xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp (revision f9fd7337f63698f33239c58c07bf430198235a22)
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/TargetFolder.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/Config/config.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalValue.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicsAMDGPU.h"
44 #include "llvm/IR/IntrinsicsX86.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/KnownBits.h"
51 #include "llvm/Support/MathExtras.h"
52 #include <cassert>
53 #include <cerrno>
54 #include <cfenv>
55 #include <cmath>
56 #include <cstddef>
57 #include <cstdint>
58 
59 using namespace llvm;
60 
61 namespace {
62 
63 //===----------------------------------------------------------------------===//
64 // Constant Folding internal helper functions
65 //===----------------------------------------------------------------------===//
66 
67 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
68                                         Constant *C, Type *SrcEltTy,
69                                         unsigned NumSrcElts,
70                                         const DataLayout &DL) {
71   // Now that we know that the input value is a vector of integers, just shift
72   // and insert them into our result.
73   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
74   for (unsigned i = 0; i != NumSrcElts; ++i) {
75     Constant *Element;
76     if (DL.isLittleEndian())
77       Element = C->getAggregateElement(NumSrcElts - i - 1);
78     else
79       Element = C->getAggregateElement(i);
80 
81     if (Element && isa<UndefValue>(Element)) {
82       Result <<= BitShift;
83       continue;
84     }
85 
86     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
87     if (!ElementCI)
88       return ConstantExpr::getBitCast(C, DestTy);
89 
90     Result <<= BitShift;
91     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
92   }
93 
94   return nullptr;
95 }
96 
97 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
98 /// This always returns a non-null constant, but it may be a
99 /// ConstantExpr if unfoldable.
100 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
101   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
102          "Invalid constantexpr bitcast!");
103 
104   // Catch the obvious splat cases.
105   if (C->isNullValue() && !DestTy->isX86_MMXTy())
106     return Constant::getNullValue(DestTy);
107   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
108       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
109     return Constant::getAllOnesValue(DestTy);
110 
111   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
112     // Handle a vector->scalar integer/fp cast.
113     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
114       unsigned NumSrcElts = VTy->getNumElements();
115       Type *SrcEltTy = VTy->getElementType();
116 
117       // If the vector is a vector of floating point, convert it to vector of int
118       // to simplify things.
119       if (SrcEltTy->isFloatingPointTy()) {
120         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
121         auto *SrcIVTy = FixedVectorType::get(
122             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
123         // Ask IR to do the conversion now that #elts line up.
124         C = ConstantExpr::getBitCast(C, SrcIVTy);
125       }
126 
127       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
128       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
129                                                 SrcEltTy, NumSrcElts, DL))
130         return CE;
131 
132       if (isa<IntegerType>(DestTy))
133         return ConstantInt::get(DestTy, Result);
134 
135       APFloat FP(DestTy->getFltSemantics(), Result);
136       return ConstantFP::get(DestTy->getContext(), FP);
137     }
138   }
139 
140   // The code below only handles casts to vectors currently.
141   auto *DestVTy = dyn_cast<VectorType>(DestTy);
142   if (!DestVTy)
143     return ConstantExpr::getBitCast(C, DestTy);
144 
145   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
146   // vector so the code below can handle it uniformly.
147   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
148     Constant *Ops = C; // don't take the address of C!
149     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
150   }
151 
152   // If this is a bitcast from constant vector -> vector, fold it.
153   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
154     return ConstantExpr::getBitCast(C, DestTy);
155 
156   // If the element types match, IR can fold it.
157   unsigned NumDstElt = DestVTy->getNumElements();
158   unsigned NumSrcElt = cast<VectorType>(C->getType())->getNumElements();
159   if (NumDstElt == NumSrcElt)
160     return ConstantExpr::getBitCast(C, DestTy);
161 
162   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
163   Type *DstEltTy = DestVTy->getElementType();
164 
165   // Otherwise, we're changing the number of elements in a vector, which
166   // requires endianness information to do the right thing.  For example,
167   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
168   // folds to (little endian):
169   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
170   // and to (big endian):
171   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
172 
173   // First thing is first.  We only want to think about integer here, so if
174   // we have something in FP form, recast it as integer.
175   if (DstEltTy->isFloatingPointTy()) {
176     // Fold to an vector of integers with same size as our FP type.
177     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
178     auto *DestIVTy = FixedVectorType::get(
179         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
180     // Recursively handle this integer conversion, if possible.
181     C = FoldBitCast(C, DestIVTy, DL);
182 
183     // Finally, IR can handle this now that #elts line up.
184     return ConstantExpr::getBitCast(C, DestTy);
185   }
186 
187   // Okay, we know the destination is integer, if the input is FP, convert
188   // it to integer first.
189   if (SrcEltTy->isFloatingPointTy()) {
190     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
191     auto *SrcIVTy = FixedVectorType::get(
192         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
193     // Ask IR to do the conversion now that #elts line up.
194     C = ConstantExpr::getBitCast(C, SrcIVTy);
195     // If IR wasn't able to fold it, bail out.
196     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
197         !isa<ConstantDataVector>(C))
198       return C;
199   }
200 
201   // Now we know that the input and output vectors are both integer vectors
202   // of the same size, and that their #elements is not the same.  Do the
203   // conversion here, which depends on whether the input or output has
204   // more elements.
205   bool isLittleEndian = DL.isLittleEndian();
206 
207   SmallVector<Constant*, 32> Result;
208   if (NumDstElt < NumSrcElt) {
209     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
210     Constant *Zero = Constant::getNullValue(DstEltTy);
211     unsigned Ratio = NumSrcElt/NumDstElt;
212     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
213     unsigned SrcElt = 0;
214     for (unsigned i = 0; i != NumDstElt; ++i) {
215       // Build each element of the result.
216       Constant *Elt = Zero;
217       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
218       for (unsigned j = 0; j != Ratio; ++j) {
219         Constant *Src = C->getAggregateElement(SrcElt++);
220         if (Src && isa<UndefValue>(Src))
221           Src = Constant::getNullValue(
222               cast<VectorType>(C->getType())->getElementType());
223         else
224           Src = dyn_cast_or_null<ConstantInt>(Src);
225         if (!Src)  // Reject constantexpr elements.
226           return ConstantExpr::getBitCast(C, DestTy);
227 
228         // Zero extend the element to the right size.
229         Src = ConstantExpr::getZExt(Src, Elt->getType());
230 
231         // Shift it to the right place, depending on endianness.
232         Src = ConstantExpr::getShl(Src,
233                                    ConstantInt::get(Src->getType(), ShiftAmt));
234         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
235 
236         // Mix it in.
237         Elt = ConstantExpr::getOr(Elt, Src);
238       }
239       Result.push_back(Elt);
240     }
241     return ConstantVector::get(Result);
242   }
243 
244   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
245   unsigned Ratio = NumDstElt/NumSrcElt;
246   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
247 
248   // Loop over each source value, expanding into multiple results.
249   for (unsigned i = 0; i != NumSrcElt; ++i) {
250     auto *Element = C->getAggregateElement(i);
251 
252     if (!Element) // Reject constantexpr elements.
253       return ConstantExpr::getBitCast(C, DestTy);
254 
255     if (isa<UndefValue>(Element)) {
256       // Correctly Propagate undef values.
257       Result.append(Ratio, UndefValue::get(DstEltTy));
258       continue;
259     }
260 
261     auto *Src = dyn_cast<ConstantInt>(Element);
262     if (!Src)
263       return ConstantExpr::getBitCast(C, DestTy);
264 
265     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
266     for (unsigned j = 0; j != Ratio; ++j) {
267       // Shift the piece of the value into the right place, depending on
268       // endianness.
269       Constant *Elt = ConstantExpr::getLShr(Src,
270                                   ConstantInt::get(Src->getType(), ShiftAmt));
271       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
272 
273       // Truncate the element to an integer with the same pointer size and
274       // convert the element back to a pointer using a inttoptr.
275       if (DstEltTy->isPointerTy()) {
276         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
277         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
278         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
279         continue;
280       }
281 
282       // Truncate and remember this piece.
283       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
284     }
285   }
286 
287   return ConstantVector::get(Result);
288 }
289 
290 } // end anonymous namespace
291 
292 /// If this constant is a constant offset from a global, return the global and
293 /// the constant. Because of constantexprs, this function is recursive.
294 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
295                                       APInt &Offset, const DataLayout &DL) {
296   // Trivial case, constant is the global.
297   if ((GV = dyn_cast<GlobalValue>(C))) {
298     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
299     Offset = APInt(BitWidth, 0);
300     return true;
301   }
302 
303   // Otherwise, if this isn't a constant expr, bail out.
304   auto *CE = dyn_cast<ConstantExpr>(C);
305   if (!CE) return false;
306 
307   // Look through ptr->int and ptr->ptr casts.
308   if (CE->getOpcode() == Instruction::PtrToInt ||
309       CE->getOpcode() == Instruction::BitCast)
310     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
311 
312   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
313   auto *GEP = dyn_cast<GEPOperator>(CE);
314   if (!GEP)
315     return false;
316 
317   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
318   APInt TmpOffset(BitWidth, 0);
319 
320   // If the base isn't a global+constant, we aren't either.
321   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
322     return false;
323 
324   // Otherwise, add any offset that our operands provide.
325   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
326     return false;
327 
328   Offset = TmpOffset;
329   return true;
330 }
331 
332 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
333                                          const DataLayout &DL) {
334   do {
335     Type *SrcTy = C->getType();
336     uint64_t DestSize = DL.getTypeSizeInBits(DestTy);
337     uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy);
338     if (SrcSize < DestSize)
339       return nullptr;
340 
341     // Catch the obvious splat cases (since all-zeros can coerce non-integral
342     // pointers legally).
343     if (C->isNullValue() && !DestTy->isX86_MMXTy())
344       return Constant::getNullValue(DestTy);
345     if (C->isAllOnesValue() &&
346         (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
347          DestTy->isVectorTy()) &&
348         !DestTy->isX86_MMXTy() && !DestTy->isPtrOrPtrVectorTy())
349       // Get ones when the input is trivial, but
350       // only for supported types inside getAllOnesValue.
351       return Constant::getAllOnesValue(DestTy);
352 
353     // If the type sizes are the same and a cast is legal, just directly
354     // cast the constant.
355     // But be careful not to coerce non-integral pointers illegally.
356     if (SrcSize == DestSize &&
357         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
358             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
359       Instruction::CastOps Cast = Instruction::BitCast;
360       // If we are going from a pointer to int or vice versa, we spell the cast
361       // differently.
362       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
363         Cast = Instruction::IntToPtr;
364       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
365         Cast = Instruction::PtrToInt;
366 
367       if (CastInst::castIsValid(Cast, C, DestTy))
368         return ConstantExpr::getCast(Cast, C, DestTy);
369     }
370 
371     // If this isn't an aggregate type, there is nothing we can do to drill down
372     // and find a bitcastable constant.
373     if (!SrcTy->isAggregateType())
374       return nullptr;
375 
376     // We're simulating a load through a pointer that was bitcast to point to
377     // a different type, so we can try to walk down through the initial
378     // elements of an aggregate to see if some part of the aggregate is
379     // castable to implement the "load" semantic model.
380     if (SrcTy->isStructTy()) {
381       // Struct types might have leading zero-length elements like [0 x i32],
382       // which are certainly not what we are looking for, so skip them.
383       unsigned Elem = 0;
384       Constant *ElemC;
385       do {
386         ElemC = C->getAggregateElement(Elem++);
387       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
388       C = ElemC;
389     } else {
390       C = C->getAggregateElement(0u);
391     }
392   } while (C);
393 
394   return nullptr;
395 }
396 
397 namespace {
398 
399 /// Recursive helper to read bits out of global. C is the constant being copied
400 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
401 /// results into and BytesLeft is the number of bytes left in
402 /// the CurPtr buffer. DL is the DataLayout.
403 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
404                         unsigned BytesLeft, const DataLayout &DL) {
405   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
406          "Out of range access");
407 
408   // If this element is zero or undefined, we can just return since *CurPtr is
409   // zero initialized.
410   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
411     return true;
412 
413   if (auto *CI = dyn_cast<ConstantInt>(C)) {
414     if (CI->getBitWidth() > 64 ||
415         (CI->getBitWidth() & 7) != 0)
416       return false;
417 
418     uint64_t Val = CI->getZExtValue();
419     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
420 
421     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
422       int n = ByteOffset;
423       if (!DL.isLittleEndian())
424         n = IntBytes - n - 1;
425       CurPtr[i] = (unsigned char)(Val >> (n * 8));
426       ++ByteOffset;
427     }
428     return true;
429   }
430 
431   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
432     if (CFP->getType()->isDoubleTy()) {
433       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
434       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
435     }
436     if (CFP->getType()->isFloatTy()){
437       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
438       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
439     }
440     if (CFP->getType()->isHalfTy()){
441       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
442       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
443     }
444     return false;
445   }
446 
447   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
448     const StructLayout *SL = DL.getStructLayout(CS->getType());
449     unsigned Index = SL->getElementContainingOffset(ByteOffset);
450     uint64_t CurEltOffset = SL->getElementOffset(Index);
451     ByteOffset -= CurEltOffset;
452 
453     while (true) {
454       // If the element access is to the element itself and not to tail padding,
455       // read the bytes from the element.
456       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
457 
458       if (ByteOffset < EltSize &&
459           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
460                               BytesLeft, DL))
461         return false;
462 
463       ++Index;
464 
465       // Check to see if we read from the last struct element, if so we're done.
466       if (Index == CS->getType()->getNumElements())
467         return true;
468 
469       // If we read all of the bytes we needed from this element we're done.
470       uint64_t NextEltOffset = SL->getElementOffset(Index);
471 
472       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
473         return true;
474 
475       // Move to the next element of the struct.
476       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
477       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
478       ByteOffset = 0;
479       CurEltOffset = NextEltOffset;
480     }
481     // not reached.
482   }
483 
484   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
485       isa<ConstantDataSequential>(C)) {
486     uint64_t NumElts;
487     Type *EltTy;
488     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
489       NumElts = AT->getNumElements();
490       EltTy = AT->getElementType();
491     } else {
492       NumElts = cast<VectorType>(C->getType())->getNumElements();
493       EltTy = cast<VectorType>(C->getType())->getElementType();
494     }
495     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
496     uint64_t Index = ByteOffset / EltSize;
497     uint64_t Offset = ByteOffset - Index * EltSize;
498 
499     for (; Index != NumElts; ++Index) {
500       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
501                               BytesLeft, DL))
502         return false;
503 
504       uint64_t BytesWritten = EltSize - Offset;
505       assert(BytesWritten <= EltSize && "Not indexing into this element?");
506       if (BytesWritten >= BytesLeft)
507         return true;
508 
509       Offset = 0;
510       BytesLeft -= BytesWritten;
511       CurPtr += BytesWritten;
512     }
513     return true;
514   }
515 
516   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
517     if (CE->getOpcode() == Instruction::IntToPtr &&
518         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
519       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
520                                 BytesLeft, DL);
521     }
522   }
523 
524   // Otherwise, unknown initializer type.
525   return false;
526 }
527 
528 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
529                                           const DataLayout &DL) {
530   // Bail out early. Not expect to load from scalable global variable.
531   if (isa<ScalableVectorType>(LoadTy))
532     return nullptr;
533 
534   auto *PTy = cast<PointerType>(C->getType());
535   auto *IntType = dyn_cast<IntegerType>(LoadTy);
536 
537   // If this isn't an integer load we can't fold it directly.
538   if (!IntType) {
539     unsigned AS = PTy->getAddressSpace();
540 
541     // If this is a float/double load, we can try folding it as an int32/64 load
542     // and then bitcast the result.  This can be useful for union cases.  Note
543     // that address spaces don't matter here since we're not going to result in
544     // an actual new load.
545     Type *MapTy;
546     if (LoadTy->isHalfTy())
547       MapTy = Type::getInt16Ty(C->getContext());
548     else if (LoadTy->isFloatTy())
549       MapTy = Type::getInt32Ty(C->getContext());
550     else if (LoadTy->isDoubleTy())
551       MapTy = Type::getInt64Ty(C->getContext());
552     else if (LoadTy->isVectorTy()) {
553       MapTy = PointerType::getIntNTy(
554           C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
555     } else
556       return nullptr;
557 
558     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
559     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
560       if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
561         // Materializing a zero can be done trivially without a bitcast
562         return Constant::getNullValue(LoadTy);
563       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
564       Res = FoldBitCast(Res, CastTy, DL);
565       if (LoadTy->isPtrOrPtrVectorTy()) {
566         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
567         if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
568           return Constant::getNullValue(LoadTy);
569         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
570           // Be careful not to replace a load of an addrspace value with an inttoptr here
571           return nullptr;
572         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
573       }
574       return Res;
575     }
576     return nullptr;
577   }
578 
579   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
580   if (BytesLoaded > 32 || BytesLoaded == 0)
581     return nullptr;
582 
583   GlobalValue *GVal;
584   APInt OffsetAI;
585   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
586     return nullptr;
587 
588   auto *GV = dyn_cast<GlobalVariable>(GVal);
589   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
590       !GV->getInitializer()->getType()->isSized())
591     return nullptr;
592 
593   int64_t Offset = OffsetAI.getSExtValue();
594   int64_t InitializerSize =
595       DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
596 
597   // If we're not accessing anything in this constant, the result is undefined.
598   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
599     return UndefValue::get(IntType);
600 
601   // If we're not accessing anything in this constant, the result is undefined.
602   if (Offset >= InitializerSize)
603     return UndefValue::get(IntType);
604 
605   unsigned char RawBytes[32] = {0};
606   unsigned char *CurPtr = RawBytes;
607   unsigned BytesLeft = BytesLoaded;
608 
609   // If we're loading off the beginning of the global, some bytes may be valid.
610   if (Offset < 0) {
611     CurPtr += -Offset;
612     BytesLeft += Offset;
613     Offset = 0;
614   }
615 
616   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
617     return nullptr;
618 
619   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
620   if (DL.isLittleEndian()) {
621     ResultVal = RawBytes[BytesLoaded - 1];
622     for (unsigned i = 1; i != BytesLoaded; ++i) {
623       ResultVal <<= 8;
624       ResultVal |= RawBytes[BytesLoaded - 1 - i];
625     }
626   } else {
627     ResultVal = RawBytes[0];
628     for (unsigned i = 1; i != BytesLoaded; ++i) {
629       ResultVal <<= 8;
630       ResultVal |= RawBytes[i];
631     }
632   }
633 
634   return ConstantInt::get(IntType->getContext(), ResultVal);
635 }
636 
637 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
638                                              const DataLayout &DL) {
639   auto *SrcPtr = CE->getOperand(0);
640   auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
641   if (!SrcPtrTy)
642     return nullptr;
643   Type *SrcTy = SrcPtrTy->getPointerElementType();
644 
645   Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
646   if (!C)
647     return nullptr;
648 
649   return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
650 }
651 
652 } // end anonymous namespace
653 
654 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
655                                              const DataLayout &DL) {
656   // First, try the easy cases:
657   if (auto *GV = dyn_cast<GlobalVariable>(C))
658     if (GV->isConstant() && GV->hasDefinitiveInitializer())
659       return GV->getInitializer();
660 
661   if (auto *GA = dyn_cast<GlobalAlias>(C))
662     if (GA->getAliasee() && !GA->isInterposable())
663       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
664 
665   // If the loaded value isn't a constant expr, we can't handle it.
666   auto *CE = dyn_cast<ConstantExpr>(C);
667   if (!CE)
668     return nullptr;
669 
670   if (CE->getOpcode() == Instruction::GetElementPtr) {
671     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
672       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
673         if (Constant *V =
674              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
675           return V;
676       }
677     }
678   }
679 
680   if (CE->getOpcode() == Instruction::BitCast)
681     if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
682       return LoadedC;
683 
684   // Instead of loading constant c string, use corresponding integer value
685   // directly if string length is small enough.
686   StringRef Str;
687   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
688     size_t StrLen = Str.size();
689     unsigned NumBits = Ty->getPrimitiveSizeInBits();
690     // Replace load with immediate integer if the result is an integer or fp
691     // value.
692     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
693         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
694       APInt StrVal(NumBits, 0);
695       APInt SingleChar(NumBits, 0);
696       if (DL.isLittleEndian()) {
697         for (unsigned char C : reverse(Str.bytes())) {
698           SingleChar = static_cast<uint64_t>(C);
699           StrVal = (StrVal << 8) | SingleChar;
700         }
701       } else {
702         for (unsigned char C : Str.bytes()) {
703           SingleChar = static_cast<uint64_t>(C);
704           StrVal = (StrVal << 8) | SingleChar;
705         }
706         // Append NULL at the end.
707         SingleChar = 0;
708         StrVal = (StrVal << 8) | SingleChar;
709       }
710 
711       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
712       if (Ty->isFloatingPointTy())
713         Res = ConstantExpr::getBitCast(Res, Ty);
714       return Res;
715     }
716   }
717 
718   // If this load comes from anywhere in a constant global, and if the global
719   // is all undef or zero, we know what it loads.
720   if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
721     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
722       if (GV->getInitializer()->isNullValue())
723         return Constant::getNullValue(Ty);
724       if (isa<UndefValue>(GV->getInitializer()))
725         return UndefValue::get(Ty);
726     }
727   }
728 
729   // Try hard to fold loads from bitcasted strange and non-type-safe things.
730   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
731 }
732 
733 namespace {
734 
735 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
736   if (LI->isVolatile()) return nullptr;
737 
738   if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
739     return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
740 
741   return nullptr;
742 }
743 
744 /// One of Op0/Op1 is a constant expression.
745 /// Attempt to symbolically evaluate the result of a binary operator merging
746 /// these together.  If target data info is available, it is provided as DL,
747 /// otherwise DL is null.
748 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
749                                     const DataLayout &DL) {
750   // SROA
751 
752   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
753   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
754   // bits.
755 
756   if (Opc == Instruction::And) {
757     KnownBits Known0 = computeKnownBits(Op0, DL);
758     KnownBits Known1 = computeKnownBits(Op1, DL);
759     if ((Known1.One | Known0.Zero).isAllOnesValue()) {
760       // All the bits of Op0 that the 'and' could be masking are already zero.
761       return Op0;
762     }
763     if ((Known0.One | Known1.Zero).isAllOnesValue()) {
764       // All the bits of Op1 that the 'and' could be masking are already zero.
765       return Op1;
766     }
767 
768     Known0 &= Known1;
769     if (Known0.isConstant())
770       return ConstantInt::get(Op0->getType(), Known0.getConstant());
771   }
772 
773   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
774   // constant.  This happens frequently when iterating over a global array.
775   if (Opc == Instruction::Sub) {
776     GlobalValue *GV1, *GV2;
777     APInt Offs1, Offs2;
778 
779     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
780       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
781         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
782 
783         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
784         // PtrToInt may change the bitwidth so we have convert to the right size
785         // first.
786         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
787                                                 Offs2.zextOrTrunc(OpSize));
788       }
789   }
790 
791   return nullptr;
792 }
793 
794 /// If array indices are not pointer-sized integers, explicitly cast them so
795 /// that they aren't implicitly casted by the getelementptr.
796 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
797                          Type *ResultTy, Optional<unsigned> InRangeIndex,
798                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
799   Type *IntIdxTy = DL.getIndexType(ResultTy);
800   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
801 
802   bool Any = false;
803   SmallVector<Constant*, 32> NewIdxs;
804   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
805     if ((i == 1 ||
806          !isa<StructType>(GetElementPtrInst::getIndexedType(
807              SrcElemTy, Ops.slice(1, i - 1)))) &&
808         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
809       Any = true;
810       Type *NewType = Ops[i]->getType()->isVectorTy()
811                           ? IntIdxTy
812                           : IntIdxScalarTy;
813       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
814                                                                       true,
815                                                                       NewType,
816                                                                       true),
817                                               Ops[i], NewType));
818     } else
819       NewIdxs.push_back(Ops[i]);
820   }
821 
822   if (!Any)
823     return nullptr;
824 
825   Constant *C = ConstantExpr::getGetElementPtr(
826       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
827   return ConstantFoldConstant(C, DL, TLI);
828 }
829 
830 /// Strip the pointer casts, but preserve the address space information.
831 Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
832   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
833   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
834   Ptr = cast<Constant>(Ptr->stripPointerCasts());
835   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
836 
837   ElemTy = NewPtrTy->getPointerElementType();
838 
839   // Preserve the address space number of the pointer.
840   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
841     NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
842     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
843   }
844   return Ptr;
845 }
846 
847 /// If we can symbolically evaluate the GEP constant expression, do so.
848 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
849                                   ArrayRef<Constant *> Ops,
850                                   const DataLayout &DL,
851                                   const TargetLibraryInfo *TLI) {
852   const GEPOperator *InnermostGEP = GEP;
853   bool InBounds = GEP->isInBounds();
854 
855   Type *SrcElemTy = GEP->getSourceElementType();
856   Type *ResElemTy = GEP->getResultElementType();
857   Type *ResTy = GEP->getType();
858   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
859     return nullptr;
860 
861   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
862                                    GEP->getInRangeIndex(), DL, TLI))
863     return C;
864 
865   Constant *Ptr = Ops[0];
866   if (!Ptr->getType()->isPointerTy())
867     return nullptr;
868 
869   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
870 
871   // If this is a constant expr gep that is effectively computing an
872   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
873   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
874       if (!isa<ConstantInt>(Ops[i])) {
875 
876         // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
877         // "inttoptr (sub (ptrtoint Ptr), V)"
878         if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
879           auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
880           assert((!CE || CE->getType() == IntIdxTy) &&
881                  "CastGEPIndices didn't canonicalize index types!");
882           if (CE && CE->getOpcode() == Instruction::Sub &&
883               CE->getOperand(0)->isNullValue()) {
884             Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
885             Res = ConstantExpr::getSub(Res, CE->getOperand(1));
886             Res = ConstantExpr::getIntToPtr(Res, ResTy);
887             return ConstantFoldConstant(Res, DL, TLI);
888           }
889         }
890         return nullptr;
891       }
892 
893   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
894   APInt Offset =
895       APInt(BitWidth,
896             DL.getIndexedOffsetInType(
897                 SrcElemTy,
898                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
899   Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
900 
901   // If this is a GEP of a GEP, fold it all into a single GEP.
902   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
903     InnermostGEP = GEP;
904     InBounds &= GEP->isInBounds();
905 
906     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
907 
908     // Do not try the incorporate the sub-GEP if some index is not a number.
909     bool AllConstantInt = true;
910     for (Value *NestedOp : NestedOps)
911       if (!isa<ConstantInt>(NestedOp)) {
912         AllConstantInt = false;
913         break;
914       }
915     if (!AllConstantInt)
916       break;
917 
918     Ptr = cast<Constant>(GEP->getOperand(0));
919     SrcElemTy = GEP->getSourceElementType();
920     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
921     Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
922   }
923 
924   // If the base value for this address is a literal integer value, fold the
925   // getelementptr to the resulting integer value casted to the pointer type.
926   APInt BasePtr(BitWidth, 0);
927   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
928     if (CE->getOpcode() == Instruction::IntToPtr) {
929       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
930         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
931     }
932   }
933 
934   auto *PTy = cast<PointerType>(Ptr->getType());
935   if ((Ptr->isNullValue() || BasePtr != 0) &&
936       !DL.isNonIntegralPointerType(PTy)) {
937     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
938     return ConstantExpr::getIntToPtr(C, ResTy);
939   }
940 
941   // Otherwise form a regular getelementptr. Recompute the indices so that
942   // we eliminate over-indexing of the notional static type array bounds.
943   // This makes it easy to determine if the getelementptr is "inbounds".
944   // Also, this helps GlobalOpt do SROA on GlobalVariables.
945   Type *Ty = PTy;
946   SmallVector<Constant *, 32> NewIdxs;
947 
948   do {
949     if (!Ty->isStructTy()) {
950       if (Ty->isPointerTy()) {
951         // The only pointer indexing we'll do is on the first index of the GEP.
952         if (!NewIdxs.empty())
953           break;
954 
955         Ty = SrcElemTy;
956 
957         // Only handle pointers to sized types, not pointers to functions.
958         if (!Ty->isSized())
959           return nullptr;
960       } else {
961         Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
962         if (!NextTy)
963           break;
964         Ty = NextTy;
965       }
966 
967       // Determine which element of the array the offset points into.
968       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
969       if (ElemSize == 0) {
970         // The element size is 0. This may be [0 x Ty]*, so just use a zero
971         // index for this level and proceed to the next level to see if it can
972         // accommodate the offset.
973         NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
974       } else {
975         // The element size is non-zero divide the offset by the element
976         // size (rounding down), to compute the index at this level.
977         bool Overflow;
978         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
979         if (Overflow)
980           break;
981         Offset -= NewIdx * ElemSize;
982         NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
983       }
984     } else {
985       auto *STy = cast<StructType>(Ty);
986       // If we end up with an offset that isn't valid for this struct type, we
987       // can't re-form this GEP in a regular form, so bail out. The pointer
988       // operand likely went through casts that are necessary to make the GEP
989       // sensible.
990       const StructLayout &SL = *DL.getStructLayout(STy);
991       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
992         break;
993 
994       // Determine which field of the struct the offset points into. The
995       // getZExtValue is fine as we've already ensured that the offset is
996       // within the range representable by the StructLayout API.
997       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
998       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
999                                          ElIdx));
1000       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
1001       Ty = STy->getTypeAtIndex(ElIdx);
1002     }
1003   } while (Ty != ResElemTy);
1004 
1005   // If we haven't used up the entire offset by descending the static
1006   // type, then the offset is pointing into the middle of an indivisible
1007   // member, so we can't simplify it.
1008   if (Offset != 0)
1009     return nullptr;
1010 
1011   // Preserve the inrange index from the innermost GEP if possible. We must
1012   // have calculated the same indices up to and including the inrange index.
1013   Optional<unsigned> InRangeIndex;
1014   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
1015     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
1016         NewIdxs.size() > *LastIRIndex) {
1017       InRangeIndex = LastIRIndex;
1018       for (unsigned I = 0; I <= *LastIRIndex; ++I)
1019         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
1020           return nullptr;
1021     }
1022 
1023   // Create a GEP.
1024   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1025                                                InBounds, InRangeIndex);
1026   assert(C->getType()->getPointerElementType() == Ty &&
1027          "Computed GetElementPtr has unexpected type!");
1028 
1029   // If we ended up indexing a member with a type that doesn't match
1030   // the type of what the original indices indexed, add a cast.
1031   if (Ty != ResElemTy)
1032     C = FoldBitCast(C, ResTy, DL);
1033 
1034   return C;
1035 }
1036 
1037 /// Attempt to constant fold an instruction with the
1038 /// specified opcode and operands.  If successful, the constant result is
1039 /// returned, if not, null is returned.  Note that this function can fail when
1040 /// attempting to fold instructions like loads and stores, which have no
1041 /// constant expression form.
1042 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1043                                        ArrayRef<Constant *> Ops,
1044                                        const DataLayout &DL,
1045                                        const TargetLibraryInfo *TLI) {
1046   Type *DestTy = InstOrCE->getType();
1047 
1048   if (Instruction::isUnaryOp(Opcode))
1049     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1050 
1051   if (Instruction::isBinaryOp(Opcode))
1052     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1053 
1054   if (Instruction::isCast(Opcode))
1055     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1056 
1057   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1058     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1059       return C;
1060 
1061     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1062                                           Ops.slice(1), GEP->isInBounds(),
1063                                           GEP->getInRangeIndex());
1064   }
1065 
1066   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1067     return CE->getWithOperands(Ops);
1068 
1069   switch (Opcode) {
1070   default: return nullptr;
1071   case Instruction::ICmp:
1072   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1073   case Instruction::Call:
1074     if (auto *F = dyn_cast<Function>(Ops.back())) {
1075       const auto *Call = cast<CallBase>(InstOrCE);
1076       if (canConstantFoldCallTo(Call, F))
1077         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1078     }
1079     return nullptr;
1080   case Instruction::Select:
1081     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1082   case Instruction::ExtractElement:
1083     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1084   case Instruction::ExtractValue:
1085     return ConstantExpr::getExtractValue(
1086         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1087   case Instruction::InsertElement:
1088     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1089   case Instruction::ShuffleVector:
1090     return ConstantExpr::getShuffleVector(
1091         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1092   }
1093 }
1094 
1095 } // end anonymous namespace
1096 
1097 //===----------------------------------------------------------------------===//
1098 // Constant Folding public APIs
1099 //===----------------------------------------------------------------------===//
1100 
1101 namespace {
1102 
1103 Constant *
1104 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1105                          const TargetLibraryInfo *TLI,
1106                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1107   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1108     return const_cast<Constant *>(C);
1109 
1110   SmallVector<Constant *, 8> Ops;
1111   for (const Use &OldU : C->operands()) {
1112     Constant *OldC = cast<Constant>(&OldU);
1113     Constant *NewC = OldC;
1114     // Recursively fold the ConstantExpr's operands. If we have already folded
1115     // a ConstantExpr, we don't have to process it again.
1116     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1117       auto It = FoldedOps.find(OldC);
1118       if (It == FoldedOps.end()) {
1119         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1120         FoldedOps.insert({OldC, NewC});
1121       } else {
1122         NewC = It->second;
1123       }
1124     }
1125     Ops.push_back(NewC);
1126   }
1127 
1128   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1129     if (CE->isCompare())
1130       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1131                                              DL, TLI);
1132 
1133     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1134   }
1135 
1136   assert(isa<ConstantVector>(C));
1137   return ConstantVector::get(Ops);
1138 }
1139 
1140 } // end anonymous namespace
1141 
1142 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1143                                         const TargetLibraryInfo *TLI) {
1144   // Handle PHI nodes quickly here...
1145   if (auto *PN = dyn_cast<PHINode>(I)) {
1146     Constant *CommonValue = nullptr;
1147 
1148     SmallDenseMap<Constant *, Constant *> FoldedOps;
1149     for (Value *Incoming : PN->incoming_values()) {
1150       // If the incoming value is undef then skip it.  Note that while we could
1151       // skip the value if it is equal to the phi node itself we choose not to
1152       // because that would break the rule that constant folding only applies if
1153       // all operands are constants.
1154       if (isa<UndefValue>(Incoming))
1155         continue;
1156       // If the incoming value is not a constant, then give up.
1157       auto *C = dyn_cast<Constant>(Incoming);
1158       if (!C)
1159         return nullptr;
1160       // Fold the PHI's operands.
1161       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1162       // If the incoming value is a different constant to
1163       // the one we saw previously, then give up.
1164       if (CommonValue && C != CommonValue)
1165         return nullptr;
1166       CommonValue = C;
1167     }
1168 
1169     // If we reach here, all incoming values are the same constant or undef.
1170     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1171   }
1172 
1173   // Scan the operand list, checking to see if they are all constants, if so,
1174   // hand off to ConstantFoldInstOperandsImpl.
1175   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1176     return nullptr;
1177 
1178   SmallDenseMap<Constant *, Constant *> FoldedOps;
1179   SmallVector<Constant *, 8> Ops;
1180   for (const Use &OpU : I->operands()) {
1181     auto *Op = cast<Constant>(&OpU);
1182     // Fold the Instruction's operands.
1183     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1184     Ops.push_back(Op);
1185   }
1186 
1187   if (const auto *CI = dyn_cast<CmpInst>(I))
1188     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1189                                            DL, TLI);
1190 
1191   if (const auto *LI = dyn_cast<LoadInst>(I))
1192     return ConstantFoldLoadInst(LI, DL);
1193 
1194   if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
1195     return ConstantExpr::getInsertValue(
1196                                 cast<Constant>(IVI->getAggregateOperand()),
1197                                 cast<Constant>(IVI->getInsertedValueOperand()),
1198                                 IVI->getIndices());
1199   }
1200 
1201   if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
1202     return ConstantExpr::getExtractValue(
1203                                     cast<Constant>(EVI->getAggregateOperand()),
1204                                     EVI->getIndices());
1205   }
1206 
1207   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1208 }
1209 
1210 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1211                                      const TargetLibraryInfo *TLI) {
1212   SmallDenseMap<Constant *, Constant *> FoldedOps;
1213   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1214 }
1215 
1216 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1217                                          ArrayRef<Constant *> Ops,
1218                                          const DataLayout &DL,
1219                                          const TargetLibraryInfo *TLI) {
1220   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1221 }
1222 
1223 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1224                                                 Constant *Ops0, Constant *Ops1,
1225                                                 const DataLayout &DL,
1226                                                 const TargetLibraryInfo *TLI) {
1227   // fold: icmp (inttoptr x), null         -> icmp x, 0
1228   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1229   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1230   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1231   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1232   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1233   //
1234   // FIXME: The following comment is out of data and the DataLayout is here now.
1235   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1236   // around to know if bit truncation is happening.
1237   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1238     if (Ops1->isNullValue()) {
1239       if (CE0->getOpcode() == Instruction::IntToPtr) {
1240         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1241         // Convert the integer value to the right size to ensure we get the
1242         // proper extension or truncation.
1243         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1244                                                    IntPtrTy, false);
1245         Constant *Null = Constant::getNullValue(C->getType());
1246         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1247       }
1248 
1249       // Only do this transformation if the int is intptrty in size, otherwise
1250       // there is a truncation or extension that we aren't modeling.
1251       if (CE0->getOpcode() == Instruction::PtrToInt) {
1252         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1253         if (CE0->getType() == IntPtrTy) {
1254           Constant *C = CE0->getOperand(0);
1255           Constant *Null = Constant::getNullValue(C->getType());
1256           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1257         }
1258       }
1259     }
1260 
1261     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1262       if (CE0->getOpcode() == CE1->getOpcode()) {
1263         if (CE0->getOpcode() == Instruction::IntToPtr) {
1264           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1265 
1266           // Convert the integer value to the right size to ensure we get the
1267           // proper extension or truncation.
1268           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1269                                                       IntPtrTy, false);
1270           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1271                                                       IntPtrTy, false);
1272           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1273         }
1274 
1275         // Only do this transformation if the int is intptrty in size, otherwise
1276         // there is a truncation or extension that we aren't modeling.
1277         if (CE0->getOpcode() == Instruction::PtrToInt) {
1278           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1279           if (CE0->getType() == IntPtrTy &&
1280               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1281             return ConstantFoldCompareInstOperands(
1282                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1283           }
1284         }
1285       }
1286     }
1287 
1288     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1289     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1290     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1291         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1292       Constant *LHS = ConstantFoldCompareInstOperands(
1293           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1294       Constant *RHS = ConstantFoldCompareInstOperands(
1295           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1296       unsigned OpC =
1297         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1298       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1299     }
1300   } else if (isa<ConstantExpr>(Ops1)) {
1301     // If RHS is a constant expression, but the left side isn't, swap the
1302     // operands and try again.
1303     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1304     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1305   }
1306 
1307   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1308 }
1309 
1310 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1311                                            const DataLayout &DL) {
1312   assert(Instruction::isUnaryOp(Opcode));
1313 
1314   return ConstantExpr::get(Opcode, Op);
1315 }
1316 
1317 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1318                                              Constant *RHS,
1319                                              const DataLayout &DL) {
1320   assert(Instruction::isBinaryOp(Opcode));
1321   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1322     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1323       return C;
1324 
1325   return ConstantExpr::get(Opcode, LHS, RHS);
1326 }
1327 
1328 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1329                                         Type *DestTy, const DataLayout &DL) {
1330   assert(Instruction::isCast(Opcode));
1331   switch (Opcode) {
1332   default:
1333     llvm_unreachable("Missing case");
1334   case Instruction::PtrToInt:
1335     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1336     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1337     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1338       if (CE->getOpcode() == Instruction::IntToPtr) {
1339         Constant *Input = CE->getOperand(0);
1340         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1341         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1342         if (PtrWidth < InWidth) {
1343           Constant *Mask =
1344             ConstantInt::get(CE->getContext(),
1345                              APInt::getLowBitsSet(InWidth, PtrWidth));
1346           Input = ConstantExpr::getAnd(Input, Mask);
1347         }
1348         // Do a zext or trunc to get to the dest size.
1349         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1350       }
1351     }
1352     return ConstantExpr::getCast(Opcode, C, DestTy);
1353   case Instruction::IntToPtr:
1354     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1355     // the int size is >= the ptr size and the address spaces are the same.
1356     // This requires knowing the width of a pointer, so it can't be done in
1357     // ConstantExpr::getCast.
1358     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1359       if (CE->getOpcode() == Instruction::PtrToInt) {
1360         Constant *SrcPtr = CE->getOperand(0);
1361         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1362         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1363 
1364         if (MidIntSize >= SrcPtrSize) {
1365           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1366           if (SrcAS == DestTy->getPointerAddressSpace())
1367             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1368         }
1369       }
1370     }
1371 
1372     return ConstantExpr::getCast(Opcode, C, DestTy);
1373   case Instruction::Trunc:
1374   case Instruction::ZExt:
1375   case Instruction::SExt:
1376   case Instruction::FPTrunc:
1377   case Instruction::FPExt:
1378   case Instruction::UIToFP:
1379   case Instruction::SIToFP:
1380   case Instruction::FPToUI:
1381   case Instruction::FPToSI:
1382   case Instruction::AddrSpaceCast:
1383       return ConstantExpr::getCast(Opcode, C, DestTy);
1384   case Instruction::BitCast:
1385     return FoldBitCast(C, DestTy, DL);
1386   }
1387 }
1388 
1389 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1390                                                        ConstantExpr *CE) {
1391   if (!CE->getOperand(1)->isNullValue())
1392     return nullptr;  // Do not allow stepping over the value!
1393 
1394   // Loop over all of the operands, tracking down which value we are
1395   // addressing.
1396   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1397     C = C->getAggregateElement(CE->getOperand(i));
1398     if (!C)
1399       return nullptr;
1400   }
1401   return C;
1402 }
1403 
1404 Constant *
1405 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1406                                         ArrayRef<Constant *> Indices) {
1407   // Loop over all of the operands, tracking down which value we are
1408   // addressing.
1409   for (Constant *Index : Indices) {
1410     C = C->getAggregateElement(Index);
1411     if (!C)
1412       return nullptr;
1413   }
1414   return C;
1415 }
1416 
1417 //===----------------------------------------------------------------------===//
1418 //  Constant Folding for Calls
1419 //
1420 
1421 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1422   if (Call->isNoBuiltin())
1423     return false;
1424   switch (F->getIntrinsicID()) {
1425   // Operations that do not operate floating-point numbers and do not depend on
1426   // FP environment can be folded even in strictfp functions.
1427   case Intrinsic::bswap:
1428   case Intrinsic::ctpop:
1429   case Intrinsic::ctlz:
1430   case Intrinsic::cttz:
1431   case Intrinsic::fshl:
1432   case Intrinsic::fshr:
1433   case Intrinsic::launder_invariant_group:
1434   case Intrinsic::strip_invariant_group:
1435   case Intrinsic::masked_load:
1436   case Intrinsic::sadd_with_overflow:
1437   case Intrinsic::uadd_with_overflow:
1438   case Intrinsic::ssub_with_overflow:
1439   case Intrinsic::usub_with_overflow:
1440   case Intrinsic::smul_with_overflow:
1441   case Intrinsic::umul_with_overflow:
1442   case Intrinsic::sadd_sat:
1443   case Intrinsic::uadd_sat:
1444   case Intrinsic::ssub_sat:
1445   case Intrinsic::usub_sat:
1446   case Intrinsic::smul_fix:
1447   case Intrinsic::smul_fix_sat:
1448   case Intrinsic::bitreverse:
1449   case Intrinsic::is_constant:
1450   case Intrinsic::experimental_vector_reduce_add:
1451   case Intrinsic::experimental_vector_reduce_mul:
1452   case Intrinsic::experimental_vector_reduce_and:
1453   case Intrinsic::experimental_vector_reduce_or:
1454   case Intrinsic::experimental_vector_reduce_xor:
1455   case Intrinsic::experimental_vector_reduce_smin:
1456   case Intrinsic::experimental_vector_reduce_smax:
1457   case Intrinsic::experimental_vector_reduce_umin:
1458   case Intrinsic::experimental_vector_reduce_umax:
1459     return true;
1460 
1461   // Floating point operations cannot be folded in strictfp functions in
1462   // general case. They can be folded if FP environment is known to compiler.
1463   case Intrinsic::minnum:
1464   case Intrinsic::maxnum:
1465   case Intrinsic::minimum:
1466   case Intrinsic::maximum:
1467   case Intrinsic::log:
1468   case Intrinsic::log2:
1469   case Intrinsic::log10:
1470   case Intrinsic::exp:
1471   case Intrinsic::exp2:
1472   case Intrinsic::sqrt:
1473   case Intrinsic::sin:
1474   case Intrinsic::cos:
1475   case Intrinsic::pow:
1476   case Intrinsic::powi:
1477   case Intrinsic::fma:
1478   case Intrinsic::fmuladd:
1479   case Intrinsic::convert_from_fp16:
1480   case Intrinsic::convert_to_fp16:
1481   case Intrinsic::amdgcn_cos:
1482   case Intrinsic::amdgcn_cubeid:
1483   case Intrinsic::amdgcn_cubema:
1484   case Intrinsic::amdgcn_cubesc:
1485   case Intrinsic::amdgcn_cubetc:
1486   case Intrinsic::amdgcn_fmul_legacy:
1487   case Intrinsic::amdgcn_fract:
1488   case Intrinsic::amdgcn_ldexp:
1489   case Intrinsic::amdgcn_sin:
1490   // The intrinsics below depend on rounding mode in MXCSR.
1491   case Intrinsic::x86_sse_cvtss2si:
1492   case Intrinsic::x86_sse_cvtss2si64:
1493   case Intrinsic::x86_sse_cvttss2si:
1494   case Intrinsic::x86_sse_cvttss2si64:
1495   case Intrinsic::x86_sse2_cvtsd2si:
1496   case Intrinsic::x86_sse2_cvtsd2si64:
1497   case Intrinsic::x86_sse2_cvttsd2si:
1498   case Intrinsic::x86_sse2_cvttsd2si64:
1499   case Intrinsic::x86_avx512_vcvtss2si32:
1500   case Intrinsic::x86_avx512_vcvtss2si64:
1501   case Intrinsic::x86_avx512_cvttss2si:
1502   case Intrinsic::x86_avx512_cvttss2si64:
1503   case Intrinsic::x86_avx512_vcvtsd2si32:
1504   case Intrinsic::x86_avx512_vcvtsd2si64:
1505   case Intrinsic::x86_avx512_cvttsd2si:
1506   case Intrinsic::x86_avx512_cvttsd2si64:
1507   case Intrinsic::x86_avx512_vcvtss2usi32:
1508   case Intrinsic::x86_avx512_vcvtss2usi64:
1509   case Intrinsic::x86_avx512_cvttss2usi:
1510   case Intrinsic::x86_avx512_cvttss2usi64:
1511   case Intrinsic::x86_avx512_vcvtsd2usi32:
1512   case Intrinsic::x86_avx512_vcvtsd2usi64:
1513   case Intrinsic::x86_avx512_cvttsd2usi:
1514   case Intrinsic::x86_avx512_cvttsd2usi64:
1515     return !Call->isStrictFP();
1516 
1517   // Sign operations are actually bitwise operations, they do not raise
1518   // exceptions even for SNANs.
1519   case Intrinsic::fabs:
1520   case Intrinsic::copysign:
1521   // Non-constrained variants of rounding operations means default FP
1522   // environment, they can be folded in any case.
1523   case Intrinsic::ceil:
1524   case Intrinsic::floor:
1525   case Intrinsic::round:
1526   case Intrinsic::roundeven:
1527   case Intrinsic::trunc:
1528   case Intrinsic::nearbyint:
1529   case Intrinsic::rint:
1530   // Constrained intrinsics can be folded if FP environment is known
1531   // to compiler.
1532   case Intrinsic::experimental_constrained_ceil:
1533   case Intrinsic::experimental_constrained_floor:
1534   case Intrinsic::experimental_constrained_round:
1535   case Intrinsic::experimental_constrained_roundeven:
1536   case Intrinsic::experimental_constrained_trunc:
1537   case Intrinsic::experimental_constrained_nearbyint:
1538   case Intrinsic::experimental_constrained_rint:
1539     return true;
1540   default:
1541     return false;
1542   case Intrinsic::not_intrinsic: break;
1543   }
1544 
1545   if (!F->hasName() || Call->isStrictFP())
1546     return false;
1547 
1548   // In these cases, the check of the length is required.  We don't want to
1549   // return true for a name like "cos\0blah" which strcmp would return equal to
1550   // "cos", but has length 8.
1551   StringRef Name = F->getName();
1552   switch (Name[0]) {
1553   default:
1554     return false;
1555   case 'a':
1556     return Name == "acos" || Name == "acosf" ||
1557            Name == "asin" || Name == "asinf" ||
1558            Name == "atan" || Name == "atanf" ||
1559            Name == "atan2" || Name == "atan2f";
1560   case 'c':
1561     return Name == "ceil" || Name == "ceilf" ||
1562            Name == "cos" || Name == "cosf" ||
1563            Name == "cosh" || Name == "coshf";
1564   case 'e':
1565     return Name == "exp" || Name == "expf" ||
1566            Name == "exp2" || Name == "exp2f";
1567   case 'f':
1568     return Name == "fabs" || Name == "fabsf" ||
1569            Name == "floor" || Name == "floorf" ||
1570            Name == "fmod" || Name == "fmodf";
1571   case 'l':
1572     return Name == "log" || Name == "logf" ||
1573            Name == "log2" || Name == "log2f" ||
1574            Name == "log10" || Name == "log10f";
1575   case 'n':
1576     return Name == "nearbyint" || Name == "nearbyintf";
1577   case 'p':
1578     return Name == "pow" || Name == "powf";
1579   case 'r':
1580     return Name == "remainder" || Name == "remainderf" ||
1581            Name == "rint" || Name == "rintf" ||
1582            Name == "round" || Name == "roundf";
1583   case 's':
1584     return Name == "sin" || Name == "sinf" ||
1585            Name == "sinh" || Name == "sinhf" ||
1586            Name == "sqrt" || Name == "sqrtf";
1587   case 't':
1588     return Name == "tan" || Name == "tanf" ||
1589            Name == "tanh" || Name == "tanhf" ||
1590            Name == "trunc" || Name == "truncf";
1591   case '_':
1592     // Check for various function names that get used for the math functions
1593     // when the header files are preprocessed with the macro
1594     // __FINITE_MATH_ONLY__ enabled.
1595     // The '12' here is the length of the shortest name that can match.
1596     // We need to check the size before looking at Name[1] and Name[2]
1597     // so we may as well check a limit that will eliminate mismatches.
1598     if (Name.size() < 12 || Name[1] != '_')
1599       return false;
1600     switch (Name[2]) {
1601     default:
1602       return false;
1603     case 'a':
1604       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1605              Name == "__asin_finite" || Name == "__asinf_finite" ||
1606              Name == "__atan2_finite" || Name == "__atan2f_finite";
1607     case 'c':
1608       return Name == "__cosh_finite" || Name == "__coshf_finite";
1609     case 'e':
1610       return Name == "__exp_finite" || Name == "__expf_finite" ||
1611              Name == "__exp2_finite" || Name == "__exp2f_finite";
1612     case 'l':
1613       return Name == "__log_finite" || Name == "__logf_finite" ||
1614              Name == "__log10_finite" || Name == "__log10f_finite";
1615     case 'p':
1616       return Name == "__pow_finite" || Name == "__powf_finite";
1617     case 's':
1618       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1619     }
1620   }
1621 }
1622 
1623 namespace {
1624 
1625 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1626   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1627     APFloat APF(V);
1628     bool unused;
1629     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1630     return ConstantFP::get(Ty->getContext(), APF);
1631   }
1632   if (Ty->isDoubleTy())
1633     return ConstantFP::get(Ty->getContext(), APFloat(V));
1634   llvm_unreachable("Can only constant fold half/float/double");
1635 }
1636 
1637 /// Clear the floating-point exception state.
1638 inline void llvm_fenv_clearexcept() {
1639 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1640   feclearexcept(FE_ALL_EXCEPT);
1641 #endif
1642   errno = 0;
1643 }
1644 
1645 /// Test if a floating-point exception was raised.
1646 inline bool llvm_fenv_testexcept() {
1647   int errno_val = errno;
1648   if (errno_val == ERANGE || errno_val == EDOM)
1649     return true;
1650 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1651   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1652     return true;
1653 #endif
1654   return false;
1655 }
1656 
1657 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
1658   llvm_fenv_clearexcept();
1659   V = NativeFP(V);
1660   if (llvm_fenv_testexcept()) {
1661     llvm_fenv_clearexcept();
1662     return nullptr;
1663   }
1664 
1665   return GetConstantFoldFPValue(V, Ty);
1666 }
1667 
1668 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
1669                                double W, Type *Ty) {
1670   llvm_fenv_clearexcept();
1671   V = NativeFP(V, W);
1672   if (llvm_fenv_testexcept()) {
1673     llvm_fenv_clearexcept();
1674     return nullptr;
1675   }
1676 
1677   return GetConstantFoldFPValue(V, Ty);
1678 }
1679 
1680 Constant *ConstantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1681   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1682   if (!VT)
1683     return nullptr;
1684   ConstantInt *CI = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1685   if (!CI)
1686     return nullptr;
1687   APInt Acc = CI->getValue();
1688 
1689   for (unsigned I = 1; I < VT->getNumElements(); I++) {
1690     if (!(CI = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1691       return nullptr;
1692     const APInt &X = CI->getValue();
1693     switch (IID) {
1694     case Intrinsic::experimental_vector_reduce_add:
1695       Acc = Acc + X;
1696       break;
1697     case Intrinsic::experimental_vector_reduce_mul:
1698       Acc = Acc * X;
1699       break;
1700     case Intrinsic::experimental_vector_reduce_and:
1701       Acc = Acc & X;
1702       break;
1703     case Intrinsic::experimental_vector_reduce_or:
1704       Acc = Acc | X;
1705       break;
1706     case Intrinsic::experimental_vector_reduce_xor:
1707       Acc = Acc ^ X;
1708       break;
1709     case Intrinsic::experimental_vector_reduce_smin:
1710       Acc = APIntOps::smin(Acc, X);
1711       break;
1712     case Intrinsic::experimental_vector_reduce_smax:
1713       Acc = APIntOps::smax(Acc, X);
1714       break;
1715     case Intrinsic::experimental_vector_reduce_umin:
1716       Acc = APIntOps::umin(Acc, X);
1717       break;
1718     case Intrinsic::experimental_vector_reduce_umax:
1719       Acc = APIntOps::umax(Acc, X);
1720       break;
1721     }
1722   }
1723 
1724   return ConstantInt::get(Op->getContext(), Acc);
1725 }
1726 
1727 /// Attempt to fold an SSE floating point to integer conversion of a constant
1728 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1729 /// used (toward nearest, ties to even). This matches the behavior of the
1730 /// non-truncating SSE instructions in the default rounding mode. The desired
1731 /// integer type Ty is used to select how many bits are available for the
1732 /// result. Returns null if the conversion cannot be performed, otherwise
1733 /// returns the Constant value resulting from the conversion.
1734 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1735                                       Type *Ty, bool IsSigned) {
1736   // All of these conversion intrinsics form an integer of at most 64bits.
1737   unsigned ResultWidth = Ty->getIntegerBitWidth();
1738   assert(ResultWidth <= 64 &&
1739          "Can only constant fold conversions to 64 and 32 bit ints");
1740 
1741   uint64_t UIntVal;
1742   bool isExact = false;
1743   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1744                                               : APFloat::rmNearestTiesToEven;
1745   APFloat::opStatus status =
1746       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1747                            IsSigned, mode, &isExact);
1748   if (status != APFloat::opOK &&
1749       (!roundTowardZero || status != APFloat::opInexact))
1750     return nullptr;
1751   return ConstantInt::get(Ty, UIntVal, IsSigned);
1752 }
1753 
1754 double getValueAsDouble(ConstantFP *Op) {
1755   Type *Ty = Op->getType();
1756 
1757   if (Ty->isFloatTy())
1758     return Op->getValueAPF().convertToFloat();
1759 
1760   if (Ty->isDoubleTy())
1761     return Op->getValueAPF().convertToDouble();
1762 
1763   bool unused;
1764   APFloat APF = Op->getValueAPF();
1765   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1766   return APF.convertToDouble();
1767 }
1768 
1769 static bool isManifestConstant(const Constant *c) {
1770   if (isa<ConstantData>(c)) {
1771     return true;
1772   } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
1773     for (const Value *subc : c->operand_values()) {
1774       if (!isManifestConstant(cast<Constant>(subc)))
1775         return false;
1776     }
1777     return true;
1778   }
1779   return false;
1780 }
1781 
1782 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1783   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1784     C = &CI->getValue();
1785     return true;
1786   }
1787   if (isa<UndefValue>(Op)) {
1788     C = nullptr;
1789     return true;
1790   }
1791   return false;
1792 }
1793 
1794 static Constant *ConstantFoldScalarCall1(StringRef Name,
1795                                          Intrinsic::ID IntrinsicID,
1796                                          Type *Ty,
1797                                          ArrayRef<Constant *> Operands,
1798                                          const TargetLibraryInfo *TLI,
1799                                          const CallBase *Call) {
1800   assert(Operands.size() == 1 && "Wrong number of operands.");
1801 
1802   if (IntrinsicID == Intrinsic::is_constant) {
1803     // We know we have a "Constant" argument. But we want to only
1804     // return true for manifest constants, not those that depend on
1805     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1806     if (isManifestConstant(Operands[0]))
1807       return ConstantInt::getTrue(Ty->getContext());
1808     return nullptr;
1809   }
1810   if (isa<UndefValue>(Operands[0])) {
1811     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1812     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1813     if (IntrinsicID == Intrinsic::cos ||
1814         IntrinsicID == Intrinsic::ctpop)
1815       return Constant::getNullValue(Ty);
1816     if (IntrinsicID == Intrinsic::bswap ||
1817         IntrinsicID == Intrinsic::bitreverse ||
1818         IntrinsicID == Intrinsic::launder_invariant_group ||
1819         IntrinsicID == Intrinsic::strip_invariant_group)
1820       return Operands[0];
1821   }
1822 
1823   if (isa<ConstantPointerNull>(Operands[0])) {
1824     // launder(null) == null == strip(null) iff in addrspace 0
1825     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1826         IntrinsicID == Intrinsic::strip_invariant_group) {
1827       // If instruction is not yet put in a basic block (e.g. when cloning
1828       // a function during inlining), Call's caller may not be available.
1829       // So check Call's BB first before querying Call->getCaller.
1830       const Function *Caller =
1831           Call->getParent() ? Call->getCaller() : nullptr;
1832       if (Caller &&
1833           !NullPointerIsDefined(
1834               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1835         return Operands[0];
1836       }
1837       return nullptr;
1838     }
1839   }
1840 
1841   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1842     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1843       APFloat Val(Op->getValueAPF());
1844 
1845       bool lost = false;
1846       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1847 
1848       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1849     }
1850 
1851     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1852       return nullptr;
1853 
1854     // Use internal versions of these intrinsics.
1855     APFloat U = Op->getValueAPF();
1856 
1857     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1858       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1859       return ConstantFP::get(Ty->getContext(), U);
1860     }
1861 
1862     if (IntrinsicID == Intrinsic::round) {
1863       U.roundToIntegral(APFloat::rmNearestTiesToAway);
1864       return ConstantFP::get(Ty->getContext(), U);
1865     }
1866 
1867     if (IntrinsicID == Intrinsic::roundeven) {
1868       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1869       return ConstantFP::get(Ty->getContext(), U);
1870     }
1871 
1872     if (IntrinsicID == Intrinsic::ceil) {
1873       U.roundToIntegral(APFloat::rmTowardPositive);
1874       return ConstantFP::get(Ty->getContext(), U);
1875     }
1876 
1877     if (IntrinsicID == Intrinsic::floor) {
1878       U.roundToIntegral(APFloat::rmTowardNegative);
1879       return ConstantFP::get(Ty->getContext(), U);
1880     }
1881 
1882     if (IntrinsicID == Intrinsic::trunc) {
1883       U.roundToIntegral(APFloat::rmTowardZero);
1884       return ConstantFP::get(Ty->getContext(), U);
1885     }
1886 
1887     if (IntrinsicID == Intrinsic::fabs) {
1888       U.clearSign();
1889       return ConstantFP::get(Ty->getContext(), U);
1890     }
1891 
1892     if (IntrinsicID == Intrinsic::amdgcn_fract) {
1893       // The v_fract instruction behaves like the OpenCL spec, which defines
1894       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
1895       //   there to prevent fract(-small) from returning 1.0. It returns the
1896       //   largest positive floating-point number less than 1.0."
1897       APFloat FloorU(U);
1898       FloorU.roundToIntegral(APFloat::rmTowardNegative);
1899       APFloat FractU(U - FloorU);
1900       APFloat AlmostOne(U.getSemantics(), 1);
1901       AlmostOne.next(/*nextDown*/ true);
1902       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
1903     }
1904 
1905     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
1906     // raise FP exceptions, unless the argument is signaling NaN.
1907 
1908     Optional<APFloat::roundingMode> RM;
1909     switch (IntrinsicID) {
1910     default:
1911       break;
1912     case Intrinsic::experimental_constrained_nearbyint:
1913     case Intrinsic::experimental_constrained_rint: {
1914       auto CI = cast<ConstrainedFPIntrinsic>(Call);
1915       RM = CI->getRoundingMode();
1916       if (!RM || RM.getValue() == RoundingMode::Dynamic)
1917         return nullptr;
1918       break;
1919     }
1920     case Intrinsic::experimental_constrained_round:
1921       RM = APFloat::rmNearestTiesToAway;
1922       break;
1923     case Intrinsic::experimental_constrained_ceil:
1924       RM = APFloat::rmTowardPositive;
1925       break;
1926     case Intrinsic::experimental_constrained_floor:
1927       RM = APFloat::rmTowardNegative;
1928       break;
1929     case Intrinsic::experimental_constrained_trunc:
1930       RM = APFloat::rmTowardZero;
1931       break;
1932     }
1933     if (RM) {
1934       auto CI = cast<ConstrainedFPIntrinsic>(Call);
1935       if (U.isFinite()) {
1936         APFloat::opStatus St = U.roundToIntegral(*RM);
1937         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
1938             St == APFloat::opInexact) {
1939           Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1940           if (EB && *EB == fp::ebStrict)
1941             return nullptr;
1942         }
1943       } else if (U.isSignaling()) {
1944         Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1945         if (EB && *EB != fp::ebIgnore)
1946           return nullptr;
1947         U = APFloat::getQNaN(U.getSemantics());
1948       }
1949       return ConstantFP::get(Ty->getContext(), U);
1950     }
1951 
1952     /// We only fold functions with finite arguments. Folding NaN and inf is
1953     /// likely to be aborted with an exception anyway, and some host libms
1954     /// have known errors raising exceptions.
1955     if (!U.isFinite())
1956       return nullptr;
1957 
1958     /// Currently APFloat versions of these functions do not exist, so we use
1959     /// the host native double versions.  Float versions are not called
1960     /// directly but for all these it is true (float)(f((double)arg)) ==
1961     /// f(arg).  Long double not supported yet.
1962     double V = getValueAsDouble(Op);
1963 
1964     switch (IntrinsicID) {
1965       default: break;
1966       case Intrinsic::log:
1967         return ConstantFoldFP(log, V, Ty);
1968       case Intrinsic::log2:
1969         // TODO: What about hosts that lack a C99 library?
1970         return ConstantFoldFP(Log2, V, Ty);
1971       case Intrinsic::log10:
1972         // TODO: What about hosts that lack a C99 library?
1973         return ConstantFoldFP(log10, V, Ty);
1974       case Intrinsic::exp:
1975         return ConstantFoldFP(exp, V, Ty);
1976       case Intrinsic::exp2:
1977         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
1978         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1979       case Intrinsic::sin:
1980         return ConstantFoldFP(sin, V, Ty);
1981       case Intrinsic::cos:
1982         return ConstantFoldFP(cos, V, Ty);
1983       case Intrinsic::sqrt:
1984         return ConstantFoldFP(sqrt, V, Ty);
1985       case Intrinsic::amdgcn_cos:
1986       case Intrinsic::amdgcn_sin:
1987         if (V < -256.0 || V > 256.0)
1988           // The gfx8 and gfx9 architectures handle arguments outside the range
1989           // [-256, 256] differently. This should be a rare case so bail out
1990           // rather than trying to handle the difference.
1991           return nullptr;
1992         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
1993         double V4 = V * 4.0;
1994         if (V4 == floor(V4)) {
1995           // Force exact results for quarter-integer inputs.
1996           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
1997           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
1998         } else {
1999           if (IsCos)
2000             V = cos(V * 2.0 * numbers::pi);
2001           else
2002             V = sin(V * 2.0 * numbers::pi);
2003         }
2004         return GetConstantFoldFPValue(V, Ty);
2005     }
2006 
2007     if (!TLI)
2008       return nullptr;
2009 
2010     LibFunc Func = NotLibFunc;
2011     TLI->getLibFunc(Name, Func);
2012     switch (Func) {
2013     default:
2014       break;
2015     case LibFunc_acos:
2016     case LibFunc_acosf:
2017     case LibFunc_acos_finite:
2018     case LibFunc_acosf_finite:
2019       if (TLI->has(Func))
2020         return ConstantFoldFP(acos, V, Ty);
2021       break;
2022     case LibFunc_asin:
2023     case LibFunc_asinf:
2024     case LibFunc_asin_finite:
2025     case LibFunc_asinf_finite:
2026       if (TLI->has(Func))
2027         return ConstantFoldFP(asin, V, Ty);
2028       break;
2029     case LibFunc_atan:
2030     case LibFunc_atanf:
2031       if (TLI->has(Func))
2032         return ConstantFoldFP(atan, V, Ty);
2033       break;
2034     case LibFunc_ceil:
2035     case LibFunc_ceilf:
2036       if (TLI->has(Func)) {
2037         U.roundToIntegral(APFloat::rmTowardPositive);
2038         return ConstantFP::get(Ty->getContext(), U);
2039       }
2040       break;
2041     case LibFunc_cos:
2042     case LibFunc_cosf:
2043       if (TLI->has(Func))
2044         return ConstantFoldFP(cos, V, Ty);
2045       break;
2046     case LibFunc_cosh:
2047     case LibFunc_coshf:
2048     case LibFunc_cosh_finite:
2049     case LibFunc_coshf_finite:
2050       if (TLI->has(Func))
2051         return ConstantFoldFP(cosh, V, Ty);
2052       break;
2053     case LibFunc_exp:
2054     case LibFunc_expf:
2055     case LibFunc_exp_finite:
2056     case LibFunc_expf_finite:
2057       if (TLI->has(Func))
2058         return ConstantFoldFP(exp, V, Ty);
2059       break;
2060     case LibFunc_exp2:
2061     case LibFunc_exp2f:
2062     case LibFunc_exp2_finite:
2063     case LibFunc_exp2f_finite:
2064       if (TLI->has(Func))
2065         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2066         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
2067       break;
2068     case LibFunc_fabs:
2069     case LibFunc_fabsf:
2070       if (TLI->has(Func)) {
2071         U.clearSign();
2072         return ConstantFP::get(Ty->getContext(), U);
2073       }
2074       break;
2075     case LibFunc_floor:
2076     case LibFunc_floorf:
2077       if (TLI->has(Func)) {
2078         U.roundToIntegral(APFloat::rmTowardNegative);
2079         return ConstantFP::get(Ty->getContext(), U);
2080       }
2081       break;
2082     case LibFunc_log:
2083     case LibFunc_logf:
2084     case LibFunc_log_finite:
2085     case LibFunc_logf_finite:
2086       if (V > 0.0 && TLI->has(Func))
2087         return ConstantFoldFP(log, V, Ty);
2088       break;
2089     case LibFunc_log2:
2090     case LibFunc_log2f:
2091     case LibFunc_log2_finite:
2092     case LibFunc_log2f_finite:
2093       if (V > 0.0 && TLI->has(Func))
2094         // TODO: What about hosts that lack a C99 library?
2095         return ConstantFoldFP(Log2, V, Ty);
2096       break;
2097     case LibFunc_log10:
2098     case LibFunc_log10f:
2099     case LibFunc_log10_finite:
2100     case LibFunc_log10f_finite:
2101       if (V > 0.0 && TLI->has(Func))
2102         // TODO: What about hosts that lack a C99 library?
2103         return ConstantFoldFP(log10, V, Ty);
2104       break;
2105     case LibFunc_nearbyint:
2106     case LibFunc_nearbyintf:
2107     case LibFunc_rint:
2108     case LibFunc_rintf:
2109       if (TLI->has(Func)) {
2110         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2111         return ConstantFP::get(Ty->getContext(), U);
2112       }
2113       break;
2114     case LibFunc_round:
2115     case LibFunc_roundf:
2116       if (TLI->has(Func)) {
2117         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2118         return ConstantFP::get(Ty->getContext(), U);
2119       }
2120       break;
2121     case LibFunc_sin:
2122     case LibFunc_sinf:
2123       if (TLI->has(Func))
2124         return ConstantFoldFP(sin, V, Ty);
2125       break;
2126     case LibFunc_sinh:
2127     case LibFunc_sinhf:
2128     case LibFunc_sinh_finite:
2129     case LibFunc_sinhf_finite:
2130       if (TLI->has(Func))
2131         return ConstantFoldFP(sinh, V, Ty);
2132       break;
2133     case LibFunc_sqrt:
2134     case LibFunc_sqrtf:
2135       if (V >= 0.0 && TLI->has(Func))
2136         return ConstantFoldFP(sqrt, V, Ty);
2137       break;
2138     case LibFunc_tan:
2139     case LibFunc_tanf:
2140       if (TLI->has(Func))
2141         return ConstantFoldFP(tan, V, Ty);
2142       break;
2143     case LibFunc_tanh:
2144     case LibFunc_tanhf:
2145       if (TLI->has(Func))
2146         return ConstantFoldFP(tanh, V, Ty);
2147       break;
2148     case LibFunc_trunc:
2149     case LibFunc_truncf:
2150       if (TLI->has(Func)) {
2151         U.roundToIntegral(APFloat::rmTowardZero);
2152         return ConstantFP::get(Ty->getContext(), U);
2153       }
2154       break;
2155     }
2156     return nullptr;
2157   }
2158 
2159   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2160     switch (IntrinsicID) {
2161     case Intrinsic::bswap:
2162       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2163     case Intrinsic::ctpop:
2164       return ConstantInt::get(Ty, Op->getValue().countPopulation());
2165     case Intrinsic::bitreverse:
2166       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2167     case Intrinsic::convert_from_fp16: {
2168       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2169 
2170       bool lost = false;
2171       APFloat::opStatus status = Val.convert(
2172           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2173 
2174       // Conversion is always precise.
2175       (void)status;
2176       assert(status == APFloat::opOK && !lost &&
2177              "Precision lost during fp16 constfolding");
2178 
2179       return ConstantFP::get(Ty->getContext(), Val);
2180     }
2181     default:
2182       return nullptr;
2183     }
2184   }
2185 
2186   if (isa<ConstantAggregateZero>(Operands[0])) {
2187     switch (IntrinsicID) {
2188     default: break;
2189     case Intrinsic::experimental_vector_reduce_add:
2190     case Intrinsic::experimental_vector_reduce_mul:
2191     case Intrinsic::experimental_vector_reduce_and:
2192     case Intrinsic::experimental_vector_reduce_or:
2193     case Intrinsic::experimental_vector_reduce_xor:
2194     case Intrinsic::experimental_vector_reduce_smin:
2195     case Intrinsic::experimental_vector_reduce_smax:
2196     case Intrinsic::experimental_vector_reduce_umin:
2197     case Intrinsic::experimental_vector_reduce_umax:
2198       return ConstantInt::get(Ty, 0);
2199     }
2200   }
2201 
2202   // Support ConstantVector in case we have an Undef in the top.
2203   if (isa<ConstantVector>(Operands[0]) ||
2204       isa<ConstantDataVector>(Operands[0])) {
2205     auto *Op = cast<Constant>(Operands[0]);
2206     switch (IntrinsicID) {
2207     default: break;
2208     case Intrinsic::experimental_vector_reduce_add:
2209     case Intrinsic::experimental_vector_reduce_mul:
2210     case Intrinsic::experimental_vector_reduce_and:
2211     case Intrinsic::experimental_vector_reduce_or:
2212     case Intrinsic::experimental_vector_reduce_xor:
2213     case Intrinsic::experimental_vector_reduce_smin:
2214     case Intrinsic::experimental_vector_reduce_smax:
2215     case Intrinsic::experimental_vector_reduce_umin:
2216     case Intrinsic::experimental_vector_reduce_umax:
2217       if (Constant *C = ConstantFoldVectorReduce(IntrinsicID, Op))
2218         return C;
2219       break;
2220     case Intrinsic::x86_sse_cvtss2si:
2221     case Intrinsic::x86_sse_cvtss2si64:
2222     case Intrinsic::x86_sse2_cvtsd2si:
2223     case Intrinsic::x86_sse2_cvtsd2si64:
2224       if (ConstantFP *FPOp =
2225               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2226         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2227                                            /*roundTowardZero=*/false, Ty,
2228                                            /*IsSigned*/true);
2229       break;
2230     case Intrinsic::x86_sse_cvttss2si:
2231     case Intrinsic::x86_sse_cvttss2si64:
2232     case Intrinsic::x86_sse2_cvttsd2si:
2233     case Intrinsic::x86_sse2_cvttsd2si64:
2234       if (ConstantFP *FPOp =
2235               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2236         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2237                                            /*roundTowardZero=*/true, Ty,
2238                                            /*IsSigned*/true);
2239       break;
2240     }
2241   }
2242 
2243   return nullptr;
2244 }
2245 
2246 static Constant *ConstantFoldScalarCall2(StringRef Name,
2247                                          Intrinsic::ID IntrinsicID,
2248                                          Type *Ty,
2249                                          ArrayRef<Constant *> Operands,
2250                                          const TargetLibraryInfo *TLI,
2251                                          const CallBase *Call) {
2252   assert(Operands.size() == 2 && "Wrong number of operands.");
2253 
2254   if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2255     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2256       return nullptr;
2257     double Op1V = getValueAsDouble(Op1);
2258 
2259     if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2260       if (Op2->getType() != Op1->getType())
2261         return nullptr;
2262 
2263       double Op2V = getValueAsDouble(Op2);
2264       if (IntrinsicID == Intrinsic::pow) {
2265         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2266       }
2267       if (IntrinsicID == Intrinsic::copysign) {
2268         APFloat V1 = Op1->getValueAPF();
2269         const APFloat &V2 = Op2->getValueAPF();
2270         V1.copySign(V2);
2271         return ConstantFP::get(Ty->getContext(), V1);
2272       }
2273 
2274       if (IntrinsicID == Intrinsic::minnum) {
2275         const APFloat &C1 = Op1->getValueAPF();
2276         const APFloat &C2 = Op2->getValueAPF();
2277         return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
2278       }
2279 
2280       if (IntrinsicID == Intrinsic::maxnum) {
2281         const APFloat &C1 = Op1->getValueAPF();
2282         const APFloat &C2 = Op2->getValueAPF();
2283         return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
2284       }
2285 
2286       if (IntrinsicID == Intrinsic::minimum) {
2287         const APFloat &C1 = Op1->getValueAPF();
2288         const APFloat &C2 = Op2->getValueAPF();
2289         return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
2290       }
2291 
2292       if (IntrinsicID == Intrinsic::maximum) {
2293         const APFloat &C1 = Op1->getValueAPF();
2294         const APFloat &C2 = Op2->getValueAPF();
2295         return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
2296       }
2297 
2298       if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) {
2299         const APFloat &C1 = Op1->getValueAPF();
2300         const APFloat &C2 = Op2->getValueAPF();
2301         // The legacy behaviour is that multiplying zero by anything, even NaN
2302         // or infinity, gives +0.0.
2303         if (C1.isZero() || C2.isZero())
2304           return ConstantFP::getNullValue(Ty);
2305         return ConstantFP::get(Ty->getContext(), C1 * C2);
2306       }
2307 
2308       if (!TLI)
2309         return nullptr;
2310 
2311       LibFunc Func = NotLibFunc;
2312       TLI->getLibFunc(Name, Func);
2313       switch (Func) {
2314       default:
2315         break;
2316       case LibFunc_pow:
2317       case LibFunc_powf:
2318       case LibFunc_pow_finite:
2319       case LibFunc_powf_finite:
2320         if (TLI->has(Func))
2321           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2322         break;
2323       case LibFunc_fmod:
2324       case LibFunc_fmodf:
2325         if (TLI->has(Func)) {
2326           APFloat V = Op1->getValueAPF();
2327           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2328             return ConstantFP::get(Ty->getContext(), V);
2329         }
2330         break;
2331       case LibFunc_remainder:
2332       case LibFunc_remainderf:
2333         if (TLI->has(Func)) {
2334           APFloat V = Op1->getValueAPF();
2335           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2336             return ConstantFP::get(Ty->getContext(), V);
2337         }
2338         break;
2339       case LibFunc_atan2:
2340       case LibFunc_atan2f:
2341       case LibFunc_atan2_finite:
2342       case LibFunc_atan2f_finite:
2343         if (TLI->has(Func))
2344           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2345         break;
2346       }
2347     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2348       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2349         return ConstantFP::get(Ty->getContext(),
2350                                APFloat((float)std::pow((float)Op1V,
2351                                                (int)Op2C->getZExtValue())));
2352       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2353         return ConstantFP::get(Ty->getContext(),
2354                                APFloat((float)std::pow((float)Op1V,
2355                                                (int)Op2C->getZExtValue())));
2356       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2357         return ConstantFP::get(Ty->getContext(),
2358                                APFloat((double)std::pow((double)Op1V,
2359                                                  (int)Op2C->getZExtValue())));
2360 
2361       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2362         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2363         // everywhere else.
2364 
2365         // scalbn is equivalent to ldexp with float radix 2
2366         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2367                                 APFloat::rmNearestTiesToEven);
2368         return ConstantFP::get(Ty->getContext(), Result);
2369       }
2370     }
2371     return nullptr;
2372   }
2373 
2374   if (Operands[0]->getType()->isIntegerTy() &&
2375       Operands[1]->getType()->isIntegerTy()) {
2376     const APInt *C0, *C1;
2377     if (!getConstIntOrUndef(Operands[0], C0) ||
2378         !getConstIntOrUndef(Operands[1], C1))
2379       return nullptr;
2380 
2381     switch (IntrinsicID) {
2382     default: break;
2383     case Intrinsic::usub_with_overflow:
2384     case Intrinsic::ssub_with_overflow:
2385     case Intrinsic::uadd_with_overflow:
2386     case Intrinsic::sadd_with_overflow:
2387       // X - undef -> { undef, false }
2388       // undef - X -> { undef, false }
2389       // X + undef -> { undef, false }
2390       // undef + x -> { undef, false }
2391       if (!C0 || !C1) {
2392         return ConstantStruct::get(
2393             cast<StructType>(Ty),
2394             {UndefValue::get(Ty->getStructElementType(0)),
2395              Constant::getNullValue(Ty->getStructElementType(1))});
2396       }
2397       LLVM_FALLTHROUGH;
2398     case Intrinsic::smul_with_overflow:
2399     case Intrinsic::umul_with_overflow: {
2400       // undef * X -> { 0, false }
2401       // X * undef -> { 0, false }
2402       if (!C0 || !C1)
2403         return Constant::getNullValue(Ty);
2404 
2405       APInt Res;
2406       bool Overflow;
2407       switch (IntrinsicID) {
2408       default: llvm_unreachable("Invalid case");
2409       case Intrinsic::sadd_with_overflow:
2410         Res = C0->sadd_ov(*C1, Overflow);
2411         break;
2412       case Intrinsic::uadd_with_overflow:
2413         Res = C0->uadd_ov(*C1, Overflow);
2414         break;
2415       case Intrinsic::ssub_with_overflow:
2416         Res = C0->ssub_ov(*C1, Overflow);
2417         break;
2418       case Intrinsic::usub_with_overflow:
2419         Res = C0->usub_ov(*C1, Overflow);
2420         break;
2421       case Intrinsic::smul_with_overflow:
2422         Res = C0->smul_ov(*C1, Overflow);
2423         break;
2424       case Intrinsic::umul_with_overflow:
2425         Res = C0->umul_ov(*C1, Overflow);
2426         break;
2427       }
2428       Constant *Ops[] = {
2429         ConstantInt::get(Ty->getContext(), Res),
2430         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2431       };
2432       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2433     }
2434     case Intrinsic::uadd_sat:
2435     case Intrinsic::sadd_sat:
2436       if (!C0 && !C1)
2437         return UndefValue::get(Ty);
2438       if (!C0 || !C1)
2439         return Constant::getAllOnesValue(Ty);
2440       if (IntrinsicID == Intrinsic::uadd_sat)
2441         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2442       else
2443         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2444     case Intrinsic::usub_sat:
2445     case Intrinsic::ssub_sat:
2446       if (!C0 && !C1)
2447         return UndefValue::get(Ty);
2448       if (!C0 || !C1)
2449         return Constant::getNullValue(Ty);
2450       if (IntrinsicID == Intrinsic::usub_sat)
2451         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2452       else
2453         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2454     case Intrinsic::cttz:
2455     case Intrinsic::ctlz:
2456       assert(C1 && "Must be constant int");
2457 
2458       // cttz(0, 1) and ctlz(0, 1) are undef.
2459       if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2460         return UndefValue::get(Ty);
2461       if (!C0)
2462         return Constant::getNullValue(Ty);
2463       if (IntrinsicID == Intrinsic::cttz)
2464         return ConstantInt::get(Ty, C0->countTrailingZeros());
2465       else
2466         return ConstantInt::get(Ty, C0->countLeadingZeros());
2467     }
2468 
2469     return nullptr;
2470   }
2471 
2472   // Support ConstantVector in case we have an Undef in the top.
2473   if ((isa<ConstantVector>(Operands[0]) ||
2474        isa<ConstantDataVector>(Operands[0])) &&
2475       // Check for default rounding mode.
2476       // FIXME: Support other rounding modes?
2477       isa<ConstantInt>(Operands[1]) &&
2478       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2479     auto *Op = cast<Constant>(Operands[0]);
2480     switch (IntrinsicID) {
2481     default: break;
2482     case Intrinsic::x86_avx512_vcvtss2si32:
2483     case Intrinsic::x86_avx512_vcvtss2si64:
2484     case Intrinsic::x86_avx512_vcvtsd2si32:
2485     case Intrinsic::x86_avx512_vcvtsd2si64:
2486       if (ConstantFP *FPOp =
2487               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2488         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2489                                            /*roundTowardZero=*/false, Ty,
2490                                            /*IsSigned*/true);
2491       break;
2492     case Intrinsic::x86_avx512_vcvtss2usi32:
2493     case Intrinsic::x86_avx512_vcvtss2usi64:
2494     case Intrinsic::x86_avx512_vcvtsd2usi32:
2495     case Intrinsic::x86_avx512_vcvtsd2usi64:
2496       if (ConstantFP *FPOp =
2497               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2498         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2499                                            /*roundTowardZero=*/false, Ty,
2500                                            /*IsSigned*/false);
2501       break;
2502     case Intrinsic::x86_avx512_cvttss2si:
2503     case Intrinsic::x86_avx512_cvttss2si64:
2504     case Intrinsic::x86_avx512_cvttsd2si:
2505     case Intrinsic::x86_avx512_cvttsd2si64:
2506       if (ConstantFP *FPOp =
2507               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2508         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2509                                            /*roundTowardZero=*/true, Ty,
2510                                            /*IsSigned*/true);
2511       break;
2512     case Intrinsic::x86_avx512_cvttss2usi:
2513     case Intrinsic::x86_avx512_cvttss2usi64:
2514     case Intrinsic::x86_avx512_cvttsd2usi:
2515     case Intrinsic::x86_avx512_cvttsd2usi64:
2516       if (ConstantFP *FPOp =
2517               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2518         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2519                                            /*roundTowardZero=*/true, Ty,
2520                                            /*IsSigned*/false);
2521       break;
2522     }
2523   }
2524   return nullptr;
2525 }
2526 
2527 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2528                                                const APFloat &S0,
2529                                                const APFloat &S1,
2530                                                const APFloat &S2) {
2531   unsigned ID;
2532   const fltSemantics &Sem = S0.getSemantics();
2533   APFloat MA(Sem), SC(Sem), TC(Sem);
2534   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2535     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2536       // S2 < 0
2537       ID = 5;
2538       SC = -S0;
2539     } else {
2540       ID = 4;
2541       SC = S0;
2542     }
2543     MA = S2;
2544     TC = -S1;
2545   } else if (abs(S1) >= abs(S0)) {
2546     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2547       // S1 < 0
2548       ID = 3;
2549       TC = -S2;
2550     } else {
2551       ID = 2;
2552       TC = S2;
2553     }
2554     MA = S1;
2555     SC = S0;
2556   } else {
2557     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2558       // S0 < 0
2559       ID = 1;
2560       SC = S2;
2561     } else {
2562       ID = 0;
2563       SC = -S2;
2564     }
2565     MA = S0;
2566     TC = -S1;
2567   }
2568   switch (IntrinsicID) {
2569   default:
2570     llvm_unreachable("unhandled amdgcn cube intrinsic");
2571   case Intrinsic::amdgcn_cubeid:
2572     return APFloat(Sem, ID);
2573   case Intrinsic::amdgcn_cubema:
2574     return MA + MA;
2575   case Intrinsic::amdgcn_cubesc:
2576     return SC;
2577   case Intrinsic::amdgcn_cubetc:
2578     return TC;
2579   }
2580 }
2581 
2582 static Constant *ConstantFoldScalarCall3(StringRef Name,
2583                                          Intrinsic::ID IntrinsicID,
2584                                          Type *Ty,
2585                                          ArrayRef<Constant *> Operands,
2586                                          const TargetLibraryInfo *TLI,
2587                                          const CallBase *Call) {
2588   assert(Operands.size() == 3 && "Wrong number of operands.");
2589 
2590   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2591     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2592       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2593         switch (IntrinsicID) {
2594         default: break;
2595         case Intrinsic::fma:
2596         case Intrinsic::fmuladd: {
2597           APFloat V = Op1->getValueAPF();
2598           V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
2599                              APFloat::rmNearestTiesToEven);
2600           return ConstantFP::get(Ty->getContext(), V);
2601         }
2602         case Intrinsic::amdgcn_cubeid:
2603         case Intrinsic::amdgcn_cubema:
2604         case Intrinsic::amdgcn_cubesc:
2605         case Intrinsic::amdgcn_cubetc: {
2606           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(
2607               IntrinsicID, Op1->getValueAPF(), Op2->getValueAPF(),
2608               Op3->getValueAPF());
2609           return ConstantFP::get(Ty->getContext(), V);
2610         }
2611         }
2612       }
2613     }
2614   }
2615 
2616   if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
2617     if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
2618       if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
2619         switch (IntrinsicID) {
2620         default: break;
2621         case Intrinsic::smul_fix:
2622         case Intrinsic::smul_fix_sat: {
2623           // This code performs rounding towards negative infinity in case the
2624           // result cannot be represented exactly for the given scale. Targets
2625           // that do care about rounding should use a target hook for specifying
2626           // how rounding should be done, and provide their own folding to be
2627           // consistent with rounding. This is the same approach as used by
2628           // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2629           const APInt &Lhs = Op1->getValue();
2630           const APInt &Rhs = Op2->getValue();
2631           unsigned Scale = Op3->getValue().getZExtValue();
2632           unsigned Width = Lhs.getBitWidth();
2633           assert(Scale < Width && "Illegal scale.");
2634           unsigned ExtendedWidth = Width * 2;
2635           APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
2636                            Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
2637           if (IntrinsicID == Intrinsic::smul_fix_sat) {
2638             APInt MaxValue =
2639               APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2640             APInt MinValue =
2641               APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2642             Product = APIntOps::smin(Product, MaxValue);
2643             Product = APIntOps::smax(Product, MinValue);
2644           }
2645           return ConstantInt::get(Ty->getContext(),
2646                                   Product.sextOrTrunc(Width));
2647         }
2648         }
2649       }
2650     }
2651   }
2652 
2653   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2654     const APInt *C0, *C1, *C2;
2655     if (!getConstIntOrUndef(Operands[0], C0) ||
2656         !getConstIntOrUndef(Operands[1], C1) ||
2657         !getConstIntOrUndef(Operands[2], C2))
2658       return nullptr;
2659 
2660     bool IsRight = IntrinsicID == Intrinsic::fshr;
2661     if (!C2)
2662       return Operands[IsRight ? 1 : 0];
2663     if (!C0 && !C1)
2664       return UndefValue::get(Ty);
2665 
2666     // The shift amount is interpreted as modulo the bitwidth. If the shift
2667     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2668     unsigned BitWidth = C2->getBitWidth();
2669     unsigned ShAmt = C2->urem(BitWidth);
2670     if (!ShAmt)
2671       return Operands[IsRight ? 1 : 0];
2672 
2673     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2674     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2675     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2676     if (!C0)
2677       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2678     if (!C1)
2679       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2680     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2681   }
2682 
2683   return nullptr;
2684 }
2685 
2686 static Constant *ConstantFoldScalarCall(StringRef Name,
2687                                         Intrinsic::ID IntrinsicID,
2688                                         Type *Ty,
2689                                         ArrayRef<Constant *> Operands,
2690                                         const TargetLibraryInfo *TLI,
2691                                         const CallBase *Call) {
2692   if (Operands.size() == 1)
2693     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2694 
2695   if (Operands.size() == 2)
2696     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2697 
2698   if (Operands.size() == 3)
2699     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2700 
2701   return nullptr;
2702 }
2703 
2704 static Constant *ConstantFoldVectorCall(StringRef Name,
2705                                         Intrinsic::ID IntrinsicID,
2706                                         VectorType *VTy,
2707                                         ArrayRef<Constant *> Operands,
2708                                         const DataLayout &DL,
2709                                         const TargetLibraryInfo *TLI,
2710                                         const CallBase *Call) {
2711   // Do not iterate on scalable vector. The number of elements is unknown at
2712   // compile-time.
2713   if (isa<ScalableVectorType>(VTy))
2714     return nullptr;
2715 
2716   auto *FVTy = cast<FixedVectorType>(VTy);
2717 
2718   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
2719   SmallVector<Constant *, 4> Lane(Operands.size());
2720   Type *Ty = FVTy->getElementType();
2721 
2722   if (IntrinsicID == Intrinsic::masked_load) {
2723     auto *SrcPtr = Operands[0];
2724     auto *Mask = Operands[2];
2725     auto *Passthru = Operands[3];
2726 
2727     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
2728 
2729     SmallVector<Constant *, 32> NewElements;
2730     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
2731       auto *MaskElt = Mask->getAggregateElement(I);
2732       if (!MaskElt)
2733         break;
2734       auto *PassthruElt = Passthru->getAggregateElement(I);
2735       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2736       if (isa<UndefValue>(MaskElt)) {
2737         if (PassthruElt)
2738           NewElements.push_back(PassthruElt);
2739         else if (VecElt)
2740           NewElements.push_back(VecElt);
2741         else
2742           return nullptr;
2743       }
2744       if (MaskElt->isNullValue()) {
2745         if (!PassthruElt)
2746           return nullptr;
2747         NewElements.push_back(PassthruElt);
2748       } else if (MaskElt->isOneValue()) {
2749         if (!VecElt)
2750           return nullptr;
2751         NewElements.push_back(VecElt);
2752       } else {
2753         return nullptr;
2754       }
2755     }
2756     if (NewElements.size() != FVTy->getNumElements())
2757       return nullptr;
2758     return ConstantVector::get(NewElements);
2759   }
2760 
2761   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
2762     // Gather a column of constants.
2763     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
2764       // Some intrinsics use a scalar type for certain arguments.
2765       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
2766         Lane[J] = Operands[J];
2767         continue;
2768       }
2769 
2770       Constant *Agg = Operands[J]->getAggregateElement(I);
2771       if (!Agg)
2772         return nullptr;
2773 
2774       Lane[J] = Agg;
2775     }
2776 
2777     // Use the regular scalar folding to simplify this column.
2778     Constant *Folded =
2779         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
2780     if (!Folded)
2781       return nullptr;
2782     Result[I] = Folded;
2783   }
2784 
2785   return ConstantVector::get(Result);
2786 }
2787 
2788 } // end anonymous namespace
2789 
2790 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
2791                                  ArrayRef<Constant *> Operands,
2792                                  const TargetLibraryInfo *TLI) {
2793   if (Call->isNoBuiltin())
2794     return nullptr;
2795   if (!F->hasName())
2796     return nullptr;
2797   StringRef Name = F->getName();
2798 
2799   Type *Ty = F->getReturnType();
2800 
2801   if (auto *VTy = dyn_cast<VectorType>(Ty))
2802     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
2803                                   F->getParent()->getDataLayout(), TLI, Call);
2804 
2805   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
2806                                 Call);
2807 }
2808 
2809 bool llvm::isMathLibCallNoop(const CallBase *Call,
2810                              const TargetLibraryInfo *TLI) {
2811   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2812   // (and to some extent ConstantFoldScalarCall).
2813   if (Call->isNoBuiltin() || Call->isStrictFP())
2814     return false;
2815   Function *F = Call->getCalledFunction();
2816   if (!F)
2817     return false;
2818 
2819   LibFunc Func;
2820   if (!TLI || !TLI->getLibFunc(*F, Func))
2821     return false;
2822 
2823   if (Call->getNumArgOperands() == 1) {
2824     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
2825       const APFloat &Op = OpC->getValueAPF();
2826       switch (Func) {
2827       case LibFunc_logl:
2828       case LibFunc_log:
2829       case LibFunc_logf:
2830       case LibFunc_log2l:
2831       case LibFunc_log2:
2832       case LibFunc_log2f:
2833       case LibFunc_log10l:
2834       case LibFunc_log10:
2835       case LibFunc_log10f:
2836         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
2837 
2838       case LibFunc_expl:
2839       case LibFunc_exp:
2840       case LibFunc_expf:
2841         // FIXME: These boundaries are slightly conservative.
2842         if (OpC->getType()->isDoubleTy())
2843           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
2844         if (OpC->getType()->isFloatTy())
2845           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
2846         break;
2847 
2848       case LibFunc_exp2l:
2849       case LibFunc_exp2:
2850       case LibFunc_exp2f:
2851         // FIXME: These boundaries are slightly conservative.
2852         if (OpC->getType()->isDoubleTy())
2853           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
2854         if (OpC->getType()->isFloatTy())
2855           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
2856         break;
2857 
2858       case LibFunc_sinl:
2859       case LibFunc_sin:
2860       case LibFunc_sinf:
2861       case LibFunc_cosl:
2862       case LibFunc_cos:
2863       case LibFunc_cosf:
2864         return !Op.isInfinity();
2865 
2866       case LibFunc_tanl:
2867       case LibFunc_tan:
2868       case LibFunc_tanf: {
2869         // FIXME: Stop using the host math library.
2870         // FIXME: The computation isn't done in the right precision.
2871         Type *Ty = OpC->getType();
2872         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2873           double OpV = getValueAsDouble(OpC);
2874           return ConstantFoldFP(tan, OpV, Ty) != nullptr;
2875         }
2876         break;
2877       }
2878 
2879       case LibFunc_asinl:
2880       case LibFunc_asin:
2881       case LibFunc_asinf:
2882       case LibFunc_acosl:
2883       case LibFunc_acos:
2884       case LibFunc_acosf:
2885         return !(Op < APFloat(Op.getSemantics(), "-1") ||
2886                  Op > APFloat(Op.getSemantics(), "1"));
2887 
2888       case LibFunc_sinh:
2889       case LibFunc_cosh:
2890       case LibFunc_sinhf:
2891       case LibFunc_coshf:
2892       case LibFunc_sinhl:
2893       case LibFunc_coshl:
2894         // FIXME: These boundaries are slightly conservative.
2895         if (OpC->getType()->isDoubleTy())
2896           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
2897         if (OpC->getType()->isFloatTy())
2898           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
2899         break;
2900 
2901       case LibFunc_sqrtl:
2902       case LibFunc_sqrt:
2903       case LibFunc_sqrtf:
2904         return Op.isNaN() || Op.isZero() || !Op.isNegative();
2905 
2906       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2907       // maybe others?
2908       default:
2909         break;
2910       }
2911     }
2912   }
2913 
2914   if (Call->getNumArgOperands() == 2) {
2915     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
2916     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
2917     if (Op0C && Op1C) {
2918       const APFloat &Op0 = Op0C->getValueAPF();
2919       const APFloat &Op1 = Op1C->getValueAPF();
2920 
2921       switch (Func) {
2922       case LibFunc_powl:
2923       case LibFunc_pow:
2924       case LibFunc_powf: {
2925         // FIXME: Stop using the host math library.
2926         // FIXME: The computation isn't done in the right precision.
2927         Type *Ty = Op0C->getType();
2928         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2929           if (Ty == Op1C->getType()) {
2930             double Op0V = getValueAsDouble(Op0C);
2931             double Op1V = getValueAsDouble(Op1C);
2932             return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
2933           }
2934         }
2935         break;
2936       }
2937 
2938       case LibFunc_fmodl:
2939       case LibFunc_fmod:
2940       case LibFunc_fmodf:
2941       case LibFunc_remainderl:
2942       case LibFunc_remainder:
2943       case LibFunc_remainderf:
2944         return Op0.isNaN() || Op1.isNaN() ||
2945                (!Op0.isInfinity() && !Op1.isZero());
2946 
2947       default:
2948         break;
2949       }
2950     }
2951   }
2952 
2953   return false;
2954 }
2955 
2956 void TargetFolder::anchor() {}
2957