xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/DependenceAnalysis.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
12 //
13 //            Practical Dependence Testing
14 //            Goff, Kennedy, Tseng
15 //            PLDI 1991
16 //
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
20 //
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
25 //
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
30 //
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
34 //
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
38 //
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
42 //
43 // Please note that this is work in progress and the interface is subject to
44 // change.
45 //
46 //===----------------------------------------------------------------------===//
47 //                                                                            //
48 //                   In memory of Ken Kennedy, 1945 - 2007                    //
49 //                                                                            //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Config/llvm-config.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/raw_ostream.h"
68 
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "da"
72 
73 //===----------------------------------------------------------------------===//
74 // statistics
75 
76 STATISTIC(TotalArrayPairs, "Array pairs tested");
77 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
78 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
79 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
80 STATISTIC(ZIVapplications, "ZIV applications");
81 STATISTIC(ZIVindependence, "ZIV independence");
82 STATISTIC(StrongSIVapplications, "Strong SIV applications");
83 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
84 STATISTIC(StrongSIVindependence, "Strong SIV independence");
85 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
86 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
87 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
88 STATISTIC(ExactSIVapplications, "Exact SIV applications");
89 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
90 STATISTIC(ExactSIVindependence, "Exact SIV independence");
91 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
92 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
93 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
94 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
95 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
96 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
97 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
98 STATISTIC(DeltaApplications, "Delta applications");
99 STATISTIC(DeltaSuccesses, "Delta successes");
100 STATISTIC(DeltaIndependence, "Delta independence");
101 STATISTIC(DeltaPropagations, "Delta propagations");
102 STATISTIC(GCDapplications, "GCD applications");
103 STATISTIC(GCDsuccesses, "GCD successes");
104 STATISTIC(GCDindependence, "GCD independence");
105 STATISTIC(BanerjeeApplications, "Banerjee applications");
106 STATISTIC(BanerjeeIndependence, "Banerjee independence");
107 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
108 
109 static cl::opt<bool>
110     Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
111                 cl::desc("Try to delinearize array references."));
112 static cl::opt<bool> DisableDelinearizationChecks(
113     "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
114     cl::ZeroOrMore,
115     cl::desc(
116         "Disable checks that try to statically verify validity of "
117         "delinearized subscripts. Enabling this option may result in incorrect "
118         "dependence vectors for languages that allow the subscript of one "
119         "dimension to underflow or overflow into another dimension."));
120 
121 //===----------------------------------------------------------------------===//
122 // basics
123 
124 DependenceAnalysis::Result
125 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
126   auto &AA = FAM.getResult<AAManager>(F);
127   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
128   auto &LI = FAM.getResult<LoopAnalysis>(F);
129   return DependenceInfo(&F, &AA, &SE, &LI);
130 }
131 
132 AnalysisKey DependenceAnalysis::Key;
133 
134 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
135                       "Dependence Analysis", true, true)
136 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
137 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
138 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
139 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
140                     true, true)
141 
142 char DependenceAnalysisWrapperPass::ID = 0;
143 
144 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
145   return new DependenceAnalysisWrapperPass();
146 }
147 
148 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
149   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
150   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
151   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
152   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
153   return false;
154 }
155 
156 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
157 
158 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
159 
160 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
161   AU.setPreservesAll();
162   AU.addRequiredTransitive<AAResultsWrapperPass>();
163   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
164   AU.addRequiredTransitive<LoopInfoWrapperPass>();
165 }
166 
167 
168 // Used to test the dependence analyzer.
169 // Looks through the function, noting loads and stores.
170 // Calls depends() on every possible pair and prints out the result.
171 // Ignores all other instructions.
172 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
173   auto *F = DA->getFunction();
174   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
175        ++SrcI) {
176     if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
177       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
178            DstI != DstE; ++DstI) {
179         if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
180           OS << "da analyze - ";
181           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
182             D->dump(OS);
183             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
184               if (D->isSplitable(Level)) {
185                 OS << "da analyze - split level = " << Level;
186                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
187                 OS << "!\n";
188               }
189             }
190           }
191           else
192             OS << "none!\n";
193         }
194       }
195     }
196   }
197 }
198 
199 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
200                                           const Module *) const {
201   dumpExampleDependence(OS, info.get());
202 }
203 
204 PreservedAnalyses
205 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
206   OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
207   dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
208   return PreservedAnalyses::all();
209 }
210 
211 //===----------------------------------------------------------------------===//
212 // Dependence methods
213 
214 // Returns true if this is an input dependence.
215 bool Dependence::isInput() const {
216   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
217 }
218 
219 
220 // Returns true if this is an output dependence.
221 bool Dependence::isOutput() const {
222   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
223 }
224 
225 
226 // Returns true if this is an flow (aka true)  dependence.
227 bool Dependence::isFlow() const {
228   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
229 }
230 
231 
232 // Returns true if this is an anti dependence.
233 bool Dependence::isAnti() const {
234   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
235 }
236 
237 
238 // Returns true if a particular level is scalar; that is,
239 // if no subscript in the source or destination mention the induction
240 // variable associated with the loop at this level.
241 // Leave this out of line, so it will serve as a virtual method anchor
242 bool Dependence::isScalar(unsigned level) const {
243   return false;
244 }
245 
246 
247 //===----------------------------------------------------------------------===//
248 // FullDependence methods
249 
250 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
251                                bool PossiblyLoopIndependent,
252                                unsigned CommonLevels)
253     : Dependence(Source, Destination), Levels(CommonLevels),
254       LoopIndependent(PossiblyLoopIndependent) {
255   Consistent = true;
256   if (CommonLevels)
257     DV = make_unique<DVEntry[]>(CommonLevels);
258 }
259 
260 // The rest are simple getters that hide the implementation.
261 
262 // getDirection - Returns the direction associated with a particular level.
263 unsigned FullDependence::getDirection(unsigned Level) const {
264   assert(0 < Level && Level <= Levels && "Level out of range");
265   return DV[Level - 1].Direction;
266 }
267 
268 
269 // Returns the distance (or NULL) associated with a particular level.
270 const SCEV *FullDependence::getDistance(unsigned Level) const {
271   assert(0 < Level && Level <= Levels && "Level out of range");
272   return DV[Level - 1].Distance;
273 }
274 
275 
276 // Returns true if a particular level is scalar; that is,
277 // if no subscript in the source or destination mention the induction
278 // variable associated with the loop at this level.
279 bool FullDependence::isScalar(unsigned Level) const {
280   assert(0 < Level && Level <= Levels && "Level out of range");
281   return DV[Level - 1].Scalar;
282 }
283 
284 
285 // Returns true if peeling the first iteration from this loop
286 // will break this dependence.
287 bool FullDependence::isPeelFirst(unsigned Level) const {
288   assert(0 < Level && Level <= Levels && "Level out of range");
289   return DV[Level - 1].PeelFirst;
290 }
291 
292 
293 // Returns true if peeling the last iteration from this loop
294 // will break this dependence.
295 bool FullDependence::isPeelLast(unsigned Level) const {
296   assert(0 < Level && Level <= Levels && "Level out of range");
297   return DV[Level - 1].PeelLast;
298 }
299 
300 
301 // Returns true if splitting this loop will break the dependence.
302 bool FullDependence::isSplitable(unsigned Level) const {
303   assert(0 < Level && Level <= Levels && "Level out of range");
304   return DV[Level - 1].Splitable;
305 }
306 
307 
308 //===----------------------------------------------------------------------===//
309 // DependenceInfo::Constraint methods
310 
311 // If constraint is a point <X, Y>, returns X.
312 // Otherwise assert.
313 const SCEV *DependenceInfo::Constraint::getX() const {
314   assert(Kind == Point && "Kind should be Point");
315   return A;
316 }
317 
318 
319 // If constraint is a point <X, Y>, returns Y.
320 // Otherwise assert.
321 const SCEV *DependenceInfo::Constraint::getY() const {
322   assert(Kind == Point && "Kind should be Point");
323   return B;
324 }
325 
326 
327 // If constraint is a line AX + BY = C, returns A.
328 // Otherwise assert.
329 const SCEV *DependenceInfo::Constraint::getA() const {
330   assert((Kind == Line || Kind == Distance) &&
331          "Kind should be Line (or Distance)");
332   return A;
333 }
334 
335 
336 // If constraint is a line AX + BY = C, returns B.
337 // Otherwise assert.
338 const SCEV *DependenceInfo::Constraint::getB() const {
339   assert((Kind == Line || Kind == Distance) &&
340          "Kind should be Line (or Distance)");
341   return B;
342 }
343 
344 
345 // If constraint is a line AX + BY = C, returns C.
346 // Otherwise assert.
347 const SCEV *DependenceInfo::Constraint::getC() const {
348   assert((Kind == Line || Kind == Distance) &&
349          "Kind should be Line (or Distance)");
350   return C;
351 }
352 
353 
354 // If constraint is a distance, returns D.
355 // Otherwise assert.
356 const SCEV *DependenceInfo::Constraint::getD() const {
357   assert(Kind == Distance && "Kind should be Distance");
358   return SE->getNegativeSCEV(C);
359 }
360 
361 
362 // Returns the loop associated with this constraint.
363 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
364   assert((Kind == Distance || Kind == Line || Kind == Point) &&
365          "Kind should be Distance, Line, or Point");
366   return AssociatedLoop;
367 }
368 
369 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
370                                           const Loop *CurLoop) {
371   Kind = Point;
372   A = X;
373   B = Y;
374   AssociatedLoop = CurLoop;
375 }
376 
377 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
378                                          const SCEV *CC, const Loop *CurLoop) {
379   Kind = Line;
380   A = AA;
381   B = BB;
382   C = CC;
383   AssociatedLoop = CurLoop;
384 }
385 
386 void DependenceInfo::Constraint::setDistance(const SCEV *D,
387                                              const Loop *CurLoop) {
388   Kind = Distance;
389   A = SE->getOne(D->getType());
390   B = SE->getNegativeSCEV(A);
391   C = SE->getNegativeSCEV(D);
392   AssociatedLoop = CurLoop;
393 }
394 
395 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
396 
397 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
398   SE = NewSE;
399   Kind = Any;
400 }
401 
402 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
403 // For debugging purposes. Dumps the constraint out to OS.
404 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
405   if (isEmpty())
406     OS << " Empty\n";
407   else if (isAny())
408     OS << " Any\n";
409   else if (isPoint())
410     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
411   else if (isDistance())
412     OS << " Distance is " << *getD() <<
413       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
414   else if (isLine())
415     OS << " Line is " << *getA() << "*X + " <<
416       *getB() << "*Y = " << *getC() << "\n";
417   else
418     llvm_unreachable("unknown constraint type in Constraint::dump");
419 }
420 #endif
421 
422 
423 // Updates X with the intersection
424 // of the Constraints X and Y. Returns true if X has changed.
425 // Corresponds to Figure 4 from the paper
426 //
427 //            Practical Dependence Testing
428 //            Goff, Kennedy, Tseng
429 //            PLDI 1991
430 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
431   ++DeltaApplications;
432   LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
433   LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
434   LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
435   assert(!Y->isPoint() && "Y must not be a Point");
436   if (X->isAny()) {
437     if (Y->isAny())
438       return false;
439     *X = *Y;
440     return true;
441   }
442   if (X->isEmpty())
443     return false;
444   if (Y->isEmpty()) {
445     X->setEmpty();
446     return true;
447   }
448 
449   if (X->isDistance() && Y->isDistance()) {
450     LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
451     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
452       return false;
453     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
454       X->setEmpty();
455       ++DeltaSuccesses;
456       return true;
457     }
458     // Hmmm, interesting situation.
459     // I guess if either is constant, keep it and ignore the other.
460     if (isa<SCEVConstant>(Y->getD())) {
461       *X = *Y;
462       return true;
463     }
464     return false;
465   }
466 
467   // At this point, the pseudo-code in Figure 4 of the paper
468   // checks if (X->isPoint() && Y->isPoint()).
469   // This case can't occur in our implementation,
470   // since a Point can only arise as the result of intersecting
471   // two Line constraints, and the right-hand value, Y, is never
472   // the result of an intersection.
473   assert(!(X->isPoint() && Y->isPoint()) &&
474          "We shouldn't ever see X->isPoint() && Y->isPoint()");
475 
476   if (X->isLine() && Y->isLine()) {
477     LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
478     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
479     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
480     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
481       // slopes are equal, so lines are parallel
482       LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
483       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
484       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
485       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
486         return false;
487       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
488         X->setEmpty();
489         ++DeltaSuccesses;
490         return true;
491       }
492       return false;
493     }
494     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
495       // slopes differ, so lines intersect
496       LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
497       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
498       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
499       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
500       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
501       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
502       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
503       const SCEVConstant *C1A2_C2A1 =
504         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
505       const SCEVConstant *C1B2_C2B1 =
506         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
507       const SCEVConstant *A1B2_A2B1 =
508         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
509       const SCEVConstant *A2B1_A1B2 =
510         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
511       if (!C1B2_C2B1 || !C1A2_C2A1 ||
512           !A1B2_A2B1 || !A2B1_A1B2)
513         return false;
514       APInt Xtop = C1B2_C2B1->getAPInt();
515       APInt Xbot = A1B2_A2B1->getAPInt();
516       APInt Ytop = C1A2_C2A1->getAPInt();
517       APInt Ybot = A2B1_A1B2->getAPInt();
518       LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
519       LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
520       LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
521       LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
522       APInt Xq = Xtop; // these need to be initialized, even
523       APInt Xr = Xtop; // though they're just going to be overwritten
524       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
525       APInt Yq = Ytop;
526       APInt Yr = Ytop;
527       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
528       if (Xr != 0 || Yr != 0) {
529         X->setEmpty();
530         ++DeltaSuccesses;
531         return true;
532       }
533       LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
534       if (Xq.slt(0) || Yq.slt(0)) {
535         X->setEmpty();
536         ++DeltaSuccesses;
537         return true;
538       }
539       if (const SCEVConstant *CUB =
540           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
541         const APInt &UpperBound = CUB->getAPInt();
542         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
543         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
544           X->setEmpty();
545           ++DeltaSuccesses;
546           return true;
547         }
548       }
549       X->setPoint(SE->getConstant(Xq),
550                   SE->getConstant(Yq),
551                   X->getAssociatedLoop());
552       ++DeltaSuccesses;
553       return true;
554     }
555     return false;
556   }
557 
558   // if (X->isLine() && Y->isPoint()) This case can't occur.
559   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
560 
561   if (X->isPoint() && Y->isLine()) {
562     LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
563     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
564     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
565     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
566     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
567       return false;
568     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
569       X->setEmpty();
570       ++DeltaSuccesses;
571       return true;
572     }
573     return false;
574   }
575 
576   llvm_unreachable("shouldn't reach the end of Constraint intersection");
577   return false;
578 }
579 
580 
581 //===----------------------------------------------------------------------===//
582 // DependenceInfo methods
583 
584 // For debugging purposes. Dumps a dependence to OS.
585 void Dependence::dump(raw_ostream &OS) const {
586   bool Splitable = false;
587   if (isConfused())
588     OS << "confused";
589   else {
590     if (isConsistent())
591       OS << "consistent ";
592     if (isFlow())
593       OS << "flow";
594     else if (isOutput())
595       OS << "output";
596     else if (isAnti())
597       OS << "anti";
598     else if (isInput())
599       OS << "input";
600     unsigned Levels = getLevels();
601     OS << " [";
602     for (unsigned II = 1; II <= Levels; ++II) {
603       if (isSplitable(II))
604         Splitable = true;
605       if (isPeelFirst(II))
606         OS << 'p';
607       const SCEV *Distance = getDistance(II);
608       if (Distance)
609         OS << *Distance;
610       else if (isScalar(II))
611         OS << "S";
612       else {
613         unsigned Direction = getDirection(II);
614         if (Direction == DVEntry::ALL)
615           OS << "*";
616         else {
617           if (Direction & DVEntry::LT)
618             OS << "<";
619           if (Direction & DVEntry::EQ)
620             OS << "=";
621           if (Direction & DVEntry::GT)
622             OS << ">";
623         }
624       }
625       if (isPeelLast(II))
626         OS << 'p';
627       if (II < Levels)
628         OS << " ";
629     }
630     if (isLoopIndependent())
631       OS << "|<";
632     OS << "]";
633     if (Splitable)
634       OS << " splitable";
635   }
636   OS << "!\n";
637 }
638 
639 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
640 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
641 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
642 // Otherwise the underlying objects are checked to see if they point to
643 // different identifiable objects.
644 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
645                                           const DataLayout &DL,
646                                           const MemoryLocation &LocA,
647                                           const MemoryLocation &LocB) {
648   // Check the original locations (minus size) for noalias, which can happen for
649   // tbaa, incompatible underlying object locations, etc.
650   MemoryLocation LocAS(LocA.Ptr, LocationSize::unknown(), LocA.AATags);
651   MemoryLocation LocBS(LocB.Ptr, LocationSize::unknown(), LocB.AATags);
652   if (AA->alias(LocAS, LocBS) == NoAlias)
653     return NoAlias;
654 
655   // Check the underlying objects are the same
656   const Value *AObj = GetUnderlyingObject(LocA.Ptr, DL);
657   const Value *BObj = GetUnderlyingObject(LocB.Ptr, DL);
658 
659   // If the underlying objects are the same, they must alias
660   if (AObj == BObj)
661     return MustAlias;
662 
663   // We may have hit the recursion limit for underlying objects, or have
664   // underlying objects where we don't know they will alias.
665   if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
666     return MayAlias;
667 
668   // Otherwise we know the objects are different and both identified objects so
669   // must not alias.
670   return NoAlias;
671 }
672 
673 
674 // Returns true if the load or store can be analyzed. Atomic and volatile
675 // operations have properties which this analysis does not understand.
676 static
677 bool isLoadOrStore(const Instruction *I) {
678   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
679     return LI->isUnordered();
680   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
681     return SI->isUnordered();
682   return false;
683 }
684 
685 
686 // Examines the loop nesting of the Src and Dst
687 // instructions and establishes their shared loops. Sets the variables
688 // CommonLevels, SrcLevels, and MaxLevels.
689 // The source and destination instructions needn't be contained in the same
690 // loop. The routine establishNestingLevels finds the level of most deeply
691 // nested loop that contains them both, CommonLevels. An instruction that's
692 // not contained in a loop is at level = 0. MaxLevels is equal to the level
693 // of the source plus the level of the destination, minus CommonLevels.
694 // This lets us allocate vectors MaxLevels in length, with room for every
695 // distinct loop referenced in both the source and destination subscripts.
696 // The variable SrcLevels is the nesting depth of the source instruction.
697 // It's used to help calculate distinct loops referenced by the destination.
698 // Here's the map from loops to levels:
699 //            0 - unused
700 //            1 - outermost common loop
701 //          ... - other common loops
702 // CommonLevels - innermost common loop
703 //          ... - loops containing Src but not Dst
704 //    SrcLevels - innermost loop containing Src but not Dst
705 //          ... - loops containing Dst but not Src
706 //    MaxLevels - innermost loops containing Dst but not Src
707 // Consider the follow code fragment:
708 //   for (a = ...) {
709 //     for (b = ...) {
710 //       for (c = ...) {
711 //         for (d = ...) {
712 //           A[] = ...;
713 //         }
714 //       }
715 //       for (e = ...) {
716 //         for (f = ...) {
717 //           for (g = ...) {
718 //             ... = A[];
719 //           }
720 //         }
721 //       }
722 //     }
723 //   }
724 // If we're looking at the possibility of a dependence between the store
725 // to A (the Src) and the load from A (the Dst), we'll note that they
726 // have 2 loops in common, so CommonLevels will equal 2 and the direction
727 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
728 // A map from loop names to loop numbers would look like
729 //     a - 1
730 //     b - 2 = CommonLevels
731 //     c - 3
732 //     d - 4 = SrcLevels
733 //     e - 5
734 //     f - 6
735 //     g - 7 = MaxLevels
736 void DependenceInfo::establishNestingLevels(const Instruction *Src,
737                                             const Instruction *Dst) {
738   const BasicBlock *SrcBlock = Src->getParent();
739   const BasicBlock *DstBlock = Dst->getParent();
740   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
741   unsigned DstLevel = LI->getLoopDepth(DstBlock);
742   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
743   const Loop *DstLoop = LI->getLoopFor(DstBlock);
744   SrcLevels = SrcLevel;
745   MaxLevels = SrcLevel + DstLevel;
746   while (SrcLevel > DstLevel) {
747     SrcLoop = SrcLoop->getParentLoop();
748     SrcLevel--;
749   }
750   while (DstLevel > SrcLevel) {
751     DstLoop = DstLoop->getParentLoop();
752     DstLevel--;
753   }
754   while (SrcLoop != DstLoop) {
755     SrcLoop = SrcLoop->getParentLoop();
756     DstLoop = DstLoop->getParentLoop();
757     SrcLevel--;
758   }
759   CommonLevels = SrcLevel;
760   MaxLevels -= CommonLevels;
761 }
762 
763 
764 // Given one of the loops containing the source, return
765 // its level index in our numbering scheme.
766 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
767   return SrcLoop->getLoopDepth();
768 }
769 
770 
771 // Given one of the loops containing the destination,
772 // return its level index in our numbering scheme.
773 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
774   unsigned D = DstLoop->getLoopDepth();
775   if (D > CommonLevels)
776     return D - CommonLevels + SrcLevels;
777   else
778     return D;
779 }
780 
781 
782 // Returns true if Expression is loop invariant in LoopNest.
783 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
784                                      const Loop *LoopNest) const {
785   if (!LoopNest)
786     return true;
787   return SE->isLoopInvariant(Expression, LoopNest) &&
788     isLoopInvariant(Expression, LoopNest->getParentLoop());
789 }
790 
791 
792 
793 // Finds the set of loops from the LoopNest that
794 // have a level <= CommonLevels and are referred to by the SCEV Expression.
795 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
796                                         const Loop *LoopNest,
797                                         SmallBitVector &Loops) const {
798   while (LoopNest) {
799     unsigned Level = LoopNest->getLoopDepth();
800     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
801       Loops.set(Level);
802     LoopNest = LoopNest->getParentLoop();
803   }
804 }
805 
806 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
807 
808   unsigned widestWidthSeen = 0;
809   Type *widestType;
810 
811   // Go through each pair and find the widest bit to which we need
812   // to extend all of them.
813   for (Subscript *Pair : Pairs) {
814     const SCEV *Src = Pair->Src;
815     const SCEV *Dst = Pair->Dst;
816     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
817     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
818     if (SrcTy == nullptr || DstTy == nullptr) {
819       assert(SrcTy == DstTy && "This function only unify integer types and "
820              "expect Src and Dst share the same type "
821              "otherwise.");
822       continue;
823     }
824     if (SrcTy->getBitWidth() > widestWidthSeen) {
825       widestWidthSeen = SrcTy->getBitWidth();
826       widestType = SrcTy;
827     }
828     if (DstTy->getBitWidth() > widestWidthSeen) {
829       widestWidthSeen = DstTy->getBitWidth();
830       widestType = DstTy;
831     }
832   }
833 
834 
835   assert(widestWidthSeen > 0);
836 
837   // Now extend each pair to the widest seen.
838   for (Subscript *Pair : Pairs) {
839     const SCEV *Src = Pair->Src;
840     const SCEV *Dst = Pair->Dst;
841     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
842     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
843     if (SrcTy == nullptr || DstTy == nullptr) {
844       assert(SrcTy == DstTy && "This function only unify integer types and "
845              "expect Src and Dst share the same type "
846              "otherwise.");
847       continue;
848     }
849     if (SrcTy->getBitWidth() < widestWidthSeen)
850       // Sign-extend Src to widestType
851       Pair->Src = SE->getSignExtendExpr(Src, widestType);
852     if (DstTy->getBitWidth() < widestWidthSeen) {
853       // Sign-extend Dst to widestType
854       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
855     }
856   }
857 }
858 
859 // removeMatchingExtensions - Examines a subscript pair.
860 // If the source and destination are identically sign (or zero)
861 // extended, it strips off the extension in an effect to simplify
862 // the actual analysis.
863 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
864   const SCEV *Src = Pair->Src;
865   const SCEV *Dst = Pair->Dst;
866   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
867       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
868     const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
869     const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
870     const SCEV *SrcCastOp = SrcCast->getOperand();
871     const SCEV *DstCastOp = DstCast->getOperand();
872     if (SrcCastOp->getType() == DstCastOp->getType()) {
873       Pair->Src = SrcCastOp;
874       Pair->Dst = DstCastOp;
875     }
876   }
877 }
878 
879 
880 // Examine the scev and return true iff it's linear.
881 // Collect any loops mentioned in the set of "Loops".
882 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
883                                        SmallBitVector &Loops) {
884   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
885   if (!AddRec)
886     return isLoopInvariant(Src, LoopNest);
887   const SCEV *Start = AddRec->getStart();
888   const SCEV *Step = AddRec->getStepRecurrence(*SE);
889   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
890   if (!isa<SCEVCouldNotCompute>(UB)) {
891     if (SE->getTypeSizeInBits(Start->getType()) <
892         SE->getTypeSizeInBits(UB->getType())) {
893       if (!AddRec->getNoWrapFlags())
894         return false;
895     }
896   }
897   if (!isLoopInvariant(Step, LoopNest))
898     return false;
899   Loops.set(mapSrcLoop(AddRec->getLoop()));
900   return checkSrcSubscript(Start, LoopNest, Loops);
901 }
902 
903 
904 
905 // Examine the scev and return true iff it's linear.
906 // Collect any loops mentioned in the set of "Loops".
907 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
908                                        SmallBitVector &Loops) {
909   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
910   if (!AddRec)
911     return isLoopInvariant(Dst, LoopNest);
912   const SCEV *Start = AddRec->getStart();
913   const SCEV *Step = AddRec->getStepRecurrence(*SE);
914   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
915   if (!isa<SCEVCouldNotCompute>(UB)) {
916     if (SE->getTypeSizeInBits(Start->getType()) <
917         SE->getTypeSizeInBits(UB->getType())) {
918       if (!AddRec->getNoWrapFlags())
919         return false;
920     }
921   }
922   if (!isLoopInvariant(Step, LoopNest))
923     return false;
924   Loops.set(mapDstLoop(AddRec->getLoop()));
925   return checkDstSubscript(Start, LoopNest, Loops);
926 }
927 
928 
929 // Examines the subscript pair (the Src and Dst SCEVs)
930 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
931 // Collects the associated loops in a set.
932 DependenceInfo::Subscript::ClassificationKind
933 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
934                              const SCEV *Dst, const Loop *DstLoopNest,
935                              SmallBitVector &Loops) {
936   SmallBitVector SrcLoops(MaxLevels + 1);
937   SmallBitVector DstLoops(MaxLevels + 1);
938   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
939     return Subscript::NonLinear;
940   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
941     return Subscript::NonLinear;
942   Loops = SrcLoops;
943   Loops |= DstLoops;
944   unsigned N = Loops.count();
945   if (N == 0)
946     return Subscript::ZIV;
947   if (N == 1)
948     return Subscript::SIV;
949   if (N == 2 && (SrcLoops.count() == 0 ||
950                  DstLoops.count() == 0 ||
951                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
952     return Subscript::RDIV;
953   return Subscript::MIV;
954 }
955 
956 
957 // A wrapper around SCEV::isKnownPredicate.
958 // Looks for cases where we're interested in comparing for equality.
959 // If both X and Y have been identically sign or zero extended,
960 // it strips off the (confusing) extensions before invoking
961 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
962 // will be similarly updated.
963 //
964 // If SCEV::isKnownPredicate can't prove the predicate,
965 // we try simple subtraction, which seems to help in some cases
966 // involving symbolics.
967 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
968                                       const SCEV *Y) const {
969   if (Pred == CmpInst::ICMP_EQ ||
970       Pred == CmpInst::ICMP_NE) {
971     if ((isa<SCEVSignExtendExpr>(X) &&
972          isa<SCEVSignExtendExpr>(Y)) ||
973         (isa<SCEVZeroExtendExpr>(X) &&
974          isa<SCEVZeroExtendExpr>(Y))) {
975       const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
976       const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
977       const SCEV *Xop = CX->getOperand();
978       const SCEV *Yop = CY->getOperand();
979       if (Xop->getType() == Yop->getType()) {
980         X = Xop;
981         Y = Yop;
982       }
983     }
984   }
985   if (SE->isKnownPredicate(Pred, X, Y))
986     return true;
987   // If SE->isKnownPredicate can't prove the condition,
988   // we try the brute-force approach of subtracting
989   // and testing the difference.
990   // By testing with SE->isKnownPredicate first, we avoid
991   // the possibility of overflow when the arguments are constants.
992   const SCEV *Delta = SE->getMinusSCEV(X, Y);
993   switch (Pred) {
994   case CmpInst::ICMP_EQ:
995     return Delta->isZero();
996   case CmpInst::ICMP_NE:
997     return SE->isKnownNonZero(Delta);
998   case CmpInst::ICMP_SGE:
999     return SE->isKnownNonNegative(Delta);
1000   case CmpInst::ICMP_SLE:
1001     return SE->isKnownNonPositive(Delta);
1002   case CmpInst::ICMP_SGT:
1003     return SE->isKnownPositive(Delta);
1004   case CmpInst::ICMP_SLT:
1005     return SE->isKnownNegative(Delta);
1006   default:
1007     llvm_unreachable("unexpected predicate in isKnownPredicate");
1008   }
1009 }
1010 
1011 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1012 /// with some extra checking if S is an AddRec and we can prove less-than using
1013 /// the loop bounds.
1014 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1015   // First unify to the same type
1016   auto *SType = dyn_cast<IntegerType>(S->getType());
1017   auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1018   if (!SType || !SizeType)
1019     return false;
1020   Type *MaxType =
1021       (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1022   S = SE->getTruncateOrZeroExtend(S, MaxType);
1023   Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1024 
1025   // Special check for addrecs using BE taken count
1026   const SCEV *Bound = SE->getMinusSCEV(S, Size);
1027   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1028     if (AddRec->isAffine()) {
1029       const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1030       if (!isa<SCEVCouldNotCompute>(BECount)) {
1031         const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1032         if (SE->isKnownNegative(Limit))
1033           return true;
1034       }
1035     }
1036   }
1037 
1038   // Check using normal isKnownNegative
1039   const SCEV *LimitedBound =
1040       SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1041   return SE->isKnownNegative(LimitedBound);
1042 }
1043 
1044 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1045   bool Inbounds = false;
1046   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1047     Inbounds = SrcGEP->isInBounds();
1048   if (Inbounds) {
1049     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1050       if (AddRec->isAffine()) {
1051         // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1052         // If both parts are NonNegative, the end result will be NonNegative
1053         if (SE->isKnownNonNegative(AddRec->getStart()) &&
1054             SE->isKnownNonNegative(AddRec->getOperand(1)))
1055           return true;
1056       }
1057     }
1058   }
1059 
1060   return SE->isKnownNonNegative(S);
1061 }
1062 
1063 // All subscripts are all the same type.
1064 // Loop bound may be smaller (e.g., a char).
1065 // Should zero extend loop bound, since it's always >= 0.
1066 // This routine collects upper bound and extends or truncates if needed.
1067 // Truncating is safe when subscripts are known not to wrap. Cases without
1068 // nowrap flags should have been rejected earlier.
1069 // Return null if no bound available.
1070 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1071   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1072     const SCEV *UB = SE->getBackedgeTakenCount(L);
1073     return SE->getTruncateOrZeroExtend(UB, T);
1074   }
1075   return nullptr;
1076 }
1077 
1078 
1079 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1080 // If the cast fails, returns NULL.
1081 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1082                                                               Type *T) const {
1083   if (const SCEV *UB = collectUpperBound(L, T))
1084     return dyn_cast<SCEVConstant>(UB);
1085   return nullptr;
1086 }
1087 
1088 
1089 // testZIV -
1090 // When we have a pair of subscripts of the form [c1] and [c2],
1091 // where c1 and c2 are both loop invariant, we attack it using
1092 // the ZIV test. Basically, we test by comparing the two values,
1093 // but there are actually three possible results:
1094 // 1) the values are equal, so there's a dependence
1095 // 2) the values are different, so there's no dependence
1096 // 3) the values might be equal, so we have to assume a dependence.
1097 //
1098 // Return true if dependence disproved.
1099 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1100                              FullDependence &Result) const {
1101   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
1102   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
1103   ++ZIVapplications;
1104   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1105     LLVM_DEBUG(dbgs() << "    provably dependent\n");
1106     return false; // provably dependent
1107   }
1108   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1109     LLVM_DEBUG(dbgs() << "    provably independent\n");
1110     ++ZIVindependence;
1111     return true; // provably independent
1112   }
1113   LLVM_DEBUG(dbgs() << "    possibly dependent\n");
1114   Result.Consistent = false;
1115   return false; // possibly dependent
1116 }
1117 
1118 
1119 // strongSIVtest -
1120 // From the paper, Practical Dependence Testing, Section 4.2.1
1121 //
1122 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1123 // where i is an induction variable, c1 and c2 are loop invariant,
1124 //  and a is a constant, we can solve it exactly using the Strong SIV test.
1125 //
1126 // Can prove independence. Failing that, can compute distance (and direction).
1127 // In the presence of symbolic terms, we can sometimes make progress.
1128 //
1129 // If there's a dependence,
1130 //
1131 //    c1 + a*i = c2 + a*i'
1132 //
1133 // The dependence distance is
1134 //
1135 //    d = i' - i = (c1 - c2)/a
1136 //
1137 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1138 // loop's upper bound. If a dependence exists, the dependence direction is
1139 // defined as
1140 //
1141 //                { < if d > 0
1142 //    direction = { = if d = 0
1143 //                { > if d < 0
1144 //
1145 // Return true if dependence disproved.
1146 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1147                                    const SCEV *DstConst, const Loop *CurLoop,
1148                                    unsigned Level, FullDependence &Result,
1149                                    Constraint &NewConstraint) const {
1150   LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1151   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1152   LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1153   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1154   LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1155   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1156   LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1157   ++StrongSIVapplications;
1158   assert(0 < Level && Level <= CommonLevels && "level out of range");
1159   Level--;
1160 
1161   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1162   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
1163   LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1164 
1165   // check that |Delta| < iteration count
1166   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1167     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1168     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1169     const SCEV *AbsDelta =
1170       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1171     const SCEV *AbsCoeff =
1172       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1173     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1174     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1175       // Distance greater than trip count - no dependence
1176       ++StrongSIVindependence;
1177       ++StrongSIVsuccesses;
1178       return true;
1179     }
1180   }
1181 
1182   // Can we compute distance?
1183   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1184     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1185     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1186     APInt Distance  = ConstDelta; // these need to be initialized
1187     APInt Remainder = ConstDelta;
1188     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1189     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1190     LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1191     // Make sure Coeff divides Delta exactly
1192     if (Remainder != 0) {
1193       // Coeff doesn't divide Distance, no dependence
1194       ++StrongSIVindependence;
1195       ++StrongSIVsuccesses;
1196       return true;
1197     }
1198     Result.DV[Level].Distance = SE->getConstant(Distance);
1199     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1200     if (Distance.sgt(0))
1201       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1202     else if (Distance.slt(0))
1203       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1204     else
1205       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1206     ++StrongSIVsuccesses;
1207   }
1208   else if (Delta->isZero()) {
1209     // since 0/X == 0
1210     Result.DV[Level].Distance = Delta;
1211     NewConstraint.setDistance(Delta, CurLoop);
1212     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1213     ++StrongSIVsuccesses;
1214   }
1215   else {
1216     if (Coeff->isOne()) {
1217       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1218       Result.DV[Level].Distance = Delta; // since X/1 == X
1219       NewConstraint.setDistance(Delta, CurLoop);
1220     }
1221     else {
1222       Result.Consistent = false;
1223       NewConstraint.setLine(Coeff,
1224                             SE->getNegativeSCEV(Coeff),
1225                             SE->getNegativeSCEV(Delta), CurLoop);
1226     }
1227 
1228     // maybe we can get a useful direction
1229     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1230     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1231     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1232     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1233     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1234     // The double negatives above are confusing.
1235     // It helps to read !SE->isKnownNonZero(Delta)
1236     // as "Delta might be Zero"
1237     unsigned NewDirection = Dependence::DVEntry::NONE;
1238     if ((DeltaMaybePositive && CoeffMaybePositive) ||
1239         (DeltaMaybeNegative && CoeffMaybeNegative))
1240       NewDirection = Dependence::DVEntry::LT;
1241     if (DeltaMaybeZero)
1242       NewDirection |= Dependence::DVEntry::EQ;
1243     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1244         (DeltaMaybePositive && CoeffMaybeNegative))
1245       NewDirection |= Dependence::DVEntry::GT;
1246     if (NewDirection < Result.DV[Level].Direction)
1247       ++StrongSIVsuccesses;
1248     Result.DV[Level].Direction &= NewDirection;
1249   }
1250   return false;
1251 }
1252 
1253 
1254 // weakCrossingSIVtest -
1255 // From the paper, Practical Dependence Testing, Section 4.2.2
1256 //
1257 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1258 // where i is an induction variable, c1 and c2 are loop invariant,
1259 // and a is a constant, we can solve it exactly using the
1260 // Weak-Crossing SIV test.
1261 //
1262 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1263 // the two lines, where i = i', yielding
1264 //
1265 //    c1 + a*i = c2 - a*i
1266 //    2a*i = c2 - c1
1267 //    i = (c2 - c1)/2a
1268 //
1269 // If i < 0, there is no dependence.
1270 // If i > upperbound, there is no dependence.
1271 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1272 // If i = upperbound, there's a dependence with distance = 0.
1273 // If i is integral, there's a dependence (all directions).
1274 // If the non-integer part = 1/2, there's a dependence (<> directions).
1275 // Otherwise, there's no dependence.
1276 //
1277 // Can prove independence. Failing that,
1278 // can sometimes refine the directions.
1279 // Can determine iteration for splitting.
1280 //
1281 // Return true if dependence disproved.
1282 bool DependenceInfo::weakCrossingSIVtest(
1283     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1284     const Loop *CurLoop, unsigned Level, FullDependence &Result,
1285     Constraint &NewConstraint, const SCEV *&SplitIter) const {
1286   LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1287   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1288   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1289   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1290   ++WeakCrossingSIVapplications;
1291   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1292   Level--;
1293   Result.Consistent = false;
1294   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1295   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1296   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1297   if (Delta->isZero()) {
1298     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1299     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1300     ++WeakCrossingSIVsuccesses;
1301     if (!Result.DV[Level].Direction) {
1302       ++WeakCrossingSIVindependence;
1303       return true;
1304     }
1305     Result.DV[Level].Distance = Delta; // = 0
1306     return false;
1307   }
1308   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1309   if (!ConstCoeff)
1310     return false;
1311 
1312   Result.DV[Level].Splitable = true;
1313   if (SE->isKnownNegative(ConstCoeff)) {
1314     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1315     assert(ConstCoeff &&
1316            "dynamic cast of negative of ConstCoeff should yield constant");
1317     Delta = SE->getNegativeSCEV(Delta);
1318   }
1319   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1320 
1321   // compute SplitIter for use by DependenceInfo::getSplitIteration()
1322   SplitIter = SE->getUDivExpr(
1323       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1324       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1325   LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1326 
1327   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1328   if (!ConstDelta)
1329     return false;
1330 
1331   // We're certain that ConstCoeff > 0; therefore,
1332   // if Delta < 0, then no dependence.
1333   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1334   LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1335   if (SE->isKnownNegative(Delta)) {
1336     // No dependence, Delta < 0
1337     ++WeakCrossingSIVindependence;
1338     ++WeakCrossingSIVsuccesses;
1339     return true;
1340   }
1341 
1342   // We're certain that Delta > 0 and ConstCoeff > 0.
1343   // Check Delta/(2*ConstCoeff) against upper loop bound
1344   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1345     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1346     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1347     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1348                                     ConstantTwo);
1349     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1350     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1351       // Delta too big, no dependence
1352       ++WeakCrossingSIVindependence;
1353       ++WeakCrossingSIVsuccesses;
1354       return true;
1355     }
1356     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1357       // i = i' = UB
1358       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1359       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1360       ++WeakCrossingSIVsuccesses;
1361       if (!Result.DV[Level].Direction) {
1362         ++WeakCrossingSIVindependence;
1363         return true;
1364       }
1365       Result.DV[Level].Splitable = false;
1366       Result.DV[Level].Distance = SE->getZero(Delta->getType());
1367       return false;
1368     }
1369   }
1370 
1371   // check that Coeff divides Delta
1372   APInt APDelta = ConstDelta->getAPInt();
1373   APInt APCoeff = ConstCoeff->getAPInt();
1374   APInt Distance = APDelta; // these need to be initialzed
1375   APInt Remainder = APDelta;
1376   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1377   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1378   if (Remainder != 0) {
1379     // Coeff doesn't divide Delta, no dependence
1380     ++WeakCrossingSIVindependence;
1381     ++WeakCrossingSIVsuccesses;
1382     return true;
1383   }
1384   LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1385 
1386   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1387   APInt Two = APInt(Distance.getBitWidth(), 2, true);
1388   Remainder = Distance.srem(Two);
1389   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1390   if (Remainder != 0) {
1391     // Equal direction isn't possible
1392     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1393     ++WeakCrossingSIVsuccesses;
1394   }
1395   return false;
1396 }
1397 
1398 
1399 // Kirch's algorithm, from
1400 //
1401 //        Optimizing Supercompilers for Supercomputers
1402 //        Michael Wolfe
1403 //        MIT Press, 1989
1404 //
1405 // Program 2.1, page 29.
1406 // Computes the GCD of AM and BM.
1407 // Also finds a solution to the equation ax - by = gcd(a, b).
1408 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1409 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1410                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1411   APInt A0(Bits, 1, true), A1(Bits, 0, true);
1412   APInt B0(Bits, 0, true), B1(Bits, 1, true);
1413   APInt G0 = AM.abs();
1414   APInt G1 = BM.abs();
1415   APInt Q = G0; // these need to be initialized
1416   APInt R = G0;
1417   APInt::sdivrem(G0, G1, Q, R);
1418   while (R != 0) {
1419     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1420     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1421     G0 = G1; G1 = R;
1422     APInt::sdivrem(G0, G1, Q, R);
1423   }
1424   G = G1;
1425   LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1426   X = AM.slt(0) ? -A1 : A1;
1427   Y = BM.slt(0) ? B1 : -B1;
1428 
1429   // make sure gcd divides Delta
1430   R = Delta.srem(G);
1431   if (R != 0)
1432     return true; // gcd doesn't divide Delta, no dependence
1433   Q = Delta.sdiv(G);
1434   X *= Q;
1435   Y *= Q;
1436   return false;
1437 }
1438 
1439 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1440   APInt Q = A; // these need to be initialized
1441   APInt R = A;
1442   APInt::sdivrem(A, B, Q, R);
1443   if (R == 0)
1444     return Q;
1445   if ((A.sgt(0) && B.sgt(0)) ||
1446       (A.slt(0) && B.slt(0)))
1447     return Q;
1448   else
1449     return Q - 1;
1450 }
1451 
1452 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1453   APInt Q = A; // these need to be initialized
1454   APInt R = A;
1455   APInt::sdivrem(A, B, Q, R);
1456   if (R == 0)
1457     return Q;
1458   if ((A.sgt(0) && B.sgt(0)) ||
1459       (A.slt(0) && B.slt(0)))
1460     return Q + 1;
1461   else
1462     return Q;
1463 }
1464 
1465 
1466 static
1467 APInt maxAPInt(APInt A, APInt B) {
1468   return A.sgt(B) ? A : B;
1469 }
1470 
1471 
1472 static
1473 APInt minAPInt(APInt A, APInt B) {
1474   return A.slt(B) ? A : B;
1475 }
1476 
1477 
1478 // exactSIVtest -
1479 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1480 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1481 // and a2 are constant, we can solve it exactly using an algorithm developed
1482 // by Banerjee and Wolfe. See Section 2.5.3 in
1483 //
1484 //        Optimizing Supercompilers for Supercomputers
1485 //        Michael Wolfe
1486 //        MIT Press, 1989
1487 //
1488 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1489 // so use them if possible. They're also a bit better with symbolics and,
1490 // in the case of the strong SIV test, can compute Distances.
1491 //
1492 // Return true if dependence disproved.
1493 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1494                                   const SCEV *SrcConst, const SCEV *DstConst,
1495                                   const Loop *CurLoop, unsigned Level,
1496                                   FullDependence &Result,
1497                                   Constraint &NewConstraint) const {
1498   LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1499   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1500   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1501   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1502   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1503   ++ExactSIVapplications;
1504   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1505   Level--;
1506   Result.Consistent = false;
1507   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1508   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1509   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1510                         Delta, CurLoop);
1511   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1512   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1513   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1514   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1515     return false;
1516 
1517   // find gcd
1518   APInt G, X, Y;
1519   APInt AM = ConstSrcCoeff->getAPInt();
1520   APInt BM = ConstDstCoeff->getAPInt();
1521   unsigned Bits = AM.getBitWidth();
1522   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1523     // gcd doesn't divide Delta, no dependence
1524     ++ExactSIVindependence;
1525     ++ExactSIVsuccesses;
1526     return true;
1527   }
1528 
1529   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1530 
1531   // since SCEV construction normalizes, LM = 0
1532   APInt UM(Bits, 1, true);
1533   bool UMvalid = false;
1534   // UM is perhaps unavailable, let's check
1535   if (const SCEVConstant *CUB =
1536       collectConstantUpperBound(CurLoop, Delta->getType())) {
1537     UM = CUB->getAPInt();
1538     LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1539     UMvalid = true;
1540   }
1541 
1542   APInt TU(APInt::getSignedMaxValue(Bits));
1543   APInt TL(APInt::getSignedMinValue(Bits));
1544 
1545   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1546   APInt TMUL = BM.sdiv(G);
1547   if (TMUL.sgt(0)) {
1548     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1549     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1550     if (UMvalid) {
1551       TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1552       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1553     }
1554   }
1555   else {
1556     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1557     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1558     if (UMvalid) {
1559       TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1560       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1561     }
1562   }
1563 
1564   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1565   TMUL = AM.sdiv(G);
1566   if (TMUL.sgt(0)) {
1567     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1568     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1569     if (UMvalid) {
1570       TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1571       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1572     }
1573   }
1574   else {
1575     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1576     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1577     if (UMvalid) {
1578       TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1579       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1580     }
1581   }
1582   if (TL.sgt(TU)) {
1583     ++ExactSIVindependence;
1584     ++ExactSIVsuccesses;
1585     return true;
1586   }
1587 
1588   // explore directions
1589   unsigned NewDirection = Dependence::DVEntry::NONE;
1590 
1591   // less than
1592   APInt SaveTU(TU); // save these
1593   APInt SaveTL(TL);
1594   LLVM_DEBUG(dbgs() << "\t    exploring LT direction\n");
1595   TMUL = AM - BM;
1596   if (TMUL.sgt(0)) {
1597     TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1598     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1599   }
1600   else {
1601     TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1602     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1603   }
1604   if (TL.sle(TU)) {
1605     NewDirection |= Dependence::DVEntry::LT;
1606     ++ExactSIVsuccesses;
1607   }
1608 
1609   // equal
1610   TU = SaveTU; // restore
1611   TL = SaveTL;
1612   LLVM_DEBUG(dbgs() << "\t    exploring EQ direction\n");
1613   if (TMUL.sgt(0)) {
1614     TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1615     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1616   }
1617   else {
1618     TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1619     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1620   }
1621   TMUL = BM - AM;
1622   if (TMUL.sgt(0)) {
1623     TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1624     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1625   }
1626   else {
1627     TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1628     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1629   }
1630   if (TL.sle(TU)) {
1631     NewDirection |= Dependence::DVEntry::EQ;
1632     ++ExactSIVsuccesses;
1633   }
1634 
1635   // greater than
1636   TU = SaveTU; // restore
1637   TL = SaveTL;
1638   LLVM_DEBUG(dbgs() << "\t    exploring GT direction\n");
1639   if (TMUL.sgt(0)) {
1640     TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1641     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1642   }
1643   else {
1644     TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1645     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1646   }
1647   if (TL.sle(TU)) {
1648     NewDirection |= Dependence::DVEntry::GT;
1649     ++ExactSIVsuccesses;
1650   }
1651 
1652   // finished
1653   Result.DV[Level].Direction &= NewDirection;
1654   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1655     ++ExactSIVindependence;
1656   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1657 }
1658 
1659 
1660 
1661 // Return true if the divisor evenly divides the dividend.
1662 static
1663 bool isRemainderZero(const SCEVConstant *Dividend,
1664                      const SCEVConstant *Divisor) {
1665   const APInt &ConstDividend = Dividend->getAPInt();
1666   const APInt &ConstDivisor = Divisor->getAPInt();
1667   return ConstDividend.srem(ConstDivisor) == 0;
1668 }
1669 
1670 
1671 // weakZeroSrcSIVtest -
1672 // From the paper, Practical Dependence Testing, Section 4.2.2
1673 //
1674 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1675 // where i is an induction variable, c1 and c2 are loop invariant,
1676 // and a is a constant, we can solve it exactly using the
1677 // Weak-Zero SIV test.
1678 //
1679 // Given
1680 //
1681 //    c1 = c2 + a*i
1682 //
1683 // we get
1684 //
1685 //    (c1 - c2)/a = i
1686 //
1687 // If i is not an integer, there's no dependence.
1688 // If i < 0 or > UB, there's no dependence.
1689 // If i = 0, the direction is >= and peeling the
1690 // 1st iteration will break the dependence.
1691 // If i = UB, the direction is <= and peeling the
1692 // last iteration will break the dependence.
1693 // Otherwise, the direction is *.
1694 //
1695 // Can prove independence. Failing that, we can sometimes refine
1696 // the directions. Can sometimes show that first or last
1697 // iteration carries all the dependences (so worth peeling).
1698 //
1699 // (see also weakZeroDstSIVtest)
1700 //
1701 // Return true if dependence disproved.
1702 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1703                                         const SCEV *SrcConst,
1704                                         const SCEV *DstConst,
1705                                         const Loop *CurLoop, unsigned Level,
1706                                         FullDependence &Result,
1707                                         Constraint &NewConstraint) const {
1708   // For the WeakSIV test, it's possible the loop isn't common to
1709   // the Src and Dst loops. If it isn't, then there's no need to
1710   // record a direction.
1711   LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1712   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1713   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1714   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1715   ++WeakZeroSIVapplications;
1716   assert(0 < Level && Level <= MaxLevels && "Level out of range");
1717   Level--;
1718   Result.Consistent = false;
1719   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1720   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1721                         CurLoop);
1722   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1723   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1724     if (Level < CommonLevels) {
1725       Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1726       Result.DV[Level].PeelFirst = true;
1727       ++WeakZeroSIVsuccesses;
1728     }
1729     return false; // dependences caused by first iteration
1730   }
1731   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1732   if (!ConstCoeff)
1733     return false;
1734   const SCEV *AbsCoeff =
1735     SE->isKnownNegative(ConstCoeff) ?
1736     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1737   const SCEV *NewDelta =
1738     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1739 
1740   // check that Delta/SrcCoeff < iteration count
1741   // really check NewDelta < count*AbsCoeff
1742   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1743     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1744     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1745     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1746       ++WeakZeroSIVindependence;
1747       ++WeakZeroSIVsuccesses;
1748       return true;
1749     }
1750     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1751       // dependences caused by last iteration
1752       if (Level < CommonLevels) {
1753         Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1754         Result.DV[Level].PeelLast = true;
1755         ++WeakZeroSIVsuccesses;
1756       }
1757       return false;
1758     }
1759   }
1760 
1761   // check that Delta/SrcCoeff >= 0
1762   // really check that NewDelta >= 0
1763   if (SE->isKnownNegative(NewDelta)) {
1764     // No dependence, newDelta < 0
1765     ++WeakZeroSIVindependence;
1766     ++WeakZeroSIVsuccesses;
1767     return true;
1768   }
1769 
1770   // if SrcCoeff doesn't divide Delta, then no dependence
1771   if (isa<SCEVConstant>(Delta) &&
1772       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1773     ++WeakZeroSIVindependence;
1774     ++WeakZeroSIVsuccesses;
1775     return true;
1776   }
1777   return false;
1778 }
1779 
1780 
1781 // weakZeroDstSIVtest -
1782 // From the paper, Practical Dependence Testing, Section 4.2.2
1783 //
1784 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1785 // where i is an induction variable, c1 and c2 are loop invariant,
1786 // and a is a constant, we can solve it exactly using the
1787 // Weak-Zero SIV test.
1788 //
1789 // Given
1790 //
1791 //    c1 + a*i = c2
1792 //
1793 // we get
1794 //
1795 //    i = (c2 - c1)/a
1796 //
1797 // If i is not an integer, there's no dependence.
1798 // If i < 0 or > UB, there's no dependence.
1799 // If i = 0, the direction is <= and peeling the
1800 // 1st iteration will break the dependence.
1801 // If i = UB, the direction is >= and peeling the
1802 // last iteration will break the dependence.
1803 // Otherwise, the direction is *.
1804 //
1805 // Can prove independence. Failing that, we can sometimes refine
1806 // the directions. Can sometimes show that first or last
1807 // iteration carries all the dependences (so worth peeling).
1808 //
1809 // (see also weakZeroSrcSIVtest)
1810 //
1811 // Return true if dependence disproved.
1812 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1813                                         const SCEV *SrcConst,
1814                                         const SCEV *DstConst,
1815                                         const Loop *CurLoop, unsigned Level,
1816                                         FullDependence &Result,
1817                                         Constraint &NewConstraint) const {
1818   // For the WeakSIV test, it's possible the loop isn't common to the
1819   // Src and Dst loops. If it isn't, then there's no need to record a direction.
1820   LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1821   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1822   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1823   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1824   ++WeakZeroSIVapplications;
1825   assert(0 < Level && Level <= SrcLevels && "Level out of range");
1826   Level--;
1827   Result.Consistent = false;
1828   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1829   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1830                         CurLoop);
1831   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1832   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1833     if (Level < CommonLevels) {
1834       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1835       Result.DV[Level].PeelFirst = true;
1836       ++WeakZeroSIVsuccesses;
1837     }
1838     return false; // dependences caused by first iteration
1839   }
1840   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1841   if (!ConstCoeff)
1842     return false;
1843   const SCEV *AbsCoeff =
1844     SE->isKnownNegative(ConstCoeff) ?
1845     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1846   const SCEV *NewDelta =
1847     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1848 
1849   // check that Delta/SrcCoeff < iteration count
1850   // really check NewDelta < count*AbsCoeff
1851   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1852     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1853     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1854     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1855       ++WeakZeroSIVindependence;
1856       ++WeakZeroSIVsuccesses;
1857       return true;
1858     }
1859     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1860       // dependences caused by last iteration
1861       if (Level < CommonLevels) {
1862         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1863         Result.DV[Level].PeelLast = true;
1864         ++WeakZeroSIVsuccesses;
1865       }
1866       return false;
1867     }
1868   }
1869 
1870   // check that Delta/SrcCoeff >= 0
1871   // really check that NewDelta >= 0
1872   if (SE->isKnownNegative(NewDelta)) {
1873     // No dependence, newDelta < 0
1874     ++WeakZeroSIVindependence;
1875     ++WeakZeroSIVsuccesses;
1876     return true;
1877   }
1878 
1879   // if SrcCoeff doesn't divide Delta, then no dependence
1880   if (isa<SCEVConstant>(Delta) &&
1881       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1882     ++WeakZeroSIVindependence;
1883     ++WeakZeroSIVsuccesses;
1884     return true;
1885   }
1886   return false;
1887 }
1888 
1889 
1890 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1891 // Things of the form [c1 + a*i] and [c2 + b*j],
1892 // where i and j are induction variable, c1 and c2 are loop invariant,
1893 // and a and b are constants.
1894 // Returns true if any possible dependence is disproved.
1895 // Marks the result as inconsistent.
1896 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1897 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1898                                    const SCEV *SrcConst, const SCEV *DstConst,
1899                                    const Loop *SrcLoop, const Loop *DstLoop,
1900                                    FullDependence &Result) const {
1901   LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1902   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1903   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1904   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1905   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1906   ++ExactRDIVapplications;
1907   Result.Consistent = false;
1908   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1909   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1910   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1911   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1912   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1913   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1914     return false;
1915 
1916   // find gcd
1917   APInt G, X, Y;
1918   APInt AM = ConstSrcCoeff->getAPInt();
1919   APInt BM = ConstDstCoeff->getAPInt();
1920   unsigned Bits = AM.getBitWidth();
1921   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1922     // gcd doesn't divide Delta, no dependence
1923     ++ExactRDIVindependence;
1924     return true;
1925   }
1926 
1927   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1928 
1929   // since SCEV construction seems to normalize, LM = 0
1930   APInt SrcUM(Bits, 1, true);
1931   bool SrcUMvalid = false;
1932   // SrcUM is perhaps unavailable, let's check
1933   if (const SCEVConstant *UpperBound =
1934       collectConstantUpperBound(SrcLoop, Delta->getType())) {
1935     SrcUM = UpperBound->getAPInt();
1936     LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1937     SrcUMvalid = true;
1938   }
1939 
1940   APInt DstUM(Bits, 1, true);
1941   bool DstUMvalid = false;
1942   // UM is perhaps unavailable, let's check
1943   if (const SCEVConstant *UpperBound =
1944       collectConstantUpperBound(DstLoop, Delta->getType())) {
1945     DstUM = UpperBound->getAPInt();
1946     LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
1947     DstUMvalid = true;
1948   }
1949 
1950   APInt TU(APInt::getSignedMaxValue(Bits));
1951   APInt TL(APInt::getSignedMinValue(Bits));
1952 
1953   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1954   APInt TMUL = BM.sdiv(G);
1955   if (TMUL.sgt(0)) {
1956     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1957     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1958     if (SrcUMvalid) {
1959       TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1960       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1961     }
1962   }
1963   else {
1964     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1965     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1966     if (SrcUMvalid) {
1967       TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1968       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1969     }
1970   }
1971 
1972   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1973   TMUL = AM.sdiv(G);
1974   if (TMUL.sgt(0)) {
1975     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1976     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1977     if (DstUMvalid) {
1978       TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1979       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1980     }
1981   }
1982   else {
1983     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1984     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1985     if (DstUMvalid) {
1986       TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1987       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1988     }
1989   }
1990   if (TL.sgt(TU))
1991     ++ExactRDIVindependence;
1992   return TL.sgt(TU);
1993 }
1994 
1995 
1996 // symbolicRDIVtest -
1997 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1998 // introduce a special case of Banerjee's Inequalities (also called the
1999 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
2000 // particularly cases with symbolics. Since it's only able to disprove
2001 // dependence (not compute distances or directions), we'll use it as a
2002 // fall back for the other tests.
2003 //
2004 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2005 // where i and j are induction variables and c1 and c2 are loop invariants,
2006 // we can use the symbolic tests to disprove some dependences, serving as a
2007 // backup for the RDIV test. Note that i and j can be the same variable,
2008 // letting this test serve as a backup for the various SIV tests.
2009 //
2010 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2011 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2012 // loop bounds for the i and j loops, respectively. So, ...
2013 //
2014 // c1 + a1*i = c2 + a2*j
2015 // a1*i - a2*j = c2 - c1
2016 //
2017 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2018 // range of the maximum and minimum possible values of a1*i - a2*j.
2019 // Considering the signs of a1 and a2, we have 4 possible cases:
2020 //
2021 // 1) If a1 >= 0 and a2 >= 0, then
2022 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2023 //              -a2*N2 <= c2 - c1 <= a1*N1
2024 //
2025 // 2) If a1 >= 0 and a2 <= 0, then
2026 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2027 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
2028 //
2029 // 3) If a1 <= 0 and a2 >= 0, then
2030 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2031 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
2032 //
2033 // 4) If a1 <= 0 and a2 <= 0, then
2034 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
2035 //        a1*N1         <= c2 - c1 <=       -a2*N2
2036 //
2037 // return true if dependence disproved
2038 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2039                                       const SCEV *C1, const SCEV *C2,
2040                                       const Loop *Loop1,
2041                                       const Loop *Loop2) const {
2042   ++SymbolicRDIVapplications;
2043   LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2044   LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
2045   LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2046   LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
2047   LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
2048   LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
2049   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2050   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2051   LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
2052   LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
2053   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2054   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2055   LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
2056   LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
2057   if (SE->isKnownNonNegative(A1)) {
2058     if (SE->isKnownNonNegative(A2)) {
2059       // A1 >= 0 && A2 >= 0
2060       if (N1) {
2061         // make sure that c2 - c1 <= a1*N1
2062         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2063         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2064         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2065           ++SymbolicRDIVindependence;
2066           return true;
2067         }
2068       }
2069       if (N2) {
2070         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2071         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2072         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2073         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2074           ++SymbolicRDIVindependence;
2075           return true;
2076         }
2077       }
2078     }
2079     else if (SE->isKnownNonPositive(A2)) {
2080       // a1 >= 0 && a2 <= 0
2081       if (N1 && N2) {
2082         // make sure that c2 - c1 <= a1*N1 - a2*N2
2083         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2084         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2085         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2086         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2087         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2088           ++SymbolicRDIVindependence;
2089           return true;
2090         }
2091       }
2092       // make sure that 0 <= c2 - c1
2093       if (SE->isKnownNegative(C2_C1)) {
2094         ++SymbolicRDIVindependence;
2095         return true;
2096       }
2097     }
2098   }
2099   else if (SE->isKnownNonPositive(A1)) {
2100     if (SE->isKnownNonNegative(A2)) {
2101       // a1 <= 0 && a2 >= 0
2102       if (N1 && N2) {
2103         // make sure that a1*N1 - a2*N2 <= c2 - c1
2104         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2105         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2106         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2107         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2108         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2109           ++SymbolicRDIVindependence;
2110           return true;
2111         }
2112       }
2113       // make sure that c2 - c1 <= 0
2114       if (SE->isKnownPositive(C2_C1)) {
2115         ++SymbolicRDIVindependence;
2116         return true;
2117       }
2118     }
2119     else if (SE->isKnownNonPositive(A2)) {
2120       // a1 <= 0 && a2 <= 0
2121       if (N1) {
2122         // make sure that a1*N1 <= c2 - c1
2123         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2124         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2125         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2126           ++SymbolicRDIVindependence;
2127           return true;
2128         }
2129       }
2130       if (N2) {
2131         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2132         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2133         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2134         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2135           ++SymbolicRDIVindependence;
2136           return true;
2137         }
2138       }
2139     }
2140   }
2141   return false;
2142 }
2143 
2144 
2145 // testSIV -
2146 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2147 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2148 // a2 are constant, we attack it with an SIV test. While they can all be
2149 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2150 // they apply; they're cheaper and sometimes more precise.
2151 //
2152 // Return true if dependence disproved.
2153 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2154                              FullDependence &Result, Constraint &NewConstraint,
2155                              const SCEV *&SplitIter) const {
2156   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2157   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2158   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2159   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2160   if (SrcAddRec && DstAddRec) {
2161     const SCEV *SrcConst = SrcAddRec->getStart();
2162     const SCEV *DstConst = DstAddRec->getStart();
2163     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2164     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2165     const Loop *CurLoop = SrcAddRec->getLoop();
2166     assert(CurLoop == DstAddRec->getLoop() &&
2167            "both loops in SIV should be same");
2168     Level = mapSrcLoop(CurLoop);
2169     bool disproven;
2170     if (SrcCoeff == DstCoeff)
2171       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2172                                 Level, Result, NewConstraint);
2173     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2174       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2175                                       Level, Result, NewConstraint, SplitIter);
2176     else
2177       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2178                                Level, Result, NewConstraint);
2179     return disproven ||
2180       gcdMIVtest(Src, Dst, Result) ||
2181       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2182   }
2183   if (SrcAddRec) {
2184     const SCEV *SrcConst = SrcAddRec->getStart();
2185     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2186     const SCEV *DstConst = Dst;
2187     const Loop *CurLoop = SrcAddRec->getLoop();
2188     Level = mapSrcLoop(CurLoop);
2189     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2190                               Level, Result, NewConstraint) ||
2191       gcdMIVtest(Src, Dst, Result);
2192   }
2193   if (DstAddRec) {
2194     const SCEV *DstConst = DstAddRec->getStart();
2195     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2196     const SCEV *SrcConst = Src;
2197     const Loop *CurLoop = DstAddRec->getLoop();
2198     Level = mapDstLoop(CurLoop);
2199     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2200                               CurLoop, Level, Result, NewConstraint) ||
2201       gcdMIVtest(Src, Dst, Result);
2202   }
2203   llvm_unreachable("SIV test expected at least one AddRec");
2204   return false;
2205 }
2206 
2207 
2208 // testRDIV -
2209 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2210 // where i and j are induction variables, c1 and c2 are loop invariant,
2211 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2212 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2213 // It doesn't make sense to talk about distance or direction in this case,
2214 // so there's no point in making special versions of the Strong SIV test or
2215 // the Weak-crossing SIV test.
2216 //
2217 // With minor algebra, this test can also be used for things like
2218 // [c1 + a1*i + a2*j][c2].
2219 //
2220 // Return true if dependence disproved.
2221 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2222                               FullDependence &Result) const {
2223   // we have 3 possible situations here:
2224   //   1) [a*i + b] and [c*j + d]
2225   //   2) [a*i + c*j + b] and [d]
2226   //   3) [b] and [a*i + c*j + d]
2227   // We need to find what we've got and get organized
2228 
2229   const SCEV *SrcConst, *DstConst;
2230   const SCEV *SrcCoeff, *DstCoeff;
2231   const Loop *SrcLoop, *DstLoop;
2232 
2233   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2234   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2235   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2236   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2237   if (SrcAddRec && DstAddRec) {
2238     SrcConst = SrcAddRec->getStart();
2239     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2240     SrcLoop = SrcAddRec->getLoop();
2241     DstConst = DstAddRec->getStart();
2242     DstCoeff = DstAddRec->getStepRecurrence(*SE);
2243     DstLoop = DstAddRec->getLoop();
2244   }
2245   else if (SrcAddRec) {
2246     if (const SCEVAddRecExpr *tmpAddRec =
2247         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2248       SrcConst = tmpAddRec->getStart();
2249       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2250       SrcLoop = tmpAddRec->getLoop();
2251       DstConst = Dst;
2252       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2253       DstLoop = SrcAddRec->getLoop();
2254     }
2255     else
2256       llvm_unreachable("RDIV reached by surprising SCEVs");
2257   }
2258   else if (DstAddRec) {
2259     if (const SCEVAddRecExpr *tmpAddRec =
2260         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2261       DstConst = tmpAddRec->getStart();
2262       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2263       DstLoop = tmpAddRec->getLoop();
2264       SrcConst = Src;
2265       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2266       SrcLoop = DstAddRec->getLoop();
2267     }
2268     else
2269       llvm_unreachable("RDIV reached by surprising SCEVs");
2270   }
2271   else
2272     llvm_unreachable("RDIV expected at least one AddRec");
2273   return exactRDIVtest(SrcCoeff, DstCoeff,
2274                        SrcConst, DstConst,
2275                        SrcLoop, DstLoop,
2276                        Result) ||
2277     gcdMIVtest(Src, Dst, Result) ||
2278     symbolicRDIVtest(SrcCoeff, DstCoeff,
2279                      SrcConst, DstConst,
2280                      SrcLoop, DstLoop);
2281 }
2282 
2283 
2284 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2285 // Return true if dependence disproved.
2286 // Can sometimes refine direction vectors.
2287 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2288                              const SmallBitVector &Loops,
2289                              FullDependence &Result) const {
2290   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2291   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2292   Result.Consistent = false;
2293   return gcdMIVtest(Src, Dst, Result) ||
2294     banerjeeMIVtest(Src, Dst, Loops, Result);
2295 }
2296 
2297 
2298 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2299 // in this case 10. If there is no constant part, returns NULL.
2300 static
2301 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2302   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2303     return Constant;
2304   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2305     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2306       return Constant;
2307   return nullptr;
2308 }
2309 
2310 
2311 //===----------------------------------------------------------------------===//
2312 // gcdMIVtest -
2313 // Tests an MIV subscript pair for dependence.
2314 // Returns true if any possible dependence is disproved.
2315 // Marks the result as inconsistent.
2316 // Can sometimes disprove the equal direction for 1 or more loops,
2317 // as discussed in Michael Wolfe's book,
2318 // High Performance Compilers for Parallel Computing, page 235.
2319 //
2320 // We spend some effort (code!) to handle cases like
2321 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2322 // but M and N are just loop-invariant variables.
2323 // This should help us handle linearized subscripts;
2324 // also makes this test a useful backup to the various SIV tests.
2325 //
2326 // It occurs to me that the presence of loop-invariant variables
2327 // changes the nature of the test from "greatest common divisor"
2328 // to "a common divisor".
2329 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2330                                 FullDependence &Result) const {
2331   LLVM_DEBUG(dbgs() << "starting gcd\n");
2332   ++GCDapplications;
2333   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2334   APInt RunningGCD = APInt::getNullValue(BitWidth);
2335 
2336   // Examine Src coefficients.
2337   // Compute running GCD and record source constant.
2338   // Because we're looking for the constant at the end of the chain,
2339   // we can't quit the loop just because the GCD == 1.
2340   const SCEV *Coefficients = Src;
2341   while (const SCEVAddRecExpr *AddRec =
2342          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2343     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2344     // If the coefficient is the product of a constant and other stuff,
2345     // we can use the constant in the GCD computation.
2346     const auto *Constant = getConstantPart(Coeff);
2347     if (!Constant)
2348       return false;
2349     APInt ConstCoeff = Constant->getAPInt();
2350     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2351     Coefficients = AddRec->getStart();
2352   }
2353   const SCEV *SrcConst = Coefficients;
2354 
2355   // Examine Dst coefficients.
2356   // Compute running GCD and record destination constant.
2357   // Because we're looking for the constant at the end of the chain,
2358   // we can't quit the loop just because the GCD == 1.
2359   Coefficients = Dst;
2360   while (const SCEVAddRecExpr *AddRec =
2361          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2362     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2363     // If the coefficient is the product of a constant and other stuff,
2364     // we can use the constant in the GCD computation.
2365     const auto *Constant = getConstantPart(Coeff);
2366     if (!Constant)
2367       return false;
2368     APInt ConstCoeff = Constant->getAPInt();
2369     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2370     Coefficients = AddRec->getStart();
2371   }
2372   const SCEV *DstConst = Coefficients;
2373 
2374   APInt ExtraGCD = APInt::getNullValue(BitWidth);
2375   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2376   LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2377   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2378   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2379     // If Delta is a sum of products, we may be able to make further progress.
2380     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2381       const SCEV *Operand = Sum->getOperand(Op);
2382       if (isa<SCEVConstant>(Operand)) {
2383         assert(!Constant && "Surprised to find multiple constants");
2384         Constant = cast<SCEVConstant>(Operand);
2385       }
2386       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2387         // Search for constant operand to participate in GCD;
2388         // If none found; return false.
2389         const SCEVConstant *ConstOp = getConstantPart(Product);
2390         if (!ConstOp)
2391           return false;
2392         APInt ConstOpValue = ConstOp->getAPInt();
2393         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2394                                                    ConstOpValue.abs());
2395       }
2396       else
2397         return false;
2398     }
2399   }
2400   if (!Constant)
2401     return false;
2402   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2403   LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2404   if (ConstDelta == 0)
2405     return false;
2406   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2407   LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2408   APInt Remainder = ConstDelta.srem(RunningGCD);
2409   if (Remainder != 0) {
2410     ++GCDindependence;
2411     return true;
2412   }
2413 
2414   // Try to disprove equal directions.
2415   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2416   // the code above can't disprove the dependence because the GCD = 1.
2417   // So we consider what happen if i = i' and what happens if j = j'.
2418   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2419   // which is infeasible, so we can disallow the = direction for the i level.
2420   // Setting j = j' doesn't help matters, so we end up with a direction vector
2421   // of [<>, *]
2422   //
2423   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2424   // we need to remember that the constant part is 5 and the RunningGCD should
2425   // be initialized to ExtraGCD = 30.
2426   LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2427 
2428   bool Improved = false;
2429   Coefficients = Src;
2430   while (const SCEVAddRecExpr *AddRec =
2431          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2432     Coefficients = AddRec->getStart();
2433     const Loop *CurLoop = AddRec->getLoop();
2434     RunningGCD = ExtraGCD;
2435     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2436     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2437     const SCEV *Inner = Src;
2438     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2439       AddRec = cast<SCEVAddRecExpr>(Inner);
2440       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2441       if (CurLoop == AddRec->getLoop())
2442         ; // SrcCoeff == Coeff
2443       else {
2444         // If the coefficient is the product of a constant and other stuff,
2445         // we can use the constant in the GCD computation.
2446         Constant = getConstantPart(Coeff);
2447         if (!Constant)
2448           return false;
2449         APInt ConstCoeff = Constant->getAPInt();
2450         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2451       }
2452       Inner = AddRec->getStart();
2453     }
2454     Inner = Dst;
2455     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2456       AddRec = cast<SCEVAddRecExpr>(Inner);
2457       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2458       if (CurLoop == AddRec->getLoop())
2459         DstCoeff = Coeff;
2460       else {
2461         // If the coefficient is the product of a constant and other stuff,
2462         // we can use the constant in the GCD computation.
2463         Constant = getConstantPart(Coeff);
2464         if (!Constant)
2465           return false;
2466         APInt ConstCoeff = Constant->getAPInt();
2467         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2468       }
2469       Inner = AddRec->getStart();
2470     }
2471     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2472     // If the coefficient is the product of a constant and other stuff,
2473     // we can use the constant in the GCD computation.
2474     Constant = getConstantPart(Delta);
2475     if (!Constant)
2476       // The difference of the two coefficients might not be a product
2477       // or constant, in which case we give up on this direction.
2478       continue;
2479     APInt ConstCoeff = Constant->getAPInt();
2480     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2481     LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2482     if (RunningGCD != 0) {
2483       Remainder = ConstDelta.srem(RunningGCD);
2484       LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2485       if (Remainder != 0) {
2486         unsigned Level = mapSrcLoop(CurLoop);
2487         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2488         Improved = true;
2489       }
2490     }
2491   }
2492   if (Improved)
2493     ++GCDsuccesses;
2494   LLVM_DEBUG(dbgs() << "all done\n");
2495   return false;
2496 }
2497 
2498 
2499 //===----------------------------------------------------------------------===//
2500 // banerjeeMIVtest -
2501 // Use Banerjee's Inequalities to test an MIV subscript pair.
2502 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2503 // Generally follows the discussion in Section 2.5.2 of
2504 //
2505 //    Optimizing Supercompilers for Supercomputers
2506 //    Michael Wolfe
2507 //
2508 // The inequalities given on page 25 are simplified in that loops are
2509 // normalized so that the lower bound is always 0 and the stride is always 1.
2510 // For example, Wolfe gives
2511 //
2512 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2513 //
2514 // where A_k is the coefficient of the kth index in the source subscript,
2515 // B_k is the coefficient of the kth index in the destination subscript,
2516 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2517 // index, and N_k is the stride of the kth index. Since all loops are normalized
2518 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2519 // equation to
2520 //
2521 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2522 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2523 //
2524 // Similar simplifications are possible for the other equations.
2525 //
2526 // When we can't determine the number of iterations for a loop,
2527 // we use NULL as an indicator for the worst case, infinity.
2528 // When computing the upper bound, NULL denotes +inf;
2529 // for the lower bound, NULL denotes -inf.
2530 //
2531 // Return true if dependence disproved.
2532 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2533                                      const SmallBitVector &Loops,
2534                                      FullDependence &Result) const {
2535   LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2536   ++BanerjeeApplications;
2537   LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
2538   const SCEV *A0;
2539   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2540   LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2541   const SCEV *B0;
2542   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2543   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2544   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2545   LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2546 
2547   // Compute bounds for all the * directions.
2548   LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2549   for (unsigned K = 1; K <= MaxLevels; ++K) {
2550     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2551     Bound[K].Direction = Dependence::DVEntry::ALL;
2552     Bound[K].DirSet = Dependence::DVEntry::NONE;
2553     findBoundsALL(A, B, Bound, K);
2554 #ifndef NDEBUG
2555     LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
2556     if (Bound[K].Lower[Dependence::DVEntry::ALL])
2557       LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2558     else
2559       LLVM_DEBUG(dbgs() << "-inf\t");
2560     if (Bound[K].Upper[Dependence::DVEntry::ALL])
2561       LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2562     else
2563       LLVM_DEBUG(dbgs() << "+inf\n");
2564 #endif
2565   }
2566 
2567   // Test the *, *, *, ... case.
2568   bool Disproved = false;
2569   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2570     // Explore the direction vector hierarchy.
2571     unsigned DepthExpanded = 0;
2572     unsigned NewDeps = exploreDirections(1, A, B, Bound,
2573                                          Loops, DepthExpanded, Delta);
2574     if (NewDeps > 0) {
2575       bool Improved = false;
2576       for (unsigned K = 1; K <= CommonLevels; ++K) {
2577         if (Loops[K]) {
2578           unsigned Old = Result.DV[K - 1].Direction;
2579           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2580           Improved |= Old != Result.DV[K - 1].Direction;
2581           if (!Result.DV[K - 1].Direction) {
2582             Improved = false;
2583             Disproved = true;
2584             break;
2585           }
2586         }
2587       }
2588       if (Improved)
2589         ++BanerjeeSuccesses;
2590     }
2591     else {
2592       ++BanerjeeIndependence;
2593       Disproved = true;
2594     }
2595   }
2596   else {
2597     ++BanerjeeIndependence;
2598     Disproved = true;
2599   }
2600   delete [] Bound;
2601   delete [] A;
2602   delete [] B;
2603   return Disproved;
2604 }
2605 
2606 
2607 // Hierarchically expands the direction vector
2608 // search space, combining the directions of discovered dependences
2609 // in the DirSet field of Bound. Returns the number of distinct
2610 // dependences discovered. If the dependence is disproved,
2611 // it will return 0.
2612 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2613                                            CoefficientInfo *B, BoundInfo *Bound,
2614                                            const SmallBitVector &Loops,
2615                                            unsigned &DepthExpanded,
2616                                            const SCEV *Delta) const {
2617   if (Level > CommonLevels) {
2618     // record result
2619     LLVM_DEBUG(dbgs() << "\t[");
2620     for (unsigned K = 1; K <= CommonLevels; ++K) {
2621       if (Loops[K]) {
2622         Bound[K].DirSet |= Bound[K].Direction;
2623 #ifndef NDEBUG
2624         switch (Bound[K].Direction) {
2625         case Dependence::DVEntry::LT:
2626           LLVM_DEBUG(dbgs() << " <");
2627           break;
2628         case Dependence::DVEntry::EQ:
2629           LLVM_DEBUG(dbgs() << " =");
2630           break;
2631         case Dependence::DVEntry::GT:
2632           LLVM_DEBUG(dbgs() << " >");
2633           break;
2634         case Dependence::DVEntry::ALL:
2635           LLVM_DEBUG(dbgs() << " *");
2636           break;
2637         default:
2638           llvm_unreachable("unexpected Bound[K].Direction");
2639         }
2640 #endif
2641       }
2642     }
2643     LLVM_DEBUG(dbgs() << " ]\n");
2644     return 1;
2645   }
2646   if (Loops[Level]) {
2647     if (Level > DepthExpanded) {
2648       DepthExpanded = Level;
2649       // compute bounds for <, =, > at current level
2650       findBoundsLT(A, B, Bound, Level);
2651       findBoundsGT(A, B, Bound, Level);
2652       findBoundsEQ(A, B, Bound, Level);
2653 #ifndef NDEBUG
2654       LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2655       LLVM_DEBUG(dbgs() << "\t    <\t");
2656       if (Bound[Level].Lower[Dependence::DVEntry::LT])
2657         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2658                           << '\t');
2659       else
2660         LLVM_DEBUG(dbgs() << "-inf\t");
2661       if (Bound[Level].Upper[Dependence::DVEntry::LT])
2662         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2663                           << '\n');
2664       else
2665         LLVM_DEBUG(dbgs() << "+inf\n");
2666       LLVM_DEBUG(dbgs() << "\t    =\t");
2667       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2668         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2669                           << '\t');
2670       else
2671         LLVM_DEBUG(dbgs() << "-inf\t");
2672       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2673         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2674                           << '\n');
2675       else
2676         LLVM_DEBUG(dbgs() << "+inf\n");
2677       LLVM_DEBUG(dbgs() << "\t    >\t");
2678       if (Bound[Level].Lower[Dependence::DVEntry::GT])
2679         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2680                           << '\t');
2681       else
2682         LLVM_DEBUG(dbgs() << "-inf\t");
2683       if (Bound[Level].Upper[Dependence::DVEntry::GT])
2684         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2685                           << '\n');
2686       else
2687         LLVM_DEBUG(dbgs() << "+inf\n");
2688 #endif
2689     }
2690 
2691     unsigned NewDeps = 0;
2692 
2693     // test bounds for <, *, *, ...
2694     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2695       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2696                                    Loops, DepthExpanded, Delta);
2697 
2698     // Test bounds for =, *, *, ...
2699     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2700       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2701                                    Loops, DepthExpanded, Delta);
2702 
2703     // test bounds for >, *, *, ...
2704     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2705       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2706                                    Loops, DepthExpanded, Delta);
2707 
2708     Bound[Level].Direction = Dependence::DVEntry::ALL;
2709     return NewDeps;
2710   }
2711   else
2712     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2713 }
2714 
2715 
2716 // Returns true iff the current bounds are plausible.
2717 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2718                                 BoundInfo *Bound, const SCEV *Delta) const {
2719   Bound[Level].Direction = DirKind;
2720   if (const SCEV *LowerBound = getLowerBound(Bound))
2721     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2722       return false;
2723   if (const SCEV *UpperBound = getUpperBound(Bound))
2724     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2725       return false;
2726   return true;
2727 }
2728 
2729 
2730 // Computes the upper and lower bounds for level K
2731 // using the * direction. Records them in Bound.
2732 // Wolfe gives the equations
2733 //
2734 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2735 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2736 //
2737 // Since we normalize loops, we can simplify these equations to
2738 //
2739 //    LB^*_k = (A^-_k - B^+_k)U_k
2740 //    UB^*_k = (A^+_k - B^-_k)U_k
2741 //
2742 // We must be careful to handle the case where the upper bound is unknown.
2743 // Note that the lower bound is always <= 0
2744 // and the upper bound is always >= 0.
2745 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2746                                    BoundInfo *Bound, unsigned K) const {
2747   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2748   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2749   if (Bound[K].Iterations) {
2750     Bound[K].Lower[Dependence::DVEntry::ALL] =
2751       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2752                      Bound[K].Iterations);
2753     Bound[K].Upper[Dependence::DVEntry::ALL] =
2754       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2755                      Bound[K].Iterations);
2756   }
2757   else {
2758     // If the difference is 0, we won't need to know the number of iterations.
2759     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2760       Bound[K].Lower[Dependence::DVEntry::ALL] =
2761           SE->getZero(A[K].Coeff->getType());
2762     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2763       Bound[K].Upper[Dependence::DVEntry::ALL] =
2764           SE->getZero(A[K].Coeff->getType());
2765   }
2766 }
2767 
2768 
2769 // Computes the upper and lower bounds for level K
2770 // using the = direction. Records them in Bound.
2771 // Wolfe gives the equations
2772 //
2773 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2774 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2775 //
2776 // Since we normalize loops, we can simplify these equations to
2777 //
2778 //    LB^=_k = (A_k - B_k)^- U_k
2779 //    UB^=_k = (A_k - B_k)^+ U_k
2780 //
2781 // We must be careful to handle the case where the upper bound is unknown.
2782 // Note that the lower bound is always <= 0
2783 // and the upper bound is always >= 0.
2784 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2785                                   BoundInfo *Bound, unsigned K) const {
2786   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2787   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2788   if (Bound[K].Iterations) {
2789     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2790     const SCEV *NegativePart = getNegativePart(Delta);
2791     Bound[K].Lower[Dependence::DVEntry::EQ] =
2792       SE->getMulExpr(NegativePart, Bound[K].Iterations);
2793     const SCEV *PositivePart = getPositivePart(Delta);
2794     Bound[K].Upper[Dependence::DVEntry::EQ] =
2795       SE->getMulExpr(PositivePart, Bound[K].Iterations);
2796   }
2797   else {
2798     // If the positive/negative part of the difference is 0,
2799     // we won't need to know the number of iterations.
2800     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2801     const SCEV *NegativePart = getNegativePart(Delta);
2802     if (NegativePart->isZero())
2803       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2804     const SCEV *PositivePart = getPositivePart(Delta);
2805     if (PositivePart->isZero())
2806       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2807   }
2808 }
2809 
2810 
2811 // Computes the upper and lower bounds for level K
2812 // using the < direction. Records them in Bound.
2813 // Wolfe gives the equations
2814 //
2815 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2816 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2817 //
2818 // Since we normalize loops, we can simplify these equations to
2819 //
2820 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2821 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2822 //
2823 // We must be careful to handle the case where the upper bound is unknown.
2824 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2825                                   BoundInfo *Bound, unsigned K) const {
2826   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2827   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2828   if (Bound[K].Iterations) {
2829     const SCEV *Iter_1 = SE->getMinusSCEV(
2830         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2831     const SCEV *NegPart =
2832       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2833     Bound[K].Lower[Dependence::DVEntry::LT] =
2834       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2835     const SCEV *PosPart =
2836       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2837     Bound[K].Upper[Dependence::DVEntry::LT] =
2838       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2839   }
2840   else {
2841     // If the positive/negative part of the difference is 0,
2842     // we won't need to know the number of iterations.
2843     const SCEV *NegPart =
2844       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2845     if (NegPart->isZero())
2846       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2847     const SCEV *PosPart =
2848       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2849     if (PosPart->isZero())
2850       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2851   }
2852 }
2853 
2854 
2855 // Computes the upper and lower bounds for level K
2856 // using the > direction. Records them in Bound.
2857 // Wolfe gives the equations
2858 //
2859 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2860 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2861 //
2862 // Since we normalize loops, we can simplify these equations to
2863 //
2864 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2865 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2866 //
2867 // We must be careful to handle the case where the upper bound is unknown.
2868 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2869                                   BoundInfo *Bound, unsigned K) const {
2870   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2871   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2872   if (Bound[K].Iterations) {
2873     const SCEV *Iter_1 = SE->getMinusSCEV(
2874         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2875     const SCEV *NegPart =
2876       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2877     Bound[K].Lower[Dependence::DVEntry::GT] =
2878       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2879     const SCEV *PosPart =
2880       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2881     Bound[K].Upper[Dependence::DVEntry::GT] =
2882       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2883   }
2884   else {
2885     // If the positive/negative part of the difference is 0,
2886     // we won't need to know the number of iterations.
2887     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2888     if (NegPart->isZero())
2889       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2890     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2891     if (PosPart->isZero())
2892       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2893   }
2894 }
2895 
2896 
2897 // X^+ = max(X, 0)
2898 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2899   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2900 }
2901 
2902 
2903 // X^- = min(X, 0)
2904 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2905   return SE->getSMinExpr(X, SE->getZero(X->getType()));
2906 }
2907 
2908 
2909 // Walks through the subscript,
2910 // collecting each coefficient, the associated loop bounds,
2911 // and recording its positive and negative parts for later use.
2912 DependenceInfo::CoefficientInfo *
2913 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2914                                  const SCEV *&Constant) const {
2915   const SCEV *Zero = SE->getZero(Subscript->getType());
2916   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2917   for (unsigned K = 1; K <= MaxLevels; ++K) {
2918     CI[K].Coeff = Zero;
2919     CI[K].PosPart = Zero;
2920     CI[K].NegPart = Zero;
2921     CI[K].Iterations = nullptr;
2922   }
2923   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2924     const Loop *L = AddRec->getLoop();
2925     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2926     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2927     CI[K].PosPart = getPositivePart(CI[K].Coeff);
2928     CI[K].NegPart = getNegativePart(CI[K].Coeff);
2929     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2930     Subscript = AddRec->getStart();
2931   }
2932   Constant = Subscript;
2933 #ifndef NDEBUG
2934   LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2935   for (unsigned K = 1; K <= MaxLevels; ++K) {
2936     LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
2937     LLVM_DEBUG(dbgs() << "\tPos Part = ");
2938     LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2939     LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2940     LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2941     LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2942     if (CI[K].Iterations)
2943       LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2944     else
2945       LLVM_DEBUG(dbgs() << "+inf");
2946     LLVM_DEBUG(dbgs() << '\n');
2947   }
2948   LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
2949 #endif
2950   return CI;
2951 }
2952 
2953 
2954 // Looks through all the bounds info and
2955 // computes the lower bound given the current direction settings
2956 // at each level. If the lower bound for any level is -inf,
2957 // the result is -inf.
2958 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2959   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2960   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2961     if (Bound[K].Lower[Bound[K].Direction])
2962       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2963     else
2964       Sum = nullptr;
2965   }
2966   return Sum;
2967 }
2968 
2969 
2970 // Looks through all the bounds info and
2971 // computes the upper bound given the current direction settings
2972 // at each level. If the upper bound at any level is +inf,
2973 // the result is +inf.
2974 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2975   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2976   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2977     if (Bound[K].Upper[Bound[K].Direction])
2978       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2979     else
2980       Sum = nullptr;
2981   }
2982   return Sum;
2983 }
2984 
2985 
2986 //===----------------------------------------------------------------------===//
2987 // Constraint manipulation for Delta test.
2988 
2989 // Given a linear SCEV,
2990 // return the coefficient (the step)
2991 // corresponding to the specified loop.
2992 // If there isn't one, return 0.
2993 // For example, given a*i + b*j + c*k, finding the coefficient
2994 // corresponding to the j loop would yield b.
2995 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2996                                             const Loop *TargetLoop) const {
2997   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2998   if (!AddRec)
2999     return SE->getZero(Expr->getType());
3000   if (AddRec->getLoop() == TargetLoop)
3001     return AddRec->getStepRecurrence(*SE);
3002   return findCoefficient(AddRec->getStart(), TargetLoop);
3003 }
3004 
3005 
3006 // Given a linear SCEV,
3007 // return the SCEV given by zeroing out the coefficient
3008 // corresponding to the specified loop.
3009 // For example, given a*i + b*j + c*k, zeroing the coefficient
3010 // corresponding to the j loop would yield a*i + c*k.
3011 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
3012                                             const Loop *TargetLoop) const {
3013   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3014   if (!AddRec)
3015     return Expr; // ignore
3016   if (AddRec->getLoop() == TargetLoop)
3017     return AddRec->getStart();
3018   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3019                            AddRec->getStepRecurrence(*SE),
3020                            AddRec->getLoop(),
3021                            AddRec->getNoWrapFlags());
3022 }
3023 
3024 
3025 // Given a linear SCEV Expr,
3026 // return the SCEV given by adding some Value to the
3027 // coefficient corresponding to the specified TargetLoop.
3028 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3029 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3030 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3031                                              const Loop *TargetLoop,
3032                                              const SCEV *Value) const {
3033   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3034   if (!AddRec) // create a new addRec
3035     return SE->getAddRecExpr(Expr,
3036                              Value,
3037                              TargetLoop,
3038                              SCEV::FlagAnyWrap); // Worst case, with no info.
3039   if (AddRec->getLoop() == TargetLoop) {
3040     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3041     if (Sum->isZero())
3042       return AddRec->getStart();
3043     return SE->getAddRecExpr(AddRec->getStart(),
3044                              Sum,
3045                              AddRec->getLoop(),
3046                              AddRec->getNoWrapFlags());
3047   }
3048   if (SE->isLoopInvariant(AddRec, TargetLoop))
3049     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3050   return SE->getAddRecExpr(
3051       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3052       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3053       AddRec->getNoWrapFlags());
3054 }
3055 
3056 
3057 // Review the constraints, looking for opportunities
3058 // to simplify a subscript pair (Src and Dst).
3059 // Return true if some simplification occurs.
3060 // If the simplification isn't exact (that is, if it is conservative
3061 // in terms of dependence), set consistent to false.
3062 // Corresponds to Figure 5 from the paper
3063 //
3064 //            Practical Dependence Testing
3065 //            Goff, Kennedy, Tseng
3066 //            PLDI 1991
3067 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3068                                SmallBitVector &Loops,
3069                                SmallVectorImpl<Constraint> &Constraints,
3070                                bool &Consistent) {
3071   bool Result = false;
3072   for (unsigned LI : Loops.set_bits()) {
3073     LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
3074     LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3075     if (Constraints[LI].isDistance())
3076       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3077     else if (Constraints[LI].isLine())
3078       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3079     else if (Constraints[LI].isPoint())
3080       Result |= propagatePoint(Src, Dst, Constraints[LI]);
3081   }
3082   return Result;
3083 }
3084 
3085 
3086 // Attempt to propagate a distance
3087 // constraint into a subscript pair (Src and Dst).
3088 // Return true if some simplification occurs.
3089 // If the simplification isn't exact (that is, if it is conservative
3090 // in terms of dependence), set consistent to false.
3091 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3092                                        Constraint &CurConstraint,
3093                                        bool &Consistent) {
3094   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3095   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3096   const SCEV *A_K = findCoefficient(Src, CurLoop);
3097   if (A_K->isZero())
3098     return false;
3099   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3100   Src = SE->getMinusSCEV(Src, DA_K);
3101   Src = zeroCoefficient(Src, CurLoop);
3102   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3103   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3104   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3105   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3106   if (!findCoefficient(Dst, CurLoop)->isZero())
3107     Consistent = false;
3108   return true;
3109 }
3110 
3111 
3112 // Attempt to propagate a line
3113 // constraint into a subscript pair (Src and Dst).
3114 // Return true if some simplification occurs.
3115 // If the simplification isn't exact (that is, if it is conservative
3116 // in terms of dependence), set consistent to false.
3117 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3118                                    Constraint &CurConstraint,
3119                                    bool &Consistent) {
3120   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3121   const SCEV *A = CurConstraint.getA();
3122   const SCEV *B = CurConstraint.getB();
3123   const SCEV *C = CurConstraint.getC();
3124   LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3125                     << "\n");
3126   LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3127   LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3128   if (A->isZero()) {
3129     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3130     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3131     if (!Bconst || !Cconst) return false;
3132     APInt Beta = Bconst->getAPInt();
3133     APInt Charlie = Cconst->getAPInt();
3134     APInt CdivB = Charlie.sdiv(Beta);
3135     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3136     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3137     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3138     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3139     Dst = zeroCoefficient(Dst, CurLoop);
3140     if (!findCoefficient(Src, CurLoop)->isZero())
3141       Consistent = false;
3142   }
3143   else if (B->isZero()) {
3144     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3145     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3146     if (!Aconst || !Cconst) return false;
3147     APInt Alpha = Aconst->getAPInt();
3148     APInt Charlie = Cconst->getAPInt();
3149     APInt CdivA = Charlie.sdiv(Alpha);
3150     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3151     const SCEV *A_K = findCoefficient(Src, CurLoop);
3152     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3153     Src = zeroCoefficient(Src, CurLoop);
3154     if (!findCoefficient(Dst, CurLoop)->isZero())
3155       Consistent = false;
3156   }
3157   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3158     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3159     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3160     if (!Aconst || !Cconst) return false;
3161     APInt Alpha = Aconst->getAPInt();
3162     APInt Charlie = Cconst->getAPInt();
3163     APInt CdivA = Charlie.sdiv(Alpha);
3164     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3165     const SCEV *A_K = findCoefficient(Src, CurLoop);
3166     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3167     Src = zeroCoefficient(Src, CurLoop);
3168     Dst = addToCoefficient(Dst, CurLoop, A_K);
3169     if (!findCoefficient(Dst, CurLoop)->isZero())
3170       Consistent = false;
3171   }
3172   else {
3173     // paper is incorrect here, or perhaps just misleading
3174     const SCEV *A_K = findCoefficient(Src, CurLoop);
3175     Src = SE->getMulExpr(Src, A);
3176     Dst = SE->getMulExpr(Dst, A);
3177     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3178     Src = zeroCoefficient(Src, CurLoop);
3179     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3180     if (!findCoefficient(Dst, CurLoop)->isZero())
3181       Consistent = false;
3182   }
3183   LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3184   LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3185   return true;
3186 }
3187 
3188 
3189 // Attempt to propagate a point
3190 // constraint into a subscript pair (Src and Dst).
3191 // Return true if some simplification occurs.
3192 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3193                                     Constraint &CurConstraint) {
3194   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3195   const SCEV *A_K = findCoefficient(Src, CurLoop);
3196   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3197   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3198   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3199   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3200   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3201   Src = zeroCoefficient(Src, CurLoop);
3202   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3203   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3204   Dst = zeroCoefficient(Dst, CurLoop);
3205   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3206   return true;
3207 }
3208 
3209 
3210 // Update direction vector entry based on the current constraint.
3211 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3212                                      const Constraint &CurConstraint) const {
3213   LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3214   LLVM_DEBUG(CurConstraint.dump(dbgs()));
3215   if (CurConstraint.isAny())
3216     ; // use defaults
3217   else if (CurConstraint.isDistance()) {
3218     // this one is consistent, the others aren't
3219     Level.Scalar = false;
3220     Level.Distance = CurConstraint.getD();
3221     unsigned NewDirection = Dependence::DVEntry::NONE;
3222     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3223       NewDirection = Dependence::DVEntry::EQ;
3224     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3225       NewDirection |= Dependence::DVEntry::LT;
3226     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3227       NewDirection |= Dependence::DVEntry::GT;
3228     Level.Direction &= NewDirection;
3229   }
3230   else if (CurConstraint.isLine()) {
3231     Level.Scalar = false;
3232     Level.Distance = nullptr;
3233     // direction should be accurate
3234   }
3235   else if (CurConstraint.isPoint()) {
3236     Level.Scalar = false;
3237     Level.Distance = nullptr;
3238     unsigned NewDirection = Dependence::DVEntry::NONE;
3239     if (!isKnownPredicate(CmpInst::ICMP_NE,
3240                           CurConstraint.getY(),
3241                           CurConstraint.getX()))
3242       // if X may be = Y
3243       NewDirection |= Dependence::DVEntry::EQ;
3244     if (!isKnownPredicate(CmpInst::ICMP_SLE,
3245                           CurConstraint.getY(),
3246                           CurConstraint.getX()))
3247       // if Y may be > X
3248       NewDirection |= Dependence::DVEntry::LT;
3249     if (!isKnownPredicate(CmpInst::ICMP_SGE,
3250                           CurConstraint.getY(),
3251                           CurConstraint.getX()))
3252       // if Y may be < X
3253       NewDirection |= Dependence::DVEntry::GT;
3254     Level.Direction &= NewDirection;
3255   }
3256   else
3257     llvm_unreachable("constraint has unexpected kind");
3258 }
3259 
3260 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3261 /// source and destination array references are recurrences on a nested loop,
3262 /// this function flattens the nested recurrences into separate recurrences
3263 /// for each loop level.
3264 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3265                                     SmallVectorImpl<Subscript> &Pair) {
3266   assert(isLoadOrStore(Src) && "instruction is not load or store");
3267   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3268   Value *SrcPtr = getLoadStorePointerOperand(Src);
3269   Value *DstPtr = getLoadStorePointerOperand(Dst);
3270 
3271   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3272   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3273 
3274   // Below code mimics the code in Delinearization.cpp
3275   const SCEV *SrcAccessFn =
3276     SE->getSCEVAtScope(SrcPtr, SrcLoop);
3277   const SCEV *DstAccessFn =
3278     SE->getSCEVAtScope(DstPtr, DstLoop);
3279 
3280   const SCEVUnknown *SrcBase =
3281       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3282   const SCEVUnknown *DstBase =
3283       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3284 
3285   if (!SrcBase || !DstBase || SrcBase != DstBase)
3286     return false;
3287 
3288   const SCEV *ElementSize = SE->getElementSize(Src);
3289   if (ElementSize != SE->getElementSize(Dst))
3290     return false;
3291 
3292   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3293   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3294 
3295   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3296   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3297   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3298     return false;
3299 
3300   // First step: collect parametric terms in both array references.
3301   SmallVector<const SCEV *, 4> Terms;
3302   SE->collectParametricTerms(SrcAR, Terms);
3303   SE->collectParametricTerms(DstAR, Terms);
3304 
3305   // Second step: find subscript sizes.
3306   SmallVector<const SCEV *, 4> Sizes;
3307   SE->findArrayDimensions(Terms, Sizes, ElementSize);
3308 
3309   // Third step: compute the access functions for each subscript.
3310   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3311   SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3312   SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3313 
3314   // Fail when there is only a subscript: that's a linearized access function.
3315   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3316       SrcSubscripts.size() != DstSubscripts.size())
3317     return false;
3318 
3319   int size = SrcSubscripts.size();
3320 
3321   // Statically check that the array bounds are in-range. The first subscript we
3322   // don't have a size for and it cannot overflow into another subscript, so is
3323   // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3324   // and dst.
3325   // FIXME: It may be better to record these sizes and add them as constraints
3326   // to the dependency checks.
3327   if (!DisableDelinearizationChecks)
3328     for (int i = 1; i < size; ++i) {
3329       if (!isKnownNonNegative(SrcSubscripts[i], SrcPtr))
3330         return false;
3331 
3332       if (!isKnownLessThan(SrcSubscripts[i], Sizes[i - 1]))
3333         return false;
3334 
3335       if (!isKnownNonNegative(DstSubscripts[i], DstPtr))
3336         return false;
3337 
3338       if (!isKnownLessThan(DstSubscripts[i], Sizes[i - 1]))
3339         return false;
3340     }
3341 
3342   LLVM_DEBUG({
3343     dbgs() << "\nSrcSubscripts: ";
3344     for (int i = 0; i < size; i++)
3345       dbgs() << *SrcSubscripts[i];
3346     dbgs() << "\nDstSubscripts: ";
3347     for (int i = 0; i < size; i++)
3348       dbgs() << *DstSubscripts[i];
3349   });
3350 
3351   // The delinearization transforms a single-subscript MIV dependence test into
3352   // a multi-subscript SIV dependence test that is easier to compute. So we
3353   // resize Pair to contain as many pairs of subscripts as the delinearization
3354   // has found, and then initialize the pairs following the delinearization.
3355   Pair.resize(size);
3356   for (int i = 0; i < size; ++i) {
3357     Pair[i].Src = SrcSubscripts[i];
3358     Pair[i].Dst = DstSubscripts[i];
3359     unifySubscriptType(&Pair[i]);
3360   }
3361 
3362   return true;
3363 }
3364 
3365 //===----------------------------------------------------------------------===//
3366 
3367 #ifndef NDEBUG
3368 // For debugging purposes, dump a small bit vector to dbgs().
3369 static void dumpSmallBitVector(SmallBitVector &BV) {
3370   dbgs() << "{";
3371   for (unsigned VI : BV.set_bits()) {
3372     dbgs() << VI;
3373     if (BV.find_next(VI) >= 0)
3374       dbgs() << ' ';
3375   }
3376   dbgs() << "}\n";
3377 }
3378 #endif
3379 
3380 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3381                                 FunctionAnalysisManager::Invalidator &Inv) {
3382   // Check if the analysis itself has been invalidated.
3383   auto PAC = PA.getChecker<DependenceAnalysis>();
3384   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3385     return true;
3386 
3387   // Check transitive dependencies.
3388   return Inv.invalidate<AAManager>(F, PA) ||
3389          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3390          Inv.invalidate<LoopAnalysis>(F, PA);
3391 }
3392 
3393 // depends -
3394 // Returns NULL if there is no dependence.
3395 // Otherwise, return a Dependence with as many details as possible.
3396 // Corresponds to Section 3.1 in the paper
3397 //
3398 //            Practical Dependence Testing
3399 //            Goff, Kennedy, Tseng
3400 //            PLDI 1991
3401 //
3402 // Care is required to keep the routine below, getSplitIteration(),
3403 // up to date with respect to this routine.
3404 std::unique_ptr<Dependence>
3405 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3406                         bool PossiblyLoopIndependent) {
3407   if (Src == Dst)
3408     PossiblyLoopIndependent = false;
3409 
3410   if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3411       (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3412     // if both instructions don't reference memory, there's no dependence
3413     return nullptr;
3414 
3415   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3416     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3417     LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3418     return make_unique<Dependence>(Src, Dst);
3419   }
3420 
3421   assert(isLoadOrStore(Src) && "instruction is not load or store");
3422   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3423   Value *SrcPtr = getLoadStorePointerOperand(Src);
3424   Value *DstPtr = getLoadStorePointerOperand(Dst);
3425 
3426   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3427                                  MemoryLocation::get(Dst),
3428                                  MemoryLocation::get(Src))) {
3429   case MayAlias:
3430   case PartialAlias:
3431     // cannot analyse objects if we don't understand their aliasing.
3432     LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3433     return make_unique<Dependence>(Src, Dst);
3434   case NoAlias:
3435     // If the objects noalias, they are distinct, accesses are independent.
3436     LLVM_DEBUG(dbgs() << "no alias\n");
3437     return nullptr;
3438   case MustAlias:
3439     break; // The underlying objects alias; test accesses for dependence.
3440   }
3441 
3442   // establish loop nesting levels
3443   establishNestingLevels(Src, Dst);
3444   LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3445   LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3446 
3447   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3448   ++TotalArrayPairs;
3449 
3450   unsigned Pairs = 1;
3451   SmallVector<Subscript, 2> Pair(Pairs);
3452   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3453   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3454   LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3455   LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3456   Pair[0].Src = SrcSCEV;
3457   Pair[0].Dst = DstSCEV;
3458 
3459   if (Delinearize) {
3460     if (tryDelinearize(Src, Dst, Pair)) {
3461       LLVM_DEBUG(dbgs() << "    delinearized\n");
3462       Pairs = Pair.size();
3463     }
3464   }
3465 
3466   for (unsigned P = 0; P < Pairs; ++P) {
3467     Pair[P].Loops.resize(MaxLevels + 1);
3468     Pair[P].GroupLoops.resize(MaxLevels + 1);
3469     Pair[P].Group.resize(Pairs);
3470     removeMatchingExtensions(&Pair[P]);
3471     Pair[P].Classification =
3472       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3473                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3474                    Pair[P].Loops);
3475     Pair[P].GroupLoops = Pair[P].Loops;
3476     Pair[P].Group.set(P);
3477     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
3478     LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3479     LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3480     LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3481     LLVM_DEBUG(dbgs() << "\tloops = ");
3482     LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3483   }
3484 
3485   SmallBitVector Separable(Pairs);
3486   SmallBitVector Coupled(Pairs);
3487 
3488   // Partition subscripts into separable and minimally-coupled groups
3489   // Algorithm in paper is algorithmically better;
3490   // this may be faster in practice. Check someday.
3491   //
3492   // Here's an example of how it works. Consider this code:
3493   //
3494   //   for (i = ...) {
3495   //     for (j = ...) {
3496   //       for (k = ...) {
3497   //         for (l = ...) {
3498   //           for (m = ...) {
3499   //             A[i][j][k][m] = ...;
3500   //             ... = A[0][j][l][i + j];
3501   //           }
3502   //         }
3503   //       }
3504   //     }
3505   //   }
3506   //
3507   // There are 4 subscripts here:
3508   //    0 [i] and [0]
3509   //    1 [j] and [j]
3510   //    2 [k] and [l]
3511   //    3 [m] and [i + j]
3512   //
3513   // We've already classified each subscript pair as ZIV, SIV, etc.,
3514   // and collected all the loops mentioned by pair P in Pair[P].Loops.
3515   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3516   // and set Pair[P].Group = {P}.
3517   //
3518   //      Src Dst    Classification Loops  GroupLoops Group
3519   //    0 [i] [0]         SIV       {1}      {1}        {0}
3520   //    1 [j] [j]         SIV       {2}      {2}        {1}
3521   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3522   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3523   //
3524   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3525   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3526   //
3527   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3528   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3529   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3530   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3531   // to either Separable or Coupled).
3532   //
3533   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3534   // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3535   // so Pair[3].Group = {0, 1, 3} and Done = false.
3536   //
3537   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3538   // Since Done remains true, we add 2 to the set of Separable pairs.
3539   //
3540   // Finally, we consider 3. There's nothing to compare it with,
3541   // so Done remains true and we add it to the Coupled set.
3542   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3543   //
3544   // In the end, we've got 1 separable subscript and 1 coupled group.
3545   for (unsigned SI = 0; SI < Pairs; ++SI) {
3546     if (Pair[SI].Classification == Subscript::NonLinear) {
3547       // ignore these, but collect loops for later
3548       ++NonlinearSubscriptPairs;
3549       collectCommonLoops(Pair[SI].Src,
3550                          LI->getLoopFor(Src->getParent()),
3551                          Pair[SI].Loops);
3552       collectCommonLoops(Pair[SI].Dst,
3553                          LI->getLoopFor(Dst->getParent()),
3554                          Pair[SI].Loops);
3555       Result.Consistent = false;
3556     } else if (Pair[SI].Classification == Subscript::ZIV) {
3557       // always separable
3558       Separable.set(SI);
3559     }
3560     else {
3561       // SIV, RDIV, or MIV, so check for coupled group
3562       bool Done = true;
3563       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3564         SmallBitVector Intersection = Pair[SI].GroupLoops;
3565         Intersection &= Pair[SJ].GroupLoops;
3566         if (Intersection.any()) {
3567           // accumulate set of all the loops in group
3568           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3569           // accumulate set of all subscripts in group
3570           Pair[SJ].Group |= Pair[SI].Group;
3571           Done = false;
3572         }
3573       }
3574       if (Done) {
3575         if (Pair[SI].Group.count() == 1) {
3576           Separable.set(SI);
3577           ++SeparableSubscriptPairs;
3578         }
3579         else {
3580           Coupled.set(SI);
3581           ++CoupledSubscriptPairs;
3582         }
3583       }
3584     }
3585   }
3586 
3587   LLVM_DEBUG(dbgs() << "    Separable = ");
3588   LLVM_DEBUG(dumpSmallBitVector(Separable));
3589   LLVM_DEBUG(dbgs() << "    Coupled = ");
3590   LLVM_DEBUG(dumpSmallBitVector(Coupled));
3591 
3592   Constraint NewConstraint;
3593   NewConstraint.setAny(SE);
3594 
3595   // test separable subscripts
3596   for (unsigned SI : Separable.set_bits()) {
3597     LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3598     switch (Pair[SI].Classification) {
3599     case Subscript::ZIV:
3600       LLVM_DEBUG(dbgs() << ", ZIV\n");
3601       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3602         return nullptr;
3603       break;
3604     case Subscript::SIV: {
3605       LLVM_DEBUG(dbgs() << ", SIV\n");
3606       unsigned Level;
3607       const SCEV *SplitIter = nullptr;
3608       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3609                   SplitIter))
3610         return nullptr;
3611       break;
3612     }
3613     case Subscript::RDIV:
3614       LLVM_DEBUG(dbgs() << ", RDIV\n");
3615       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3616         return nullptr;
3617       break;
3618     case Subscript::MIV:
3619       LLVM_DEBUG(dbgs() << ", MIV\n");
3620       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3621         return nullptr;
3622       break;
3623     default:
3624       llvm_unreachable("subscript has unexpected classification");
3625     }
3626   }
3627 
3628   if (Coupled.count()) {
3629     // test coupled subscript groups
3630     LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3631     LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3632     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3633     for (unsigned II = 0; II <= MaxLevels; ++II)
3634       Constraints[II].setAny(SE);
3635     for (unsigned SI : Coupled.set_bits()) {
3636       LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3637       SmallBitVector Group(Pair[SI].Group);
3638       SmallBitVector Sivs(Pairs);
3639       SmallBitVector Mivs(Pairs);
3640       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3641       SmallVector<Subscript *, 4> PairsInGroup;
3642       for (unsigned SJ : Group.set_bits()) {
3643         LLVM_DEBUG(dbgs() << SJ << " ");
3644         if (Pair[SJ].Classification == Subscript::SIV)
3645           Sivs.set(SJ);
3646         else
3647           Mivs.set(SJ);
3648         PairsInGroup.push_back(&Pair[SJ]);
3649       }
3650       unifySubscriptType(PairsInGroup);
3651       LLVM_DEBUG(dbgs() << "}\n");
3652       while (Sivs.any()) {
3653         bool Changed = false;
3654         for (unsigned SJ : Sivs.set_bits()) {
3655           LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3656           // SJ is an SIV subscript that's part of the current coupled group
3657           unsigned Level;
3658           const SCEV *SplitIter = nullptr;
3659           LLVM_DEBUG(dbgs() << "SIV\n");
3660           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3661                       SplitIter))
3662             return nullptr;
3663           ConstrainedLevels.set(Level);
3664           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3665             if (Constraints[Level].isEmpty()) {
3666               ++DeltaIndependence;
3667               return nullptr;
3668             }
3669             Changed = true;
3670           }
3671           Sivs.reset(SJ);
3672         }
3673         if (Changed) {
3674           // propagate, possibly creating new SIVs and ZIVs
3675           LLVM_DEBUG(dbgs() << "    propagating\n");
3676           LLVM_DEBUG(dbgs() << "\tMivs = ");
3677           LLVM_DEBUG(dumpSmallBitVector(Mivs));
3678           for (unsigned SJ : Mivs.set_bits()) {
3679             // SJ is an MIV subscript that's part of the current coupled group
3680             LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3681             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3682                           Constraints, Result.Consistent)) {
3683               LLVM_DEBUG(dbgs() << "\t    Changed\n");
3684               ++DeltaPropagations;
3685               Pair[SJ].Classification =
3686                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3687                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3688                              Pair[SJ].Loops);
3689               switch (Pair[SJ].Classification) {
3690               case Subscript::ZIV:
3691                 LLVM_DEBUG(dbgs() << "ZIV\n");
3692                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3693                   return nullptr;
3694                 Mivs.reset(SJ);
3695                 break;
3696               case Subscript::SIV:
3697                 Sivs.set(SJ);
3698                 Mivs.reset(SJ);
3699                 break;
3700               case Subscript::RDIV:
3701               case Subscript::MIV:
3702                 break;
3703               default:
3704                 llvm_unreachable("bad subscript classification");
3705               }
3706             }
3707           }
3708         }
3709       }
3710 
3711       // test & propagate remaining RDIVs
3712       for (unsigned SJ : Mivs.set_bits()) {
3713         if (Pair[SJ].Classification == Subscript::RDIV) {
3714           LLVM_DEBUG(dbgs() << "RDIV test\n");
3715           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3716             return nullptr;
3717           // I don't yet understand how to propagate RDIV results
3718           Mivs.reset(SJ);
3719         }
3720       }
3721 
3722       // test remaining MIVs
3723       // This code is temporary.
3724       // Better to somehow test all remaining subscripts simultaneously.
3725       for (unsigned SJ : Mivs.set_bits()) {
3726         if (Pair[SJ].Classification == Subscript::MIV) {
3727           LLVM_DEBUG(dbgs() << "MIV test\n");
3728           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3729             return nullptr;
3730         }
3731         else
3732           llvm_unreachable("expected only MIV subscripts at this point");
3733       }
3734 
3735       // update Result.DV from constraint vector
3736       LLVM_DEBUG(dbgs() << "    updating\n");
3737       for (unsigned SJ : ConstrainedLevels.set_bits()) {
3738         if (SJ > CommonLevels)
3739           break;
3740         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3741         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3742           return nullptr;
3743       }
3744     }
3745   }
3746 
3747   // Make sure the Scalar flags are set correctly.
3748   SmallBitVector CompleteLoops(MaxLevels + 1);
3749   for (unsigned SI = 0; SI < Pairs; ++SI)
3750     CompleteLoops |= Pair[SI].Loops;
3751   for (unsigned II = 1; II <= CommonLevels; ++II)
3752     if (CompleteLoops[II])
3753       Result.DV[II - 1].Scalar = false;
3754 
3755   if (PossiblyLoopIndependent) {
3756     // Make sure the LoopIndependent flag is set correctly.
3757     // All directions must include equal, otherwise no
3758     // loop-independent dependence is possible.
3759     for (unsigned II = 1; II <= CommonLevels; ++II) {
3760       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3761         Result.LoopIndependent = false;
3762         break;
3763       }
3764     }
3765   }
3766   else {
3767     // On the other hand, if all directions are equal and there's no
3768     // loop-independent dependence possible, then no dependence exists.
3769     bool AllEqual = true;
3770     for (unsigned II = 1; II <= CommonLevels; ++II) {
3771       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3772         AllEqual = false;
3773         break;
3774       }
3775     }
3776     if (AllEqual)
3777       return nullptr;
3778   }
3779 
3780   return make_unique<FullDependence>(std::move(Result));
3781 }
3782 
3783 
3784 
3785 //===----------------------------------------------------------------------===//
3786 // getSplitIteration -
3787 // Rather than spend rarely-used space recording the splitting iteration
3788 // during the Weak-Crossing SIV test, we re-compute it on demand.
3789 // The re-computation is basically a repeat of the entire dependence test,
3790 // though simplified since we know that the dependence exists.
3791 // It's tedious, since we must go through all propagations, etc.
3792 //
3793 // Care is required to keep this code up to date with respect to the routine
3794 // above, depends().
3795 //
3796 // Generally, the dependence analyzer will be used to build
3797 // a dependence graph for a function (basically a map from instructions
3798 // to dependences). Looking for cycles in the graph shows us loops
3799 // that cannot be trivially vectorized/parallelized.
3800 //
3801 // We can try to improve the situation by examining all the dependences
3802 // that make up the cycle, looking for ones we can break.
3803 // Sometimes, peeling the first or last iteration of a loop will break
3804 // dependences, and we've got flags for those possibilities.
3805 // Sometimes, splitting a loop at some other iteration will do the trick,
3806 // and we've got a flag for that case. Rather than waste the space to
3807 // record the exact iteration (since we rarely know), we provide
3808 // a method that calculates the iteration. It's a drag that it must work
3809 // from scratch, but wonderful in that it's possible.
3810 //
3811 // Here's an example:
3812 //
3813 //    for (i = 0; i < 10; i++)
3814 //        A[i] = ...
3815 //        ... = A[11 - i]
3816 //
3817 // There's a loop-carried flow dependence from the store to the load,
3818 // found by the weak-crossing SIV test. The dependence will have a flag,
3819 // indicating that the dependence can be broken by splitting the loop.
3820 // Calling getSplitIteration will return 5.
3821 // Splitting the loop breaks the dependence, like so:
3822 //
3823 //    for (i = 0; i <= 5; i++)
3824 //        A[i] = ...
3825 //        ... = A[11 - i]
3826 //    for (i = 6; i < 10; i++)
3827 //        A[i] = ...
3828 //        ... = A[11 - i]
3829 //
3830 // breaks the dependence and allows us to vectorize/parallelize
3831 // both loops.
3832 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3833                                               unsigned SplitLevel) {
3834   assert(Dep.isSplitable(SplitLevel) &&
3835          "Dep should be splitable at SplitLevel");
3836   Instruction *Src = Dep.getSrc();
3837   Instruction *Dst = Dep.getDst();
3838   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3839   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3840   assert(isLoadOrStore(Src));
3841   assert(isLoadOrStore(Dst));
3842   Value *SrcPtr = getLoadStorePointerOperand(Src);
3843   Value *DstPtr = getLoadStorePointerOperand(Dst);
3844   assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3845                                 MemoryLocation::get(Dst),
3846                                 MemoryLocation::get(Src)) == MustAlias);
3847 
3848   // establish loop nesting levels
3849   establishNestingLevels(Src, Dst);
3850 
3851   FullDependence Result(Src, Dst, false, CommonLevels);
3852 
3853   unsigned Pairs = 1;
3854   SmallVector<Subscript, 2> Pair(Pairs);
3855   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3856   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3857   Pair[0].Src = SrcSCEV;
3858   Pair[0].Dst = DstSCEV;
3859 
3860   if (Delinearize) {
3861     if (tryDelinearize(Src, Dst, Pair)) {
3862       LLVM_DEBUG(dbgs() << "    delinearized\n");
3863       Pairs = Pair.size();
3864     }
3865   }
3866 
3867   for (unsigned P = 0; P < Pairs; ++P) {
3868     Pair[P].Loops.resize(MaxLevels + 1);
3869     Pair[P].GroupLoops.resize(MaxLevels + 1);
3870     Pair[P].Group.resize(Pairs);
3871     removeMatchingExtensions(&Pair[P]);
3872     Pair[P].Classification =
3873       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3874                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3875                    Pair[P].Loops);
3876     Pair[P].GroupLoops = Pair[P].Loops;
3877     Pair[P].Group.set(P);
3878   }
3879 
3880   SmallBitVector Separable(Pairs);
3881   SmallBitVector Coupled(Pairs);
3882 
3883   // partition subscripts into separable and minimally-coupled groups
3884   for (unsigned SI = 0; SI < Pairs; ++SI) {
3885     if (Pair[SI].Classification == Subscript::NonLinear) {
3886       // ignore these, but collect loops for later
3887       collectCommonLoops(Pair[SI].Src,
3888                          LI->getLoopFor(Src->getParent()),
3889                          Pair[SI].Loops);
3890       collectCommonLoops(Pair[SI].Dst,
3891                          LI->getLoopFor(Dst->getParent()),
3892                          Pair[SI].Loops);
3893       Result.Consistent = false;
3894     }
3895     else if (Pair[SI].Classification == Subscript::ZIV)
3896       Separable.set(SI);
3897     else {
3898       // SIV, RDIV, or MIV, so check for coupled group
3899       bool Done = true;
3900       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3901         SmallBitVector Intersection = Pair[SI].GroupLoops;
3902         Intersection &= Pair[SJ].GroupLoops;
3903         if (Intersection.any()) {
3904           // accumulate set of all the loops in group
3905           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3906           // accumulate set of all subscripts in group
3907           Pair[SJ].Group |= Pair[SI].Group;
3908           Done = false;
3909         }
3910       }
3911       if (Done) {
3912         if (Pair[SI].Group.count() == 1)
3913           Separable.set(SI);
3914         else
3915           Coupled.set(SI);
3916       }
3917     }
3918   }
3919 
3920   Constraint NewConstraint;
3921   NewConstraint.setAny(SE);
3922 
3923   // test separable subscripts
3924   for (unsigned SI : Separable.set_bits()) {
3925     switch (Pair[SI].Classification) {
3926     case Subscript::SIV: {
3927       unsigned Level;
3928       const SCEV *SplitIter = nullptr;
3929       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3930                      Result, NewConstraint, SplitIter);
3931       if (Level == SplitLevel) {
3932         assert(SplitIter != nullptr);
3933         return SplitIter;
3934       }
3935       break;
3936     }
3937     case Subscript::ZIV:
3938     case Subscript::RDIV:
3939     case Subscript::MIV:
3940       break;
3941     default:
3942       llvm_unreachable("subscript has unexpected classification");
3943     }
3944   }
3945 
3946   if (Coupled.count()) {
3947     // test coupled subscript groups
3948     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3949     for (unsigned II = 0; II <= MaxLevels; ++II)
3950       Constraints[II].setAny(SE);
3951     for (unsigned SI : Coupled.set_bits()) {
3952       SmallBitVector Group(Pair[SI].Group);
3953       SmallBitVector Sivs(Pairs);
3954       SmallBitVector Mivs(Pairs);
3955       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3956       for (unsigned SJ : Group.set_bits()) {
3957         if (Pair[SJ].Classification == Subscript::SIV)
3958           Sivs.set(SJ);
3959         else
3960           Mivs.set(SJ);
3961       }
3962       while (Sivs.any()) {
3963         bool Changed = false;
3964         for (unsigned SJ : Sivs.set_bits()) {
3965           // SJ is an SIV subscript that's part of the current coupled group
3966           unsigned Level;
3967           const SCEV *SplitIter = nullptr;
3968           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3969                          Result, NewConstraint, SplitIter);
3970           if (Level == SplitLevel && SplitIter)
3971             return SplitIter;
3972           ConstrainedLevels.set(Level);
3973           if (intersectConstraints(&Constraints[Level], &NewConstraint))
3974             Changed = true;
3975           Sivs.reset(SJ);
3976         }
3977         if (Changed) {
3978           // propagate, possibly creating new SIVs and ZIVs
3979           for (unsigned SJ : Mivs.set_bits()) {
3980             // SJ is an MIV subscript that's part of the current coupled group
3981             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3982                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
3983               Pair[SJ].Classification =
3984                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3985                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3986                              Pair[SJ].Loops);
3987               switch (Pair[SJ].Classification) {
3988               case Subscript::ZIV:
3989                 Mivs.reset(SJ);
3990                 break;
3991               case Subscript::SIV:
3992                 Sivs.set(SJ);
3993                 Mivs.reset(SJ);
3994                 break;
3995               case Subscript::RDIV:
3996               case Subscript::MIV:
3997                 break;
3998               default:
3999                 llvm_unreachable("bad subscript classification");
4000               }
4001             }
4002           }
4003         }
4004       }
4005     }
4006   }
4007   llvm_unreachable("somehow reached end of routine");
4008   return nullptr;
4009 }
4010