xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/DemandedBits.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- DemandedBits.cpp - Determine demanded bits -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a demanded bits analysis. A demanded bit is one that
10 // contributes to a result; bits that are not demanded can be either zero or
11 // one without affecting control or data flow. For example in this sequence:
12 //
13 //   %1 = add i32 %x, %y
14 //   %2 = trunc i32 %1 to i16
15 //
16 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
17 // trunc.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/Analysis/DemandedBits.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/InstIterator.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 #include <cstdint>
43 
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 #define DEBUG_TYPE "demanded-bits"
48 
49 static bool isAlwaysLive(Instruction *I) {
50   return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
51          I->mayHaveSideEffects();
52 }
53 
54 void DemandedBits::determineLiveOperandBits(
55     const Instruction *UserI, const Value *Val, unsigned OperandNo,
56     const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
57     bool &KnownBitsComputed) {
58   unsigned BitWidth = AB.getBitWidth();
59 
60   // We're called once per operand, but for some instructions, we need to
61   // compute known bits of both operands in order to determine the live bits of
62   // either (when both operands are instructions themselves). We don't,
63   // however, want to do this twice, so we cache the result in APInts that live
64   // in the caller. For the two-relevant-operands case, both operand values are
65   // provided here.
66   auto ComputeKnownBits =
67       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
68         if (KnownBitsComputed)
69           return;
70         KnownBitsComputed = true;
71 
72         const DataLayout &DL = UserI->getDataLayout();
73         Known = KnownBits(BitWidth);
74         computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
75 
76         if (V2) {
77           Known2 = KnownBits(BitWidth);
78           computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
79         }
80       };
81 
82   switch (UserI->getOpcode()) {
83   default: break;
84   case Instruction::Call:
85   case Instruction::Invoke:
86     if (const auto *II = dyn_cast<IntrinsicInst>(UserI)) {
87       switch (II->getIntrinsicID()) {
88       default: break;
89       case Intrinsic::bswap:
90         // The alive bits of the input are the swapped alive bits of
91         // the output.
92         AB = AOut.byteSwap();
93         break;
94       case Intrinsic::bitreverse:
95         // The alive bits of the input are the reversed alive bits of
96         // the output.
97         AB = AOut.reverseBits();
98         break;
99       case Intrinsic::ctlz:
100         if (OperandNo == 0) {
101           // We need some output bits, so we need all bits of the
102           // input to the left of, and including, the leftmost bit
103           // known to be one.
104           ComputeKnownBits(BitWidth, Val, nullptr);
105           AB = APInt::getHighBitsSet(BitWidth,
106                  std::min(BitWidth, Known.countMaxLeadingZeros()+1));
107         }
108         break;
109       case Intrinsic::cttz:
110         if (OperandNo == 0) {
111           // We need some output bits, so we need all bits of the
112           // input to the right of, and including, the rightmost bit
113           // known to be one.
114           ComputeKnownBits(BitWidth, Val, nullptr);
115           AB = APInt::getLowBitsSet(BitWidth,
116                  std::min(BitWidth, Known.countMaxTrailingZeros()+1));
117         }
118         break;
119       case Intrinsic::fshl:
120       case Intrinsic::fshr: {
121         const APInt *SA;
122         if (OperandNo == 2) {
123           // Shift amount is modulo the bitwidth. For powers of two we have
124           // SA % BW == SA & (BW - 1).
125           if (isPowerOf2_32(BitWidth))
126             AB = BitWidth - 1;
127         } else if (match(II->getOperand(2), m_APInt(SA))) {
128           // Normalize to funnel shift left. APInt shifts of BitWidth are well-
129           // defined, so no need to special-case zero shifts here.
130           uint64_t ShiftAmt = SA->urem(BitWidth);
131           if (II->getIntrinsicID() == Intrinsic::fshr)
132             ShiftAmt = BitWidth - ShiftAmt;
133 
134           if (OperandNo == 0)
135             AB = AOut.lshr(ShiftAmt);
136           else if (OperandNo == 1)
137             AB = AOut.shl(BitWidth - ShiftAmt);
138         }
139         break;
140       }
141       case Intrinsic::umax:
142       case Intrinsic::umin:
143       case Intrinsic::smax:
144       case Intrinsic::smin:
145         // If low bits of result are not demanded, they are also not demanded
146         // for the min/max operands.
147         AB = APInt::getBitsSetFrom(BitWidth, AOut.countr_zero());
148         break;
149       }
150     }
151     break;
152   case Instruction::Add:
153     if (AOut.isMask()) {
154       AB = AOut;
155     } else {
156       ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
157       AB = determineLiveOperandBitsAdd(OperandNo, AOut, Known, Known2);
158     }
159     break;
160   case Instruction::Sub:
161     if (AOut.isMask()) {
162       AB = AOut;
163     } else {
164       ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
165       AB = determineLiveOperandBitsSub(OperandNo, AOut, Known, Known2);
166     }
167     break;
168   case Instruction::Mul:
169     // Find the highest live output bit. We don't need any more input
170     // bits than that (adds, and thus subtracts, ripple only to the
171     // left).
172     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
173     break;
174   case Instruction::Shl:
175     if (OperandNo == 0) {
176       const APInt *ShiftAmtC;
177       if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
178         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
179         AB = AOut.lshr(ShiftAmt);
180 
181         // If the shift is nuw/nsw, then the high bits are not dead
182         // (because we've promised that they *must* be zero).
183         const auto *S = cast<ShlOperator>(UserI);
184         if (S->hasNoSignedWrap())
185           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
186         else if (S->hasNoUnsignedWrap())
187           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
188       }
189     }
190     break;
191   case Instruction::LShr:
192     if (OperandNo == 0) {
193       const APInt *ShiftAmtC;
194       if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
195         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
196         AB = AOut.shl(ShiftAmt);
197 
198         // If the shift is exact, then the low bits are not dead
199         // (they must be zero).
200         if (cast<LShrOperator>(UserI)->isExact())
201           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
202       }
203     }
204     break;
205   case Instruction::AShr:
206     if (OperandNo == 0) {
207       const APInt *ShiftAmtC;
208       if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
209         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
210         AB = AOut.shl(ShiftAmt);
211         // Because the high input bit is replicated into the
212         // high-order bits of the result, if we need any of those
213         // bits, then we must keep the highest input bit.
214         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
215             .getBoolValue())
216           AB.setSignBit();
217 
218         // If the shift is exact, then the low bits are not dead
219         // (they must be zero).
220         if (cast<AShrOperator>(UserI)->isExact())
221           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
222       }
223     }
224     break;
225   case Instruction::And:
226     AB = AOut;
227 
228     // For bits that are known zero, the corresponding bits in the
229     // other operand are dead (unless they're both zero, in which
230     // case they can't both be dead, so just mark the LHS bits as
231     // dead).
232     ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
233     if (OperandNo == 0)
234       AB &= ~Known2.Zero;
235     else
236       AB &= ~(Known.Zero & ~Known2.Zero);
237     break;
238   case Instruction::Or:
239     AB = AOut;
240 
241     // For bits that are known one, the corresponding bits in the
242     // other operand are dead (unless they're both one, in which
243     // case they can't both be dead, so just mark the LHS bits as
244     // dead).
245     ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
246     if (OperandNo == 0)
247       AB &= ~Known2.One;
248     else
249       AB &= ~(Known.One & ~Known2.One);
250     break;
251   case Instruction::Xor:
252   case Instruction::PHI:
253     AB = AOut;
254     break;
255   case Instruction::Trunc:
256     AB = AOut.zext(BitWidth);
257     break;
258   case Instruction::ZExt:
259     AB = AOut.trunc(BitWidth);
260     break;
261   case Instruction::SExt:
262     AB = AOut.trunc(BitWidth);
263     // Because the high input bit is replicated into the
264     // high-order bits of the result, if we need any of those
265     // bits, then we must keep the highest input bit.
266     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
267                                       AOut.getBitWidth() - BitWidth))
268         .getBoolValue())
269       AB.setSignBit();
270     break;
271   case Instruction::Select:
272     if (OperandNo != 0)
273       AB = AOut;
274     break;
275   case Instruction::ExtractElement:
276     if (OperandNo == 0)
277       AB = AOut;
278     break;
279   case Instruction::InsertElement:
280   case Instruction::ShuffleVector:
281     if (OperandNo == 0 || OperandNo == 1)
282       AB = AOut;
283     break;
284   }
285 }
286 
287 void DemandedBits::performAnalysis() {
288   if (Analyzed)
289     // Analysis already completed for this function.
290     return;
291   Analyzed = true;
292 
293   Visited.clear();
294   AliveBits.clear();
295   DeadUses.clear();
296 
297   SmallSetVector<Instruction*, 16> Worklist;
298 
299   // Collect the set of "root" instructions that are known live.
300   for (Instruction &I : instructions(F)) {
301     if (!isAlwaysLive(&I))
302       continue;
303 
304     LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
305     // For integer-valued instructions, set up an initial empty set of alive
306     // bits and add the instruction to the work list. For other instructions
307     // add their operands to the work list (for integer values operands, mark
308     // all bits as live).
309     Type *T = I.getType();
310     if (T->isIntOrIntVectorTy()) {
311       if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
312         Worklist.insert(&I);
313 
314       continue;
315     }
316 
317     // Non-integer-typed instructions...
318     for (Use &OI : I.operands()) {
319       if (auto *J = dyn_cast<Instruction>(OI)) {
320         Type *T = J->getType();
321         if (T->isIntOrIntVectorTy())
322           AliveBits[J] = APInt::getAllOnes(T->getScalarSizeInBits());
323         else
324           Visited.insert(J);
325         Worklist.insert(J);
326       }
327     }
328     // To save memory, we don't add I to the Visited set here. Instead, we
329     // check isAlwaysLive on every instruction when searching for dead
330     // instructions later (we need to check isAlwaysLive for the
331     // integer-typed instructions anyway).
332   }
333 
334   // Propagate liveness backwards to operands.
335   while (!Worklist.empty()) {
336     Instruction *UserI = Worklist.pop_back_val();
337 
338     LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
339     APInt AOut;
340     bool InputIsKnownDead = false;
341     if (UserI->getType()->isIntOrIntVectorTy()) {
342       AOut = AliveBits[UserI];
343       LLVM_DEBUG(dbgs() << " Alive Out: 0x"
344                         << Twine::utohexstr(AOut.getLimitedValue()));
345 
346       // If all bits of the output are dead, then all bits of the input
347       // are also dead.
348       InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
349     }
350     LLVM_DEBUG(dbgs() << "\n");
351 
352     KnownBits Known, Known2;
353     bool KnownBitsComputed = false;
354     // Compute the set of alive bits for each operand. These are anded into the
355     // existing set, if any, and if that changes the set of alive bits, the
356     // operand is added to the work-list.
357     for (Use &OI : UserI->operands()) {
358       // We also want to detect dead uses of arguments, but will only store
359       // demanded bits for instructions.
360       auto *I = dyn_cast<Instruction>(OI);
361       if (!I && !isa<Argument>(OI))
362         continue;
363 
364       Type *T = OI->getType();
365       if (T->isIntOrIntVectorTy()) {
366         unsigned BitWidth = T->getScalarSizeInBits();
367         APInt AB = APInt::getAllOnes(BitWidth);
368         if (InputIsKnownDead) {
369           AB = APInt(BitWidth, 0);
370         } else {
371           // Bits of each operand that are used to compute alive bits of the
372           // output are alive, all others are dead.
373           determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
374                                    Known, Known2, KnownBitsComputed);
375 
376           // Keep track of uses which have no demanded bits.
377           if (AB.isZero())
378             DeadUses.insert(&OI);
379           else
380             DeadUses.erase(&OI);
381         }
382 
383         if (I) {
384           // If we've added to the set of alive bits (or the operand has not
385           // been previously visited), then re-queue the operand to be visited
386           // again.
387           auto Res = AliveBits.try_emplace(I);
388           if (Res.second || (AB |= Res.first->second) != Res.first->second) {
389             Res.first->second = std::move(AB);
390             Worklist.insert(I);
391           }
392         }
393       } else if (I && Visited.insert(I).second) {
394         Worklist.insert(I);
395       }
396     }
397   }
398 }
399 
400 APInt DemandedBits::getDemandedBits(Instruction *I) {
401   performAnalysis();
402 
403   auto Found = AliveBits.find(I);
404   if (Found != AliveBits.end())
405     return Found->second;
406 
407   const DataLayout &DL = I->getDataLayout();
408   return APInt::getAllOnes(DL.getTypeSizeInBits(I->getType()->getScalarType()));
409 }
410 
411 APInt DemandedBits::getDemandedBits(Use *U) {
412   Type *T = (*U)->getType();
413   auto *UserI = cast<Instruction>(U->getUser());
414   const DataLayout &DL = UserI->getDataLayout();
415   unsigned BitWidth = DL.getTypeSizeInBits(T->getScalarType());
416 
417   // We only track integer uses, everything else produces a mask with all bits
418   // set
419   if (!T->isIntOrIntVectorTy())
420     return APInt::getAllOnes(BitWidth);
421 
422   if (isUseDead(U))
423     return APInt(BitWidth, 0);
424 
425   performAnalysis();
426 
427   APInt AOut = getDemandedBits(UserI);
428   APInt AB = APInt::getAllOnes(BitWidth);
429   KnownBits Known, Known2;
430   bool KnownBitsComputed = false;
431 
432   determineLiveOperandBits(UserI, *U, U->getOperandNo(), AOut, AB, Known,
433                            Known2, KnownBitsComputed);
434 
435   return AB;
436 }
437 
438 bool DemandedBits::isInstructionDead(Instruction *I) {
439   performAnalysis();
440 
441   return !Visited.count(I) && !AliveBits.contains(I) && !isAlwaysLive(I);
442 }
443 
444 bool DemandedBits::isUseDead(Use *U) {
445   // We only track integer uses, everything else is assumed live.
446   if (!(*U)->getType()->isIntOrIntVectorTy())
447     return false;
448 
449   // Uses by always-live instructions are never dead.
450   auto *UserI = cast<Instruction>(U->getUser());
451   if (isAlwaysLive(UserI))
452     return false;
453 
454   performAnalysis();
455   if (DeadUses.count(U))
456     return true;
457 
458   // If no output bits are demanded, no input bits are demanded and the use
459   // is dead. These uses might not be explicitly present in the DeadUses map.
460   if (UserI->getType()->isIntOrIntVectorTy()) {
461     auto Found = AliveBits.find(UserI);
462     if (Found != AliveBits.end() && Found->second.isZero())
463       return true;
464   }
465 
466   return false;
467 }
468 
469 void DemandedBits::print(raw_ostream &OS) {
470   auto PrintDB = [&](const Instruction *I, const APInt &A, Value *V = nullptr) {
471     OS << "DemandedBits: 0x" << Twine::utohexstr(A.getLimitedValue())
472        << " for ";
473     if (V) {
474       V->printAsOperand(OS, false);
475       OS << " in ";
476     }
477     OS << *I << '\n';
478   };
479 
480   OS << "Printing analysis 'Demanded Bits Analysis' for function '" << F.getName() << "':\n";
481   performAnalysis();
482   for (auto &KV : AliveBits) {
483     Instruction *I = KV.first;
484     PrintDB(I, KV.second);
485 
486     for (Use &OI : I->operands()) {
487       PrintDB(I, getDemandedBits(&OI), OI);
488     }
489   }
490 }
491 
492 static APInt determineLiveOperandBitsAddCarry(unsigned OperandNo,
493                                               const APInt &AOut,
494                                               const KnownBits &LHS,
495                                               const KnownBits &RHS,
496                                               bool CarryZero, bool CarryOne) {
497   assert(!(CarryZero && CarryOne) &&
498          "Carry can't be zero and one at the same time");
499 
500   // The following check should be done by the caller, as it also indicates
501   // that LHS and RHS don't need to be computed.
502   //
503   // if (AOut.isMask())
504   //   return AOut;
505 
506   // Boundary bits' carry out is unaffected by their carry in.
507   APInt Bound = (LHS.Zero & RHS.Zero) | (LHS.One & RHS.One);
508 
509   // First, the alive carry bits are determined from the alive output bits:
510   // Let demand ripple to the right but only up to any set bit in Bound.
511   //   AOut         = -1----
512   //   Bound        = ----1-
513   //   ACarry&~AOut = --111-
514   APInt RBound = Bound.reverseBits();
515   APInt RAOut = AOut.reverseBits();
516   APInt RProp = RAOut + (RAOut | ~RBound);
517   APInt RACarry = RProp ^ ~RBound;
518   APInt ACarry = RACarry.reverseBits();
519 
520   // Then, the alive input bits are determined from the alive carry bits:
521   APInt NeededToMaintainCarryZero;
522   APInt NeededToMaintainCarryOne;
523   if (OperandNo == 0) {
524     NeededToMaintainCarryZero = LHS.Zero | ~RHS.Zero;
525     NeededToMaintainCarryOne = LHS.One | ~RHS.One;
526   } else {
527     NeededToMaintainCarryZero = RHS.Zero | ~LHS.Zero;
528     NeededToMaintainCarryOne = RHS.One | ~LHS.One;
529   }
530 
531   // As in computeForAddCarry
532   APInt PossibleSumZero = ~LHS.Zero + ~RHS.Zero + !CarryZero;
533   APInt PossibleSumOne = LHS.One + RHS.One + CarryOne;
534 
535   // The below is simplified from
536   //
537   // APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);
538   // APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;
539   // APInt CarryUnknown = ~(CarryKnownZero | CarryKnownOne);
540   //
541   // APInt NeededToMaintainCarry =
542   //   (CarryKnownZero & NeededToMaintainCarryZero) |
543   //   (CarryKnownOne  & NeededToMaintainCarryOne) |
544   //   CarryUnknown;
545 
546   APInt NeededToMaintainCarry = (~PossibleSumZero | NeededToMaintainCarryZero) &
547                                 (PossibleSumOne | NeededToMaintainCarryOne);
548 
549   APInt AB = AOut | (ACarry & NeededToMaintainCarry);
550   return AB;
551 }
552 
553 APInt DemandedBits::determineLiveOperandBitsAdd(unsigned OperandNo,
554                                                 const APInt &AOut,
555                                                 const KnownBits &LHS,
556                                                 const KnownBits &RHS) {
557   return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS, true,
558                                           false);
559 }
560 
561 APInt DemandedBits::determineLiveOperandBitsSub(unsigned OperandNo,
562                                                 const APInt &AOut,
563                                                 const KnownBits &LHS,
564                                                 const KnownBits &RHS) {
565   KnownBits NRHS;
566   NRHS.Zero = RHS.One;
567   NRHS.One = RHS.Zero;
568   return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, NRHS, false,
569                                           true);
570 }
571 
572 AnalysisKey DemandedBitsAnalysis::Key;
573 
574 DemandedBits DemandedBitsAnalysis::run(Function &F,
575                                              FunctionAnalysisManager &AM) {
576   auto &AC = AM.getResult<AssumptionAnalysis>(F);
577   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
578   return DemandedBits(F, AC, DT);
579 }
580 
581 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
582                                                FunctionAnalysisManager &AM) {
583   AM.getResult<DemandedBitsAnalysis>(F).print(OS);
584   return PreservedAnalyses::all();
585 }
586