1 //===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/ConstraintSystem.h" 10 #include "llvm/ADT/SmallVector.h" 11 #include "llvm/Support/MathExtras.h" 12 #include "llvm/ADT/StringExtras.h" 13 #include "llvm/IR/Value.h" 14 #include "llvm/Support/Debug.h" 15 16 #include <string> 17 18 using namespace llvm; 19 20 #define DEBUG_TYPE "constraint-system" 21 22 bool ConstraintSystem::eliminateUsingFM() { 23 // Implementation of Fourier–Motzkin elimination, with some tricks from the 24 // paper Pugh, William. "The Omega test: a fast and practical integer 25 // programming algorithm for dependence 26 // analysis." 27 // Supercomputing'91: Proceedings of the 1991 ACM/ 28 // IEEE conference on Supercomputing. IEEE, 1991. 29 assert(!Constraints.empty() && 30 "should only be called for non-empty constraint systems"); 31 32 unsigned LastIdx = NumVariables - 1; 33 34 // First, either remove the variable in place if it is 0 or add the row to 35 // RemainingRows and remove it from the system. 36 SmallVector<SmallVector<Entry, 8>, 4> RemainingRows; 37 for (unsigned R1 = 0; R1 < Constraints.size();) { 38 SmallVector<Entry, 8> &Row1 = Constraints[R1]; 39 if (getLastCoefficient(Row1, LastIdx) == 0) { 40 if (Row1.size() > 0 && Row1.back().Id == LastIdx) 41 Row1.pop_back(); 42 R1++; 43 } else { 44 std::swap(Constraints[R1], Constraints.back()); 45 RemainingRows.push_back(std::move(Constraints.back())); 46 Constraints.pop_back(); 47 } 48 } 49 50 // Process rows where the variable is != 0. 51 unsigned NumRemainingConstraints = RemainingRows.size(); 52 for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) { 53 // FIXME do not use copy 54 for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) { 55 if (R1 == R2) 56 continue; 57 58 int64_t UpperLast = getLastCoefficient(RemainingRows[R2], LastIdx); 59 int64_t LowerLast = getLastCoefficient(RemainingRows[R1], LastIdx); 60 assert( 61 UpperLast != 0 && LowerLast != 0 && 62 "RemainingRows should only contain rows where the variable is != 0"); 63 64 if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0)) 65 continue; 66 67 unsigned LowerR = R1; 68 unsigned UpperR = R2; 69 if (UpperLast < 0) { 70 std::swap(LowerR, UpperR); 71 std::swap(LowerLast, UpperLast); 72 } 73 74 SmallVector<Entry, 8> NR; 75 unsigned IdxUpper = 0; 76 unsigned IdxLower = 0; 77 auto &LowerRow = RemainingRows[LowerR]; 78 auto &UpperRow = RemainingRows[UpperR]; 79 while (true) { 80 if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size()) 81 break; 82 int64_t M1, M2, N; 83 int64_t UpperV = 0; 84 int64_t LowerV = 0; 85 uint16_t CurrentId = std::numeric_limits<uint16_t>::max(); 86 if (IdxUpper < UpperRow.size()) { 87 CurrentId = std::min(UpperRow[IdxUpper].Id, CurrentId); 88 } 89 if (IdxLower < LowerRow.size()) { 90 CurrentId = std::min(LowerRow[IdxLower].Id, CurrentId); 91 } 92 93 if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) { 94 UpperV = UpperRow[IdxUpper].Coefficient; 95 IdxUpper++; 96 } 97 98 if (MulOverflow(UpperV, -1 * LowerLast, M1)) 99 return false; 100 if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) { 101 LowerV = LowerRow[IdxLower].Coefficient; 102 IdxLower++; 103 } 104 105 if (MulOverflow(LowerV, UpperLast, M2)) 106 return false; 107 if (AddOverflow(M1, M2, N)) 108 return false; 109 if (N == 0) 110 continue; 111 NR.emplace_back(N, CurrentId); 112 } 113 if (NR.empty()) 114 continue; 115 Constraints.push_back(std::move(NR)); 116 // Give up if the new system gets too big. 117 if (Constraints.size() > 500) 118 return false; 119 } 120 } 121 NumVariables -= 1; 122 123 return true; 124 } 125 126 bool ConstraintSystem::mayHaveSolutionImpl() { 127 while (!Constraints.empty() && NumVariables > 1) { 128 if (!eliminateUsingFM()) 129 return true; 130 } 131 132 if (Constraints.empty() || NumVariables > 1) 133 return true; 134 135 return all_of(Constraints, [](auto &R) { 136 if (R.empty()) 137 return true; 138 if (R[0].Id == 0) 139 return R[0].Coefficient >= 0; 140 return true; 141 }); 142 } 143 144 SmallVector<std::string> ConstraintSystem::getVarNamesList() const { 145 SmallVector<std::string> Names(Value2Index.size(), ""); 146 #ifndef NDEBUG 147 for (auto &[V, Index] : Value2Index) { 148 std::string OperandName; 149 if (V->getName().empty()) 150 OperandName = V->getNameOrAsOperand(); 151 else 152 OperandName = std::string("%") + V->getName().str(); 153 Names[Index - 1] = OperandName; 154 } 155 #endif 156 return Names; 157 } 158 159 void ConstraintSystem::dump() const { 160 #ifndef NDEBUG 161 if (Constraints.empty()) 162 return; 163 SmallVector<std::string> Names = getVarNamesList(); 164 for (const auto &Row : Constraints) { 165 SmallVector<std::string, 16> Parts; 166 for (const Entry &E : Row) { 167 if (E.Id >= NumVariables) 168 break; 169 if (E.Id == 0) 170 continue; 171 std::string Coefficient; 172 if (E.Coefficient != 1) 173 Coefficient = std::to_string(E.Coefficient) + " * "; 174 Parts.push_back(Coefficient + Names[E.Id - 1]); 175 } 176 // assert(!Parts.empty() && "need to have at least some parts"); 177 int64_t ConstPart = 0; 178 if (Row[0].Id == 0) 179 ConstPart = Row[0].Coefficient; 180 LLVM_DEBUG(dbgs() << join(Parts, std::string(" + ")) 181 << " <= " << std::to_string(ConstPart) << "\n"); 182 } 183 #endif 184 } 185 186 bool ConstraintSystem::mayHaveSolution() { 187 LLVM_DEBUG(dbgs() << "---\n"); 188 LLVM_DEBUG(dump()); 189 bool HasSolution = mayHaveSolutionImpl(); 190 LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n"); 191 return HasSolution; 192 } 193 194 bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const { 195 // If all variable coefficients are 0, we have 'C >= 0'. If the constant is >= 196 // 0, R is always true, regardless of the system. 197 if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; })) 198 return R[0] >= 0; 199 200 // If there is no solution with the negation of R added to the system, the 201 // condition must hold based on the existing constraints. 202 R = ConstraintSystem::negate(R); 203 if (R.empty()) 204 return false; 205 206 auto NewSystem = *this; 207 NewSystem.addVariableRow(R); 208 return !NewSystem.mayHaveSolution(); 209 } 210