357 ++WeakCrossingSIVsuccesses; 1358 if (!Result.DV[Level].Direction) { 1359 ++WeakCrossingSIVindependence; 1360 return true; 1361 } 1362 Result.DV[Level].Splitable = false; 1363 Result.DV[Level].Distance = SE->getZero(Delta->getType()); 1364 return false; 1365 } 1366 } 1367 1368 // check that Coeff divides Delta 1369 APInt APDelta = ConstDelta->getAPInt(); 1370 APInt APCoeff = ConstCoeff->getAPInt(); 1371 APInt Distance = APDelta; // these need to be initialzed 1372 APInt Remainder = APDelta; 1373 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder); 1374 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); 1375 if (Remainder != 0) { 1376 // Coeff doesn't divide Delta, no dependence 1377 ++WeakCrossingSIVindependence; 1378 ++WeakCrossingSIVsuccesses; 1379 return true; 1380 } 1381 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n"); 1382 1383 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible 1384 APInt Two = APInt(Distance.getBitWidth(), 2, true); 1385 Remainder = Distance.srem(Two); 1386 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); 1387 if (Remainder != 0) { 1388 // Equal direction isn't possible 1389 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ); 1390 ++WeakCrossingSIVsuccesses; 1391 } 1392 return false; 1393 } 1394 1395 1396 // Kirch's algorithm, from 1397 // 1398 // Optimizing Supercompilers for Supercomputers 1399 // Michael Wolfe 1400 // MIT Press, 1989 1401 // 1402 // Program 2.1, page 29. 1403 // Computes the GCD of AM and BM. 1404 // Also finds a solution to the equation ax - by = gcd(a, b). 1405 // Returns true if dependence disproved; i.e., gcd does not divide Delta. 1406 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM, 1407 const APInt &Delta, APInt &G, APInt &X, APInt &Y) { 1408 APInt A0(Bits, 1, true), A1(Bits, 0, true); 1409 APInt B0(Bits, 0, true), B1(Bits, 1, true); 1410 APInt G0 = AM.abs(); 1411 APInt G1 = BM.abs(); 1412 APInt Q = G0; // these need to be initialized 1413 APInt R = G0; 1414 APInt::sdivrem(G0, G1, Q, R); 1415 while (R != 0) { 1416 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2; 1417 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2; 1418 G0 = G1; G1 = R; 1419 APInt::sdivrem(G0, G1, Q, R); 1420 } 1421 G = G1; 1422 LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n"); 1423 X = AM.slt(0) ? -A1 : A1; 1424 Y = BM.slt(0) ? B1 : -B1; 1425 1426 // make sure gcd divides Delta 1427 R = Delta.srem(G); 1428 if (R != 0) 1429 return true; // gcd doesn't divide Delta, no dependence 1430 Q = Delta.sdiv(G); 1431 X *= Q; 1432 Y *= Q; 1433 return false; 1434 } 1435 1436 static APInt floorOfQuotient(const APInt &A, const APInt &B) { 1437 APInt Q = A; // these need to be initialized 1438 APInt R = A; 1439 APInt::sdivrem(A, B, Q, R); 1440 if (R == 0) 1441 return Q; 1442 if ((A.sgt(0) && B.sgt(0)) || 1443 (A.slt(0) && B.slt(0))) 1444 return Q; 1445 else 1446 return Q - 1; 1447 } 1448 1449 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) { 1450 APInt Q = A; // these need to be initialized 1451 APInt R = A; 1452 APInt::sdivrem(A, B, Q, R); 1453 if (R == 0) 1454 return Q; 1455 if ((A.sgt(0) && B.sgt(0)) || 1456 (A.slt(0) && B.slt(0))) 1457 return Q + 1; 1458 else 1459 return Q; 1460 } 1461 1462 1463 static 1464 APInt maxAPInt(APInt A, APInt B) { 1465 return A.sgt(B) ? A : B; 1466 } 1467 1468 1469 static 1470 APInt minAPInt(APInt A, APInt B) { 1471 return A.slt(B) ? A : B; 1472 } 1473 1474 1475 // exactSIVtest - 1476 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i], 1477 // where i is an induction variable, c1 and c2 are loop invariant, and a1 1478 // and a2 are constant, we can solve it exactly using an algorithm developed 1479 // by Banerjee and Wolfe. See Section 2.5.3 in 1480 // 1481 // Optimizing Supercompilers for Supercomputers 1482 // Michael Wolfe 1483 // MIT Press, 1989 1484 // 1485 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc), 1486 // so use them if possible. They're also a bit better with symbolics and, 1487 // in the case of the strong SIV test, can compute Distances. 1488 // 1489 // Return true if dependence disproved. 1490 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, 1491 const SCEV *SrcConst, const SCEV *DstConst, 1492 const Loop *CurLoop, unsigned Level, 1493 FullDependence &Result, 1494 Constraint &NewConstraint) const { 1495 LLVM_DEBUG(dbgs() << "\tExact SIV test\n"); 1496 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n"); 1497 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n"); 1498 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1499 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1500 ++ExactSIVapplications; 1501 assert(0 < Level && Level <= CommonLevels && "Level out of range"); 1502 Level--; 1503 Result.Consistent = false; 1504 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 1505 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1506 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), 1507 Delta, CurLoop); 1508 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); 1509 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); 1510 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); 1511 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) 1512 return false; 1513 1514 // find gcd 1515 APInt G, X, Y; 1516 APInt AM = ConstSrcCoeff->getAPInt(); 1517 APInt BM = ConstDstCoeff->getAPInt(); 1518 unsigned Bits = AM.getBitWidth(); 1519 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) { 1520 // gcd doesn't divide Delta, no dependence 1521 ++ExactSIVindependence; 1522 ++ExactSIVsuccesses; 1523 return true; 1524 } 1525 1526 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n"); 1527 1528 // since SCEV construction normalizes, LM = 0 1529 APInt UM(Bits, 1, true); 1530 bool UMvalid = false; 1531 // UM is perhaps unavailable, let's check 1532 if (const SCEVConstant *CUB = 1533 collectConstantUpperBound(CurLoop, Delta->getType())) { 1534 UM = CUB->getAPInt(); 1535 LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n"); 1536 UMvalid = true; 1537 } 1538 1539 APInt TU(APInt::getSignedMaxValue(Bits)); 1540 APInt TL(APInt::getSignedMinValue(Bits)); 1541 1542 // test(BM/G, LM-X) and test(-BM/G, X-UM) 1543 APInt TMUL = BM.sdiv(G); 1544 if (TMUL.sgt(0)) { 1545 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); 1546 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1547 if (UMvalid) { 1548 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL)); 1549 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1550 } 1551 } 1552 else { 1553 TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); 1554 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1555 if (UMvalid) { 1556 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL)); 1557 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1558 } 1559 } 1560 1561 // test(AM/G, LM-Y) and test(-AM/G, Y-UM) 1562 TMUL = AM.sdiv(G); 1563 if (TMUL.sgt(0)) { 1564 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); 1565 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1566 if (UMvalid) { 1567 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL)); 1568 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1569 } 1570 } 1571 else { 1572 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); 1573 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1574 if (UMvalid) { 1575 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL)); 1576 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1577 } 1578 } 1579 if (TL.sgt(TU)) { 1580 ++ExactSIVindependence; 1581 ++ExactSIVsuccesses; 1582 return true; 1583 } 1584 1585 // explore directions 1586 unsigned NewDirection = Dependence::DVEntry::NONE; 1587 1588 // less than 1589 APInt SaveTU(TU); // save these 1590 APInt SaveTL(TL); 1591 LLVM_DEBUG(dbgs() << "\t exploring LT direction\n"); 1592 TMUL = AM - BM; 1593 if (TMUL.sgt(0)) { 1594 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL)); 1595 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); 1596 } 1597 else { 1598 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL)); 1599 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); 1600 } 1601 if (TL.sle(TU)) { 1602 NewDirection |= Dependence::DVEntry::LT; 1603 ++ExactSIVsuccesses; 1604 } 1605 1606 // equal 1607 TU = SaveTU; // restore 1608 TL = SaveTL; 1609 LLVM_DEBUG(dbgs() << "\t exploring EQ direction\n"); 1610 if (TMUL.sgt(0)) { 1611 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL)); 1612 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); 1613 } 1614 else { 1615 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL)); 1616 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); 1617 } 1618 TMUL = BM - AM; 1619 if (TMUL.sgt(0)) { 1620 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL)); 1621 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); 1622 } 1623 else { 1624 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL)); 1625 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); 1626 } 1627 if (TL.sle(TU)) { 1628 NewDirection |= Dependence::DVEntry::EQ; 1629 ++ExactSIVsuccesses; 1630 } 1631 1632 // greater than 1633 TU = SaveTU; // restore 1634 TL = SaveTL; 1635 LLVM_DEBUG(dbgs() << "\t exploring GT direction\n"); 1636 if (TMUL.sgt(0)) { 1637 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL)); 1638 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); 1639 } 1640 else { 1641 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL)); 1642 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); 1643 } 1644 if (TL.sle(TU)) { 1645 NewDirection |= Dependence::DVEntry::GT; 1646 ++ExactSIVsuccesses; 1647 } 1648 1649 // finished 1650 Result.DV[Level].Direction &= NewDirection; 1651 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE) 1652 ++ExactSIVindependence; 1653 return Result.DV[Level].Direction == Dependence::DVEntry::NONE; 1654 } 1655 1656 1657 1658 // Return true if the divisor evenly divides the dividend. 1659 static 1660 bool isRemainderZero(const SCEVConstant *Dividend, 1661 const SCEVConstant *Divisor) { 1662 const APInt &ConstDividend = Dividend->getAPInt(); 1663 const APInt &ConstDivisor = Divisor->getAPInt(); 1664 return ConstDividend.srem(ConstDivisor) == 0; 1665 } 1666 1667 1668 // weakZeroSrcSIVtest - 1669 // From the paper, Practical Dependence Testing, Section 4.2.2 1670 // 1671 // When we have a pair of subscripts of the form [c1] and [c2 + a*i], 1672 // where i is an induction variable, c1 and c2 are loop invariant, 1673 // and a is a constant, we can solve it exactly using the 1674 // Weak-Zero SIV test. 1675 // 1676 // Given 1677 // 1678 // c1 = c2 + a*i 1679 // 1680 // we get 1681 // 1682 // (c1 - c2)/a = i 1683 // 1684 // If i is not an integer, there's no dependence. 1685 // If i < 0 or > UB, there's no dependence. 1686 // If i = 0, the direction is >= and peeling the 1687 // 1st iteration will break the dependence. 1688 // If i = UB, the direction is <= and peeling the 1689 // last iteration will break the dependence. 1690 // Otherwise, the direction is *. 1691 // 1692 // Can prove independence. Failing that, we can sometimes refine 1693 // the directions. Can sometimes show that first or last 1694 // iteration carries all the dependences (so worth peeling). 1695 // 1696 // (see also weakZeroDstSIVtest) 1697 // 1698 // Return true if dependence disproved. 1699 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff, 1700 const SCEV *SrcConst, 1701 const SCEV *DstConst, 1702 const Loop *CurLoop, unsigned Level, 1703 FullDependence &Result, 1704 Constraint &NewConstraint) const { 1705 // For the WeakSIV test, it's possible the loop isn't common to 1706 // the Src and Dst loops. If it isn't, then there's no need to 1707 // record a direction. 1708 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n"); 1709 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n"); 1710 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1711 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1712 ++WeakZeroSIVapplications; 1713 assert(0 < Level && Level <= MaxLevels && "Level out of range"); 1714 Level--; 1715 Result.Consistent = false; 1716 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); 1717 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta, 1718 CurLoop); 1719 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1720 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) { 1721 if (Level < CommonLevels) { 1722 Result.DV[Level].Direction &= Dependence::DVEntry::GE; 1723 Result.DV[Level].PeelFirst = true; 1724 ++WeakZeroSIVsuccesses; 1725 } 1726 return false; // dependences caused by first iteration 1727 } 1728 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff); 1729 if (!ConstCoeff) 1730 return false; 1731 const SCEV *AbsCoeff = 1732 SE->isKnownNegative(ConstCoeff) ? 1733 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; 1734 const SCEV *NewDelta = 1735 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; 1736 1737 // check that Delta/SrcCoeff < iteration count 1738 // really check NewDelta < count*AbsCoeff 1739 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { 1740 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); 1741 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); 1742 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { 1743 ++WeakZeroSIVindependence; 1744 ++WeakZeroSIVsuccesses; 1745 return true; 1746 } 1747 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { 1748 // dependences caused by last iteration 1749 if (Level < CommonLevels) { 1750 Result.DV[Level].Direction &= Dependence::DVEntry::LE; 1751 Result.DV[Level].PeelLast = true; 1752 ++WeakZeroSIVsuccesses; 1753 } 1754 return false; 1755 } 1756 } 1757 1758 // check that Delta/SrcCoeff >= 0 1759 // really check that NewDelta >= 0 1760 if (SE->isKnownNegative(NewDelta)) { 1761 // No dependence, newDelta < 0 1762 ++WeakZeroSIVindependence; 1763 ++WeakZeroSIVsuccesses; 1764 return true; 1765 } 1766 1767 // if SrcCoeff doesn't divide Delta, then no dependence 1768 if (isa<SCEVConstant>(Delta) && 1769 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { 1770 ++WeakZeroSIVindependence; 1771 ++WeakZeroSIVsuccesses; 1772 return true; 1773 } 1774 return false; 1775 } 1776 1777 1778 // weakZeroDstSIVtest - 1779 // From the paper, Practical Dependence Testing, Section 4.2.2 1780 // 1781 // When we have a pair of subscripts of the form [c1 + a*i] and [c2], 1782 // where i is an induction variable, c1 and c2 are loop invariant, 1783 // and a is a constant, we can solve it exactly using the 1784 // Weak-Zero SIV test. 1785 // 1786 // Given 1787 // 1788 // c1 + a*i = c2 1789 // 1790 // we get 1791 // 1792 // i = (c2 - c1)/a 1793 // 1794 // If i is not an integer, there's no dependence. 1795 // If i < 0 or > UB, there's no dependence. 1796 // If i = 0, the direction is <= and peeling the 1797 // 1st iteration will break the dependence. 1798 // If i = UB, the direction is >= and peeling the 1799 // last iteration will break the dependence. 1800 // Otherwise, the direction is *. 1801 // 1802 // Can prove independence. Failing that, we can sometimes refine 1803 // the directions. Can sometimes show that first or last 1804 // iteration carries all the dependences (so worth peeling). 1805 // 1806 // (see also weakZeroSrcSIVtest) 1807 // 1808 // Return true if dependence disproved. 1809 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff, 1810 const SCEV *SrcConst, 1811 const SCEV *DstConst, 1812 const Loop *CurLoop, unsigned Level, 1813 FullDependence &Result, 1814 Constraint &NewConstraint) const { 1815 // For the WeakSIV test, it's possible the loop isn't common to the 1816 // Src and Dst loops. If it isn't, then there's no need to record a direction. 1817 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n"); 1818 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n"); 1819 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1820 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1821 ++WeakZeroSIVapplications; 1822 assert(0 < Level && Level <= SrcLevels && "Level out of range"); 1823 Level--; 1824 Result.Consistent = false; 1825 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 1826 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta, 1827 CurLoop); 1828 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1829 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) { 1830 if (Level < CommonLevels) { 1831 Result.DV[Level].Direction &= Dependence::DVEntry::LE; 1832 Result.DV[Level].PeelFirst = true; 1833 ++WeakZeroSIVsuccesses; 1834 } 1835 return false; // dependences caused by first iteration 1836 } 1837 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff); 1838 if (!ConstCoeff) 1839 return false; 1840 const SCEV *AbsCoeff = 1841 SE->isKnownNegative(ConstCoeff) ? 1842 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; 1843 const SCEV *NewDelta = 1844 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; 1845 1846 // check that Delta/SrcCoeff < iteration count 1847 // really check NewDelta < count*AbsCoeff 1848 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { 1849 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); 1850 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); 1851 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { 1852 ++WeakZeroSIVindependence; 1853 ++WeakZeroSIVsuccesses; 1854 return true; 1855 } 1856 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { 1857 // dependences caused by last iteration 1858 if (Level < CommonLevels) { 1859 Result.DV[Level].Direction &= Dependence::DVEntry::GE; 1860 Result.DV[Level].PeelLast = true; 1861 ++WeakZeroSIVsuccesses; 1862 } 1863 return false; 1864 } 1865 } 1866 1867 // check that Delta/SrcCoeff >= 0 1868 // really check that NewDelta >= 0 1869 if (SE->isKnownNegative(NewDelta)) { 1870 // No dependence, newDelta < 0 1871 ++WeakZeroSIVindependence; 1872 ++WeakZeroSIVsuccesses; 1873 return true; 1874 } 1875 1876 // if SrcCoeff doesn't divide Delta, then no dependence 1877 if (isa<SCEVConstant>(Delta) && 1878 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { 1879 ++WeakZeroSIVindependence; 1880 ++WeakZeroSIVsuccesses; 1881 return true; 1882 } 1883 return false; 1884 } 1885 1886 1887 // exactRDIVtest - Tests the RDIV subscript pair for dependence. 1888 // Things of the form [c1 + a*i] and [c2 + b*j], 1889 // where i and j are induction variable, c1 and c2 are loop invariant, 1890 // and a and b are constants. 1891 // Returns true if any possible dependence is disproved. 1892 // Marks the result as inconsistent. 1893 // Works in some cases that symbolicRDIVtest doesn't, and vice versa. 1894 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, 1895 const SCEV *SrcConst, const SCEV *DstConst, 1896 const Loop *SrcLoop, const Loop *DstLoop, 1897 FullDependence &Result) const { 1898 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n"); 1899 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n"); 1900 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n"); 1901 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1902 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1903 ++ExactRDIVapplications; 1904 Result.Consistent = false; 1905 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 1906 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1907 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); 1908 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); 1909 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); 1910 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) 1911 return false; 1912 1913 // find gcd 1914 APInt G, X, Y; 1915 APInt AM = ConstSrcCoeff->getAPInt(); 1916 APInt BM = ConstDstCoeff->getAPInt(); 1917 unsigned Bits = AM.getBitWidth(); 1918 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) { 1919 // gcd doesn't divide Delta, no dependence 1920 ++ExactRDIVindependence; 1921 return true; 1922 } 1923 1924 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n"); 1925 1926 // since SCEV construction seems to normalize, LM = 0 1927 APInt SrcUM(Bits, 1, true); 1928 bool SrcUMvalid = false; 1929 // SrcUM is perhaps unavailable, let's check 1930 if (const SCEVConstant *UpperBound = 1931 collectConstantUpperBound(SrcLoop, Delta->getType())) { 1932 SrcUM = UpperBound->getAPInt(); 1933 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n"); 1934 SrcUMvalid = true; 1935 } 1936 1937 APInt DstUM(Bits, 1, true); 1938 bool DstUMvalid = false; 1939 // UM is perhaps unavailable, let's check 1940 if (const SCEVConstant *UpperBound = 1941 collectConstantUpperBound(DstLoop, Delta->getType())) { 1942 DstUM = UpperBound->getAPInt(); 1943 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n"); 1944 DstUMvalid = true; 1945 } 1946 1947 APInt TU(APInt::getSignedMaxValue(Bits)); 1948 APInt TL(APInt::getSignedMinValue(Bits)); 1949 1950 // test(BM/G, LM-X) and test(-BM/G, X-UM) 1951 APInt TMUL = BM.sdiv(G); 1952 if (TMUL.sgt(0)) { 1953 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); 1954 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1955 if (SrcUMvalid) { 1956 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL)); 1957 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1958 } 1959 } 1960 else { 1961 TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); 1962 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1963 if (SrcUMvalid) { 1964 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL)); 1965 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1966 } 1967 } 1968 1969 // test(AM/G, LM-Y) and test(-AM/G, Y-UM) 1970 TMUL = AM.sdiv(G); 1971 if (TMUL.sgt(0)) { 1972 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); 1973 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1974 if (DstUMvalid) { 1975 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL)); 1976 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1977 } 1978 } 1979 else { 1980 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); 1981 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1982 if (DstUMvalid) { 1983 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL)); 1984 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1985 } 1986 } 1987 if (TL.sgt(TU)) 1988 ++ExactRDIVindependence; 1989 return TL.sgt(TU); 1990 } 1991 1992 1993 // symbolicRDIVtest - 1994 // In Section 4.5 of the Practical Dependence Testing paper,the authors 1995 // introduce a special case of Banerjee's Inequalities (also called the 1996 // Extreme-Value Test) that can handle some of the SIV and RDIV cases, 1997 // particularly cases with symbolics. Since it's only able to disprove 1998 // dependence (not compute distances or directions), we'll use it as a 1999 // fall back for the other tests. 2000 // 2001 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] 2002 // where i and j are induction variables and c1 and c2 are loop invariants, 2003 // we can use the symbolic tests to disprove some dependences, serving as a 2004 // backup for the RDIV test. Note that i and j can be the same variable, 2005 // letting this test serve as a backup for the various SIV tests. 2006 // 2007 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some 2008 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized) 2009 // loop bounds for the i and j loops, respectively. So, ... 2010 // 2011 // c1 + a1*i = c2 + a2*j 2012 // a1*i - a2*j = c2 - c1 2013 // 2014 // To test for a dependence, we compute c2 - c1 and make sure it's in the 2015 // range of the maximum and minimum possible values of a1*i - a2*j. 2016 // Considering the signs of a1 and a2, we have 4 possible cases: 2017 // 2018 // 1) If a1 >= 0 and a2 >= 0, then 2019 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0 2020 // -a2*N2 <= c2 - c1 <= a1*N1 2021 // 2022 // 2) If a1 >= 0 and a2 <= 0, then 2023 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2 2024 // 0 <= c2 - c1 <= a1*N1 - a2*N2 2025 // 2026 // 3) If a1 <= 0 and a2 >= 0, then 2027 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0 2028 // a1*N1 - a2*N2 <= c2 - c1 <= 0 2029 // 2030 // 4) If a1 <= 0 and a2 <= 0, then 2031 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2 2032 // a1*N1 <= c2 - c1 <= -a2*N2 2033 // 2034 // return true if dependence disproved 2035 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2, 2036 const SCEV *C1, const SCEV *C2, 2037 const Loop *Loop1, 2038 const Loop *Loop2) const { 2039 ++SymbolicRDIVapplications; 2040 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n"); 2041 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1); 2042 LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n"); 2043 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n"); 2044 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n"); 2045 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n"); 2046 const SCEV *N1 = collectUpperBound(Loop1, A1->getType()); 2047 const SCEV *N2 = collectUpperBound(Loop2, A1->getType()); 2048 LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n"); 2049 LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n"); 2050 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1); 2051 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2); 2052 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n"); 2053 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n"); 2054 if (SE->isKnownNonNegative(A1)) { 2055 if (SE->isKnownNonNegative(A2)) { 2056 // A1 >= 0 && A2 >= 0 2057 if (N1) { 2058 // make sure that c2 - c1 <= a1*N1 2059 const SCEV *A1N1 = SE->getMulExpr(A1, N1); 2060 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n"); 2061 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) { 2062 ++SymbolicRDIVindependence; 2063 return true; 2064 } 2065 } 2066 if (N2) { 2067 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2 2068 const SCEV *A2N2 = SE->getMulExpr(A2, N2); 2069 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n"); 2070 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) { 2071 ++SymbolicRDIVindependence; 2072 return true; 2073 } 2074 } 2075 } 2076 else if (SE->isKnownNonPositive(A2)) { 2077 // a1 >= 0 && a2 <= 0 2078 if (N1 && N2) { 2079 // make sure that c2 - c1 <= a1*N1 - a2*N2 2080 const SCEV *A1N1 = SE->getMulExpr(A1, N1); 2081 const SCEV *A2N2 = SE->getMulExpr(A2, N2); 2082 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); 2083 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); 2084 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) { 2085 ++SymbolicRDIVindependence; 2086 return true; 2087 } 2088 } 2089 // make sure that 0 <= c2 - c1 2090 if (SE->isKnownNegative(C2_C1)) { 2091 ++SymbolicRDIVindependence; 2092 return true; 2093 } 2094 } 2095 } 2096 else if (SE->isKnownNonPositive(A1)) { 2097 if (SE->isKnownNonNegative(A2)) { 2098 // a1 <= 0 && a2 >= 0 2099 if (N1 && N2) { 2100 // make sure that a1*N1 - a2*N2 <= c2 - c1 2101 const SCEV *A1N1 = SE->getMulExpr(A1, N1); 2102 const SCEV *A2N2 = SE->getMulExpr(A2, N2); 2103 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); 2104 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); 2105 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) { 2106 ++SymbolicRDIVindependence; 2107 return true; 2108 } 2109 } 2110 // make sure that c2 - c1 <= 0 2111 if (SE->isKnownPositive(C2_C1)) { 2112 ++SymbolicRDIVindependence; 2113 return true; 2114 } 2115 } 2116 else if (SE->isKnownNonPositive(A2)) { 2117 // a1 <= 0 && a2 <= 0 2118 if (N1) { 2119 // make sure that a1*N1 <= c2 - c1 2120 const SCEV *A1N1 = SE->getMulExpr(A1, N1); 2121 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n"); 2122 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) { 2123 ++SymbolicRDIVindependence; 2124 return true; 2125 } 2126 } 2127 if (N2) { 2128 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2 2129 const SCEV *A2N2 = SE->getMulExpr(A2, N2); 2130 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n"); 2131 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) { 2132 ++SymbolicRDIVindependence; 2133 return true; 2134 } 2135 } 2136 } 2137 } 2138 return false; 2139 } 2140 2141 2142 // testSIV - 2143 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i] 2144 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and 2145 // a2 are constant, we attack it with an SIV test. While they can all be 2146 // solved with the Exact SIV test, it's worthwhile to use simpler tests when 2147 // they apply; they're cheaper and sometimes more precise. 2148 // 2149 // Return true if dependence disproved. 2150 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level, 2151 FullDependence &Result, Constraint &NewConstraint, 2152 const SCEV *&SplitIter) const { 2153 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n"); 2154 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n"); 2155 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); 2156 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); 2157 if (SrcAddRec && DstAddRec) { 2158 const SCEV *SrcConst = SrcAddRec->getStart(); 2159 const SCEV *DstConst = DstAddRec->getStart(); 2160 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); 2161 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); 2162 const Loop *CurLoop = SrcAddRec->getLoop(); 2163 assert(CurLoop == DstAddRec->getLoop() && 2164 "both loops in SIV should be same"); 2165 Level = mapSrcLoop(CurLoop); 2166 bool disproven; 2167 if (SrcCoeff == DstCoeff) 2168 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, 2169 Level, Result, NewConstraint); 2170 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff)) 2171 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, 2172 Level, Result, NewConstraint, SplitIter); 2173 else 2174 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, 2175 Level, Result, NewConstraint); 2176 return disproven || 2177 gcdMIVtest(Src, Dst, Result) || 2178 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop); 2179 } 2180 if (SrcAddRec) { 2181 const SCEV *SrcConst = SrcAddRec->getStart(); 2182 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); 2183 const SCEV *DstConst = Dst; 2184 const Loop *CurLoop = SrcAddRec->getLoop(); 2185 Level = mapSrcLoop(CurLoop); 2186 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, 2187 Level, Result, NewConstraint) || 2188 gcdMIVtest(Src, Dst, Result); 2189 } 2190 if (DstAddRec) { 2191 const SCEV *DstConst = DstAddRec->getStart(); 2192 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); 2193 const SCEV *SrcConst = Src; 2194 const Loop *CurLoop = DstAddRec->getLoop(); 2195 Level = mapDstLoop(CurLoop); 2196 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, 2197 CurLoop, Level, Result, NewConstraint) || 2198 gcdMIVtest(Src, Dst, Result); 2199 } 2200 llvm_unreachable("SIV test expected at least one AddRec"); 2201 return false; 2202 } 2203 2204 2205 // testRDIV - 2206 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] 2207 // where i and j are induction variables, c1 and c2 are loop invariant, 2208 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation 2209 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test. 2210 // It doesn't make sense to talk about distance or direction in this case, 2211 // so there's no point in making special versions of the Strong SIV test or 2212 // the Weak-crossing SIV test. 2213 // 2214 // With minor algebra, this test can also be used for things like 2215 // [c1 + a1*i + a2*j][c2]. 2216 // 2217 // Return true if dependence disproved. 2218 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst, 2219 FullDependence &Result) const { 2220 // we have 3 possible situations here: 2221 // 1) [a*i + b] and [c*j + d] 2222 // 2) [a*i + c*j + b] and [d] 2223 // 3) [b] and [a*i + c*j + d] 2224 // We need to find what we've got and get organized 2225 2226 const SCEV *SrcConst, *DstConst; 2227 const SCEV *SrcCoeff, *DstCoeff; 2228 const Loop *SrcLoop, *DstLoop; 2229 2230 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n"); 2231 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n"); 2232 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); 2233 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); 2234 if (SrcAddRec && DstAddRec) { 2235 SrcConst = SrcAddRec->getStart(); 2236 SrcCoeff = SrcAddRec->getStepRecurrence(*SE); 2237 SrcLoop = SrcAddRec->getLoop(); 2238 DstConst = DstAddRec->getStart(); 2239 DstCoeff = DstAddRec->getStepRecurrence(*SE); 2240 DstLoop = DstAddRec->getLoop(); 2241 } 2242 else if (SrcAddRec) { 2243 if (const SCEVAddRecExpr *tmpAddRec = 2244 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) { 2245 SrcConst = tmpAddRec->getStart(); 2246 SrcCoeff = tmpAddRec->getStepRecurrence(*SE); 2247 SrcLoop = tmpAddRec->getLoop(); 2248 DstConst = Dst; 2249 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE)); 2250 DstLoop = SrcAddRec->getLoop(); 2251 } 2252 else 2253 llvm_unreachable("RDIV reached by surprising SCEVs"); 2254 } 2255 else if (DstAddRec) { 2256 if (const SCEVAddRecExpr *tmpAddRec = 2257 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) { 2258 DstConst = tmpAddRec->getStart(); 2259 DstCoeff = tmpAddRec->getStepRecurrence(*SE); 2260 DstLoop = tmpAddRec->getLoop(); 2261 SrcConst = Src; 2262 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE)); 2263 SrcLoop = DstAddRec->getLoop(); 2264 } 2265 else 2266 llvm_unreachable("RDIV reached by surprising SCEVs"); 2267 } 2268 else 2269 llvm_unreachable("RDIV expected at least one AddRec"); 2270 return exactRDIVtest(SrcCoeff, DstCoeff, 2271 SrcConst, DstConst, 2272 SrcLoop, DstLoop, 2273 Result) || 2274 gcdMIVtest(Src, Dst, Result) || 2275 symbolicRDIVtest(SrcCoeff, DstCoeff, 2276 SrcConst, DstConst, 2277 SrcLoop, DstLoop); 2278 } 2279 2280 2281 // Tests the single-subscript MIV pair (Src and Dst) for dependence. 2282 // Return true if dependence disproved. 2283 // Can sometimes refine direction vectors. 2284 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst, 2285 const SmallBitVector &Loops, 2286 FullDependence &Result) const { 2287 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n"); 2288 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n"); 2289 Result.Consistent = false; 2290 return gcdMIVtest(Src, Dst, Result) || 2291 banerjeeMIVtest(Src, Dst, Loops, Result); 2292 } 2293 2294 2295 // Given a product, e.g., 10*X*Y, returns the first constant operand, 2296 // in this case 10. If there is no constant part, returns NULL. 2297 static 2298 const SCEVConstant *getConstantPart(const SCEV *Expr) { 2299 if (const auto *Constant = dyn_cast<SCEVConstant>(Expr)) 2300 return Constant; 2301 else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr)) 2302 if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0))) 2303 return Constant; 2304 return nullptr; 2305 } 2306 2307 2308 //===----------------------------------------------------------------------===// 2309 // gcdMIVtest - 2310 // Tests an MIV subscript pair for dependence. 2311 // Returns true if any possible dependence is disproved. 2312 // Marks the result as inconsistent. 2313 // Can sometimes disprove the equal direction for 1 or more loops, 2314 // as discussed in Michael Wolfe's book, 2315 // High Performance Compilers for Parallel Computing, page 235. 2316 // 2317 // We spend some effort (code!) to handle cases like 2318 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables, 2319 // but M and N are just loop-invariant variables. 2320 // This should help us handle linearized subscripts; 2321 // also makes this test a useful backup to the various SIV tests. 2322 // 2323 // It occurs to me that the presence of loop-invariant variables 2324 // changes the nature of the test from "greatest common divisor" 2325 // to "a common divisor". 2326 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst, 2327 FullDependence &Result) const { 2328 LLVM_DEBUG(dbgs() << "starting gcd\n"); 2329 ++GCDapplications; 2330 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType()); 2331 APInt RunningGCD = APInt::getNullValue(BitWidth); 2332 2333 // Examine Src coefficients. 2334 // Compute running GCD and record source constant. 2335 // Because we're looking for the constant at the end of the chain, 2336 // we can't quit the loop just because the GCD == 1. 2337 const SCEV *Coefficients = Src; 2338 while (const SCEVAddRecExpr *AddRec = 2339 dyn_cast<SCEVAddRecExpr>(Coefficients)) { 2340 const SCEV *Coeff = AddRec->getStepRecurrence(*SE); 2341 // If the coefficient is the product of a constant and other stuff, 2342 // we can use the constant in the GCD computation. 2343 const auto *Constant = getConstantPart(Coeff); 2344 if (!Constant) 2345 return false; 2346 APInt ConstCoeff = Constant->getAPInt(); 2347 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2348 Coefficients = AddRec->getStart(); 2349 } 2350 const SCEV *SrcConst = Coefficients; 2351 2352 // Examine Dst coefficients. 2353 // Compute running GCD and record destination constant. 2354 // Because we're looking for the constant at the end of the chain, 2355 // we can't quit the loop just because the GCD == 1. 2356 Coefficients = Dst; 2357 while (const SCEVAddRecExpr *AddRec = 2358 dyn_cast<SCEVAddRecExpr>(Coefficients)) { 2359 const SCEV *Coeff = AddRec->getStepRecurrence(*SE); 2360 // If the coefficient is the product of a constant and other stuff, 2361 // we can use the constant in the GCD computation. 2362 const auto *Constant = getConstantPart(Coeff); 2363 if (!Constant) 2364 return false; 2365 APInt ConstCoeff = Constant->getAPInt(); 2366 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2367 Coefficients = AddRec->getStart(); 2368 } 2369 const SCEV *DstConst = Coefficients; 2370 2371 APInt ExtraGCD = APInt::getNullValue(BitWidth); 2372 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 2373 LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n"); 2374 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta); 2375 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) { 2376 // If Delta is a sum of products, we may be able to make further progress. 2377 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) { 2378 const SCEV *Operand = Sum->getOperand(Op); 2379 if (isa<SCEVConstant>(Operand)) { 2380 assert(!Constant && "Surprised to find multiple constants"); 2381 Constant = cast<SCEVConstant>(Operand); 2382 } 2383 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) { 2384 // Search for constant operand to participate in GCD; 2385 // If none found; return false. 2386 const SCEVConstant *ConstOp = getConstantPart(Product); 2387 if (!ConstOp) 2388 return false; 2389 APInt ConstOpValue = ConstOp->getAPInt(); 2390 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD, 2391 ConstOpValue.abs()); 2392 } 2393 else 2394 return false; 2395 } 2396 } 2397 if (!Constant) 2398 return false; 2399 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt(); 2400 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n"); 2401 if (ConstDelta == 0) 2402 return false; 2403 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD); 2404 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n"); 2405 APInt Remainder = ConstDelta.srem(RunningGCD); 2406 if (Remainder != 0) { 2407 ++GCDindependence; 2408 return true; 2409 } 2410 2411 // Try to disprove equal directions. 2412 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1], 2413 // the code above can't disprove the dependence because the GCD = 1. 2414 // So we consider what happen if i = i' and what happens if j = j'. 2415 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1], 2416 // which is infeasible, so we can disallow the = direction for the i level. 2417 // Setting j = j' doesn't help matters, so we end up with a direction vector 2418 // of [<>, *] 2419 // 2420 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5], 2421 // we need to remember that the constant part is 5 and the RunningGCD should 2422 // be initialized to ExtraGCD = 30. 2423 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n'); 2424 2425 bool Improved = false; 2426 Coefficients = Src; 2427 while (const SCEVAddRecExpr *AddRec = 2428 dyn_cast<SCEVAddRecExpr>(Coefficients)) { 2429 Coefficients = AddRec->getStart(); 2430 const Loop *CurLoop = AddRec->getLoop(); 2431 RunningGCD = ExtraGCD; 2432 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE); 2433 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff); 2434 const SCEV *Inner = Src; 2435 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { 2436 AddRec = cast<SCEVAddRecExpr>(Inner); 2437 const SCEV *Coeff = AddRec->getStepRecurrence(*SE); 2438 if (CurLoop == AddRec->getLoop()) 2439 ; // SrcCoeff == Coeff 2440 else { 2441 // If the coefficient is the product of a constant and other stuff, 2442 // we can use the constant in the GCD computation. 2443 Constant = getConstantPart(Coeff); 2444 if (!Constant) 2445 return false; 2446 APInt ConstCoeff = Constant->getAPInt(); 2447 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2448 } 2449 Inner = AddRec->getStart(); 2450 } 2451 Inner = Dst; 2452 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { 2453 AddRec = cast<SCEVAddRecExpr>(Inner); 2454 const SCEV *Coeff = AddRec->getStepRecurrence(*SE); 2455 if (CurLoop == AddRec->getLoop()) 2456 DstCoeff = Coeff; 2457 else { 2458 // If the coefficient is the product of a constant and other stuff, 2459 // we can use the constant in the GCD computation. 2460 Constant = getConstantPart(Coeff); 2461 if (!Constant) 2462 return false; 2463 APInt ConstCoeff = Constant->getAPInt(); 2464 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2465 } 2466 Inner = AddRec->getStart(); 2467 } 2468 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff); 2469 // If the coefficient is the product of a constant and other stuff, 2470 // we can use the constant in the GCD computation. 2471 Constant = getConstantPart(Delta); 2472 if (!Constant) 2473 // The difference of the two coefficients might not be a product 2474 // or constant, in which case we give up on this direction. 2475 continue; 2476 APInt ConstCoeff = Constant->getAPInt(); 2477 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2478 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n"); 2479 if (RunningGCD != 0) { 2480 Remainder = ConstDelta.srem(RunningGCD); 2481 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n"); 2482 if (Remainder != 0) { 2483 unsigned Level = mapSrcLoop(CurLoop); 2484 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ); 2485 Improved = true; 2486 } 2487 } 2488 } 2489 if (Improved) 2490 ++GCDsuccesses; 2491 LLVM_DEBUG(dbgs() << "all done\n"); 2492 return false; 2493 } 2494 2495 2496 //===----------------------------------------------------------------------===// 2497 // banerjeeMIVtest - 2498 // Use Banerjee's Inequalities to test an MIV subscript pair. 2499 // (Wolfe, in the race-car book, calls this the Extreme Value Test.) 2500 // Generally follows the discussion in Section 2.5.2 of 2501 // 2502 // Optimizing Supercompilers for Supercomputers 2503 // Michael Wolfe 2504 // 2505 // The inequalities given on page 25 are simplified in that loops are 2506 // normalized so that the lower bound is always 0 and the stride is always 1. 2507 // For example, Wolfe gives 2508 // 2509 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k 2510 // 2511 // where A_k is the coefficient of the kth index in the source subscript, 2512 // B_k is the coefficient of the kth index in the destination subscript, 2513 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth 2514 // index, and N_k is the stride of the kth index. Since all loops are normalized 2515 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the 2516 // equation to 2517 // 2518 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1 2519 // = (A^-_k - B_k)^- (U_k - 1) - B_k 2520 // 2521 // Similar simplifications are possible for the other equations. 2522 // 2523 // When we can't determine the number of iterations for a loop, 2524 // we use NULL as an indicator for the worst case, infinity. 2525 // When computing the upper bound, NULL denotes +inf; 2526 // for the lower bound, NULL denotes -inf. 2527 // 2528 // Return true if dependence disproved. 2529 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst, 2530 const SmallBitVector &Loops, 2531 FullDependence &Result) const { 2532 LLVM_DEBUG(dbgs() << "starting Banerjee\n"); 2533 ++BanerjeeApplications; 2534 LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n'); 2535 const SCEV *A0; 2536 CoefficientInfo *A = collectCoeffInfo(Src, true, A0); 2537 LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n'); 2538 const SCEV *B0; 2539 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0); 2540 BoundInfo *Bound = new BoundInfo[MaxLevels + 1]; 2541 const SCEV *Delta = SE->getMinusSCEV(B0, A0); 2542 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n'); 2543 2544 // Compute bounds for all the * directions. 2545 LLVM_DEBUG(dbgs() << "\tBounds[*]\n"); 2546 for (unsigned K = 1; K <= MaxLevels; ++K) { 2547 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations; 2548 Bound[K].Direction = Dependence::DVEntry::ALL; 2549 Bound[K].DirSet = Dependence::DVEntry::NONE; 2550 findBoundsALL(A, B, Bound, K); 2551 #ifndef NDEBUG 2552 LLVM_DEBUG(dbgs() << "\t " << K << '\t'); 2553 if (Bound[K].Lower[Dependence::DVEntry::ALL]) 2554 LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t'); 2555 else 2556 LLVM_DEBUG(dbgs() << "-inf\t"); 2557 if (Bound[K].Upper[Dependence::DVEntry::ALL]) 2558 LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n'); 2559 else 2560 LLVM_DEBUG(dbgs() << "+inf\n"); 2561 #endif 2562 } 2563 2564 // Test the *, *, *, ... case. 2565 bool Disproved = false; 2566 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) { 2567 // Explore the direction vector hierarchy. 2568 unsigned DepthExpanded = 0; 2569 unsigned NewDeps = exploreDirections(1, A, B, Bound, 2570 Loops, DepthExpanded, Delta); 2571 if (NewDeps > 0) { 2572 bool Improved = false; 2573 for (unsigned K = 1; K <= CommonLevels; ++K) { 2574 if (Loops[K]) { 2575 unsigned Old = Result.DV[K - 1].Direction; 2576 Result.DV[K - 1].Direction = Old & Bound[K].DirSet; 2577 Improved |= Old != Result.DV[K - 1].Direction; 2578 if (!Result.DV[K - 1].Direction) { 2579 Improved = false; 2580 Disproved = true; 2581 break; 2582 } 2583 } 2584 } 2585 if (Improved) 2586 ++BanerjeeSuccesses; 2587 } 2588 else { 2589 ++BanerjeeIndependence; 2590 Disproved = true; 2591 } 2592 } 2593 else { 2594 ++BanerjeeIndependence; 2595 Disproved = true; 2596 } 2597 delete [] Bound; 2598 delete [] A; 2599 delete [] B; 2600 return Disproved; 2601 } 2602 2603 2604 // Hierarchically expands the direction vector 2605 // search space, combining the directions of discovered dependences 2606 // in the DirSet field of Bound. Returns the number of distinct 2607 // dependences discovered. If the dependence is disproved, 2608 // it will return 0. 2609 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A, 2610 CoefficientInfo *B, BoundInfo *Bound, 2611 const SmallBitVector &Loops, 2612 unsigned &DepthExpanded, 2613 const SCEV *Delta) const { 2614 if (Level > CommonLevels) { 2615 // record result 2616 LLVM_DEBUG(dbgs() << "\t["); 2617 for (unsigned K = 1; K <= CommonLevels; ++K) { 2618 if (Loops[K]) { 2619 Bound[K].DirSet |= Bound[K].Direction; 2620 #ifndef NDEBUG 2621 switch (Bound[K].Direction) { 2622 case Dependence::DVEntry::LT: 2623 LLVM_DEBUG(dbgs() << " <"); 2624 break; 2625 case Dependence::DVEntry::EQ: 2626 LLVM_DEBUG(dbgs() << " ="); 2627 break; 2628 case Dependence::DVEntry::GT: 2629 LLVM_DEBUG(dbgs() << " >"); 2630 break; 2631 case Dependence::DVEntry::ALL: 2632 LLVM_DEBUG(dbgs() << " *"); 2633 break; 2634 default: 2635 llvm_unreachable("unexpected Bound[K].Direction"); 2636 } 2637 #endif 2638 } 2639 } 2640 LLVM_DEBUG(dbgs() << " ]\n"); 2641 return 1; 2642 } 2643 if (Loops[Level]) { 2644 if (Level > DepthExpanded) { 2645 DepthExpanded = Level; 2646 // compute bounds for <, =, > at current level 2647 findBoundsLT(A, B, Bound, Level); 2648 findBoundsGT(A, B, Bound, Level); 2649 findBoundsEQ(A, B, Bound, Level); 2650 #ifndef NDEBUG 2651 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n'); 2652 LLVM_DEBUG(dbgs() << "\t <\t"); 2653 if (Bound[Level].Lower[Dependence::DVEntry::LT]) 2654 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] 2655 << '\t'); 2656 else 2657 LLVM_DEBUG(dbgs() << "-inf\t"); 2658 if (Bound[Level].Upper[Dependence::DVEntry::LT]) 2659 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] 2660 << '\n'); 2661 else 2662 LLVM_DEBUG(dbgs() << "+inf\n"); 2663 LLVM_DEBUG(dbgs() << "\t =\t"); 2664 if (Bound[Level].Lower[Dependence::DVEntry::EQ]) 2665 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] 2666 << '\t'); 2667 else 2668 LLVM_DEBUG(dbgs() << "-inf\t"); 2669 if (Bound[Level].Upper[Dependence::DVEntry::EQ]) 2670 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] 2671 << '\n'); 2672 else 2673 LLVM_DEBUG(dbgs() << "+inf\n"); 2674 LLVM_DEBUG(dbgs() << "\t >\t"); 2675 if (Bound[Level].Lower[Dependence::DVEntry::GT]) 2676 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] 2677 << '\t'); 2678 else 2679 LLVM_DEBUG(dbgs() << "-inf\t"); 2680 if (Bound[Level].Upper[Dependence::DVEntry::GT]) 2681 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] 2682 << '\n'); 2683 else 2684 LLVM_DEBUG(dbgs() << "+inf\n"); 2685 #endif 2686 } 2687 2688 unsigned NewDeps = 0; 2689 2690 // test bounds for <, *, *, ... 2691 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta)) 2692 NewDeps += exploreDirections(Level + 1, A, B, Bound, 2693 Loops, DepthExpanded, Delta); 2694 2695 // Test bounds for =, *, *, ... 2696 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta)) 2697 NewDeps += exploreDirections(Level + 1, A, B, Bound, 2698 Loops, DepthExpanded, Delta); 2699 2700 // test bounds for >, *, *, ... 2701 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta)) 2702 NewDeps += exploreDirections(Level + 1, A, B, Bound, 2703 Loops, DepthExpanded, Delta); 2704 2705 Bound[Level].Direction = Dependence::DVEntry::ALL; 2706 return NewDeps; 2707 } 2708 else 2709 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta); 2710 } 2711 2712 2713 // Returns true iff the current bounds are plausible. 2714 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level, 2715 BoundInfo *Bound, const SCEV *Delta) const { 2716 Bound[Level].Direction = DirKind; 2717 if (const SCEV *LowerBound = getLowerBound(Bound)) 2718 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta)) 2719 return false; 2720 if (const SCEV *UpperBound = getUpperBound(Bound)) 2721 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound)) 2722 return false; 2723 return true; 2724 } 2725 2726 2727 // Computes the upper and lower bounds for level K 2728 // using the * direction. Records them in Bound. 2729 // Wolfe gives the equations 2730 // 2731 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k 2732 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k 2733 // 2734 // Since we normalize loops, we can simplify these equations to 2735 // 2736 // LB^*_k = (A^-_k - B^+_k)U_k 2737 // UB^*_k = (A^+_k - B^-_k)U_k 2738 // 2739 // We must be careful to handle the case where the upper bound is unknown. 2740 // Note that the lower bound is always <= 0 2741 // and the upper bound is always >= 0. 2742 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B, 2743 BoundInfo *Bound, unsigned K) const { 2744 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity. 2745 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity. 2746 if (Bound[K].Iterations) { 2747 Bound[K].Lower[Dependence::DVEntry::ALL] = 2748 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart), 2749 Bound[K].Iterations); 2750 Bound[K].Upper[Dependence::DVEntry::ALL] = 2751 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart), 2752 Bound[K].Iterations); 2753 } 2754 else { 2755 // If the difference is 0, we won't need to know the number of iterations. 2756 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart)) 2757 Bound[K].Lower[Dependence::DVEntry::ALL] = 2758 SE->getZero(A[K].Coeff->getType()); 2759 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart)) 2760 Bound[K].Upper[Dependence::DVEntry::ALL] = 2761 SE->getZero(A[K].Coeff->getType()); 2762 } 2763 } 2764 2765 2766 // Computes the upper and lower bounds for level K 2767 // using the = direction. Records them in Bound. 2768 // Wolfe gives the equations 2769 // 2770 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k 2771 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k 2772 // 2773 // Since we normalize loops, we can simplify these equations to 2774 // 2775 // LB^=_k = (A_k - B_k)^- U_k 2776 // UB^=_k = (A_k - B_k)^+ U_k 2777 // 2778 // We must be careful to handle the case where the upper bound is unknown. 2779 // Note that the lower bound is always <= 0 2780 // and the upper bound is always >= 0. 2781 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B, 2782 BoundInfo *Bound, unsigned K) const { 2783 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity. 2784 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity. 2785 if (Bound[K].Iterations) { 2786 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); 2787 const SCEV *NegativePart = getNegativePart(Delta); 2788 Bound[K].Lower[Dependence::DVEntry::EQ] = 2789 SE->getMulExpr(NegativePart, Bound[K].Iterations); 2790 const SCEV *PositivePart = getPositivePart(Delta); 2791 Bound[K].Upper[Dependence::DVEntry::EQ] = 2792 SE->getMulExpr(PositivePart, Bound[K].Iterations); 2793 } 2794 else { 2795 // If the positive/negative part of the difference is 0, 2796 // we won't need to know the number of iterations. 2797 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); 2798 const SCEV *NegativePart = getNegativePart(Delta); 2799 if (NegativePart->isZero()) 2800 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero 2801 const SCEV *PositivePart = getPositivePart(Delta); 2802 if (PositivePart->isZero()) 2803 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero 2804 } 2805 } 2806 2807 2808 // Computes the upper and lower bounds for level K 2809 // using the < direction. Records them in Bound. 2810 // Wolfe gives the equations 2811 // 2812 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k 2813 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k 2814 // 2815 // Since we normalize loops, we can simplify these equations to 2816 // 2817 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k 2818 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k 2819 // 2820 // We must be careful to handle the case where the upper bound is unknown. 2821 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B, 2822 BoundInfo *Bound, unsigned K) const { 2823 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity. 2824 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity. 2825 if (Bound[K].Iterations) { 2826 const SCEV *Iter_1 = SE->getMinusSCEV( 2827 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); 2828 const SCEV *NegPart = 2829 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); 2830 Bound[K].Lower[Dependence::DVEntry::LT] = 2831 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff); 2832 const SCEV *PosPart = 2833 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); 2834 Bound[K].Upper[Dependence::DVEntry::LT] = 2835 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff); 2836 } 2837 else { 2838 // If the positive/negative part of the difference is 0, 2839 // we won't need to know the number of iterations. 2840 const SCEV *NegPart = 2841 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); 2842 if (NegPart->isZero()) 2843 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); 2844 const SCEV *PosPart = 2845 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); 2846 if (PosPart->isZero()) 2847 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); 2848 } 2849 } 2850 2851 2852 // Computes the upper and lower bounds for level K 2853 // using the > direction. Records them in Bound. 2854 // Wolfe gives the equations 2855 // 2856 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k 2857 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k 2858 // 2859 // Since we normalize loops, we can simplify these equations to 2860 // 2861 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k 2862 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k 2863 // 2864 // We must be careful to handle the case where the upper bound is unknown. 2865 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B, 2866 BoundInfo *Bound, unsigned K) const { 2867 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity. 2868 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity. 2869 if (Bound[K].Iterations) { 2870 const SCEV *Iter_1 = SE->getMinusSCEV( 2871 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); 2872 const SCEV *NegPart = 2873 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); 2874 Bound[K].Lower[Dependence::DVEntry::GT] = 2875 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff); 2876 const SCEV *PosPart = 2877 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); 2878 Bound[K].Upper[Dependence::DVEntry::GT] = 2879 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff); 2880 } 2881 else { 2882 // If the positive/negative part of the difference is 0, 2883 // we won't need to know the number of iterations. 2884 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); 2885 if (NegPart->isZero()) 2886 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff; 2887 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); 2888 if (PosPart->isZero()) 2889 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff; 2890 } 2891 } 2892 2893 2894 // X^+ = max(X, 0) 2895 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const { 2896 return SE->getSMaxExpr(X, SE->getZero(X->getType())); 2897 } 2898 2899 2900 // X^- = min(X, 0) 2901 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const { 2902 return SE->getSMinExpr(X, SE->getZero(X->getType())); 2903 } 2904 2905 2906 // Walks through the subscript, 2907 // collecting each coefficient, the associated loop bounds, 2908 // and recording its positive and negative parts for later use. 2909 DependenceInfo::CoefficientInfo * 2910 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag, 2911 const SCEV *&Constant) const { 2912 const SCEV *Zero = SE->getZero(Subscript->getType()); 2913 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1]; 2914 for (unsigned K = 1; K <= MaxLevels; ++K) { 2915 CI[K].Coeff = Zero; 2916 CI[K].PosPart = Zero; 2917 CI[K].NegPart = Zero; 2918 CI[K].Iterations = nullptr; 2919 } 2920 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) { 2921 const Loop *L = AddRec->getLoop(); 2922 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L); 2923 CI[K].Coeff = AddRec->getStepRecurrence(*SE); 2924 CI[K].PosPart = getPositivePart(CI[K].Coeff); 2925 CI[K].NegPart = getNegativePart(CI[K].Coeff); 2926 CI[K].Iterations = collectUpperBound(L, Subscript->getType()); 2927 Subscript = AddRec->getStart(); 2928 } 2929 Constant = Subscript; 2930 #ifndef NDEBUG 2931 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n"); 2932 for (unsigned K = 1; K <= MaxLevels; ++K) { 2933 LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff); 2934 LLVM_DEBUG(dbgs() << "\tPos Part = "); 2935 LLVM_DEBUG(dbgs() << *CI[K].PosPart); 2936 LLVM_DEBUG(dbgs() << "\tNeg Part = "); 2937 LLVM_DEBUG(dbgs() << *CI[K].NegPart); 2938 LLVM_DEBUG(dbgs() << "\tUpper Bound = "); 2939 if (CI[K].Iterations) 2940 LLVM_DEBUG(dbgs() << *CI[K].Iterations); 2941 else 2942 LLVM_DEBUG(dbgs() << "+inf"); 2943 LLVM_DEBUG(dbgs() << '\n'); 2944 } 2945 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n'); 2946 #endif 2947 return CI; 2948 } 2949 2950 2951 // Looks through all the bounds info and 2952 // computes the lower bound given the current direction settings 2953 // at each level. If the lower bound for any level is -inf, 2954 // the result is -inf. 2955 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const { 2956 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction]; 2957 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { 2958 if (Bound[K].Lower[Bound[K].Direction]) 2959 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]); 2960 else 2961 Sum = nullptr; 2962 } 2963 return Sum; 2964 } 2965 2966 2967 // Looks through all the bounds info and 2968 // computes the upper bound given the current direction settings 2969 // at each level. If the upper bound at any level is +inf, 2970 // the result is +inf. 2971 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const { 2972 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction]; 2973 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { 2974 if (Bound[K].Upper[Bound[K].Direction]) 2975 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]); 2976 else 2977 Sum = nullptr; 2978 } 2979 return Sum; 2980 } 2981 2982 2983 //===----------------------------------------------------------------------===// 2984 // Constraint manipulation for Delta test. 2985 2986 // Given a linear SCEV, 2987 // return the coefficient (the step) 2988 // corresponding to the specified loop. 2989 // If there isn't one, return 0. 2990 // For example, given a*i + b*j + c*k, finding the coefficient 2991 // corresponding to the j loop would yield b. 2992 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr, 2993 const Loop *TargetLoop) const { 2994 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); 2995 if (!AddRec) 2996 return SE->getZero(Expr->getType()); 2997 if (AddRec->getLoop() == TargetLoop) 2998 return AddRec->getStepRecurrence(*SE); 2999 return findCoefficient(AddRec->getStart(), TargetLoop); 3000 } 3001 3002 3003 // Given a linear SCEV, 3004 // return the SCEV given by zeroing out the coefficient 3005 // corresponding to the specified loop. 3006 // For example, given a*i + b*j + c*k, zeroing the coefficient 3007 // corresponding to the j loop would yield a*i + c*k. 3008 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr, 3009 const Loop *TargetLoop) const { 3010 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); 3011 if (!AddRec) 3012 return Expr; // ignore 3013 if (AddRec->getLoop() == TargetLoop) 3014 return AddRec->getStart(); 3015 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop), 3016 AddRec->getStepRecurrence(*SE), 3017 AddRec->getLoop(), 3018 AddRec->getNoWrapFlags()); 3019 } 3020 3021 3022 // Given a linear SCEV Expr, 3023 // return the SCEV given by adding some Value to the 3024 // coefficient corresponding to the specified TargetLoop. 3025 // For example, given a*i + b*j + c*k, adding 1 to the coefficient 3026 // corresponding to the j loop would yield a*i + (b+1)*j + c*k. 3027 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr, 3028 const Loop *TargetLoop, 3029 const SCEV *Value) const { 3030 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); 3031 if (!AddRec) // create a new addRec 3032 return SE->getAddRecExpr(Expr, 3033 Value, 3034 TargetLoop, 3035 SCEV::FlagAnyWrap); // Worst case, with no info. 3036 if (AddRec->getLoop() == TargetLoop) { 3037 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value); 3038 if (Sum->isZero()) 3039 return AddRec->getStart(); 3040 return SE->getAddRecExpr(AddRec->getStart(), 3041 Sum, 3042 AddRec->getLoop(), 3043 AddRec->getNoWrapFlags()); 3044 } 3045 if (SE->isLoopInvariant(AddRec, TargetLoop)) 3046 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap); 3047 return SE->getAddRecExpr( 3048 addToCoefficient(AddRec->getStart(), TargetLoop, Value), 3049 AddRec->getStepRecurrence(*SE), AddRec->getLoop(), 3050 AddRec->getNoWrapFlags()); 3051 } 3052 3053 3054 // Review the constraints, looking for opportunities 3055 // to simplify a subscript pair (Src and Dst). 3056 // Return true if some simplification occurs. 3057 // If the simplification isn't exact (that is, if it is conservative 3058 // in terms of dependence), set consistent to false. 3059 // Corresponds to Figure 5 from the paper 3060 // 3061 // Practical Dependence Testing 3062 // Goff, Kennedy, Tseng 3063 // PLDI 1991 3064 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst, 3065 SmallBitVector &Loops, 3066 SmallVectorImpl<Constraint> &Constraints, 3067 bool &Consistent) { 3068 bool Result = false; 3069 for (unsigned LI : Loops.set_bits()) { 3070 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is"); 3071 LLVM_DEBUG(Constraints[LI].dump(dbgs())); 3072 if (Constraints[LI].isDistance()) 3073 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent); 3074 else if (Constraints[LI].isLine()) 3075 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent); 3076 else if (Constraints[LI].isPoint()) 3077 Result |= propagatePoint(Src, Dst, Constraints[LI]); 3078 } 3079 return Result; 3080 } 3081 3082 3083 // Attempt to propagate a distance 3084 // constraint into a subscript pair (Src and Dst). 3085 // Return true if some simplification occurs. 3086 // If the simplification isn't exact (that is, if it is conservative 3087 // in terms of dependence), set consistent to false. 3088 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst, 3089 Constraint &CurConstraint, 3090 bool &Consistent) { 3091 const Loop *CurLoop = CurConstraint.getAssociatedLoop(); 3092 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); 3093 const SCEV *A_K = findCoefficient(Src, CurLoop); 3094 if (A_K->isZero()) 3095 return false; 3096 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD()); 3097 Src = SE->getMinusSCEV(Src, DA_K); 3098 Src = zeroCoefficient(Src, CurLoop); 3099 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); 3100 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); 3101 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K)); 3102 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); 3103 if (!findCoefficient(Dst, CurLoop)->isZero()) 3104 Consistent = false; 3105 return true; 3106 } 3107 3108 3109 // Attempt to propagate a line 3110 // constraint into a subscript pair (Src and Dst). 3111 // Return true if some simplification occurs. 3112 // If the simplification isn't exact (that is, if it is conservative 3113 // in terms of dependence), set consistent to false. 3114 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst, 3115 Constraint &CurConstraint, 3116 bool &Consistent) { 3117 const Loop *CurLoop = CurConstraint.getAssociatedLoop(); 3118 const SCEV *A = CurConstraint.getA(); 3119 const SCEV *B = CurConstraint.getB(); 3120 const SCEV *C = CurConstraint.getC(); 3121 LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C 3122 << "\n"); 3123 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n"); 3124 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n"); 3125 if (A->isZero()) { 3126 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B); 3127 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); 3128 if (!Bconst || !Cconst) return false; 3129 APInt Beta = Bconst->getAPInt(); 3130 APInt Charlie = Cconst->getAPInt(); 3131 APInt CdivB = Charlie.sdiv(Beta); 3132 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B"); 3133 const SCEV *AP_K = findCoefficient(Dst, CurLoop); 3134 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); 3135 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); 3136 Dst = zeroCoefficient(Dst, CurLoop); 3137 if (!findCoefficient(Src, CurLoop)->isZero()) 3138 Consistent = false; 3139 } 3140 else if (B->isZero()) { 3141 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); 3142 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); 3143 if (!Aconst || !Cconst) return false; 3144 APInt Alpha = Aconst->getAPInt(); 3145 APInt Charlie = Cconst->getAPInt(); 3146 APInt CdivA = Charlie.sdiv(Alpha); 3147 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); 3148 const SCEV *A_K = findCoefficient(Src, CurLoop); 3149 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); 3150 Src = zeroCoefficient(Src, CurLoop); 3151 if (!findCoefficient(Dst, CurLoop)->isZero()) 3152 Consistent = false; 3153 } 3154 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) { 3155 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); 3156 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); 3157 if (!Aconst || !Cconst) return false; 3158 APInt Alpha = Aconst->getAPInt(); 3159 APInt Charlie = Cconst->getAPInt(); 3160 APInt CdivA = Charlie.sdiv(Alpha); 3161 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); 3162 const SCEV *A_K = findCoefficient(Src, CurLoop); 3163 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); 3164 Src = zeroCoefficient(Src, CurLoop); 3165 Dst = addToCoefficient(Dst, CurLoop, A_K); 3166 if (!findCoefficient(Dst, CurLoop)->isZero()) 3167 Consistent = false; 3168 } 3169 else { 3170 // paper is incorrect here, or perhaps just misleading 3171 const SCEV *A_K = findCoefficient(Src, CurLoop); 3172 Src = SE->getMulExpr(Src, A); 3173 Dst = SE->getMulExpr(Dst, A); 3174 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C)); 3175 Src = zeroCoefficient(Src, CurLoop); 3176 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B)); 3177 if (!findCoefficient(Dst, CurLoop)->isZero()) 3178 Consistent = false; 3179 } 3180 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n"); 3181 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n"); 3182 return true; 3183 } 3184 3185 3186 // Attempt to propagate a point 3187 // constraint into a subscript pair (Src and Dst). 3188 // Return true if some simplification occurs. 3189 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst, 3190 Constraint &CurConstraint) { 3191 const Loop *CurLoop = CurConstraint.getAssociatedLoop(); 3192 const SCEV *A_K = findCoefficient(Src, CurLoop); 3193 const SCEV *AP_K = findCoefficient(Dst, CurLoop); 3194 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX()); 3195 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY()); 3196 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); 3197 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K)); 3198 Src = zeroCoefficient(Src, CurLoop); 3199 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); 3200 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); 3201 Dst = zeroCoefficient(Dst, CurLoop); 3202 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); 3203 return true; 3204 } 3205 3206 3207 // Update direction vector entry based on the current constraint. 3208 void DependenceInfo::updateDirection(Dependence::DVEntry &Level, 3209 const Constraint &CurConstraint) const { 3210 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint ="); 3211 LLVM_DEBUG(CurConstraint.dump(dbgs())); 3212 if (CurConstraint.isAny()) 3213 ; // use defaults 3214 else if (CurConstraint.isDistance()) { 3215 // this one is consistent, the others aren't 3216 Level.Scalar = false; 3217 Level.Distance = CurConstraint.getD(); 3218 unsigned NewDirection = Dependence::DVEntry::NONE; 3219 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero 3220 NewDirection = Dependence::DVEntry::EQ; 3221 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive 3222 NewDirection |= Dependence::DVEntry::LT; 3223 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative 3224 NewDirection |= Dependence::DVEntry::GT; 3225 Level.Direction &= NewDirection; 3226 } 3227 else if (CurConstraint.isLine()) { 3228 Level.Scalar = false; 3229 Level.Distance = nullptr; 3230 // direction should be accurate 3231 } 3232 else if (CurConstraint.isPoint()) { 3233 Level.Scalar = false; 3234 Level.Distance = nullptr; 3235 unsigned NewDirection = Dependence::DVEntry::NONE; 3236 if (!isKnownPredicate(CmpInst::ICMP_NE, 3237 CurConstraint.getY(), 3238 CurConstraint.getX())) 3239 // if X may be = Y 3240 NewDirection |= Dependence::DVEntry::EQ; 3241 if (!isKnownPredicate(CmpInst::ICMP_SLE, 3242 CurConstraint.getY(), 3243 CurConstraint.getX())) 3244 // if Y may be > X 3245 NewDirection |= Dependence::DVEntry::LT; 3246 if (!isKnownPredicate(CmpInst::ICMP_SGE, 3247 CurConstraint.getY(), 3248 CurConstraint.getX())) 3249 // if Y may be < X 3250 NewDirection |= Dependence::DVEntry::GT; 3251 Level.Direction &= NewDirection; 3252 } 3253 else 3254 llvm_unreachable("constraint has unexpected kind"); 3255 } 3256 3257 /// Check if we can delinearize the subscripts. If the SCEVs representing the 3258 /// source and destination array references are recurrences on a nested loop, 3259 /// this function flattens the nested recurrences into separate recurrences 3260 /// for each loop level. 3261 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst, 3262 SmallVectorImpl<Subscript> &Pair) { 3263 assert(isLoadOrStore(Src) && "instruction is not load or store"); 3264 assert(isLoadOrStore(Dst) && "instruction is not load or store"); 3265 Value *SrcPtr = getLoadStorePointerOperand(Src); 3266 Value *DstPtr = getLoadStorePointerOperand(Dst); 3267 Loop *SrcLoop = LI->getLoopFor(Src->getParent()); 3268 Loop *DstLoop = LI->getLoopFor(Dst->getParent()); 3269 const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop); 3270 const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop); 3271 const SCEVUnknown *SrcBase = 3272 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); 3273 const SCEVUnknown *DstBase = 3274 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); 3275 3276 if (!SrcBase || !DstBase || SrcBase != DstBase) 3277 return false; 3278 3279 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts; 3280 3281 if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn, 3282 SrcSubscripts, DstSubscripts) && 3283 !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn, 3284 SrcSubscripts, DstSubscripts)) 3285 return false; 3286 3287 int Size = SrcSubscripts.size(); 3288 LLVM_DEBUG({ 3289 dbgs() << "\nSrcSubscripts: "; 3290 for (int I = 0; I < Size; I++) 3291 dbgs() << *SrcSubscripts[I]; 3292 dbgs() << "\nDstSubscripts: "; 3293 for (int I = 0; I < Size; I++) 3294 dbgs() << *DstSubscripts[I]; 3295 }); 3296 3297 // The delinearization transforms a single-subscript MIV dependence test into 3298 // a multi-subscript SIV dependence test that is easier to compute. So we 3299 // resize Pair to contain as many pairs of subscripts as the delinearization 3300 // has found, and then initialize the pairs following the delinearization. 3301 Pair.resize(Size); 3302 for (int I = 0; I < Size; ++I) { 3303 Pair[I].Src = SrcSubscripts[I]; 3304 Pair[I].Dst = DstSubscripts[I]; 3305 unifySubscriptType(&Pair[I]); 3306 } 3307 3308 return true; 3309 } 3310 3311 bool DependenceInfo::tryDelinearizeFixedSize( 3312 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn, 3313 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts, 3314 SmallVectorImpl<const SCEV *> &DstSubscripts) { 3315 3316 // In general we cannot safely assume that the subscripts recovered from GEPs 3317 // are in the range of values defined for their corresponding array 3318 // dimensions. For example some C language usage/interpretation make it 3319 // impossible to verify this at compile-time. As such we give up here unless 3320 // we can assume that the subscripts do not overlap into neighboring 3321 // dimensions and that the number of dimensions matches the number of 3322 // subscripts being recovered. 3323 if (!DisableDelinearizationChecks) 3324 return false; 3325 3326 Value *SrcPtr = getLoadStorePointerOperand(Src); 3327 Value *DstPtr = getLoadStorePointerOperand(Dst); 3328 const SCEVUnknown *SrcBase = 3329 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); 3330 const SCEVUnknown *DstBase = 3331 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); 3332 assert(SrcBase && DstBase && SrcBase == DstBase && 3333 "expected src and dst scev unknowns to be equal"); 3334 3335 // Check the simple case where the array dimensions are fixed size. 3336 auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr); 3337 auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr); 3338 if (!SrcGEP || !DstGEP) 3339 return false; 3340 3341 SmallVector<int, 4> SrcSizes, DstSizes; 3342 SE->getIndexExpressionsFromGEP(SrcGEP, SrcSubscripts, SrcSizes); 3343 SE->getIndexExpressionsFromGEP(DstGEP, DstSubscripts, DstSizes); 3344 3345 // Check that the two size arrays are non-empty and equal in length and 3346 // value. 3347 if (SrcSizes.empty() || SrcSubscripts.size() <= 1 || 3348 SrcSizes.size() != DstSizes.size() || 3349 !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) { 3350 SrcSubscripts.clear(); 3351 DstSubscripts.clear(); 3352 return false; 3353 } 3354 3355 Value *SrcBasePtr = SrcGEP->getOperand(0); 3356 Value *DstBasePtr = DstGEP->getOperand(0); 3357 while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr)) 3358 SrcBasePtr = PCast->getOperand(0); 3359 while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr)) 3360 DstBasePtr = PCast->getOperand(0); 3361 3362 // Check that for identical base pointers we do not miss index offsets 3363 // that have been added before this GEP is applied. 3364 if (SrcBasePtr == SrcBase->getValue() && DstBasePtr == DstBase->getValue()) { 3365 assert(SrcSubscripts.size() == DstSubscripts.size() && 3366 SrcSubscripts.size() == SrcSizes.size() + 1 && 3367 "Expected equal number of entries in the list of sizes and " 3368 "subscripts."); 3369 LLVM_DEBUG({ 3370 dbgs() << "Delinearized subscripts of fixed-size array\n" 3371 << "SrcGEP:" << *SrcGEP << "\n" 3372 << "DstGEP:" << *DstGEP << "\n"; 3373 }); 3374 return true; 3375 } 3376 3377 SrcSubscripts.clear(); 3378 DstSubscripts.clear(); 3379 return false; 3380 } 3381 3382 bool DependenceInfo::tryDelinearizeParametricSize( 3383 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn, 3384 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts, 3385 SmallVectorImpl<const SCEV *> &DstSubscripts) { 3386 3387 Value *SrcPtr = getLoadStorePointerOperand(Src); 3388 Value *DstPtr = getLoadStorePointerOperand(Dst); 3389 const SCEVUnknown *SrcBase = 3390 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); 3391 const SCEVUnknown *DstBase = 3392 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); 3393 assert(SrcBase && DstBase && SrcBase == DstBase && 3394 "expected src and dst scev unknowns to be equal"); 3395 3396 const SCEV *ElementSize = SE->getElementSize(Src); 3397 if (ElementSize != SE->getElementSize(Dst)) 3398 return false; 3399 3400 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase); 3401 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase); 3402 3403 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV); 3404 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV); 3405 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine()) 3406 return false; 3407 3408 // First step: collect parametric terms in both array references. 3409 SmallVector<const SCEV *, 4> Terms; 3410 SE->collectParametricTerms(SrcAR, Terms); 3411 SE->collectParametricTerms(DstAR, Terms); 3412 3413 // Second step: find subscript sizes. 3414 SmallVector<const SCEV *, 4> Sizes; 3415 SE->findArrayDimensions(Terms, Sizes, ElementSize); 3416 3417 // Third step: compute the access functions for each subscript. 3418 SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes); 3419 SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes); 3420 3421 // Fail when there is only a subscript: that's a linearized access function. 3422 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 || 3423 SrcSubscripts.size() != DstSubscripts.size()) 3424 return false; 3425 3426 size_t Size = SrcSubscripts.size(); 3427 3428 // Statically check that the array bounds are in-range. The first subscript we 3429 // don't have a size for and it cannot overflow into another subscript, so is 3430 // always safe. The others need to be 0 <= subscript[i] < bound, for both src 3431 // and dst. 3432 // FIXME: It may be better to record these sizes and add them as constraints 3433 // to the dependency checks. 3434 if (!DisableDelinearizationChecks) 3435 for (size_t I = 1; I < Size; ++I) { 3436 if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr)) 3437 return false; 3438 3439 if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1])) 3440 return false; 3441 3442 if (!isKnownNonNegative(DstSubscripts[I], DstPtr)) 3443 return false; 3444 3445 if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1])) 3446 return false; 3447 } 3448 3449 return true; 3450 } 3451 3452 //===----------------------------------------------------------------------===// 3453 3454 #ifndef NDEBUG 3455 // For debugging purposes, dump a small bit vector to dbgs(). 3456 static void dumpSmallBitVector(SmallBitVector &BV) { 3457 dbgs() << "{"; 3458 for (unsigned VI : BV.set_bits()) { 3459 dbgs() << VI; 3460 if (BV.find_next(VI) >= 0) 3461 dbgs() << ' '; 3462 } 3463 dbgs() << "}\n"; 3464 } 3465 #endif 3466 3467 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA, 3468 FunctionAnalysisManager::Invalidator &Inv) { 3469 // Check if the analysis itself has been invalidated. 3470 auto PAC = PA.getChecker<DependenceAnalysis>(); 3471 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 3472 return true; 3473 3474 // Check transitive dependencies. 3475 return Inv.invalidate<AAManager>(F, PA) || 3476 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || 3477 Inv.invalidate<LoopAnalysis>(F, PA); 3478 } 3479 3480 // depends - 3481 // Returns NULL if there is no dependence. 3482 // Otherwise, return a Dependence with as many details as possible. 3483 // Corresponds to Section 3.1 in the paper 3484 // 3485 // Practical Dependence Testing 3486 // Goff, Kennedy, Tseng 3487 // PLDI 1991 3488 // 3489 // Care is required to keep the routine below, getSplitIteration(), 3490 // up to date with respect to this routine. 3491 std::unique_ptr<Dependence> 3492 DependenceInfo::depends(Instruction *Src, Instruction *Dst, 3493 bool PossiblyLoopIndependent) { 3494 if (Src == Dst) 3495 PossiblyLoopIndependent = false; 3496 3497 if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory())) 3498 // if both instructions don't reference memory, there's no dependence 3499 return nullptr; 3500 3501 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) { 3502 // can only analyze simple loads and stores, i.e., no calls, invokes, etc. 3503 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n"); 3504 return std::make_unique<Dependence>(Src, Dst); 3505 } 3506 3507 assert(isLoadOrStore(Src) && "instruction is not load or store"); 3508 assert(isLoadOrStore(Dst) && "instruction is not load or store"); 3509 Value *SrcPtr = getLoadStorePointerOperand(Src); 3510 Value *DstPtr = getLoadStorePointerOperand(Dst); 3511 3512 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), 3513 MemoryLocation::get(Dst), 3514 MemoryLocation::get(Src))) { 3515 case MayAlias: 3516 case PartialAlias: 3517 // cannot analyse objects if we don't understand their aliasing. 3518 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n"); 3519 return std::make_unique<Dependence>(Src, Dst); 3520 case NoAlias: 3521 // If the objects noalias, they are distinct, accesses are independent. 3522 LLVM_DEBUG(dbgs() << "no alias\n"); 3523 return nullptr; 3524 case MustAlias: 3525 break; // The underlying objects alias; test accesses for dependence. 3526 } 3527 3528 // establish loop nesting levels 3529 establishNestingLevels(Src, Dst); 3530 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n"); 3531 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n"); 3532 3533 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels); 3534 ++TotalArrayPairs; 3535 3536 unsigned Pairs = 1; 3537 SmallVector<Subscript, 2> Pair(Pairs); 3538 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); 3539 const SCEV *DstSCEV = SE->getSCEV(DstPtr); 3540 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n"); 3541 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n"); 3542 Pair[0].Src = SrcSCEV; 3543 Pair[0].Dst = DstSCEV; 3544 3545 if (Delinearize) { 3546 if (tryDelinearize(Src, Dst, Pair)) { 3547 LLVM_DEBUG(dbgs() << " delinearized\n"); 3548 Pairs = Pair.size(); 3549 } 3550 } 3551 3552 for (unsigned P = 0; P < Pairs; ++P) { 3553 Pair[P].Loops.resize(MaxLevels + 1); 3554 Pair[P].GroupLoops.resize(MaxLevels + 1); 3555 Pair[P].Group.resize(Pairs); 3556 removeMatchingExtensions(&Pair[P]); 3557 Pair[P].Classification = 3558 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), 3559 Pair[P].Dst, LI->getLoopFor(Dst->getParent()), 3560 Pair[P].Loops); 3561 Pair[P].GroupLoops = Pair[P].Loops; 3562 Pair[P].Group.set(P); 3563 LLVM_DEBUG(dbgs() << " subscript " << P << "\n"); 3564 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n"); 3565 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n"); 3566 LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n"); 3567 LLVM_DEBUG(dbgs() << "\tloops = "); 3568 LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops)); 3569 } 3570 3571 SmallBitVector Separable(Pairs); 3572 SmallBitVector Coupled(Pairs); 3573 3574 // Partition subscripts into separable and minimally-coupled groups 3575 // Algorithm in paper is algorithmically better; 3576 // this may be faster in practice. Check someday. 3577 // 3578 // Here's an example of how it works. Consider this code: 3579 // 3580 // for (i = ...) { 3581 // for (j = ...) { 3582 // for (k = ...) { 3583 // for (l = ...) { 3584 // for (m = ...) { 3585 // A[i][j][k][m] = ...; 3586 // ... = A[0][j][l][i + j]; 3587 // } 3588 // } 3589 // } 3590 // } 3591 // } 3592 // 3593 // There are 4 subscripts here: 3594 // 0 [i] and [0] 3595 // 1 [j] and [j] 3596 // 2 [k] and [l] 3597 // 3 [m] and [i + j] 3598 // 3599 // We've already classified each subscript pair as ZIV, SIV, etc., 3600 // and collected all the loops mentioned by pair P in Pair[P].Loops. 3601 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops 3602 // and set Pair[P].Group = {P}. 3603 // 3604 // Src Dst Classification Loops GroupLoops Group 3605 // 0 [i] [0] SIV {1} {1} {0} 3606 // 1 [j] [j] SIV {2} {2} {1} 3607 // 2 [k] [l] RDIV {3,4} {3,4} {2} 3608 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3} 3609 // 3610 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ. 3611 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc. 3612 // 3613 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty. 3614 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty. 3615 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty, 3616 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added 3617 // to either Separable or Coupled). 3618 // 3619 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty. 3620 // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty, 3621 // so Pair[3].Group = {0, 1, 3} and Done = false. 3622 // 3623 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty. 3624 // Since Done remains true, we add 2 to the set of Separable pairs. 3625 // 3626 // Finally, we consider 3. There's nothing to compare it with, 3627 // so Done remains true and we add it to the Coupled set. 3628 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}. 3629 // 3630 // In the end, we've got 1 separable subscript and 1 coupled group. 3631 for (unsigned SI = 0; SI < Pairs; ++SI) { 3632 if (Pair[SI].Classification == Subscript::NonLinear) { 3633 // ignore these, but collect loops for later 3634 ++NonlinearSubscriptPairs; 3635 collectCommonLoops(Pair[SI].Src, 3636 LI->getLoopFor(Src->getParent()), 3637 Pair[SI].Loops); 3638 collectCommonLoops(Pair[SI].Dst, 3639 LI->getLoopFor(Dst->getParent()), 3640 Pair[SI].Loops); 3641 Result.Consistent = false; 3642 } else if (Pair[SI].Classification == Subscript::ZIV) { 3643 // always separable 3644 Separable.set(SI); 3645 } 3646 else { 3647 // SIV, RDIV, or MIV, so check for coupled group 3648 bool Done = true; 3649 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { 3650 SmallBitVector Intersection = Pair[SI].GroupLoops; 3651 Intersection &= Pair[SJ].GroupLoops; 3652 if (Intersection.any()) { 3653 // accumulate set of all the loops in group 3654 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; 3655 // accumulate set of all subscripts in group 3656 Pair[SJ].Group |= Pair[SI].Group; 3657 Done = false; 3658 } 3659 } 3660 if (Done) { 3661 if (Pair[SI].Group.count() == 1) { 3662 Separable.set(SI); 3663 ++SeparableSubscriptPairs; 3664 } 3665 else { 3666 Coupled.set(SI); 3667 ++CoupledSubscriptPairs; 3668 } 3669 } 3670 } 3671 } 3672 3673 LLVM_DEBUG(dbgs() << " Separable = "); 3674 LLVM_DEBUG(dumpSmallBitVector(Separable)); 3675 LLVM_DEBUG(dbgs() << " Coupled = "); 3676 LLVM_DEBUG(dumpSmallBitVector(Coupled)); 3677 3678 Constraint NewConstraint; 3679 NewConstraint.setAny(SE); 3680 3681 // test separable subscripts 3682 for (unsigned SI : Separable.set_bits()) { 3683 LLVM_DEBUG(dbgs() << "testing subscript " << SI); 3684 switch (Pair[SI].Classification) { 3685 case Subscript::ZIV: 3686 LLVM_DEBUG(dbgs() << ", ZIV\n"); 3687 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result)) 3688 return nullptr; 3689 break; 3690 case Subscript::SIV: { 3691 LLVM_DEBUG(dbgs() << ", SIV\n"); 3692 unsigned Level; 3693 const SCEV *SplitIter = nullptr; 3694 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint, 3695 SplitIter)) 3696 return nullptr; 3697 break; 3698 } 3699 case Subscript::RDIV: 3700 LLVM_DEBUG(dbgs() << ", RDIV\n"); 3701 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result)) 3702 return nullptr; 3703 break; 3704 case Subscript::MIV: 3705 LLVM_DEBUG(dbgs() << ", MIV\n"); 3706 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result)) 3707 return nullptr; 3708 break; 3709 default: 3710 llvm_unreachable("subscript has unexpected classification"); 3711 } 3712 } 3713 3714 if (Coupled.count()) { 3715 // test coupled subscript groups 3716 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n"); 3717 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n"); 3718 SmallVector<Constraint, 4> Constraints(MaxLevels + 1); 3719 for (unsigned II = 0; II <= MaxLevels; ++II) 3720 Constraints[II].setAny(SE); 3721 for (unsigned SI : Coupled.set_bits()) { 3722 LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { "); 3723 SmallBitVector Group(Pair[SI].Group); 3724 SmallBitVector Sivs(Pairs); 3725 SmallBitVector Mivs(Pairs); 3726 SmallBitVector ConstrainedLevels(MaxLevels + 1); 3727 SmallVector<Subscript *, 4> PairsInGroup; 3728 for (unsigned SJ : Group.set_bits()) { 3729 LLVM_DEBUG(dbgs() << SJ << " "); 3730 if (Pair[SJ].Classification == Subscript::SIV) 3731 Sivs.set(SJ); 3732 else 3733 Mivs.set(SJ); 3734 PairsInGroup.push_back(&Pair[SJ]); 3735 } 3736 unifySubscriptType(PairsInGroup); 3737 LLVM_DEBUG(dbgs() << "}\n"); 3738 while (Sivs.any()) { 3739 bool Changed = false; 3740 for (unsigned SJ : Sivs.set_bits()) { 3741 LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n"); 3742 // SJ is an SIV subscript that's part of the current coupled group 3743 unsigned Level; 3744 const SCEV *SplitIter = nullptr; 3745 LLVM_DEBUG(dbgs() << "SIV\n"); 3746 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint, 3747 SplitIter)) 3748 return nullptr; 3749 ConstrainedLevels.set(Level); 3750 if (intersectConstraints(&Constraints[Level], &NewConstraint)) { 3751 if (Constraints[Level].isEmpty()) { 3752 ++DeltaIndependence; 3753 return nullptr; 3754 } 3755 Changed = true; 3756 } 3757 Sivs.reset(SJ); 3758 } 3759 if (Changed) { 3760 // propagate, possibly creating new SIVs and ZIVs 3761 LLVM_DEBUG(dbgs() << " propagating\n"); 3762 LLVM_DEBUG(dbgs() << "\tMivs = "); 3763 LLVM_DEBUG(dumpSmallBitVector(Mivs)); 3764 for (unsigned SJ : Mivs.set_bits()) { 3765 // SJ is an MIV subscript that's part of the current coupled group 3766 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n"); 3767 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, 3768 Constraints, Result.Consistent)) { 3769 LLVM_DEBUG(dbgs() << "\t Changed\n"); 3770 ++DeltaPropagations; 3771 Pair[SJ].Classification = 3772 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), 3773 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), 3774 Pair[SJ].Loops); 3775 switch (Pair[SJ].Classification) { 3776 case Subscript::ZIV: 3777 LLVM_DEBUG(dbgs() << "ZIV\n"); 3778 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) 3779 return nullptr; 3780 Mivs.reset(SJ); 3781 break; 3782 case Subscript::SIV: 3783 Sivs.set(SJ); 3784 Mivs.reset(SJ); 3785 break; 3786 case Subscript::RDIV: 3787 case Subscript::MIV: 3788 break; 3789 default: 3790 llvm_unreachable("bad subscript classification"); 3791 } 3792 } 3793 } 3794 } 3795 } 3796 3797 // test & propagate remaining RDIVs 3798 for (unsigned SJ : Mivs.set_bits()) { 3799 if (Pair[SJ].Classification == Subscript::RDIV) { 3800 LLVM_DEBUG(dbgs() << "RDIV test\n"); 3801 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) 3802 return nullptr; 3803 // I don't yet understand how to propagate RDIV results 3804 Mivs.reset(SJ); 3805 } 3806 } 3807 3808 // test remaining MIVs 3809 // This code is temporary. 3810 // Better to somehow test all remaining subscripts simultaneously. 3811 for (unsigned SJ : Mivs.set_bits()) { 3812 if (Pair[SJ].Classification == Subscript::MIV) { 3813 LLVM_DEBUG(dbgs() << "MIV test\n"); 3814 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result)) 3815 return nullptr; 3816 } 3817 else 3818 llvm_unreachable("expected only MIV subscripts at this point"); 3819 } 3820 3821 // update Result.DV from constraint vector 3822 LLVM_DEBUG(dbgs() << " updating\n"); 3823 for (unsigned SJ : ConstrainedLevels.set_bits()) { 3824 if (SJ > CommonLevels) 3825 break; 3826 updateDirection(Result.DV[SJ - 1], Constraints[SJ]); 3827 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE) 3828 return nullptr; 3829 } 3830 } 3831 } 3832 3833 // Make sure the Scalar flags are set correctly. 3834 SmallBitVector CompleteLoops(MaxLevels + 1); 3835 for (unsigned SI = 0; SI < Pairs; ++SI) 3836 CompleteLoops |= Pair[SI].Loops; 3837 for (unsigned II = 1; II <= CommonLevels; ++II) 3838 if (CompleteLoops[II]) 3839 Result.DV[II - 1].Scalar = false; 3840 3841 if (PossiblyLoopIndependent) { 3842 // Make sure the LoopIndependent flag is set correctly. 3843 // All directions must include equal, otherwise no 3844 // loop-independent dependence is possible. 3845 for (unsigned II = 1; II <= CommonLevels; ++II) { 3846 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) { 3847 Result.LoopIndependent = false; 3848 break; 3849 } 3850 } 3851 } 3852 else { 3853 // On the other hand, if all directions are equal and there's no 3854 // loop-independent dependence possible, then no dependence exists. 3855 bool AllEqual = true; 3856 for (unsigned II = 1; II <= CommonLevels; ++II) { 3857 if (Result.getDirection(II) != Dependence::DVEntry::EQ) { 3858 AllEqual = false; 3859 break; 3860 } 3861 } 3862 if (AllEqual) 3863 return nullptr; 3864 } 3865 3866 return std::make_unique<FullDependence>(std::move(Result)); 3867 } 3868 3869 //===----------------------------------------------------------------------===// 3870 // getSplitIteration - 3871 // Rather than spend rarely-used space recording the splitting iteration 3872 // during the Weak-Crossing SIV test, we re-compute it on demand. 3873 // The re-computation is basically a repeat of the entire dependence test, 3874 // though simplified since we know that the dependence exists. 3875 // It's tedious, since we must go through all propagations, etc. 3876 // 3877 // Care is required to keep this code up to date with respect to the routine 3878 // above, depends(). 3879 // 3880 // Generally, the dependence analyzer will be used to build 3881 // a dependence graph for a function (basically a map from instructions 3882 // to dependences). Looking for cycles in the graph shows us loops 3883 // that cannot be trivially vectorized/parallelized. 3884 // 3885 // We can try to improve the situation by examining all the dependences 3886 // that make up the cycle, looking for ones we can break. 3887 // Sometimes, peeling the first or last iteration of a loop will break 3888 // dependences, and we've got flags for those possibilities. 3889 // Sometimes, splitting a loop at some other iteration will do the trick, 3890 // and we've got a flag for that case. Rather than waste the space to 3891 // record the exact iteration (since we rarely know), we provide 3892 // a method that calculates the iteration. It's a drag that it must work 3893 // from scratch, but wonderful in that it's possible. 3894 // 3895 // Here's an example: 3896 // 3897 // for (i = 0; i < 10; i++) 3898 // A[i] = ... 3899 // ... = A[11 - i] 3900 // 3901 // There's a loop-carried flow dependence from the store to the load, 3902 // found by the weak-crossing SIV test. The dependence will have a flag, 3903 // indicating that the dependence can be broken by splitting the loop. 3904 // Calling getSplitIteration will return 5. 3905 // Splitting the loop breaks the dependence, like so: 3906 // 3907 // for (i = 0; i <= 5; i++) 3908 // A[i] = ... 3909 // ... = A[11 - i] 3910 // for (i = 6; i < 10; i++) 3911 // A[i] = ... 3912 // ... = A[11 - i] 3913 // 3914 // breaks the dependence and allows us to vectorize/parallelize 3915 // both loops. 3916 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep, 3917 unsigned SplitLevel) { 3918 assert(Dep.isSplitable(SplitLevel) && 3919 "Dep should be splitable at SplitLevel"); 3920 Instruction *Src = Dep.getSrc(); 3921 Instruction *Dst = Dep.getDst(); 3922 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory()); 3923 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory()); 3924 assert(isLoadOrStore(Src)); 3925 assert(isLoadOrStore(Dst)); 3926 Value *SrcPtr = getLoadStorePointerOperand(Src); 3927 Value *DstPtr = getLoadStorePointerOperand(Dst); 3928 assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), 3929 MemoryLocation::get(Dst), 3930 MemoryLocation::get(Src)) == MustAlias); 3931 3932 // establish loop nesting levels 3933 establishNestingLevels(Src, Dst); 3934 3935 FullDependence Result(Src, Dst, false, CommonLevels); 3936 3937 unsigned Pairs = 1; 3938 SmallVector<Subscript, 2> Pair(Pairs); 3939 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); 3940 const SCEV *DstSCEV = SE->getSCEV(DstPtr); 3941 Pair[0].Src = SrcSCEV; 3942 Pair[0].Dst = DstSCEV; 3943 3944 if (Delinearize) { 3945 if (tryDelinearize(Src, Dst, Pair)) { 3946 LLVM_DEBUG(dbgs() << " delinearized\n"); 3947 Pairs = Pair.size(); 3948 } 3949 } 3950 3951 for (unsigned P = 0; P < Pairs; ++P) { 3952 Pair[P].Loops.resize(MaxLevels + 1); 3953 Pair[P].GroupLoops.resize(MaxLevels + 1); 3954 Pair[P].Group.resize(Pairs); 3955 removeMatchingExtensions(&Pair[P]); 3956 Pair[P].Classification = 3957 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), 3958 Pair[P].Dst, LI->getLoopFor(Dst->getParent()), 3959 Pair[P].Loops); 3960 Pair[P].GroupLoops = Pair[P].Loops; 3961 Pair[P].Group.set(P); 3962 } 3963 3964 SmallBitVector Separable(Pairs); 3965 SmallBitVector Coupled(Pairs); 3966 3967 // partition subscripts into separable and minimally-coupled groups 3968 for (unsigned SI = 0; SI < Pairs; ++SI) { 3969 if (Pair[SI].Classification == Subscript::NonLinear) { 3970 // ignore these, but collect loops for later 3971 collectCommonLoops(Pair[SI].Src, 3972 LI->getLoopFor(Src->getParent()), 3973 Pair[SI].Loops); 3974 collectCommonLoops(Pair[SI].Dst, 3975 LI->getLoopFor(Dst->getParent()), 3976 Pair[SI].Loops); 3977 Result.Consistent = false; 3978 } 3979 else if (Pair[SI].Classification == Subscript::ZIV) 3980 Separable.set(SI); 3981 else { 3982 // SIV, RDIV, or MIV, so check for coupled group 3983 bool Done = true; 3984 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { 3985 SmallBitVector Intersection = Pair[SI].GroupLoops; 3986 Intersection &= Pair[SJ].GroupLoops; 3987 if (Intersection.any()) { 3988 // accumulate set of all the loops in group 3989 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; 3990 // accumulate set of all subscripts in group 3991 Pair[SJ].Group |= Pair[SI].Group; 3992 Done = false; 3993 } 3994 } 3995 if (Done) { 3996 if (Pair[SI].Group.count() == 1) 3997 Separable.set(SI); 3998 else 3999 Coupled.set(SI); 4000 } 4001 } 4002 } 4003 4004 Constraint NewConstraint; 4005 NewConstraint.setAny(SE); 4006 4007 // test separable subscripts 4008 for (unsigned SI : Separable.set_bits()) { 4009 switch (Pair[SI].Classification) { 4010 case Subscript::SIV: { 4011 unsigned Level; 4012 const SCEV *SplitIter = nullptr; 4013 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level, 4014 Result, NewConstraint, SplitIter); 4015 if (Level == SplitLevel) { 4016 assert(SplitIter != nullptr); 4017 return SplitIter; 4018 } 4019 break; 4020 } 4021 case Subscript::ZIV: 4022 case Subscript::RDIV: 4023 case Subscript::MIV: 4024 break; 4025 default: 4026 llvm_unreachable("subscript has unexpected classification"); 4027 } 4028 } 4029 4030 if (Coupled.count()) { 4031 // test coupled subscript groups 4032 SmallVector<Constraint, 4> Constraints(MaxLevels + 1); 4033 for (unsigned II = 0; II <= MaxLevels; ++II) 4034 Constraints[II].setAny(SE); 4035 for (unsigned SI : Coupled.set_bits()) { 4036 SmallBitVector Group(Pair[SI].Group); 4037 SmallBitVector Sivs(Pairs); 4038 SmallBitVector Mivs(Pairs); 4039 SmallBitVector ConstrainedLevels(MaxLevels + 1); 4040 for (unsigned SJ : Group.set_bits()) { 4041 if (Pair[SJ].Classification == Subscript::SIV) 4042 Sivs.set(SJ); 4043 else 4044 Mivs.set(SJ); 4045 } 4046 while (Sivs.any()) { 4047 bool Changed = false; 4048 for (unsigned SJ : Sivs.set_bits()) { 4049 // SJ is an SIV subscript that's part of the current coupled group 4050 unsigned Level; 4051 const SCEV *SplitIter = nullptr; 4052 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, 4053 Result, NewConstraint, SplitIter); 4054 if (Level == SplitLevel && SplitIter) 4055 return SplitIter; 4056 ConstrainedLevels.set(Level); 4057 if (intersectConstraints(&Constraints[Level], &NewConstraint)) 4058 Changed = true; 4059 Sivs.reset(SJ); 4060 } 4061 if (Changed) { 4062 // propagate, possibly creating new SIVs and ZIVs 4063 for (unsigned SJ : Mivs.set_bits()) { 4064 // SJ is an MIV subscript that's part of the current coupled group 4065 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, 4066 Pair[SJ].Loops, Constraints, Result.Consistent)) { 4067 Pair[SJ].Classification = 4068 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), 4069 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), 4070 Pair[SJ].Loops); 4071 switch (Pair[SJ].Classification) { 4072 case Subscript::ZIV: 4073 Mivs.reset(SJ); 4074 break; 4075 case Subscript::SIV: 4076 Sivs.set(SJ); 4077 Mivs.reset(SJ); 4078 break; 4079 case Subscript::RDIV: 4080 case Subscript::MIV: 4081 break; 4082 default: 4083 llvm_unreachable("bad subscript classification"); 4084 } 4085 } 4086 } 4087 } 4088 } 4089 } 4090 } 4091 llvm_unreachable("somehow reached end of routine"); 4092 return nullptr; 4093 } 4094