1 //===- DemandedBits.cpp - Determine demanded bits -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a demanded bits analysis. A demanded bit is one that 10 // contributes to a result; bits that are not demanded can be either zero or 11 // one without affecting control or data flow. For example in this sequence: 12 // 13 // %1 = add i32 %x, %y 14 // %2 = trunc i32 %1 to i16 15 // 16 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the 17 // trunc. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/Analysis/DemandedBits.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PassManager.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Use.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <algorithm> 42 #include <cstdint> 43 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 #define DEBUG_TYPE "demanded-bits" 48 49 static bool isAlwaysLive(Instruction *I) { 50 return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() || 51 I->mayHaveSideEffects(); 52 } 53 54 void DemandedBits::determineLiveOperandBits( 55 const Instruction *UserI, const Value *Val, unsigned OperandNo, 56 const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2, 57 bool &KnownBitsComputed) { 58 unsigned BitWidth = AB.getBitWidth(); 59 60 // We're called once per operand, but for some instructions, we need to 61 // compute known bits of both operands in order to determine the live bits of 62 // either (when both operands are instructions themselves). We don't, 63 // however, want to do this twice, so we cache the result in APInts that live 64 // in the caller. For the two-relevant-operands case, both operand values are 65 // provided here. 66 auto ComputeKnownBits = 67 [&](unsigned BitWidth, const Value *V1, const Value *V2) { 68 if (KnownBitsComputed) 69 return; 70 KnownBitsComputed = true; 71 72 const DataLayout &DL = UserI->getModule()->getDataLayout(); 73 Known = KnownBits(BitWidth); 74 computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT); 75 76 if (V2) { 77 Known2 = KnownBits(BitWidth); 78 computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT); 79 } 80 }; 81 82 switch (UserI->getOpcode()) { 83 default: break; 84 case Instruction::Call: 85 case Instruction::Invoke: 86 if (const auto *II = dyn_cast<IntrinsicInst>(UserI)) { 87 switch (II->getIntrinsicID()) { 88 default: break; 89 case Intrinsic::bswap: 90 // The alive bits of the input are the swapped alive bits of 91 // the output. 92 AB = AOut.byteSwap(); 93 break; 94 case Intrinsic::bitreverse: 95 // The alive bits of the input are the reversed alive bits of 96 // the output. 97 AB = AOut.reverseBits(); 98 break; 99 case Intrinsic::ctlz: 100 if (OperandNo == 0) { 101 // We need some output bits, so we need all bits of the 102 // input to the left of, and including, the leftmost bit 103 // known to be one. 104 ComputeKnownBits(BitWidth, Val, nullptr); 105 AB = APInt::getHighBitsSet(BitWidth, 106 std::min(BitWidth, Known.countMaxLeadingZeros()+1)); 107 } 108 break; 109 case Intrinsic::cttz: 110 if (OperandNo == 0) { 111 // We need some output bits, so we need all bits of the 112 // input to the right of, and including, the rightmost bit 113 // known to be one. 114 ComputeKnownBits(BitWidth, Val, nullptr); 115 AB = APInt::getLowBitsSet(BitWidth, 116 std::min(BitWidth, Known.countMaxTrailingZeros()+1)); 117 } 118 break; 119 case Intrinsic::fshl: 120 case Intrinsic::fshr: { 121 const APInt *SA; 122 if (OperandNo == 2) { 123 // Shift amount is modulo the bitwidth. For powers of two we have 124 // SA % BW == SA & (BW - 1). 125 if (isPowerOf2_32(BitWidth)) 126 AB = BitWidth - 1; 127 } else if (match(II->getOperand(2), m_APInt(SA))) { 128 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 129 // defined, so no need to special-case zero shifts here. 130 uint64_t ShiftAmt = SA->urem(BitWidth); 131 if (II->getIntrinsicID() == Intrinsic::fshr) 132 ShiftAmt = BitWidth - ShiftAmt; 133 134 if (OperandNo == 0) 135 AB = AOut.lshr(ShiftAmt); 136 else if (OperandNo == 1) 137 AB = AOut.shl(BitWidth - ShiftAmt); 138 } 139 break; 140 } 141 case Intrinsic::umax: 142 case Intrinsic::umin: 143 case Intrinsic::smax: 144 case Intrinsic::smin: 145 // If low bits of result are not demanded, they are also not demanded 146 // for the min/max operands. 147 AB = APInt::getBitsSetFrom(BitWidth, AOut.countr_zero()); 148 break; 149 } 150 } 151 break; 152 case Instruction::Add: 153 if (AOut.isMask()) { 154 AB = AOut; 155 } else { 156 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 157 AB = determineLiveOperandBitsAdd(OperandNo, AOut, Known, Known2); 158 } 159 break; 160 case Instruction::Sub: 161 if (AOut.isMask()) { 162 AB = AOut; 163 } else { 164 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 165 AB = determineLiveOperandBitsSub(OperandNo, AOut, Known, Known2); 166 } 167 break; 168 case Instruction::Mul: 169 // Find the highest live output bit. We don't need any more input 170 // bits than that (adds, and thus subtracts, ripple only to the 171 // left). 172 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); 173 break; 174 case Instruction::Shl: 175 if (OperandNo == 0) { 176 const APInt *ShiftAmtC; 177 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 178 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 179 AB = AOut.lshr(ShiftAmt); 180 181 // If the shift is nuw/nsw, then the high bits are not dead 182 // (because we've promised that they *must* be zero). 183 const auto *S = cast<ShlOperator>(UserI); 184 if (S->hasNoSignedWrap()) 185 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 186 else if (S->hasNoUnsignedWrap()) 187 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 188 } 189 } 190 break; 191 case Instruction::LShr: 192 if (OperandNo == 0) { 193 const APInt *ShiftAmtC; 194 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 195 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 196 AB = AOut.shl(ShiftAmt); 197 198 // If the shift is exact, then the low bits are not dead 199 // (they must be zero). 200 if (cast<LShrOperator>(UserI)->isExact()) 201 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 202 } 203 } 204 break; 205 case Instruction::AShr: 206 if (OperandNo == 0) { 207 const APInt *ShiftAmtC; 208 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 209 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 210 AB = AOut.shl(ShiftAmt); 211 // Because the high input bit is replicated into the 212 // high-order bits of the result, if we need any of those 213 // bits, then we must keep the highest input bit. 214 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) 215 .getBoolValue()) 216 AB.setSignBit(); 217 218 // If the shift is exact, then the low bits are not dead 219 // (they must be zero). 220 if (cast<AShrOperator>(UserI)->isExact()) 221 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 222 } 223 } 224 break; 225 case Instruction::And: 226 AB = AOut; 227 228 // For bits that are known zero, the corresponding bits in the 229 // other operand are dead (unless they're both zero, in which 230 // case they can't both be dead, so just mark the LHS bits as 231 // dead). 232 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 233 if (OperandNo == 0) 234 AB &= ~Known2.Zero; 235 else 236 AB &= ~(Known.Zero & ~Known2.Zero); 237 break; 238 case Instruction::Or: 239 AB = AOut; 240 241 // For bits that are known one, the corresponding bits in the 242 // other operand are dead (unless they're both one, in which 243 // case they can't both be dead, so just mark the LHS bits as 244 // dead). 245 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 246 if (OperandNo == 0) 247 AB &= ~Known2.One; 248 else 249 AB &= ~(Known.One & ~Known2.One); 250 break; 251 case Instruction::Xor: 252 case Instruction::PHI: 253 AB = AOut; 254 break; 255 case Instruction::Trunc: 256 AB = AOut.zext(BitWidth); 257 break; 258 case Instruction::ZExt: 259 AB = AOut.trunc(BitWidth); 260 break; 261 case Instruction::SExt: 262 AB = AOut.trunc(BitWidth); 263 // Because the high input bit is replicated into the 264 // high-order bits of the result, if we need any of those 265 // bits, then we must keep the highest input bit. 266 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), 267 AOut.getBitWidth() - BitWidth)) 268 .getBoolValue()) 269 AB.setSignBit(); 270 break; 271 case Instruction::Select: 272 if (OperandNo != 0) 273 AB = AOut; 274 break; 275 case Instruction::ExtractElement: 276 if (OperandNo == 0) 277 AB = AOut; 278 break; 279 case Instruction::InsertElement: 280 case Instruction::ShuffleVector: 281 if (OperandNo == 0 || OperandNo == 1) 282 AB = AOut; 283 break; 284 } 285 } 286 287 void DemandedBits::performAnalysis() { 288 if (Analyzed) 289 // Analysis already completed for this function. 290 return; 291 Analyzed = true; 292 293 Visited.clear(); 294 AliveBits.clear(); 295 DeadUses.clear(); 296 297 SmallSetVector<Instruction*, 16> Worklist; 298 299 // Collect the set of "root" instructions that are known live. 300 for (Instruction &I : instructions(F)) { 301 if (!isAlwaysLive(&I)) 302 continue; 303 304 LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); 305 // For integer-valued instructions, set up an initial empty set of alive 306 // bits and add the instruction to the work list. For other instructions 307 // add their operands to the work list (for integer values operands, mark 308 // all bits as live). 309 Type *T = I.getType(); 310 if (T->isIntOrIntVectorTy()) { 311 if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second) 312 Worklist.insert(&I); 313 314 continue; 315 } 316 317 // Non-integer-typed instructions... 318 for (Use &OI : I.operands()) { 319 if (auto *J = dyn_cast<Instruction>(OI)) { 320 Type *T = J->getType(); 321 if (T->isIntOrIntVectorTy()) 322 AliveBits[J] = APInt::getAllOnes(T->getScalarSizeInBits()); 323 else 324 Visited.insert(J); 325 Worklist.insert(J); 326 } 327 } 328 // To save memory, we don't add I to the Visited set here. Instead, we 329 // check isAlwaysLive on every instruction when searching for dead 330 // instructions later (we need to check isAlwaysLive for the 331 // integer-typed instructions anyway). 332 } 333 334 // Propagate liveness backwards to operands. 335 while (!Worklist.empty()) { 336 Instruction *UserI = Worklist.pop_back_val(); 337 338 LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); 339 APInt AOut; 340 bool InputIsKnownDead = false; 341 if (UserI->getType()->isIntOrIntVectorTy()) { 342 AOut = AliveBits[UserI]; 343 LLVM_DEBUG(dbgs() << " Alive Out: 0x" 344 << Twine::utohexstr(AOut.getLimitedValue())); 345 346 // If all bits of the output are dead, then all bits of the input 347 // are also dead. 348 InputIsKnownDead = !AOut && !isAlwaysLive(UserI); 349 } 350 LLVM_DEBUG(dbgs() << "\n"); 351 352 KnownBits Known, Known2; 353 bool KnownBitsComputed = false; 354 // Compute the set of alive bits for each operand. These are anded into the 355 // existing set, if any, and if that changes the set of alive bits, the 356 // operand is added to the work-list. 357 for (Use &OI : UserI->operands()) { 358 // We also want to detect dead uses of arguments, but will only store 359 // demanded bits for instructions. 360 auto *I = dyn_cast<Instruction>(OI); 361 if (!I && !isa<Argument>(OI)) 362 continue; 363 364 Type *T = OI->getType(); 365 if (T->isIntOrIntVectorTy()) { 366 unsigned BitWidth = T->getScalarSizeInBits(); 367 APInt AB = APInt::getAllOnes(BitWidth); 368 if (InputIsKnownDead) { 369 AB = APInt(BitWidth, 0); 370 } else { 371 // Bits of each operand that are used to compute alive bits of the 372 // output are alive, all others are dead. 373 determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB, 374 Known, Known2, KnownBitsComputed); 375 376 // Keep track of uses which have no demanded bits. 377 if (AB.isZero()) 378 DeadUses.insert(&OI); 379 else 380 DeadUses.erase(&OI); 381 } 382 383 if (I) { 384 // If we've added to the set of alive bits (or the operand has not 385 // been previously visited), then re-queue the operand to be visited 386 // again. 387 auto Res = AliveBits.try_emplace(I); 388 if (Res.second || (AB |= Res.first->second) != Res.first->second) { 389 Res.first->second = std::move(AB); 390 Worklist.insert(I); 391 } 392 } 393 } else if (I && Visited.insert(I).second) { 394 Worklist.insert(I); 395 } 396 } 397 } 398 } 399 400 APInt DemandedBits::getDemandedBits(Instruction *I) { 401 performAnalysis(); 402 403 auto Found = AliveBits.find(I); 404 if (Found != AliveBits.end()) 405 return Found->second; 406 407 const DataLayout &DL = I->getModule()->getDataLayout(); 408 return APInt::getAllOnes(DL.getTypeSizeInBits(I->getType()->getScalarType())); 409 } 410 411 APInt DemandedBits::getDemandedBits(Use *U) { 412 Type *T = (*U)->getType(); 413 auto *UserI = cast<Instruction>(U->getUser()); 414 const DataLayout &DL = UserI->getModule()->getDataLayout(); 415 unsigned BitWidth = DL.getTypeSizeInBits(T->getScalarType()); 416 417 // We only track integer uses, everything else produces a mask with all bits 418 // set 419 if (!T->isIntOrIntVectorTy()) 420 return APInt::getAllOnes(BitWidth); 421 422 if (isUseDead(U)) 423 return APInt(BitWidth, 0); 424 425 performAnalysis(); 426 427 APInt AOut = getDemandedBits(UserI); 428 APInt AB = APInt::getAllOnes(BitWidth); 429 KnownBits Known, Known2; 430 bool KnownBitsComputed = false; 431 432 determineLiveOperandBits(UserI, *U, U->getOperandNo(), AOut, AB, Known, 433 Known2, KnownBitsComputed); 434 435 return AB; 436 } 437 438 bool DemandedBits::isInstructionDead(Instruction *I) { 439 performAnalysis(); 440 441 return !Visited.count(I) && !AliveBits.contains(I) && !isAlwaysLive(I); 442 } 443 444 bool DemandedBits::isUseDead(Use *U) { 445 // We only track integer uses, everything else is assumed live. 446 if (!(*U)->getType()->isIntOrIntVectorTy()) 447 return false; 448 449 // Uses by always-live instructions are never dead. 450 auto *UserI = cast<Instruction>(U->getUser()); 451 if (isAlwaysLive(UserI)) 452 return false; 453 454 performAnalysis(); 455 if (DeadUses.count(U)) 456 return true; 457 458 // If no output bits are demanded, no input bits are demanded and the use 459 // is dead. These uses might not be explicitly present in the DeadUses map. 460 if (UserI->getType()->isIntOrIntVectorTy()) { 461 auto Found = AliveBits.find(UserI); 462 if (Found != AliveBits.end() && Found->second.isZero()) 463 return true; 464 } 465 466 return false; 467 } 468 469 void DemandedBits::print(raw_ostream &OS) { 470 auto PrintDB = [&](const Instruction *I, const APInt &A, Value *V = nullptr) { 471 OS << "DemandedBits: 0x" << Twine::utohexstr(A.getLimitedValue()) 472 << " for "; 473 if (V) { 474 V->printAsOperand(OS, false); 475 OS << " in "; 476 } 477 OS << *I << '\n'; 478 }; 479 480 OS << "Printing analysis 'Demanded Bits Analysis' for function '" << F.getName() << "':\n"; 481 performAnalysis(); 482 for (auto &KV : AliveBits) { 483 Instruction *I = KV.first; 484 PrintDB(I, KV.second); 485 486 for (Use &OI : I->operands()) { 487 PrintDB(I, getDemandedBits(&OI), OI); 488 } 489 } 490 } 491 492 static APInt determineLiveOperandBitsAddCarry(unsigned OperandNo, 493 const APInt &AOut, 494 const KnownBits &LHS, 495 const KnownBits &RHS, 496 bool CarryZero, bool CarryOne) { 497 assert(!(CarryZero && CarryOne) && 498 "Carry can't be zero and one at the same time"); 499 500 // The following check should be done by the caller, as it also indicates 501 // that LHS and RHS don't need to be computed. 502 // 503 // if (AOut.isMask()) 504 // return AOut; 505 506 // Boundary bits' carry out is unaffected by their carry in. 507 APInt Bound = (LHS.Zero & RHS.Zero) | (LHS.One & RHS.One); 508 509 // First, the alive carry bits are determined from the alive output bits: 510 // Let demand ripple to the right but only up to any set bit in Bound. 511 // AOut = -1---- 512 // Bound = ----1- 513 // ACarry&~AOut = --111- 514 APInt RBound = Bound.reverseBits(); 515 APInt RAOut = AOut.reverseBits(); 516 APInt RProp = RAOut + (RAOut | ~RBound); 517 APInt RACarry = RProp ^ ~RBound; 518 APInt ACarry = RACarry.reverseBits(); 519 520 // Then, the alive input bits are determined from the alive carry bits: 521 APInt NeededToMaintainCarryZero; 522 APInt NeededToMaintainCarryOne; 523 if (OperandNo == 0) { 524 NeededToMaintainCarryZero = LHS.Zero | ~RHS.Zero; 525 NeededToMaintainCarryOne = LHS.One | ~RHS.One; 526 } else { 527 NeededToMaintainCarryZero = RHS.Zero | ~LHS.Zero; 528 NeededToMaintainCarryOne = RHS.One | ~LHS.One; 529 } 530 531 // As in computeForAddCarry 532 APInt PossibleSumZero = ~LHS.Zero + ~RHS.Zero + !CarryZero; 533 APInt PossibleSumOne = LHS.One + RHS.One + CarryOne; 534 535 // The below is simplified from 536 // 537 // APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); 538 // APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; 539 // APInt CarryUnknown = ~(CarryKnownZero | CarryKnownOne); 540 // 541 // APInt NeededToMaintainCarry = 542 // (CarryKnownZero & NeededToMaintainCarryZero) | 543 // (CarryKnownOne & NeededToMaintainCarryOne) | 544 // CarryUnknown; 545 546 APInt NeededToMaintainCarry = (~PossibleSumZero | NeededToMaintainCarryZero) & 547 (PossibleSumOne | NeededToMaintainCarryOne); 548 549 APInt AB = AOut | (ACarry & NeededToMaintainCarry); 550 return AB; 551 } 552 553 APInt DemandedBits::determineLiveOperandBitsAdd(unsigned OperandNo, 554 const APInt &AOut, 555 const KnownBits &LHS, 556 const KnownBits &RHS) { 557 return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS, true, 558 false); 559 } 560 561 APInt DemandedBits::determineLiveOperandBitsSub(unsigned OperandNo, 562 const APInt &AOut, 563 const KnownBits &LHS, 564 const KnownBits &RHS) { 565 KnownBits NRHS; 566 NRHS.Zero = RHS.One; 567 NRHS.One = RHS.Zero; 568 return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, NRHS, false, 569 true); 570 } 571 572 AnalysisKey DemandedBitsAnalysis::Key; 573 574 DemandedBits DemandedBitsAnalysis::run(Function &F, 575 FunctionAnalysisManager &AM) { 576 auto &AC = AM.getResult<AssumptionAnalysis>(F); 577 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 578 return DemandedBits(F, AC, DT); 579 } 580 581 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, 582 FunctionAnalysisManager &AM) { 583 AM.getResult<DemandedBitsAnalysis>(F).print(OS); 584 return PreservedAnalyses::all(); 585 } 586