1 //===- DemandedBits.cpp - Determine demanded bits -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a demanded bits analysis. A demanded bit is one that 10 // contributes to a result; bits that are not demanded can be either zero or 11 // one without affecting control or data flow. For example in this sequence: 12 // 13 // %1 = add i32 %x, %y 14 // %2 = trunc i32 %1 to i16 15 // 16 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the 17 // trunc. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/Analysis/DemandedBits.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/InstIterator.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/KnownBits.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cstdint> 50 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "demanded-bits" 55 56 char DemandedBitsWrapperPass::ID = 0; 57 58 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits", 59 "Demanded bits analysis", false, false) 60 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 61 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 62 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits", 63 "Demanded bits analysis", false, false) 64 65 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) { 66 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry()); 67 } 68 69 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 70 AU.setPreservesCFG(); 71 AU.addRequired<AssumptionCacheTracker>(); 72 AU.addRequired<DominatorTreeWrapperPass>(); 73 AU.setPreservesAll(); 74 } 75 76 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const { 77 DB->print(OS); 78 } 79 80 static bool isAlwaysLive(Instruction *I) { 81 return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() || 82 I->mayHaveSideEffects(); 83 } 84 85 void DemandedBits::determineLiveOperandBits( 86 const Instruction *UserI, const Value *Val, unsigned OperandNo, 87 const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2, 88 bool &KnownBitsComputed) { 89 unsigned BitWidth = AB.getBitWidth(); 90 91 // We're called once per operand, but for some instructions, we need to 92 // compute known bits of both operands in order to determine the live bits of 93 // either (when both operands are instructions themselves). We don't, 94 // however, want to do this twice, so we cache the result in APInts that live 95 // in the caller. For the two-relevant-operands case, both operand values are 96 // provided here. 97 auto ComputeKnownBits = 98 [&](unsigned BitWidth, const Value *V1, const Value *V2) { 99 if (KnownBitsComputed) 100 return; 101 KnownBitsComputed = true; 102 103 const DataLayout &DL = UserI->getModule()->getDataLayout(); 104 Known = KnownBits(BitWidth); 105 computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT); 106 107 if (V2) { 108 Known2 = KnownBits(BitWidth); 109 computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT); 110 } 111 }; 112 113 switch (UserI->getOpcode()) { 114 default: break; 115 case Instruction::Call: 116 case Instruction::Invoke: 117 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) 118 switch (II->getIntrinsicID()) { 119 default: break; 120 case Intrinsic::bswap: 121 // The alive bits of the input are the swapped alive bits of 122 // the output. 123 AB = AOut.byteSwap(); 124 break; 125 case Intrinsic::bitreverse: 126 // The alive bits of the input are the reversed alive bits of 127 // the output. 128 AB = AOut.reverseBits(); 129 break; 130 case Intrinsic::ctlz: 131 if (OperandNo == 0) { 132 // We need some output bits, so we need all bits of the 133 // input to the left of, and including, the leftmost bit 134 // known to be one. 135 ComputeKnownBits(BitWidth, Val, nullptr); 136 AB = APInt::getHighBitsSet(BitWidth, 137 std::min(BitWidth, Known.countMaxLeadingZeros()+1)); 138 } 139 break; 140 case Intrinsic::cttz: 141 if (OperandNo == 0) { 142 // We need some output bits, so we need all bits of the 143 // input to the right of, and including, the rightmost bit 144 // known to be one. 145 ComputeKnownBits(BitWidth, Val, nullptr); 146 AB = APInt::getLowBitsSet(BitWidth, 147 std::min(BitWidth, Known.countMaxTrailingZeros()+1)); 148 } 149 break; 150 case Intrinsic::fshl: 151 case Intrinsic::fshr: { 152 const APInt *SA; 153 if (OperandNo == 2) { 154 // Shift amount is modulo the bitwidth. For powers of two we have 155 // SA % BW == SA & (BW - 1). 156 if (isPowerOf2_32(BitWidth)) 157 AB = BitWidth - 1; 158 } else if (match(II->getOperand(2), m_APInt(SA))) { 159 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 160 // defined, so no need to special-case zero shifts here. 161 uint64_t ShiftAmt = SA->urem(BitWidth); 162 if (II->getIntrinsicID() == Intrinsic::fshr) 163 ShiftAmt = BitWidth - ShiftAmt; 164 165 if (OperandNo == 0) 166 AB = AOut.lshr(ShiftAmt); 167 else if (OperandNo == 1) 168 AB = AOut.shl(BitWidth - ShiftAmt); 169 } 170 break; 171 } 172 } 173 break; 174 case Instruction::Add: 175 case Instruction::Sub: 176 case Instruction::Mul: 177 // Find the highest live output bit. We don't need any more input 178 // bits than that (adds, and thus subtracts, ripple only to the 179 // left). 180 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); 181 break; 182 case Instruction::Shl: 183 if (OperandNo == 0) { 184 const APInt *ShiftAmtC; 185 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 186 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 187 AB = AOut.lshr(ShiftAmt); 188 189 // If the shift is nuw/nsw, then the high bits are not dead 190 // (because we've promised that they *must* be zero). 191 const ShlOperator *S = cast<ShlOperator>(UserI); 192 if (S->hasNoSignedWrap()) 193 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 194 else if (S->hasNoUnsignedWrap()) 195 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 196 } 197 } 198 break; 199 case Instruction::LShr: 200 if (OperandNo == 0) { 201 const APInt *ShiftAmtC; 202 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 203 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 204 AB = AOut.shl(ShiftAmt); 205 206 // If the shift is exact, then the low bits are not dead 207 // (they must be zero). 208 if (cast<LShrOperator>(UserI)->isExact()) 209 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 210 } 211 } 212 break; 213 case Instruction::AShr: 214 if (OperandNo == 0) { 215 const APInt *ShiftAmtC; 216 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 217 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 218 AB = AOut.shl(ShiftAmt); 219 // Because the high input bit is replicated into the 220 // high-order bits of the result, if we need any of those 221 // bits, then we must keep the highest input bit. 222 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) 223 .getBoolValue()) 224 AB.setSignBit(); 225 226 // If the shift is exact, then the low bits are not dead 227 // (they must be zero). 228 if (cast<AShrOperator>(UserI)->isExact()) 229 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 230 } 231 } 232 break; 233 case Instruction::And: 234 AB = AOut; 235 236 // For bits that are known zero, the corresponding bits in the 237 // other operand are dead (unless they're both zero, in which 238 // case they can't both be dead, so just mark the LHS bits as 239 // dead). 240 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 241 if (OperandNo == 0) 242 AB &= ~Known2.Zero; 243 else 244 AB &= ~(Known.Zero & ~Known2.Zero); 245 break; 246 case Instruction::Or: 247 AB = AOut; 248 249 // For bits that are known one, the corresponding bits in the 250 // other operand are dead (unless they're both one, in which 251 // case they can't both be dead, so just mark the LHS bits as 252 // dead). 253 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 254 if (OperandNo == 0) 255 AB &= ~Known2.One; 256 else 257 AB &= ~(Known.One & ~Known2.One); 258 break; 259 case Instruction::Xor: 260 case Instruction::PHI: 261 AB = AOut; 262 break; 263 case Instruction::Trunc: 264 AB = AOut.zext(BitWidth); 265 break; 266 case Instruction::ZExt: 267 AB = AOut.trunc(BitWidth); 268 break; 269 case Instruction::SExt: 270 AB = AOut.trunc(BitWidth); 271 // Because the high input bit is replicated into the 272 // high-order bits of the result, if we need any of those 273 // bits, then we must keep the highest input bit. 274 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), 275 AOut.getBitWidth() - BitWidth)) 276 .getBoolValue()) 277 AB.setSignBit(); 278 break; 279 case Instruction::Select: 280 if (OperandNo != 0) 281 AB = AOut; 282 break; 283 case Instruction::ExtractElement: 284 if (OperandNo == 0) 285 AB = AOut; 286 break; 287 case Instruction::InsertElement: 288 case Instruction::ShuffleVector: 289 if (OperandNo == 0 || OperandNo == 1) 290 AB = AOut; 291 break; 292 } 293 } 294 295 bool DemandedBitsWrapperPass::runOnFunction(Function &F) { 296 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 297 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 298 DB.emplace(F, AC, DT); 299 return false; 300 } 301 302 void DemandedBitsWrapperPass::releaseMemory() { 303 DB.reset(); 304 } 305 306 void DemandedBits::performAnalysis() { 307 if (Analyzed) 308 // Analysis already completed for this function. 309 return; 310 Analyzed = true; 311 312 Visited.clear(); 313 AliveBits.clear(); 314 DeadUses.clear(); 315 316 SmallSetVector<Instruction*, 16> Worklist; 317 318 // Collect the set of "root" instructions that are known live. 319 for (Instruction &I : instructions(F)) { 320 if (!isAlwaysLive(&I)) 321 continue; 322 323 LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); 324 // For integer-valued instructions, set up an initial empty set of alive 325 // bits and add the instruction to the work list. For other instructions 326 // add their operands to the work list (for integer values operands, mark 327 // all bits as live). 328 Type *T = I.getType(); 329 if (T->isIntOrIntVectorTy()) { 330 if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second) 331 Worklist.insert(&I); 332 333 continue; 334 } 335 336 // Non-integer-typed instructions... 337 for (Use &OI : I.operands()) { 338 if (Instruction *J = dyn_cast<Instruction>(OI)) { 339 Type *T = J->getType(); 340 if (T->isIntOrIntVectorTy()) 341 AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits()); 342 else 343 Visited.insert(J); 344 Worklist.insert(J); 345 } 346 } 347 // To save memory, we don't add I to the Visited set here. Instead, we 348 // check isAlwaysLive on every instruction when searching for dead 349 // instructions later (we need to check isAlwaysLive for the 350 // integer-typed instructions anyway). 351 } 352 353 // Propagate liveness backwards to operands. 354 while (!Worklist.empty()) { 355 Instruction *UserI = Worklist.pop_back_val(); 356 357 LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); 358 APInt AOut; 359 bool InputIsKnownDead = false; 360 if (UserI->getType()->isIntOrIntVectorTy()) { 361 AOut = AliveBits[UserI]; 362 LLVM_DEBUG(dbgs() << " Alive Out: 0x" 363 << Twine::utohexstr(AOut.getLimitedValue())); 364 365 // If all bits of the output are dead, then all bits of the input 366 // are also dead. 367 InputIsKnownDead = !AOut && !isAlwaysLive(UserI); 368 } 369 LLVM_DEBUG(dbgs() << "\n"); 370 371 KnownBits Known, Known2; 372 bool KnownBitsComputed = false; 373 // Compute the set of alive bits for each operand. These are anded into the 374 // existing set, if any, and if that changes the set of alive bits, the 375 // operand is added to the work-list. 376 for (Use &OI : UserI->operands()) { 377 // We also want to detect dead uses of arguments, but will only store 378 // demanded bits for instructions. 379 Instruction *I = dyn_cast<Instruction>(OI); 380 if (!I && !isa<Argument>(OI)) 381 continue; 382 383 Type *T = OI->getType(); 384 if (T->isIntOrIntVectorTy()) { 385 unsigned BitWidth = T->getScalarSizeInBits(); 386 APInt AB = APInt::getAllOnesValue(BitWidth); 387 if (InputIsKnownDead) { 388 AB = APInt(BitWidth, 0); 389 } else { 390 // Bits of each operand that are used to compute alive bits of the 391 // output are alive, all others are dead. 392 determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB, 393 Known, Known2, KnownBitsComputed); 394 395 // Keep track of uses which have no demanded bits. 396 if (AB.isNullValue()) 397 DeadUses.insert(&OI); 398 else 399 DeadUses.erase(&OI); 400 } 401 402 if (I) { 403 // If we've added to the set of alive bits (or the operand has not 404 // been previously visited), then re-queue the operand to be visited 405 // again. 406 auto Res = AliveBits.try_emplace(I); 407 if (Res.second || (AB |= Res.first->second) != Res.first->second) { 408 Res.first->second = std::move(AB); 409 Worklist.insert(I); 410 } 411 } 412 } else if (I && Visited.insert(I).second) { 413 Worklist.insert(I); 414 } 415 } 416 } 417 } 418 419 APInt DemandedBits::getDemandedBits(Instruction *I) { 420 performAnalysis(); 421 422 auto Found = AliveBits.find(I); 423 if (Found != AliveBits.end()) 424 return Found->second; 425 426 const DataLayout &DL = I->getModule()->getDataLayout(); 427 return APInt::getAllOnesValue( 428 DL.getTypeSizeInBits(I->getType()->getScalarType())); 429 } 430 431 bool DemandedBits::isInstructionDead(Instruction *I) { 432 performAnalysis(); 433 434 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() && 435 !isAlwaysLive(I); 436 } 437 438 bool DemandedBits::isUseDead(Use *U) { 439 // We only track integer uses, everything else is assumed live. 440 if (!(*U)->getType()->isIntOrIntVectorTy()) 441 return false; 442 443 // Uses by always-live instructions are never dead. 444 Instruction *UserI = cast<Instruction>(U->getUser()); 445 if (isAlwaysLive(UserI)) 446 return false; 447 448 performAnalysis(); 449 if (DeadUses.count(U)) 450 return true; 451 452 // If no output bits are demanded, no input bits are demanded and the use 453 // is dead. These uses might not be explicitly present in the DeadUses map. 454 if (UserI->getType()->isIntOrIntVectorTy()) { 455 auto Found = AliveBits.find(UserI); 456 if (Found != AliveBits.end() && Found->second.isNullValue()) 457 return true; 458 } 459 460 return false; 461 } 462 463 void DemandedBits::print(raw_ostream &OS) { 464 performAnalysis(); 465 for (auto &KV : AliveBits) { 466 OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue()) 467 << " for " << *KV.first << '\n'; 468 } 469 } 470 471 FunctionPass *llvm::createDemandedBitsWrapperPass() { 472 return new DemandedBitsWrapperPass(); 473 } 474 475 AnalysisKey DemandedBitsAnalysis::Key; 476 477 DemandedBits DemandedBitsAnalysis::run(Function &F, 478 FunctionAnalysisManager &AM) { 479 auto &AC = AM.getResult<AssumptionAnalysis>(F); 480 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 481 return DemandedBits(F, AC, DT); 482 } 483 484 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, 485 FunctionAnalysisManager &AM) { 486 AM.getResult<DemandedBitsAnalysis>(F).print(OS); 487 return PreservedAnalyses::all(); 488 } 489