1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/IntrinsicsAArch64.h" 45 #include "llvm/IR/IntrinsicsAMDGPU.h" 46 #include "llvm/IR/IntrinsicsARM.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/KnownBits.h" 55 #include "llvm/Support/MathExtras.h" 56 #include <cassert> 57 #include <cerrno> 58 #include <cfenv> 59 #include <cmath> 60 #include <cstddef> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 67 ArrayRef<Constant *> Ops, 68 const DataLayout &DL, 69 const TargetLibraryInfo *TLI, 70 bool ForLoadOperand); 71 72 //===----------------------------------------------------------------------===// 73 // Constant Folding internal helper functions 74 //===----------------------------------------------------------------------===// 75 76 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 77 Constant *C, Type *SrcEltTy, 78 unsigned NumSrcElts, 79 const DataLayout &DL) { 80 // Now that we know that the input value is a vector of integers, just shift 81 // and insert them into our result. 82 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 83 for (unsigned i = 0; i != NumSrcElts; ++i) { 84 Constant *Element; 85 if (DL.isLittleEndian()) 86 Element = C->getAggregateElement(NumSrcElts - i - 1); 87 else 88 Element = C->getAggregateElement(i); 89 90 if (Element && isa<UndefValue>(Element)) { 91 Result <<= BitShift; 92 continue; 93 } 94 95 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 96 if (!ElementCI) 97 return ConstantExpr::getBitCast(C, DestTy); 98 99 Result <<= BitShift; 100 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 101 } 102 103 return nullptr; 104 } 105 106 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 107 /// This always returns a non-null constant, but it may be a 108 /// ConstantExpr if unfoldable. 109 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 110 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 111 "Invalid constantexpr bitcast!"); 112 113 // Catch the obvious splat cases. 114 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 115 return Constant::getNullValue(DestTy); 116 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 117 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 118 return Constant::getAllOnesValue(DestTy); 119 120 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 121 // Handle a vector->scalar integer/fp cast. 122 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 123 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 124 Type *SrcEltTy = VTy->getElementType(); 125 126 // If the vector is a vector of floating point, convert it to vector of int 127 // to simplify things. 128 if (SrcEltTy->isFloatingPointTy()) { 129 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 130 auto *SrcIVTy = FixedVectorType::get( 131 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 132 // Ask IR to do the conversion now that #elts line up. 133 C = ConstantExpr::getBitCast(C, SrcIVTy); 134 } 135 136 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 137 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 138 SrcEltTy, NumSrcElts, DL)) 139 return CE; 140 141 if (isa<IntegerType>(DestTy)) 142 return ConstantInt::get(DestTy, Result); 143 144 APFloat FP(DestTy->getFltSemantics(), Result); 145 return ConstantFP::get(DestTy->getContext(), FP); 146 } 147 } 148 149 // The code below only handles casts to vectors currently. 150 auto *DestVTy = dyn_cast<VectorType>(DestTy); 151 if (!DestVTy) 152 return ConstantExpr::getBitCast(C, DestTy); 153 154 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 155 // vector so the code below can handle it uniformly. 156 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 157 Constant *Ops = C; // don't take the address of C! 158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 159 } 160 161 // If this is a bitcast from constant vector -> vector, fold it. 162 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 163 return ConstantExpr::getBitCast(C, DestTy); 164 165 // If the element types match, IR can fold it. 166 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 167 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 168 if (NumDstElt == NumSrcElt) 169 return ConstantExpr::getBitCast(C, DestTy); 170 171 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 172 Type *DstEltTy = DestVTy->getElementType(); 173 174 // Otherwise, we're changing the number of elements in a vector, which 175 // requires endianness information to do the right thing. For example, 176 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 177 // folds to (little endian): 178 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 179 // and to (big endian): 180 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 181 182 // First thing is first. We only want to think about integer here, so if 183 // we have something in FP form, recast it as integer. 184 if (DstEltTy->isFloatingPointTy()) { 185 // Fold to an vector of integers with same size as our FP type. 186 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 187 auto *DestIVTy = FixedVectorType::get( 188 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 189 // Recursively handle this integer conversion, if possible. 190 C = FoldBitCast(C, DestIVTy, DL); 191 192 // Finally, IR can handle this now that #elts line up. 193 return ConstantExpr::getBitCast(C, DestTy); 194 } 195 196 // Okay, we know the destination is integer, if the input is FP, convert 197 // it to integer first. 198 if (SrcEltTy->isFloatingPointTy()) { 199 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 200 auto *SrcIVTy = FixedVectorType::get( 201 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 202 // Ask IR to do the conversion now that #elts line up. 203 C = ConstantExpr::getBitCast(C, SrcIVTy); 204 // If IR wasn't able to fold it, bail out. 205 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 206 !isa<ConstantDataVector>(C)) 207 return C; 208 } 209 210 // Now we know that the input and output vectors are both integer vectors 211 // of the same size, and that their #elements is not the same. Do the 212 // conversion here, which depends on whether the input or output has 213 // more elements. 214 bool isLittleEndian = DL.isLittleEndian(); 215 216 SmallVector<Constant*, 32> Result; 217 if (NumDstElt < NumSrcElt) { 218 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 219 Constant *Zero = Constant::getNullValue(DstEltTy); 220 unsigned Ratio = NumSrcElt/NumDstElt; 221 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 222 unsigned SrcElt = 0; 223 for (unsigned i = 0; i != NumDstElt; ++i) { 224 // Build each element of the result. 225 Constant *Elt = Zero; 226 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 227 for (unsigned j = 0; j != Ratio; ++j) { 228 Constant *Src = C->getAggregateElement(SrcElt++); 229 if (Src && isa<UndefValue>(Src)) 230 Src = Constant::getNullValue( 231 cast<VectorType>(C->getType())->getElementType()); 232 else 233 Src = dyn_cast_or_null<ConstantInt>(Src); 234 if (!Src) // Reject constantexpr elements. 235 return ConstantExpr::getBitCast(C, DestTy); 236 237 // Zero extend the element to the right size. 238 Src = ConstantExpr::getZExt(Src, Elt->getType()); 239 240 // Shift it to the right place, depending on endianness. 241 Src = ConstantExpr::getShl(Src, 242 ConstantInt::get(Src->getType(), ShiftAmt)); 243 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 244 245 // Mix it in. 246 Elt = ConstantExpr::getOr(Elt, Src); 247 } 248 Result.push_back(Elt); 249 } 250 return ConstantVector::get(Result); 251 } 252 253 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 254 unsigned Ratio = NumDstElt/NumSrcElt; 255 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 256 257 // Loop over each source value, expanding into multiple results. 258 for (unsigned i = 0; i != NumSrcElt; ++i) { 259 auto *Element = C->getAggregateElement(i); 260 261 if (!Element) // Reject constantexpr elements. 262 return ConstantExpr::getBitCast(C, DestTy); 263 264 if (isa<UndefValue>(Element)) { 265 // Correctly Propagate undef values. 266 Result.append(Ratio, UndefValue::get(DstEltTy)); 267 continue; 268 } 269 270 auto *Src = dyn_cast<ConstantInt>(Element); 271 if (!Src) 272 return ConstantExpr::getBitCast(C, DestTy); 273 274 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 275 for (unsigned j = 0; j != Ratio; ++j) { 276 // Shift the piece of the value into the right place, depending on 277 // endianness. 278 Constant *Elt = ConstantExpr::getLShr(Src, 279 ConstantInt::get(Src->getType(), ShiftAmt)); 280 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 281 282 // Truncate the element to an integer with the same pointer size and 283 // convert the element back to a pointer using a inttoptr. 284 if (DstEltTy->isPointerTy()) { 285 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 286 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 287 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 288 continue; 289 } 290 291 // Truncate and remember this piece. 292 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 293 } 294 } 295 296 return ConstantVector::get(Result); 297 } 298 299 } // end anonymous namespace 300 301 /// If this constant is a constant offset from a global, return the global and 302 /// the constant. Because of constantexprs, this function is recursive. 303 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 304 APInt &Offset, const DataLayout &DL, 305 DSOLocalEquivalent **DSOEquiv) { 306 if (DSOEquiv) 307 *DSOEquiv = nullptr; 308 309 // Trivial case, constant is the global. 310 if ((GV = dyn_cast<GlobalValue>(C))) { 311 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 312 Offset = APInt(BitWidth, 0); 313 return true; 314 } 315 316 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 317 if (DSOEquiv) 318 *DSOEquiv = FoundDSOEquiv; 319 GV = FoundDSOEquiv->getGlobalValue(); 320 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 321 Offset = APInt(BitWidth, 0); 322 return true; 323 } 324 325 // Otherwise, if this isn't a constant expr, bail out. 326 auto *CE = dyn_cast<ConstantExpr>(C); 327 if (!CE) return false; 328 329 // Look through ptr->int and ptr->ptr casts. 330 if (CE->getOpcode() == Instruction::PtrToInt || 331 CE->getOpcode() == Instruction::BitCast) 332 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 333 DSOEquiv); 334 335 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 336 auto *GEP = dyn_cast<GEPOperator>(CE); 337 if (!GEP) 338 return false; 339 340 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 341 APInt TmpOffset(BitWidth, 0); 342 343 // If the base isn't a global+constant, we aren't either. 344 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 345 DSOEquiv)) 346 return false; 347 348 // Otherwise, add any offset that our operands provide. 349 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 350 return false; 351 352 Offset = TmpOffset; 353 return true; 354 } 355 356 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 357 const DataLayout &DL) { 358 do { 359 Type *SrcTy = C->getType(); 360 uint64_t DestSize = DL.getTypeSizeInBits(DestTy); 361 uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy); 362 if (SrcSize < DestSize) 363 return nullptr; 364 365 // Catch the obvious splat cases (since all-zeros can coerce non-integral 366 // pointers legally). 367 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 368 return Constant::getNullValue(DestTy); 369 if (C->isAllOnesValue() && 370 (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() || 371 DestTy->isVectorTy()) && 372 !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() && 373 !DestTy->isPtrOrPtrVectorTy()) 374 // Get ones when the input is trivial, but 375 // only for supported types inside getAllOnesValue. 376 return Constant::getAllOnesValue(DestTy); 377 378 // If the type sizes are the same and a cast is legal, just directly 379 // cast the constant. 380 // But be careful not to coerce non-integral pointers illegally. 381 if (SrcSize == DestSize && 382 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 383 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 384 Instruction::CastOps Cast = Instruction::BitCast; 385 // If we are going from a pointer to int or vice versa, we spell the cast 386 // differently. 387 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 388 Cast = Instruction::IntToPtr; 389 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 390 Cast = Instruction::PtrToInt; 391 392 if (CastInst::castIsValid(Cast, C, DestTy)) 393 return ConstantExpr::getCast(Cast, C, DestTy); 394 } 395 396 // If this isn't an aggregate type, there is nothing we can do to drill down 397 // and find a bitcastable constant. 398 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 399 return nullptr; 400 401 // We're simulating a load through a pointer that was bitcast to point to 402 // a different type, so we can try to walk down through the initial 403 // elements of an aggregate to see if some part of the aggregate is 404 // castable to implement the "load" semantic model. 405 if (SrcTy->isStructTy()) { 406 // Struct types might have leading zero-length elements like [0 x i32], 407 // which are certainly not what we are looking for, so skip them. 408 unsigned Elem = 0; 409 Constant *ElemC; 410 do { 411 ElemC = C->getAggregateElement(Elem++); 412 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 413 C = ElemC; 414 } else { 415 C = C->getAggregateElement(0u); 416 } 417 } while (C); 418 419 return nullptr; 420 } 421 422 namespace { 423 424 /// Recursive helper to read bits out of global. C is the constant being copied 425 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 426 /// results into and BytesLeft is the number of bytes left in 427 /// the CurPtr buffer. DL is the DataLayout. 428 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 429 unsigned BytesLeft, const DataLayout &DL) { 430 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 431 "Out of range access"); 432 433 // If this element is zero or undefined, we can just return since *CurPtr is 434 // zero initialized. 435 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 436 return true; 437 438 if (auto *CI = dyn_cast<ConstantInt>(C)) { 439 if (CI->getBitWidth() > 64 || 440 (CI->getBitWidth() & 7) != 0) 441 return false; 442 443 uint64_t Val = CI->getZExtValue(); 444 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 445 446 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 447 int n = ByteOffset; 448 if (!DL.isLittleEndian()) 449 n = IntBytes - n - 1; 450 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 451 ++ByteOffset; 452 } 453 return true; 454 } 455 456 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 457 if (CFP->getType()->isDoubleTy()) { 458 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 459 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 460 } 461 if (CFP->getType()->isFloatTy()){ 462 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 463 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 464 } 465 if (CFP->getType()->isHalfTy()){ 466 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 467 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 468 } 469 return false; 470 } 471 472 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 473 const StructLayout *SL = DL.getStructLayout(CS->getType()); 474 unsigned Index = SL->getElementContainingOffset(ByteOffset); 475 uint64_t CurEltOffset = SL->getElementOffset(Index); 476 ByteOffset -= CurEltOffset; 477 478 while (true) { 479 // If the element access is to the element itself and not to tail padding, 480 // read the bytes from the element. 481 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 482 483 if (ByteOffset < EltSize && 484 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 485 BytesLeft, DL)) 486 return false; 487 488 ++Index; 489 490 // Check to see if we read from the last struct element, if so we're done. 491 if (Index == CS->getType()->getNumElements()) 492 return true; 493 494 // If we read all of the bytes we needed from this element we're done. 495 uint64_t NextEltOffset = SL->getElementOffset(Index); 496 497 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 498 return true; 499 500 // Move to the next element of the struct. 501 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 502 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 503 ByteOffset = 0; 504 CurEltOffset = NextEltOffset; 505 } 506 // not reached. 507 } 508 509 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 510 isa<ConstantDataSequential>(C)) { 511 uint64_t NumElts; 512 Type *EltTy; 513 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 514 NumElts = AT->getNumElements(); 515 EltTy = AT->getElementType(); 516 } else { 517 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 518 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 519 } 520 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 521 uint64_t Index = ByteOffset / EltSize; 522 uint64_t Offset = ByteOffset - Index * EltSize; 523 524 for (; Index != NumElts; ++Index) { 525 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 526 BytesLeft, DL)) 527 return false; 528 529 uint64_t BytesWritten = EltSize - Offset; 530 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 531 if (BytesWritten >= BytesLeft) 532 return true; 533 534 Offset = 0; 535 BytesLeft -= BytesWritten; 536 CurPtr += BytesWritten; 537 } 538 return true; 539 } 540 541 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 542 if (CE->getOpcode() == Instruction::IntToPtr && 543 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 544 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 545 BytesLeft, DL); 546 } 547 } 548 549 // Otherwise, unknown initializer type. 550 return false; 551 } 552 553 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, 554 const DataLayout &DL) { 555 // Bail out early. Not expect to load from scalable global variable. 556 if (isa<ScalableVectorType>(LoadTy)) 557 return nullptr; 558 559 auto *PTy = cast<PointerType>(C->getType()); 560 auto *IntType = dyn_cast<IntegerType>(LoadTy); 561 562 // If this isn't an integer load we can't fold it directly. 563 if (!IntType) { 564 unsigned AS = PTy->getAddressSpace(); 565 566 // If this is a float/double load, we can try folding it as an int32/64 load 567 // and then bitcast the result. This can be useful for union cases. Note 568 // that address spaces don't matter here since we're not going to result in 569 // an actual new load. 570 Type *MapTy; 571 if (LoadTy->isHalfTy()) 572 MapTy = Type::getInt16Ty(C->getContext()); 573 else if (LoadTy->isFloatTy()) 574 MapTy = Type::getInt32Ty(C->getContext()); 575 else if (LoadTy->isDoubleTy()) 576 MapTy = Type::getInt64Ty(C->getContext()); 577 else if (LoadTy->isVectorTy()) { 578 MapTy = PointerType::getIntNTy( 579 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 580 } else 581 return nullptr; 582 583 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); 584 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) { 585 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 586 !LoadTy->isX86_AMXTy()) 587 // Materializing a zero can be done trivially without a bitcast 588 return Constant::getNullValue(LoadTy); 589 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 590 Res = FoldBitCast(Res, CastTy, DL); 591 if (LoadTy->isPtrOrPtrVectorTy()) { 592 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 593 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 594 !LoadTy->isX86_AMXTy()) 595 return Constant::getNullValue(LoadTy); 596 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 597 // Be careful not to replace a load of an addrspace value with an inttoptr here 598 return nullptr; 599 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 600 } 601 return Res; 602 } 603 return nullptr; 604 } 605 606 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 607 if (BytesLoaded > 32 || BytesLoaded == 0) 608 return nullptr; 609 610 GlobalValue *GVal; 611 APInt OffsetAI; 612 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) 613 return nullptr; 614 615 auto *GV = dyn_cast<GlobalVariable>(GVal); 616 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 617 !GV->getInitializer()->getType()->isSized()) 618 return nullptr; 619 620 int64_t Offset = OffsetAI.getSExtValue(); 621 int64_t InitializerSize = 622 DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize(); 623 624 // If we're not accessing anything in this constant, the result is undefined. 625 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 626 return UndefValue::get(IntType); 627 628 // If we're not accessing anything in this constant, the result is undefined. 629 if (Offset >= InitializerSize) 630 return UndefValue::get(IntType); 631 632 unsigned char RawBytes[32] = {0}; 633 unsigned char *CurPtr = RawBytes; 634 unsigned BytesLeft = BytesLoaded; 635 636 // If we're loading off the beginning of the global, some bytes may be valid. 637 if (Offset < 0) { 638 CurPtr += -Offset; 639 BytesLeft += Offset; 640 Offset = 0; 641 } 642 643 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) 644 return nullptr; 645 646 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 647 if (DL.isLittleEndian()) { 648 ResultVal = RawBytes[BytesLoaded - 1]; 649 for (unsigned i = 1; i != BytesLoaded; ++i) { 650 ResultVal <<= 8; 651 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 652 } 653 } else { 654 ResultVal = RawBytes[0]; 655 for (unsigned i = 1; i != BytesLoaded; ++i) { 656 ResultVal <<= 8; 657 ResultVal |= RawBytes[i]; 658 } 659 } 660 661 return ConstantInt::get(IntType->getContext(), ResultVal); 662 } 663 664 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, 665 const DataLayout &DL) { 666 auto *SrcPtr = CE->getOperand(0); 667 if (!SrcPtr->getType()->isPointerTy()) 668 return nullptr; 669 670 return ConstantFoldLoadFromConstPtr(SrcPtr, DestTy, DL); 671 } 672 673 } // end anonymous namespace 674 675 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 676 const DataLayout &DL) { 677 // First, try the easy cases: 678 if (auto *GV = dyn_cast<GlobalVariable>(C)) 679 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 680 return ConstantFoldLoadThroughBitcast(GV->getInitializer(), Ty, DL); 681 682 if (auto *GA = dyn_cast<GlobalAlias>(C)) 683 if (GA->getAliasee() && !GA->isInterposable()) 684 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); 685 686 // If the loaded value isn't a constant expr, we can't handle it. 687 auto *CE = dyn_cast<ConstantExpr>(C); 688 if (!CE) 689 return nullptr; 690 691 if (CE->getOpcode() == Instruction::GetElementPtr) { 692 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { 693 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 694 if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr( 695 GV->getInitializer(), CE, Ty, DL)) 696 return V; 697 } 698 } else { 699 // Try to simplify GEP if the pointer operand wasn't a GlobalVariable. 700 // SymbolicallyEvaluateGEP() with `ForLoadOperand = true` can potentially 701 // simplify the GEP more than it normally would have been, but should only 702 // be used for const folding loads. 703 SmallVector<Constant *> Ops; 704 for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I) 705 Ops.push_back(cast<Constant>(CE->getOperand(I))); 706 if (auto *Simplified = dyn_cast_or_null<ConstantExpr>( 707 SymbolicallyEvaluateGEP(cast<GEPOperator>(CE), Ops, DL, nullptr, 708 /*ForLoadOperand*/ true))) { 709 // If the symbolically evaluated GEP is another GEP, we can only const 710 // fold it if the resulting pointer operand is a GlobalValue. Otherwise 711 // there is nothing else to simplify since the GEP is already in the 712 // most simplified form. 713 if (isa<GEPOperator>(Simplified)) { 714 if (auto *GV = dyn_cast<GlobalVariable>(Simplified->getOperand(0))) { 715 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 716 if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr( 717 GV->getInitializer(), Simplified, Ty, DL)) 718 return V; 719 } 720 } 721 } else { 722 return ConstantFoldLoadFromConstPtr(Simplified, Ty, DL); 723 } 724 } 725 } 726 } 727 728 if (CE->getOpcode() == Instruction::BitCast) 729 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) 730 return LoadedC; 731 732 // Instead of loading constant c string, use corresponding integer value 733 // directly if string length is small enough. 734 StringRef Str; 735 if (getConstantStringInfo(CE, Str) && !Str.empty()) { 736 size_t StrLen = Str.size(); 737 unsigned NumBits = Ty->getPrimitiveSizeInBits(); 738 // Replace load with immediate integer if the result is an integer or fp 739 // value. 740 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && 741 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { 742 APInt StrVal(NumBits, 0); 743 APInt SingleChar(NumBits, 0); 744 if (DL.isLittleEndian()) { 745 for (unsigned char C : reverse(Str.bytes())) { 746 SingleChar = static_cast<uint64_t>(C); 747 StrVal = (StrVal << 8) | SingleChar; 748 } 749 } else { 750 for (unsigned char C : Str.bytes()) { 751 SingleChar = static_cast<uint64_t>(C); 752 StrVal = (StrVal << 8) | SingleChar; 753 } 754 // Append NULL at the end. 755 SingleChar = 0; 756 StrVal = (StrVal << 8) | SingleChar; 757 } 758 759 Constant *Res = ConstantInt::get(CE->getContext(), StrVal); 760 if (Ty->isFloatingPointTy()) 761 Res = ConstantExpr::getBitCast(Res, Ty); 762 return Res; 763 } 764 } 765 766 // If this load comes from anywhere in a constant global, and if the global 767 // is all undef or zero, we know what it loads. 768 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(CE))) { 769 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 770 if (GV->getInitializer()->isNullValue()) 771 return Constant::getNullValue(Ty); 772 if (isa<UndefValue>(GV->getInitializer())) 773 return UndefValue::get(Ty); 774 } 775 } 776 777 // Try hard to fold loads from bitcasted strange and non-type-safe things. 778 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); 779 } 780 781 namespace { 782 783 /// One of Op0/Op1 is a constant expression. 784 /// Attempt to symbolically evaluate the result of a binary operator merging 785 /// these together. If target data info is available, it is provided as DL, 786 /// otherwise DL is null. 787 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 788 const DataLayout &DL) { 789 // SROA 790 791 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 792 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 793 // bits. 794 795 if (Opc == Instruction::And) { 796 KnownBits Known0 = computeKnownBits(Op0, DL); 797 KnownBits Known1 = computeKnownBits(Op1, DL); 798 if ((Known1.One | Known0.Zero).isAllOnesValue()) { 799 // All the bits of Op0 that the 'and' could be masking are already zero. 800 return Op0; 801 } 802 if ((Known0.One | Known1.Zero).isAllOnesValue()) { 803 // All the bits of Op1 that the 'and' could be masking are already zero. 804 return Op1; 805 } 806 807 Known0 &= Known1; 808 if (Known0.isConstant()) 809 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 810 } 811 812 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 813 // constant. This happens frequently when iterating over a global array. 814 if (Opc == Instruction::Sub) { 815 GlobalValue *GV1, *GV2; 816 APInt Offs1, Offs2; 817 818 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 819 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 820 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 821 822 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 823 // PtrToInt may change the bitwidth so we have convert to the right size 824 // first. 825 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 826 Offs2.zextOrTrunc(OpSize)); 827 } 828 } 829 830 return nullptr; 831 } 832 833 /// If array indices are not pointer-sized integers, explicitly cast them so 834 /// that they aren't implicitly casted by the getelementptr. 835 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 836 Type *ResultTy, Optional<unsigned> InRangeIndex, 837 const DataLayout &DL, const TargetLibraryInfo *TLI) { 838 Type *IntIdxTy = DL.getIndexType(ResultTy); 839 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 840 841 bool Any = false; 842 SmallVector<Constant*, 32> NewIdxs; 843 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 844 if ((i == 1 || 845 !isa<StructType>(GetElementPtrInst::getIndexedType( 846 SrcElemTy, Ops.slice(1, i - 1)))) && 847 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 848 Any = true; 849 Type *NewType = Ops[i]->getType()->isVectorTy() 850 ? IntIdxTy 851 : IntIdxScalarTy; 852 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 853 true, 854 NewType, 855 true), 856 Ops[i], NewType)); 857 } else 858 NewIdxs.push_back(Ops[i]); 859 } 860 861 if (!Any) 862 return nullptr; 863 864 Constant *C = ConstantExpr::getGetElementPtr( 865 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 866 return ConstantFoldConstant(C, DL, TLI); 867 } 868 869 /// Strip the pointer casts, but preserve the address space information. 870 Constant *StripPtrCastKeepAS(Constant *Ptr, bool ForLoadOperand) { 871 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 872 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 873 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 874 if (ForLoadOperand) { 875 while (isa<GlobalAlias>(Ptr) && !cast<GlobalAlias>(Ptr)->isInterposable() && 876 !cast<GlobalAlias>(Ptr)->getBaseObject()->isInterposable()) { 877 Ptr = cast<GlobalAlias>(Ptr)->getAliasee(); 878 } 879 } 880 881 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 882 883 // Preserve the address space number of the pointer. 884 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 885 Ptr = ConstantExpr::getPointerCast( 886 Ptr, PointerType::getWithSamePointeeType(NewPtrTy, 887 OldPtrTy->getAddressSpace())); 888 } 889 return Ptr; 890 } 891 892 /// If we can symbolically evaluate the GEP constant expression, do so. 893 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 894 ArrayRef<Constant *> Ops, 895 const DataLayout &DL, 896 const TargetLibraryInfo *TLI, 897 bool ForLoadOperand) { 898 const GEPOperator *InnermostGEP = GEP; 899 bool InBounds = GEP->isInBounds(); 900 901 Type *SrcElemTy = GEP->getSourceElementType(); 902 Type *ResElemTy = GEP->getResultElementType(); 903 Type *ResTy = GEP->getType(); 904 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 905 return nullptr; 906 907 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 908 GEP->getInRangeIndex(), DL, TLI)) 909 return C; 910 911 Constant *Ptr = Ops[0]; 912 if (!Ptr->getType()->isPointerTy()) 913 return nullptr; 914 915 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 916 917 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 918 // "inttoptr (sub (ptrtoint Ptr), V)" 919 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 920 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 921 assert((!CE || CE->getType() == IntIdxTy) && 922 "CastGEPIndices didn't canonicalize index types!"); 923 if (CE && CE->getOpcode() == Instruction::Sub && 924 CE->getOperand(0)->isNullValue()) { 925 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 926 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 927 Res = ConstantExpr::getIntToPtr(Res, ResTy); 928 return ConstantFoldConstant(Res, DL, TLI); 929 } 930 } 931 932 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 933 if (!isa<ConstantInt>(Ops[i])) 934 return nullptr; 935 936 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 937 APInt Offset = 938 APInt(BitWidth, 939 DL.getIndexedOffsetInType( 940 SrcElemTy, 941 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 942 Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand); 943 944 // If this is a GEP of a GEP, fold it all into a single GEP. 945 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 946 InnermostGEP = GEP; 947 InBounds &= GEP->isInBounds(); 948 949 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); 950 951 // Do not try the incorporate the sub-GEP if some index is not a number. 952 bool AllConstantInt = true; 953 for (Value *NestedOp : NestedOps) 954 if (!isa<ConstantInt>(NestedOp)) { 955 AllConstantInt = false; 956 break; 957 } 958 if (!AllConstantInt) 959 break; 960 961 Ptr = cast<Constant>(GEP->getOperand(0)); 962 SrcElemTy = GEP->getSourceElementType(); 963 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 964 Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand); 965 } 966 967 // If the base value for this address is a literal integer value, fold the 968 // getelementptr to the resulting integer value casted to the pointer type. 969 APInt BasePtr(BitWidth, 0); 970 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 971 if (CE->getOpcode() == Instruction::IntToPtr) { 972 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 973 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 974 } 975 } 976 977 auto *PTy = cast<PointerType>(Ptr->getType()); 978 if ((Ptr->isNullValue() || BasePtr != 0) && 979 !DL.isNonIntegralPointerType(PTy)) { 980 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 981 return ConstantExpr::getIntToPtr(C, ResTy); 982 } 983 984 // Otherwise form a regular getelementptr. Recompute the indices so that 985 // we eliminate over-indexing of the notional static type array bounds. 986 // This makes it easy to determine if the getelementptr is "inbounds". 987 // Also, this helps GlobalOpt do SROA on GlobalVariables. 988 SmallVector<Constant *, 32> NewIdxs; 989 Type *Ty = PTy; 990 SrcElemTy = PTy->getElementType(); 991 992 do { 993 if (!Ty->isStructTy()) { 994 if (Ty->isPointerTy()) { 995 // The only pointer indexing we'll do is on the first index of the GEP. 996 if (!NewIdxs.empty()) 997 break; 998 999 Ty = SrcElemTy; 1000 1001 // Only handle pointers to sized types, not pointers to functions. 1002 if (!Ty->isSized()) 1003 return nullptr; 1004 } else { 1005 Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0); 1006 if (!NextTy) 1007 break; 1008 Ty = NextTy; 1009 } 1010 1011 // Determine which element of the array the offset points into. 1012 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); 1013 if (ElemSize == 0) { 1014 // The element size is 0. This may be [0 x Ty]*, so just use a zero 1015 // index for this level and proceed to the next level to see if it can 1016 // accommodate the offset. 1017 NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0)); 1018 } else { 1019 // The element size is non-zero divide the offset by the element 1020 // size (rounding down), to compute the index at this level. 1021 bool Overflow; 1022 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); 1023 if (Overflow) 1024 break; 1025 Offset -= NewIdx * ElemSize; 1026 NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx)); 1027 } 1028 } else { 1029 auto *STy = cast<StructType>(Ty); 1030 // If we end up with an offset that isn't valid for this struct type, we 1031 // can't re-form this GEP in a regular form, so bail out. The pointer 1032 // operand likely went through casts that are necessary to make the GEP 1033 // sensible. 1034 const StructLayout &SL = *DL.getStructLayout(STy); 1035 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) 1036 break; 1037 1038 // Determine which field of the struct the offset points into. The 1039 // getZExtValue is fine as we've already ensured that the offset is 1040 // within the range representable by the StructLayout API. 1041 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); 1042 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1043 ElIdx)); 1044 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); 1045 Ty = STy->getTypeAtIndex(ElIdx); 1046 } 1047 } while (Ty != ResElemTy); 1048 1049 // If we haven't used up the entire offset by descending the static 1050 // type, then the offset is pointing into the middle of an indivisible 1051 // member, so we can't simplify it. 1052 if (Offset != 0) 1053 return nullptr; 1054 1055 // Preserve the inrange index from the innermost GEP if possible. We must 1056 // have calculated the same indices up to and including the inrange index. 1057 Optional<unsigned> InRangeIndex; 1058 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 1059 if (SrcElemTy == InnermostGEP->getSourceElementType() && 1060 NewIdxs.size() > *LastIRIndex) { 1061 InRangeIndex = LastIRIndex; 1062 for (unsigned I = 0; I <= *LastIRIndex; ++I) 1063 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 1064 return nullptr; 1065 } 1066 1067 // Create a GEP. 1068 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 1069 InBounds, InRangeIndex); 1070 assert(C->getType()->getPointerElementType() == Ty && 1071 "Computed GetElementPtr has unexpected type!"); 1072 1073 // If we ended up indexing a member with a type that doesn't match 1074 // the type of what the original indices indexed, add a cast. 1075 if (C->getType() != ResTy) 1076 C = FoldBitCast(C, ResTy, DL); 1077 1078 return C; 1079 } 1080 1081 /// Attempt to constant fold an instruction with the 1082 /// specified opcode and operands. If successful, the constant result is 1083 /// returned, if not, null is returned. Note that this function can fail when 1084 /// attempting to fold instructions like loads and stores, which have no 1085 /// constant expression form. 1086 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 1087 ArrayRef<Constant *> Ops, 1088 const DataLayout &DL, 1089 const TargetLibraryInfo *TLI) { 1090 Type *DestTy = InstOrCE->getType(); 1091 1092 if (Instruction::isUnaryOp(Opcode)) 1093 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1094 1095 if (Instruction::isBinaryOp(Opcode)) 1096 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1097 1098 if (Instruction::isCast(Opcode)) 1099 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1100 1101 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1102 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI, 1103 /*ForLoadOperand*/ false)) 1104 return C; 1105 1106 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1107 Ops.slice(1), GEP->isInBounds(), 1108 GEP->getInRangeIndex()); 1109 } 1110 1111 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1112 return CE->getWithOperands(Ops); 1113 1114 switch (Opcode) { 1115 default: return nullptr; 1116 case Instruction::ICmp: 1117 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1118 case Instruction::Freeze: 1119 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1120 case Instruction::Call: 1121 if (auto *F = dyn_cast<Function>(Ops.back())) { 1122 const auto *Call = cast<CallBase>(InstOrCE); 1123 if (canConstantFoldCallTo(Call, F)) 1124 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1125 } 1126 return nullptr; 1127 case Instruction::Select: 1128 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1129 case Instruction::ExtractElement: 1130 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1131 case Instruction::ExtractValue: 1132 return ConstantExpr::getExtractValue( 1133 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1134 case Instruction::InsertElement: 1135 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1136 case Instruction::ShuffleVector: 1137 return ConstantExpr::getShuffleVector( 1138 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1139 } 1140 } 1141 1142 } // end anonymous namespace 1143 1144 //===----------------------------------------------------------------------===// 1145 // Constant Folding public APIs 1146 //===----------------------------------------------------------------------===// 1147 1148 namespace { 1149 1150 Constant * 1151 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1152 const TargetLibraryInfo *TLI, 1153 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1154 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1155 return const_cast<Constant *>(C); 1156 1157 SmallVector<Constant *, 8> Ops; 1158 for (const Use &OldU : C->operands()) { 1159 Constant *OldC = cast<Constant>(&OldU); 1160 Constant *NewC = OldC; 1161 // Recursively fold the ConstantExpr's operands. If we have already folded 1162 // a ConstantExpr, we don't have to process it again. 1163 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1164 auto It = FoldedOps.find(OldC); 1165 if (It == FoldedOps.end()) { 1166 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1167 FoldedOps.insert({OldC, NewC}); 1168 } else { 1169 NewC = It->second; 1170 } 1171 } 1172 Ops.push_back(NewC); 1173 } 1174 1175 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1176 if (CE->isCompare()) 1177 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1178 DL, TLI); 1179 1180 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1181 } 1182 1183 assert(isa<ConstantVector>(C)); 1184 return ConstantVector::get(Ops); 1185 } 1186 1187 } // end anonymous namespace 1188 1189 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1190 const TargetLibraryInfo *TLI) { 1191 // Handle PHI nodes quickly here... 1192 if (auto *PN = dyn_cast<PHINode>(I)) { 1193 Constant *CommonValue = nullptr; 1194 1195 SmallDenseMap<Constant *, Constant *> FoldedOps; 1196 for (Value *Incoming : PN->incoming_values()) { 1197 // If the incoming value is undef then skip it. Note that while we could 1198 // skip the value if it is equal to the phi node itself we choose not to 1199 // because that would break the rule that constant folding only applies if 1200 // all operands are constants. 1201 if (isa<UndefValue>(Incoming)) 1202 continue; 1203 // If the incoming value is not a constant, then give up. 1204 auto *C = dyn_cast<Constant>(Incoming); 1205 if (!C) 1206 return nullptr; 1207 // Fold the PHI's operands. 1208 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1209 // If the incoming value is a different constant to 1210 // the one we saw previously, then give up. 1211 if (CommonValue && C != CommonValue) 1212 return nullptr; 1213 CommonValue = C; 1214 } 1215 1216 // If we reach here, all incoming values are the same constant or undef. 1217 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1218 } 1219 1220 // Scan the operand list, checking to see if they are all constants, if so, 1221 // hand off to ConstantFoldInstOperandsImpl. 1222 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1223 return nullptr; 1224 1225 SmallDenseMap<Constant *, Constant *> FoldedOps; 1226 SmallVector<Constant *, 8> Ops; 1227 for (const Use &OpU : I->operands()) { 1228 auto *Op = cast<Constant>(&OpU); 1229 // Fold the Instruction's operands. 1230 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1231 Ops.push_back(Op); 1232 } 1233 1234 if (const auto *CI = dyn_cast<CmpInst>(I)) 1235 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1236 DL, TLI); 1237 1238 if (const auto *LI = dyn_cast<LoadInst>(I)) { 1239 if (LI->isVolatile()) 1240 return nullptr; 1241 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1242 } 1243 1244 if (auto *IVI = dyn_cast<InsertValueInst>(I)) 1245 return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices()); 1246 1247 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) 1248 return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices()); 1249 1250 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1251 } 1252 1253 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1254 const TargetLibraryInfo *TLI) { 1255 SmallDenseMap<Constant *, Constant *> FoldedOps; 1256 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1257 } 1258 1259 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1260 ArrayRef<Constant *> Ops, 1261 const DataLayout &DL, 1262 const TargetLibraryInfo *TLI) { 1263 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1264 } 1265 1266 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1267 Constant *Ops0, Constant *Ops1, 1268 const DataLayout &DL, 1269 const TargetLibraryInfo *TLI) { 1270 // fold: icmp (inttoptr x), null -> icmp x, 0 1271 // fold: icmp null, (inttoptr x) -> icmp 0, x 1272 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1273 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1274 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1275 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1276 // 1277 // FIXME: The following comment is out of data and the DataLayout is here now. 1278 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1279 // around to know if bit truncation is happening. 1280 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1281 if (Ops1->isNullValue()) { 1282 if (CE0->getOpcode() == Instruction::IntToPtr) { 1283 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1284 // Convert the integer value to the right size to ensure we get the 1285 // proper extension or truncation. 1286 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1287 IntPtrTy, false); 1288 Constant *Null = Constant::getNullValue(C->getType()); 1289 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1290 } 1291 1292 // Only do this transformation if the int is intptrty in size, otherwise 1293 // there is a truncation or extension that we aren't modeling. 1294 if (CE0->getOpcode() == Instruction::PtrToInt) { 1295 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1296 if (CE0->getType() == IntPtrTy) { 1297 Constant *C = CE0->getOperand(0); 1298 Constant *Null = Constant::getNullValue(C->getType()); 1299 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1300 } 1301 } 1302 } 1303 1304 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1305 if (CE0->getOpcode() == CE1->getOpcode()) { 1306 if (CE0->getOpcode() == Instruction::IntToPtr) { 1307 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1308 1309 // Convert the integer value to the right size to ensure we get the 1310 // proper extension or truncation. 1311 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1312 IntPtrTy, false); 1313 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1314 IntPtrTy, false); 1315 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1316 } 1317 1318 // Only do this transformation if the int is intptrty in size, otherwise 1319 // there is a truncation or extension that we aren't modeling. 1320 if (CE0->getOpcode() == Instruction::PtrToInt) { 1321 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1322 if (CE0->getType() == IntPtrTy && 1323 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1324 return ConstantFoldCompareInstOperands( 1325 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1326 } 1327 } 1328 } 1329 } 1330 1331 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1332 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1333 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1334 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1335 Constant *LHS = ConstantFoldCompareInstOperands( 1336 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1337 Constant *RHS = ConstantFoldCompareInstOperands( 1338 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1339 unsigned OpC = 1340 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1341 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1342 } 1343 } else if (isa<ConstantExpr>(Ops1)) { 1344 // If RHS is a constant expression, but the left side isn't, swap the 1345 // operands and try again. 1346 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1347 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1348 } 1349 1350 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1351 } 1352 1353 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1354 const DataLayout &DL) { 1355 assert(Instruction::isUnaryOp(Opcode)); 1356 1357 return ConstantExpr::get(Opcode, Op); 1358 } 1359 1360 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1361 Constant *RHS, 1362 const DataLayout &DL) { 1363 assert(Instruction::isBinaryOp(Opcode)); 1364 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1365 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1366 return C; 1367 1368 return ConstantExpr::get(Opcode, LHS, RHS); 1369 } 1370 1371 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1372 Type *DestTy, const DataLayout &DL) { 1373 assert(Instruction::isCast(Opcode)); 1374 switch (Opcode) { 1375 default: 1376 llvm_unreachable("Missing case"); 1377 case Instruction::PtrToInt: 1378 // If the input is a inttoptr, eliminate the pair. This requires knowing 1379 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1380 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1381 if (CE->getOpcode() == Instruction::IntToPtr) { 1382 Constant *Input = CE->getOperand(0); 1383 unsigned InWidth = Input->getType()->getScalarSizeInBits(); 1384 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); 1385 if (PtrWidth < InWidth) { 1386 Constant *Mask = 1387 ConstantInt::get(CE->getContext(), 1388 APInt::getLowBitsSet(InWidth, PtrWidth)); 1389 Input = ConstantExpr::getAnd(Input, Mask); 1390 } 1391 // Do a zext or trunc to get to the dest size. 1392 return ConstantExpr::getIntegerCast(Input, DestTy, false); 1393 } 1394 } 1395 return ConstantExpr::getCast(Opcode, C, DestTy); 1396 case Instruction::IntToPtr: 1397 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1398 // the int size is >= the ptr size and the address spaces are the same. 1399 // This requires knowing the width of a pointer, so it can't be done in 1400 // ConstantExpr::getCast. 1401 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1402 if (CE->getOpcode() == Instruction::PtrToInt) { 1403 Constant *SrcPtr = CE->getOperand(0); 1404 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1405 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1406 1407 if (MidIntSize >= SrcPtrSize) { 1408 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1409 if (SrcAS == DestTy->getPointerAddressSpace()) 1410 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1411 } 1412 } 1413 } 1414 1415 return ConstantExpr::getCast(Opcode, C, DestTy); 1416 case Instruction::Trunc: 1417 case Instruction::ZExt: 1418 case Instruction::SExt: 1419 case Instruction::FPTrunc: 1420 case Instruction::FPExt: 1421 case Instruction::UIToFP: 1422 case Instruction::SIToFP: 1423 case Instruction::FPToUI: 1424 case Instruction::FPToSI: 1425 case Instruction::AddrSpaceCast: 1426 return ConstantExpr::getCast(Opcode, C, DestTy); 1427 case Instruction::BitCast: 1428 return FoldBitCast(C, DestTy, DL); 1429 } 1430 } 1431 1432 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1433 ConstantExpr *CE, 1434 Type *Ty, 1435 const DataLayout &DL) { 1436 if (!CE->getOperand(1)->isNullValue()) 1437 return nullptr; // Do not allow stepping over the value! 1438 1439 // Loop over all of the operands, tracking down which value we are 1440 // addressing. 1441 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1442 C = C->getAggregateElement(CE->getOperand(i)); 1443 if (!C) 1444 return nullptr; 1445 } 1446 return ConstantFoldLoadThroughBitcast(C, Ty, DL); 1447 } 1448 1449 Constant * 1450 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, 1451 ArrayRef<Constant *> Indices) { 1452 // Loop over all of the operands, tracking down which value we are 1453 // addressing. 1454 for (Constant *Index : Indices) { 1455 C = C->getAggregateElement(Index); 1456 if (!C) 1457 return nullptr; 1458 } 1459 return C; 1460 } 1461 1462 //===----------------------------------------------------------------------===// 1463 // Constant Folding for Calls 1464 // 1465 1466 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1467 if (Call->isNoBuiltin()) 1468 return false; 1469 switch (F->getIntrinsicID()) { 1470 // Operations that do not operate floating-point numbers and do not depend on 1471 // FP environment can be folded even in strictfp functions. 1472 case Intrinsic::bswap: 1473 case Intrinsic::ctpop: 1474 case Intrinsic::ctlz: 1475 case Intrinsic::cttz: 1476 case Intrinsic::fshl: 1477 case Intrinsic::fshr: 1478 case Intrinsic::launder_invariant_group: 1479 case Intrinsic::strip_invariant_group: 1480 case Intrinsic::masked_load: 1481 case Intrinsic::get_active_lane_mask: 1482 case Intrinsic::abs: 1483 case Intrinsic::smax: 1484 case Intrinsic::smin: 1485 case Intrinsic::umax: 1486 case Intrinsic::umin: 1487 case Intrinsic::sadd_with_overflow: 1488 case Intrinsic::uadd_with_overflow: 1489 case Intrinsic::ssub_with_overflow: 1490 case Intrinsic::usub_with_overflow: 1491 case Intrinsic::smul_with_overflow: 1492 case Intrinsic::umul_with_overflow: 1493 case Intrinsic::sadd_sat: 1494 case Intrinsic::uadd_sat: 1495 case Intrinsic::ssub_sat: 1496 case Intrinsic::usub_sat: 1497 case Intrinsic::smul_fix: 1498 case Intrinsic::smul_fix_sat: 1499 case Intrinsic::bitreverse: 1500 case Intrinsic::is_constant: 1501 case Intrinsic::vector_reduce_add: 1502 case Intrinsic::vector_reduce_mul: 1503 case Intrinsic::vector_reduce_and: 1504 case Intrinsic::vector_reduce_or: 1505 case Intrinsic::vector_reduce_xor: 1506 case Intrinsic::vector_reduce_smin: 1507 case Intrinsic::vector_reduce_smax: 1508 case Intrinsic::vector_reduce_umin: 1509 case Intrinsic::vector_reduce_umax: 1510 // Target intrinsics 1511 case Intrinsic::amdgcn_perm: 1512 case Intrinsic::arm_mve_vctp8: 1513 case Intrinsic::arm_mve_vctp16: 1514 case Intrinsic::arm_mve_vctp32: 1515 case Intrinsic::arm_mve_vctp64: 1516 case Intrinsic::aarch64_sve_convert_from_svbool: 1517 // WebAssembly float semantics are always known 1518 case Intrinsic::wasm_trunc_signed: 1519 case Intrinsic::wasm_trunc_unsigned: 1520 return true; 1521 1522 // Floating point operations cannot be folded in strictfp functions in 1523 // general case. They can be folded if FP environment is known to compiler. 1524 case Intrinsic::minnum: 1525 case Intrinsic::maxnum: 1526 case Intrinsic::minimum: 1527 case Intrinsic::maximum: 1528 case Intrinsic::log: 1529 case Intrinsic::log2: 1530 case Intrinsic::log10: 1531 case Intrinsic::exp: 1532 case Intrinsic::exp2: 1533 case Intrinsic::sqrt: 1534 case Intrinsic::sin: 1535 case Intrinsic::cos: 1536 case Intrinsic::pow: 1537 case Intrinsic::powi: 1538 case Intrinsic::fma: 1539 case Intrinsic::fmuladd: 1540 case Intrinsic::fptoui_sat: 1541 case Intrinsic::fptosi_sat: 1542 case Intrinsic::convert_from_fp16: 1543 case Intrinsic::convert_to_fp16: 1544 case Intrinsic::amdgcn_cos: 1545 case Intrinsic::amdgcn_cubeid: 1546 case Intrinsic::amdgcn_cubema: 1547 case Intrinsic::amdgcn_cubesc: 1548 case Intrinsic::amdgcn_cubetc: 1549 case Intrinsic::amdgcn_fmul_legacy: 1550 case Intrinsic::amdgcn_fma_legacy: 1551 case Intrinsic::amdgcn_fract: 1552 case Intrinsic::amdgcn_ldexp: 1553 case Intrinsic::amdgcn_sin: 1554 // The intrinsics below depend on rounding mode in MXCSR. 1555 case Intrinsic::x86_sse_cvtss2si: 1556 case Intrinsic::x86_sse_cvtss2si64: 1557 case Intrinsic::x86_sse_cvttss2si: 1558 case Intrinsic::x86_sse_cvttss2si64: 1559 case Intrinsic::x86_sse2_cvtsd2si: 1560 case Intrinsic::x86_sse2_cvtsd2si64: 1561 case Intrinsic::x86_sse2_cvttsd2si: 1562 case Intrinsic::x86_sse2_cvttsd2si64: 1563 case Intrinsic::x86_avx512_vcvtss2si32: 1564 case Intrinsic::x86_avx512_vcvtss2si64: 1565 case Intrinsic::x86_avx512_cvttss2si: 1566 case Intrinsic::x86_avx512_cvttss2si64: 1567 case Intrinsic::x86_avx512_vcvtsd2si32: 1568 case Intrinsic::x86_avx512_vcvtsd2si64: 1569 case Intrinsic::x86_avx512_cvttsd2si: 1570 case Intrinsic::x86_avx512_cvttsd2si64: 1571 case Intrinsic::x86_avx512_vcvtss2usi32: 1572 case Intrinsic::x86_avx512_vcvtss2usi64: 1573 case Intrinsic::x86_avx512_cvttss2usi: 1574 case Intrinsic::x86_avx512_cvttss2usi64: 1575 case Intrinsic::x86_avx512_vcvtsd2usi32: 1576 case Intrinsic::x86_avx512_vcvtsd2usi64: 1577 case Intrinsic::x86_avx512_cvttsd2usi: 1578 case Intrinsic::x86_avx512_cvttsd2usi64: 1579 return !Call->isStrictFP(); 1580 1581 // Sign operations are actually bitwise operations, they do not raise 1582 // exceptions even for SNANs. 1583 case Intrinsic::fabs: 1584 case Intrinsic::copysign: 1585 // Non-constrained variants of rounding operations means default FP 1586 // environment, they can be folded in any case. 1587 case Intrinsic::ceil: 1588 case Intrinsic::floor: 1589 case Intrinsic::round: 1590 case Intrinsic::roundeven: 1591 case Intrinsic::trunc: 1592 case Intrinsic::nearbyint: 1593 case Intrinsic::rint: 1594 // Constrained intrinsics can be folded if FP environment is known 1595 // to compiler. 1596 case Intrinsic::experimental_constrained_fma: 1597 case Intrinsic::experimental_constrained_fmuladd: 1598 case Intrinsic::experimental_constrained_fadd: 1599 case Intrinsic::experimental_constrained_fsub: 1600 case Intrinsic::experimental_constrained_fmul: 1601 case Intrinsic::experimental_constrained_fdiv: 1602 case Intrinsic::experimental_constrained_frem: 1603 case Intrinsic::experimental_constrained_ceil: 1604 case Intrinsic::experimental_constrained_floor: 1605 case Intrinsic::experimental_constrained_round: 1606 case Intrinsic::experimental_constrained_roundeven: 1607 case Intrinsic::experimental_constrained_trunc: 1608 case Intrinsic::experimental_constrained_nearbyint: 1609 case Intrinsic::experimental_constrained_rint: 1610 return true; 1611 default: 1612 return false; 1613 case Intrinsic::not_intrinsic: break; 1614 } 1615 1616 if (!F->hasName() || Call->isStrictFP()) 1617 return false; 1618 1619 // In these cases, the check of the length is required. We don't want to 1620 // return true for a name like "cos\0blah" which strcmp would return equal to 1621 // "cos", but has length 8. 1622 StringRef Name = F->getName(); 1623 switch (Name[0]) { 1624 default: 1625 return false; 1626 case 'a': 1627 return Name == "acos" || Name == "acosf" || 1628 Name == "asin" || Name == "asinf" || 1629 Name == "atan" || Name == "atanf" || 1630 Name == "atan2" || Name == "atan2f"; 1631 case 'c': 1632 return Name == "ceil" || Name == "ceilf" || 1633 Name == "cos" || Name == "cosf" || 1634 Name == "cosh" || Name == "coshf"; 1635 case 'e': 1636 return Name == "exp" || Name == "expf" || 1637 Name == "exp2" || Name == "exp2f"; 1638 case 'f': 1639 return Name == "fabs" || Name == "fabsf" || 1640 Name == "floor" || Name == "floorf" || 1641 Name == "fmod" || Name == "fmodf"; 1642 case 'l': 1643 return Name == "log" || Name == "logf" || 1644 Name == "log2" || Name == "log2f" || 1645 Name == "log10" || Name == "log10f"; 1646 case 'n': 1647 return Name == "nearbyint" || Name == "nearbyintf"; 1648 case 'p': 1649 return Name == "pow" || Name == "powf"; 1650 case 'r': 1651 return Name == "remainder" || Name == "remainderf" || 1652 Name == "rint" || Name == "rintf" || 1653 Name == "round" || Name == "roundf"; 1654 case 's': 1655 return Name == "sin" || Name == "sinf" || 1656 Name == "sinh" || Name == "sinhf" || 1657 Name == "sqrt" || Name == "sqrtf"; 1658 case 't': 1659 return Name == "tan" || Name == "tanf" || 1660 Name == "tanh" || Name == "tanhf" || 1661 Name == "trunc" || Name == "truncf"; 1662 case '_': 1663 // Check for various function names that get used for the math functions 1664 // when the header files are preprocessed with the macro 1665 // __FINITE_MATH_ONLY__ enabled. 1666 // The '12' here is the length of the shortest name that can match. 1667 // We need to check the size before looking at Name[1] and Name[2] 1668 // so we may as well check a limit that will eliminate mismatches. 1669 if (Name.size() < 12 || Name[1] != '_') 1670 return false; 1671 switch (Name[2]) { 1672 default: 1673 return false; 1674 case 'a': 1675 return Name == "__acos_finite" || Name == "__acosf_finite" || 1676 Name == "__asin_finite" || Name == "__asinf_finite" || 1677 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1678 case 'c': 1679 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1680 case 'e': 1681 return Name == "__exp_finite" || Name == "__expf_finite" || 1682 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1683 case 'l': 1684 return Name == "__log_finite" || Name == "__logf_finite" || 1685 Name == "__log10_finite" || Name == "__log10f_finite"; 1686 case 'p': 1687 return Name == "__pow_finite" || Name == "__powf_finite"; 1688 case 's': 1689 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1690 } 1691 } 1692 } 1693 1694 namespace { 1695 1696 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1697 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1698 APFloat APF(V); 1699 bool unused; 1700 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1701 return ConstantFP::get(Ty->getContext(), APF); 1702 } 1703 if (Ty->isDoubleTy()) 1704 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1705 llvm_unreachable("Can only constant fold half/float/double"); 1706 } 1707 1708 /// Clear the floating-point exception state. 1709 inline void llvm_fenv_clearexcept() { 1710 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1711 feclearexcept(FE_ALL_EXCEPT); 1712 #endif 1713 errno = 0; 1714 } 1715 1716 /// Test if a floating-point exception was raised. 1717 inline bool llvm_fenv_testexcept() { 1718 int errno_val = errno; 1719 if (errno_val == ERANGE || errno_val == EDOM) 1720 return true; 1721 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1722 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1723 return true; 1724 #endif 1725 return false; 1726 } 1727 1728 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1729 Type *Ty) { 1730 llvm_fenv_clearexcept(); 1731 double Result = NativeFP(V.convertToDouble()); 1732 if (llvm_fenv_testexcept()) { 1733 llvm_fenv_clearexcept(); 1734 return nullptr; 1735 } 1736 1737 return GetConstantFoldFPValue(Result, Ty); 1738 } 1739 1740 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1741 const APFloat &V, const APFloat &W, Type *Ty) { 1742 llvm_fenv_clearexcept(); 1743 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1744 if (llvm_fenv_testexcept()) { 1745 llvm_fenv_clearexcept(); 1746 return nullptr; 1747 } 1748 1749 return GetConstantFoldFPValue(Result, Ty); 1750 } 1751 1752 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1753 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1754 if (!VT) 1755 return nullptr; 1756 1757 // This isn't strictly necessary, but handle the special/common case of zero: 1758 // all integer reductions of a zero input produce zero. 1759 if (isa<ConstantAggregateZero>(Op)) 1760 return ConstantInt::get(VT->getElementType(), 0); 1761 1762 // This is the same as the underlying binops - poison propagates. 1763 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1764 return PoisonValue::get(VT->getElementType()); 1765 1766 // TODO: Handle undef. 1767 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1768 return nullptr; 1769 1770 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1771 if (!EltC) 1772 return nullptr; 1773 1774 APInt Acc = EltC->getValue(); 1775 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1776 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1777 return nullptr; 1778 const APInt &X = EltC->getValue(); 1779 switch (IID) { 1780 case Intrinsic::vector_reduce_add: 1781 Acc = Acc + X; 1782 break; 1783 case Intrinsic::vector_reduce_mul: 1784 Acc = Acc * X; 1785 break; 1786 case Intrinsic::vector_reduce_and: 1787 Acc = Acc & X; 1788 break; 1789 case Intrinsic::vector_reduce_or: 1790 Acc = Acc | X; 1791 break; 1792 case Intrinsic::vector_reduce_xor: 1793 Acc = Acc ^ X; 1794 break; 1795 case Intrinsic::vector_reduce_smin: 1796 Acc = APIntOps::smin(Acc, X); 1797 break; 1798 case Intrinsic::vector_reduce_smax: 1799 Acc = APIntOps::smax(Acc, X); 1800 break; 1801 case Intrinsic::vector_reduce_umin: 1802 Acc = APIntOps::umin(Acc, X); 1803 break; 1804 case Intrinsic::vector_reduce_umax: 1805 Acc = APIntOps::umax(Acc, X); 1806 break; 1807 } 1808 } 1809 1810 return ConstantInt::get(Op->getContext(), Acc); 1811 } 1812 1813 /// Attempt to fold an SSE floating point to integer conversion of a constant 1814 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1815 /// used (toward nearest, ties to even). This matches the behavior of the 1816 /// non-truncating SSE instructions in the default rounding mode. The desired 1817 /// integer type Ty is used to select how many bits are available for the 1818 /// result. Returns null if the conversion cannot be performed, otherwise 1819 /// returns the Constant value resulting from the conversion. 1820 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1821 Type *Ty, bool IsSigned) { 1822 // All of these conversion intrinsics form an integer of at most 64bits. 1823 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1824 assert(ResultWidth <= 64 && 1825 "Can only constant fold conversions to 64 and 32 bit ints"); 1826 1827 uint64_t UIntVal; 1828 bool isExact = false; 1829 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1830 : APFloat::rmNearestTiesToEven; 1831 APFloat::opStatus status = 1832 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1833 IsSigned, mode, &isExact); 1834 if (status != APFloat::opOK && 1835 (!roundTowardZero || status != APFloat::opInexact)) 1836 return nullptr; 1837 return ConstantInt::get(Ty, UIntVal, IsSigned); 1838 } 1839 1840 double getValueAsDouble(ConstantFP *Op) { 1841 Type *Ty = Op->getType(); 1842 1843 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1844 return Op->getValueAPF().convertToDouble(); 1845 1846 bool unused; 1847 APFloat APF = Op->getValueAPF(); 1848 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1849 return APF.convertToDouble(); 1850 } 1851 1852 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1853 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1854 C = &CI->getValue(); 1855 return true; 1856 } 1857 if (isa<UndefValue>(Op)) { 1858 C = nullptr; 1859 return true; 1860 } 1861 return false; 1862 } 1863 1864 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1865 /// to be folded. 1866 /// 1867 /// \param CI Constrained intrinsic call. 1868 /// \param St Exception flags raised during constant evaluation. 1869 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1870 APFloat::opStatus St) { 1871 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1872 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1873 1874 // If the operation does not change exception status flags, it is safe 1875 // to fold. 1876 if (St == APFloat::opStatus::opOK) { 1877 // When FP exceptions are not ignored, intrinsic call will not be 1878 // eliminated, because it is considered as having side effect. But we 1879 // know that its evaluation does not raise exceptions, so side effect 1880 // is absent. To allow removing the call, mark it as not accessing memory. 1881 if (EB && *EB != fp::ExceptionBehavior::ebIgnore) 1882 CI->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); 1883 return true; 1884 } 1885 1886 // If evaluation raised FP exception, the result can depend on rounding 1887 // mode. If the latter is unknown, folding is not possible. 1888 if (!ORM || *ORM == RoundingMode::Dynamic) 1889 return false; 1890 1891 // If FP exceptions are ignored, fold the call, even if such exception is 1892 // raised. 1893 if (!EB || *EB != fp::ExceptionBehavior::ebStrict) 1894 return true; 1895 1896 // Leave the calculation for runtime so that exception flags be correctly set 1897 // in hardware. 1898 return false; 1899 } 1900 1901 /// Returns the rounding mode that should be used for constant evaluation. 1902 static RoundingMode 1903 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1904 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1905 if (!ORM || *ORM == RoundingMode::Dynamic) 1906 // Even if the rounding mode is unknown, try evaluating the operation. 1907 // If it does not raise inexact exception, rounding was not applied, 1908 // so the result is exact and does not depend on rounding mode. Whether 1909 // other FP exceptions are raised, it does not depend on rounding mode. 1910 return RoundingMode::NearestTiesToEven; 1911 return *ORM; 1912 } 1913 1914 static Constant *ConstantFoldScalarCall1(StringRef Name, 1915 Intrinsic::ID IntrinsicID, 1916 Type *Ty, 1917 ArrayRef<Constant *> Operands, 1918 const TargetLibraryInfo *TLI, 1919 const CallBase *Call) { 1920 assert(Operands.size() == 1 && "Wrong number of operands."); 1921 1922 if (IntrinsicID == Intrinsic::is_constant) { 1923 // We know we have a "Constant" argument. But we want to only 1924 // return true for manifest constants, not those that depend on 1925 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1926 if (Operands[0]->isManifestConstant()) 1927 return ConstantInt::getTrue(Ty->getContext()); 1928 return nullptr; 1929 } 1930 if (isa<UndefValue>(Operands[0])) { 1931 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1932 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1933 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 1934 if (IntrinsicID == Intrinsic::cos || 1935 IntrinsicID == Intrinsic::ctpop || 1936 IntrinsicID == Intrinsic::fptoui_sat || 1937 IntrinsicID == Intrinsic::fptosi_sat) 1938 return Constant::getNullValue(Ty); 1939 if (IntrinsicID == Intrinsic::bswap || 1940 IntrinsicID == Intrinsic::bitreverse || 1941 IntrinsicID == Intrinsic::launder_invariant_group || 1942 IntrinsicID == Intrinsic::strip_invariant_group) 1943 return Operands[0]; 1944 } 1945 1946 if (isa<ConstantPointerNull>(Operands[0])) { 1947 // launder(null) == null == strip(null) iff in addrspace 0 1948 if (IntrinsicID == Intrinsic::launder_invariant_group || 1949 IntrinsicID == Intrinsic::strip_invariant_group) { 1950 // If instruction is not yet put in a basic block (e.g. when cloning 1951 // a function during inlining), Call's caller may not be available. 1952 // So check Call's BB first before querying Call->getCaller. 1953 const Function *Caller = 1954 Call->getParent() ? Call->getCaller() : nullptr; 1955 if (Caller && 1956 !NullPointerIsDefined( 1957 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1958 return Operands[0]; 1959 } 1960 return nullptr; 1961 } 1962 } 1963 1964 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1965 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1966 APFloat Val(Op->getValueAPF()); 1967 1968 bool lost = false; 1969 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1970 1971 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1972 } 1973 1974 APFloat U = Op->getValueAPF(); 1975 1976 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 1977 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 1978 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 1979 1980 if (U.isNaN()) 1981 return nullptr; 1982 1983 unsigned Width = Ty->getIntegerBitWidth(); 1984 APSInt Int(Width, !Signed); 1985 bool IsExact = false; 1986 APFloat::opStatus Status = 1987 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1988 1989 if (Status == APFloat::opOK || Status == APFloat::opInexact) 1990 return ConstantInt::get(Ty, Int); 1991 1992 return nullptr; 1993 } 1994 1995 if (IntrinsicID == Intrinsic::fptoui_sat || 1996 IntrinsicID == Intrinsic::fptosi_sat) { 1997 // convertToInteger() already has the desired saturation semantics. 1998 APSInt Int(Ty->getIntegerBitWidth(), 1999 IntrinsicID == Intrinsic::fptoui_sat); 2000 bool IsExact; 2001 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2002 return ConstantInt::get(Ty, Int); 2003 } 2004 2005 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2006 return nullptr; 2007 2008 // Use internal versions of these intrinsics. 2009 2010 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 2011 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2012 return ConstantFP::get(Ty->getContext(), U); 2013 } 2014 2015 if (IntrinsicID == Intrinsic::round) { 2016 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2017 return ConstantFP::get(Ty->getContext(), U); 2018 } 2019 2020 if (IntrinsicID == Intrinsic::roundeven) { 2021 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2022 return ConstantFP::get(Ty->getContext(), U); 2023 } 2024 2025 if (IntrinsicID == Intrinsic::ceil) { 2026 U.roundToIntegral(APFloat::rmTowardPositive); 2027 return ConstantFP::get(Ty->getContext(), U); 2028 } 2029 2030 if (IntrinsicID == Intrinsic::floor) { 2031 U.roundToIntegral(APFloat::rmTowardNegative); 2032 return ConstantFP::get(Ty->getContext(), U); 2033 } 2034 2035 if (IntrinsicID == Intrinsic::trunc) { 2036 U.roundToIntegral(APFloat::rmTowardZero); 2037 return ConstantFP::get(Ty->getContext(), U); 2038 } 2039 2040 if (IntrinsicID == Intrinsic::fabs) { 2041 U.clearSign(); 2042 return ConstantFP::get(Ty->getContext(), U); 2043 } 2044 2045 if (IntrinsicID == Intrinsic::amdgcn_fract) { 2046 // The v_fract instruction behaves like the OpenCL spec, which defines 2047 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 2048 // there to prevent fract(-small) from returning 1.0. It returns the 2049 // largest positive floating-point number less than 1.0." 2050 APFloat FloorU(U); 2051 FloorU.roundToIntegral(APFloat::rmTowardNegative); 2052 APFloat FractU(U - FloorU); 2053 APFloat AlmostOne(U.getSemantics(), 1); 2054 AlmostOne.next(/*nextDown*/ true); 2055 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 2056 } 2057 2058 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 2059 // raise FP exceptions, unless the argument is signaling NaN. 2060 2061 Optional<APFloat::roundingMode> RM; 2062 switch (IntrinsicID) { 2063 default: 2064 break; 2065 case Intrinsic::experimental_constrained_nearbyint: 2066 case Intrinsic::experimental_constrained_rint: { 2067 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2068 RM = CI->getRoundingMode(); 2069 if (!RM || RM.getValue() == RoundingMode::Dynamic) 2070 return nullptr; 2071 break; 2072 } 2073 case Intrinsic::experimental_constrained_round: 2074 RM = APFloat::rmNearestTiesToAway; 2075 break; 2076 case Intrinsic::experimental_constrained_ceil: 2077 RM = APFloat::rmTowardPositive; 2078 break; 2079 case Intrinsic::experimental_constrained_floor: 2080 RM = APFloat::rmTowardNegative; 2081 break; 2082 case Intrinsic::experimental_constrained_trunc: 2083 RM = APFloat::rmTowardZero; 2084 break; 2085 } 2086 if (RM) { 2087 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2088 if (U.isFinite()) { 2089 APFloat::opStatus St = U.roundToIntegral(*RM); 2090 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2091 St == APFloat::opInexact) { 2092 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2093 if (EB && *EB == fp::ebStrict) 2094 return nullptr; 2095 } 2096 } else if (U.isSignaling()) { 2097 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2098 if (EB && *EB != fp::ebIgnore) 2099 return nullptr; 2100 U = APFloat::getQNaN(U.getSemantics()); 2101 } 2102 return ConstantFP::get(Ty->getContext(), U); 2103 } 2104 2105 /// We only fold functions with finite arguments. Folding NaN and inf is 2106 /// likely to be aborted with an exception anyway, and some host libms 2107 /// have known errors raising exceptions. 2108 if (!U.isFinite()) 2109 return nullptr; 2110 2111 /// Currently APFloat versions of these functions do not exist, so we use 2112 /// the host native double versions. Float versions are not called 2113 /// directly but for all these it is true (float)(f((double)arg)) == 2114 /// f(arg). Long double not supported yet. 2115 APFloat APF = Op->getValueAPF(); 2116 2117 switch (IntrinsicID) { 2118 default: break; 2119 case Intrinsic::log: 2120 return ConstantFoldFP(log, APF, Ty); 2121 case Intrinsic::log2: 2122 // TODO: What about hosts that lack a C99 library? 2123 return ConstantFoldFP(Log2, APF, Ty); 2124 case Intrinsic::log10: 2125 // TODO: What about hosts that lack a C99 library? 2126 return ConstantFoldFP(log10, APF, Ty); 2127 case Intrinsic::exp: 2128 return ConstantFoldFP(exp, APF, Ty); 2129 case Intrinsic::exp2: 2130 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2131 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2132 case Intrinsic::sin: 2133 return ConstantFoldFP(sin, APF, Ty); 2134 case Intrinsic::cos: 2135 return ConstantFoldFP(cos, APF, Ty); 2136 case Intrinsic::sqrt: 2137 return ConstantFoldFP(sqrt, APF, Ty); 2138 case Intrinsic::amdgcn_cos: 2139 case Intrinsic::amdgcn_sin: { 2140 double V = getValueAsDouble(Op); 2141 if (V < -256.0 || V > 256.0) 2142 // The gfx8 and gfx9 architectures handle arguments outside the range 2143 // [-256, 256] differently. This should be a rare case so bail out 2144 // rather than trying to handle the difference. 2145 return nullptr; 2146 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2147 double V4 = V * 4.0; 2148 if (V4 == floor(V4)) { 2149 // Force exact results for quarter-integer inputs. 2150 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2151 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2152 } else { 2153 if (IsCos) 2154 V = cos(V * 2.0 * numbers::pi); 2155 else 2156 V = sin(V * 2.0 * numbers::pi); 2157 } 2158 return GetConstantFoldFPValue(V, Ty); 2159 } 2160 } 2161 2162 if (!TLI) 2163 return nullptr; 2164 2165 LibFunc Func = NotLibFunc; 2166 TLI->getLibFunc(Name, Func); 2167 switch (Func) { 2168 default: 2169 break; 2170 case LibFunc_acos: 2171 case LibFunc_acosf: 2172 case LibFunc_acos_finite: 2173 case LibFunc_acosf_finite: 2174 if (TLI->has(Func)) 2175 return ConstantFoldFP(acos, APF, Ty); 2176 break; 2177 case LibFunc_asin: 2178 case LibFunc_asinf: 2179 case LibFunc_asin_finite: 2180 case LibFunc_asinf_finite: 2181 if (TLI->has(Func)) 2182 return ConstantFoldFP(asin, APF, Ty); 2183 break; 2184 case LibFunc_atan: 2185 case LibFunc_atanf: 2186 if (TLI->has(Func)) 2187 return ConstantFoldFP(atan, APF, Ty); 2188 break; 2189 case LibFunc_ceil: 2190 case LibFunc_ceilf: 2191 if (TLI->has(Func)) { 2192 U.roundToIntegral(APFloat::rmTowardPositive); 2193 return ConstantFP::get(Ty->getContext(), U); 2194 } 2195 break; 2196 case LibFunc_cos: 2197 case LibFunc_cosf: 2198 if (TLI->has(Func)) 2199 return ConstantFoldFP(cos, APF, Ty); 2200 break; 2201 case LibFunc_cosh: 2202 case LibFunc_coshf: 2203 case LibFunc_cosh_finite: 2204 case LibFunc_coshf_finite: 2205 if (TLI->has(Func)) 2206 return ConstantFoldFP(cosh, APF, Ty); 2207 break; 2208 case LibFunc_exp: 2209 case LibFunc_expf: 2210 case LibFunc_exp_finite: 2211 case LibFunc_expf_finite: 2212 if (TLI->has(Func)) 2213 return ConstantFoldFP(exp, APF, Ty); 2214 break; 2215 case LibFunc_exp2: 2216 case LibFunc_exp2f: 2217 case LibFunc_exp2_finite: 2218 case LibFunc_exp2f_finite: 2219 if (TLI->has(Func)) 2220 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2221 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2222 break; 2223 case LibFunc_fabs: 2224 case LibFunc_fabsf: 2225 if (TLI->has(Func)) { 2226 U.clearSign(); 2227 return ConstantFP::get(Ty->getContext(), U); 2228 } 2229 break; 2230 case LibFunc_floor: 2231 case LibFunc_floorf: 2232 if (TLI->has(Func)) { 2233 U.roundToIntegral(APFloat::rmTowardNegative); 2234 return ConstantFP::get(Ty->getContext(), U); 2235 } 2236 break; 2237 case LibFunc_log: 2238 case LibFunc_logf: 2239 case LibFunc_log_finite: 2240 case LibFunc_logf_finite: 2241 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2242 return ConstantFoldFP(log, APF, Ty); 2243 break; 2244 case LibFunc_log2: 2245 case LibFunc_log2f: 2246 case LibFunc_log2_finite: 2247 case LibFunc_log2f_finite: 2248 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2249 // TODO: What about hosts that lack a C99 library? 2250 return ConstantFoldFP(Log2, APF, Ty); 2251 break; 2252 case LibFunc_log10: 2253 case LibFunc_log10f: 2254 case LibFunc_log10_finite: 2255 case LibFunc_log10f_finite: 2256 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2257 // TODO: What about hosts that lack a C99 library? 2258 return ConstantFoldFP(log10, APF, Ty); 2259 break; 2260 case LibFunc_nearbyint: 2261 case LibFunc_nearbyintf: 2262 case LibFunc_rint: 2263 case LibFunc_rintf: 2264 if (TLI->has(Func)) { 2265 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2266 return ConstantFP::get(Ty->getContext(), U); 2267 } 2268 break; 2269 case LibFunc_round: 2270 case LibFunc_roundf: 2271 if (TLI->has(Func)) { 2272 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2273 return ConstantFP::get(Ty->getContext(), U); 2274 } 2275 break; 2276 case LibFunc_sin: 2277 case LibFunc_sinf: 2278 if (TLI->has(Func)) 2279 return ConstantFoldFP(sin, APF, Ty); 2280 break; 2281 case LibFunc_sinh: 2282 case LibFunc_sinhf: 2283 case LibFunc_sinh_finite: 2284 case LibFunc_sinhf_finite: 2285 if (TLI->has(Func)) 2286 return ConstantFoldFP(sinh, APF, Ty); 2287 break; 2288 case LibFunc_sqrt: 2289 case LibFunc_sqrtf: 2290 if (!APF.isNegative() && TLI->has(Func)) 2291 return ConstantFoldFP(sqrt, APF, Ty); 2292 break; 2293 case LibFunc_tan: 2294 case LibFunc_tanf: 2295 if (TLI->has(Func)) 2296 return ConstantFoldFP(tan, APF, Ty); 2297 break; 2298 case LibFunc_tanh: 2299 case LibFunc_tanhf: 2300 if (TLI->has(Func)) 2301 return ConstantFoldFP(tanh, APF, Ty); 2302 break; 2303 case LibFunc_trunc: 2304 case LibFunc_truncf: 2305 if (TLI->has(Func)) { 2306 U.roundToIntegral(APFloat::rmTowardZero); 2307 return ConstantFP::get(Ty->getContext(), U); 2308 } 2309 break; 2310 } 2311 return nullptr; 2312 } 2313 2314 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2315 switch (IntrinsicID) { 2316 case Intrinsic::bswap: 2317 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2318 case Intrinsic::ctpop: 2319 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2320 case Intrinsic::bitreverse: 2321 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2322 case Intrinsic::convert_from_fp16: { 2323 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2324 2325 bool lost = false; 2326 APFloat::opStatus status = Val.convert( 2327 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2328 2329 // Conversion is always precise. 2330 (void)status; 2331 assert(status == APFloat::opOK && !lost && 2332 "Precision lost during fp16 constfolding"); 2333 2334 return ConstantFP::get(Ty->getContext(), Val); 2335 } 2336 default: 2337 return nullptr; 2338 } 2339 } 2340 2341 switch (IntrinsicID) { 2342 default: break; 2343 case Intrinsic::vector_reduce_add: 2344 case Intrinsic::vector_reduce_mul: 2345 case Intrinsic::vector_reduce_and: 2346 case Intrinsic::vector_reduce_or: 2347 case Intrinsic::vector_reduce_xor: 2348 case Intrinsic::vector_reduce_smin: 2349 case Intrinsic::vector_reduce_smax: 2350 case Intrinsic::vector_reduce_umin: 2351 case Intrinsic::vector_reduce_umax: 2352 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2353 return C; 2354 break; 2355 } 2356 2357 // Support ConstantVector in case we have an Undef in the top. 2358 if (isa<ConstantVector>(Operands[0]) || 2359 isa<ConstantDataVector>(Operands[0])) { 2360 auto *Op = cast<Constant>(Operands[0]); 2361 switch (IntrinsicID) { 2362 default: break; 2363 case Intrinsic::x86_sse_cvtss2si: 2364 case Intrinsic::x86_sse_cvtss2si64: 2365 case Intrinsic::x86_sse2_cvtsd2si: 2366 case Intrinsic::x86_sse2_cvtsd2si64: 2367 if (ConstantFP *FPOp = 2368 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2369 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2370 /*roundTowardZero=*/false, Ty, 2371 /*IsSigned*/true); 2372 break; 2373 case Intrinsic::x86_sse_cvttss2si: 2374 case Intrinsic::x86_sse_cvttss2si64: 2375 case Intrinsic::x86_sse2_cvttsd2si: 2376 case Intrinsic::x86_sse2_cvttsd2si64: 2377 if (ConstantFP *FPOp = 2378 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2379 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2380 /*roundTowardZero=*/true, Ty, 2381 /*IsSigned*/true); 2382 break; 2383 } 2384 } 2385 2386 return nullptr; 2387 } 2388 2389 static Constant *ConstantFoldScalarCall2(StringRef Name, 2390 Intrinsic::ID IntrinsicID, 2391 Type *Ty, 2392 ArrayRef<Constant *> Operands, 2393 const TargetLibraryInfo *TLI, 2394 const CallBase *Call) { 2395 assert(Operands.size() == 2 && "Wrong number of operands."); 2396 2397 if (Ty->isFloatingPointTy()) { 2398 // TODO: We should have undef handling for all of the FP intrinsics that 2399 // are attempted to be folded in this function. 2400 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2401 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2402 switch (IntrinsicID) { 2403 case Intrinsic::maxnum: 2404 case Intrinsic::minnum: 2405 case Intrinsic::maximum: 2406 case Intrinsic::minimum: 2407 // If one argument is undef, return the other argument. 2408 if (IsOp0Undef) 2409 return Operands[1]; 2410 if (IsOp1Undef) 2411 return Operands[0]; 2412 break; 2413 } 2414 } 2415 2416 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2417 if (!Ty->isFloatingPointTy()) 2418 return nullptr; 2419 APFloat Op1V = Op1->getValueAPF(); 2420 2421 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2422 if (Op2->getType() != Op1->getType()) 2423 return nullptr; 2424 APFloat Op2V = Op2->getValueAPF(); 2425 2426 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2427 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2428 APFloat Res = Op1V; 2429 APFloat::opStatus St; 2430 switch (IntrinsicID) { 2431 default: 2432 return nullptr; 2433 case Intrinsic::experimental_constrained_fadd: 2434 St = Res.add(Op2V, RM); 2435 break; 2436 case Intrinsic::experimental_constrained_fsub: 2437 St = Res.subtract(Op2V, RM); 2438 break; 2439 case Intrinsic::experimental_constrained_fmul: 2440 St = Res.multiply(Op2V, RM); 2441 break; 2442 case Intrinsic::experimental_constrained_fdiv: 2443 St = Res.divide(Op2V, RM); 2444 break; 2445 case Intrinsic::experimental_constrained_frem: 2446 St = Res.mod(Op2V); 2447 break; 2448 } 2449 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2450 St)) 2451 return ConstantFP::get(Ty->getContext(), Res); 2452 return nullptr; 2453 } 2454 2455 switch (IntrinsicID) { 2456 default: 2457 break; 2458 case Intrinsic::copysign: 2459 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2460 case Intrinsic::minnum: 2461 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2462 case Intrinsic::maxnum: 2463 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2464 case Intrinsic::minimum: 2465 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2466 case Intrinsic::maximum: 2467 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2468 } 2469 2470 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2471 return nullptr; 2472 2473 switch (IntrinsicID) { 2474 default: 2475 break; 2476 case Intrinsic::pow: 2477 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2478 case Intrinsic::amdgcn_fmul_legacy: 2479 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2480 // NaN or infinity, gives +0.0. 2481 if (Op1V.isZero() || Op2V.isZero()) 2482 return ConstantFP::getNullValue(Ty); 2483 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2484 } 2485 2486 if (!TLI) 2487 return nullptr; 2488 2489 LibFunc Func = NotLibFunc; 2490 TLI->getLibFunc(Name, Func); 2491 switch (Func) { 2492 default: 2493 break; 2494 case LibFunc_pow: 2495 case LibFunc_powf: 2496 case LibFunc_pow_finite: 2497 case LibFunc_powf_finite: 2498 if (TLI->has(Func)) 2499 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2500 break; 2501 case LibFunc_fmod: 2502 case LibFunc_fmodf: 2503 if (TLI->has(Func)) { 2504 APFloat V = Op1->getValueAPF(); 2505 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2506 return ConstantFP::get(Ty->getContext(), V); 2507 } 2508 break; 2509 case LibFunc_remainder: 2510 case LibFunc_remainderf: 2511 if (TLI->has(Func)) { 2512 APFloat V = Op1->getValueAPF(); 2513 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2514 return ConstantFP::get(Ty->getContext(), V); 2515 } 2516 break; 2517 case LibFunc_atan2: 2518 case LibFunc_atan2f: 2519 case LibFunc_atan2_finite: 2520 case LibFunc_atan2f_finite: 2521 if (TLI->has(Func)) 2522 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2523 break; 2524 } 2525 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2526 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2527 return nullptr; 2528 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2529 return ConstantFP::get( 2530 Ty->getContext(), 2531 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2532 (int)Op2C->getZExtValue()))); 2533 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2534 return ConstantFP::get( 2535 Ty->getContext(), 2536 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2537 (int)Op2C->getZExtValue()))); 2538 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2539 return ConstantFP::get( 2540 Ty->getContext(), 2541 APFloat((double)std::pow(Op1V.convertToDouble(), 2542 (int)Op2C->getZExtValue()))); 2543 2544 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2545 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2546 // everywhere else. 2547 2548 // scalbn is equivalent to ldexp with float radix 2 2549 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2550 APFloat::rmNearestTiesToEven); 2551 return ConstantFP::get(Ty->getContext(), Result); 2552 } 2553 } 2554 return nullptr; 2555 } 2556 2557 if (Operands[0]->getType()->isIntegerTy() && 2558 Operands[1]->getType()->isIntegerTy()) { 2559 const APInt *C0, *C1; 2560 if (!getConstIntOrUndef(Operands[0], C0) || 2561 !getConstIntOrUndef(Operands[1], C1)) 2562 return nullptr; 2563 2564 unsigned BitWidth = Ty->getScalarSizeInBits(); 2565 switch (IntrinsicID) { 2566 default: break; 2567 case Intrinsic::smax: 2568 if (!C0 && !C1) 2569 return UndefValue::get(Ty); 2570 if (!C0 || !C1) 2571 return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); 2572 return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1); 2573 2574 case Intrinsic::smin: 2575 if (!C0 && !C1) 2576 return UndefValue::get(Ty); 2577 if (!C0 || !C1) 2578 return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)); 2579 return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1); 2580 2581 case Intrinsic::umax: 2582 if (!C0 && !C1) 2583 return UndefValue::get(Ty); 2584 if (!C0 || !C1) 2585 return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth)); 2586 return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1); 2587 2588 case Intrinsic::umin: 2589 if (!C0 && !C1) 2590 return UndefValue::get(Ty); 2591 if (!C0 || !C1) 2592 return ConstantInt::get(Ty, APInt::getMinValue(BitWidth)); 2593 return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1); 2594 2595 case Intrinsic::usub_with_overflow: 2596 case Intrinsic::ssub_with_overflow: 2597 // X - undef -> { 0, false } 2598 // undef - X -> { 0, false } 2599 if (!C0 || !C1) 2600 return Constant::getNullValue(Ty); 2601 LLVM_FALLTHROUGH; 2602 case Intrinsic::uadd_with_overflow: 2603 case Intrinsic::sadd_with_overflow: 2604 // X + undef -> { -1, false } 2605 // undef + x -> { -1, false } 2606 if (!C0 || !C1) { 2607 return ConstantStruct::get( 2608 cast<StructType>(Ty), 2609 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2610 Constant::getNullValue(Ty->getStructElementType(1))}); 2611 } 2612 LLVM_FALLTHROUGH; 2613 case Intrinsic::smul_with_overflow: 2614 case Intrinsic::umul_with_overflow: { 2615 // undef * X -> { 0, false } 2616 // X * undef -> { 0, false } 2617 if (!C0 || !C1) 2618 return Constant::getNullValue(Ty); 2619 2620 APInt Res; 2621 bool Overflow; 2622 switch (IntrinsicID) { 2623 default: llvm_unreachable("Invalid case"); 2624 case Intrinsic::sadd_with_overflow: 2625 Res = C0->sadd_ov(*C1, Overflow); 2626 break; 2627 case Intrinsic::uadd_with_overflow: 2628 Res = C0->uadd_ov(*C1, Overflow); 2629 break; 2630 case Intrinsic::ssub_with_overflow: 2631 Res = C0->ssub_ov(*C1, Overflow); 2632 break; 2633 case Intrinsic::usub_with_overflow: 2634 Res = C0->usub_ov(*C1, Overflow); 2635 break; 2636 case Intrinsic::smul_with_overflow: 2637 Res = C0->smul_ov(*C1, Overflow); 2638 break; 2639 case Intrinsic::umul_with_overflow: 2640 Res = C0->umul_ov(*C1, Overflow); 2641 break; 2642 } 2643 Constant *Ops[] = { 2644 ConstantInt::get(Ty->getContext(), Res), 2645 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2646 }; 2647 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2648 } 2649 case Intrinsic::uadd_sat: 2650 case Intrinsic::sadd_sat: 2651 if (!C0 && !C1) 2652 return UndefValue::get(Ty); 2653 if (!C0 || !C1) 2654 return Constant::getAllOnesValue(Ty); 2655 if (IntrinsicID == Intrinsic::uadd_sat) 2656 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2657 else 2658 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2659 case Intrinsic::usub_sat: 2660 case Intrinsic::ssub_sat: 2661 if (!C0 && !C1) 2662 return UndefValue::get(Ty); 2663 if (!C0 || !C1) 2664 return Constant::getNullValue(Ty); 2665 if (IntrinsicID == Intrinsic::usub_sat) 2666 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2667 else 2668 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2669 case Intrinsic::cttz: 2670 case Intrinsic::ctlz: 2671 assert(C1 && "Must be constant int"); 2672 2673 // cttz(0, 1) and ctlz(0, 1) are undef. 2674 if (C1->isOneValue() && (!C0 || C0->isNullValue())) 2675 return UndefValue::get(Ty); 2676 if (!C0) 2677 return Constant::getNullValue(Ty); 2678 if (IntrinsicID == Intrinsic::cttz) 2679 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2680 else 2681 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2682 2683 case Intrinsic::abs: 2684 // Undef or minimum val operand with poison min --> undef 2685 assert(C1 && "Must be constant int"); 2686 if (C1->isOneValue() && (!C0 || C0->isMinSignedValue())) 2687 return UndefValue::get(Ty); 2688 2689 // Undef operand with no poison min --> 0 (sign bit must be clear) 2690 if (C1->isNullValue() && !C0) 2691 return Constant::getNullValue(Ty); 2692 2693 return ConstantInt::get(Ty, C0->abs()); 2694 } 2695 2696 return nullptr; 2697 } 2698 2699 // Support ConstantVector in case we have an Undef in the top. 2700 if ((isa<ConstantVector>(Operands[0]) || 2701 isa<ConstantDataVector>(Operands[0])) && 2702 // Check for default rounding mode. 2703 // FIXME: Support other rounding modes? 2704 isa<ConstantInt>(Operands[1]) && 2705 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2706 auto *Op = cast<Constant>(Operands[0]); 2707 switch (IntrinsicID) { 2708 default: break; 2709 case Intrinsic::x86_avx512_vcvtss2si32: 2710 case Intrinsic::x86_avx512_vcvtss2si64: 2711 case Intrinsic::x86_avx512_vcvtsd2si32: 2712 case Intrinsic::x86_avx512_vcvtsd2si64: 2713 if (ConstantFP *FPOp = 2714 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2715 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2716 /*roundTowardZero=*/false, Ty, 2717 /*IsSigned*/true); 2718 break; 2719 case Intrinsic::x86_avx512_vcvtss2usi32: 2720 case Intrinsic::x86_avx512_vcvtss2usi64: 2721 case Intrinsic::x86_avx512_vcvtsd2usi32: 2722 case Intrinsic::x86_avx512_vcvtsd2usi64: 2723 if (ConstantFP *FPOp = 2724 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2725 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2726 /*roundTowardZero=*/false, Ty, 2727 /*IsSigned*/false); 2728 break; 2729 case Intrinsic::x86_avx512_cvttss2si: 2730 case Intrinsic::x86_avx512_cvttss2si64: 2731 case Intrinsic::x86_avx512_cvttsd2si: 2732 case Intrinsic::x86_avx512_cvttsd2si64: 2733 if (ConstantFP *FPOp = 2734 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2735 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2736 /*roundTowardZero=*/true, Ty, 2737 /*IsSigned*/true); 2738 break; 2739 case Intrinsic::x86_avx512_cvttss2usi: 2740 case Intrinsic::x86_avx512_cvttss2usi64: 2741 case Intrinsic::x86_avx512_cvttsd2usi: 2742 case Intrinsic::x86_avx512_cvttsd2usi64: 2743 if (ConstantFP *FPOp = 2744 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2745 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2746 /*roundTowardZero=*/true, Ty, 2747 /*IsSigned*/false); 2748 break; 2749 } 2750 } 2751 return nullptr; 2752 } 2753 2754 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2755 const APFloat &S0, 2756 const APFloat &S1, 2757 const APFloat &S2) { 2758 unsigned ID; 2759 const fltSemantics &Sem = S0.getSemantics(); 2760 APFloat MA(Sem), SC(Sem), TC(Sem); 2761 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2762 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2763 // S2 < 0 2764 ID = 5; 2765 SC = -S0; 2766 } else { 2767 ID = 4; 2768 SC = S0; 2769 } 2770 MA = S2; 2771 TC = -S1; 2772 } else if (abs(S1) >= abs(S0)) { 2773 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2774 // S1 < 0 2775 ID = 3; 2776 TC = -S2; 2777 } else { 2778 ID = 2; 2779 TC = S2; 2780 } 2781 MA = S1; 2782 SC = S0; 2783 } else { 2784 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2785 // S0 < 0 2786 ID = 1; 2787 SC = S2; 2788 } else { 2789 ID = 0; 2790 SC = -S2; 2791 } 2792 MA = S0; 2793 TC = -S1; 2794 } 2795 switch (IntrinsicID) { 2796 default: 2797 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2798 case Intrinsic::amdgcn_cubeid: 2799 return APFloat(Sem, ID); 2800 case Intrinsic::amdgcn_cubema: 2801 return MA + MA; 2802 case Intrinsic::amdgcn_cubesc: 2803 return SC; 2804 case Intrinsic::amdgcn_cubetc: 2805 return TC; 2806 } 2807 } 2808 2809 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 2810 Type *Ty) { 2811 const APInt *C0, *C1, *C2; 2812 if (!getConstIntOrUndef(Operands[0], C0) || 2813 !getConstIntOrUndef(Operands[1], C1) || 2814 !getConstIntOrUndef(Operands[2], C2)) 2815 return nullptr; 2816 2817 if (!C2) 2818 return UndefValue::get(Ty); 2819 2820 APInt Val(32, 0); 2821 unsigned NumUndefBytes = 0; 2822 for (unsigned I = 0; I < 32; I += 8) { 2823 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 2824 unsigned B = 0; 2825 2826 if (Sel >= 13) 2827 B = 0xff; 2828 else if (Sel == 12) 2829 B = 0x00; 2830 else { 2831 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 2832 if (!Src) 2833 ++NumUndefBytes; 2834 else if (Sel < 8) 2835 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 2836 else 2837 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 2838 } 2839 2840 Val.insertBits(B, I, 8); 2841 } 2842 2843 if (NumUndefBytes == 4) 2844 return UndefValue::get(Ty); 2845 2846 return ConstantInt::get(Ty, Val); 2847 } 2848 2849 static Constant *ConstantFoldScalarCall3(StringRef Name, 2850 Intrinsic::ID IntrinsicID, 2851 Type *Ty, 2852 ArrayRef<Constant *> Operands, 2853 const TargetLibraryInfo *TLI, 2854 const CallBase *Call) { 2855 assert(Operands.size() == 3 && "Wrong number of operands."); 2856 2857 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2858 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2859 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2860 const APFloat &C1 = Op1->getValueAPF(); 2861 const APFloat &C2 = Op2->getValueAPF(); 2862 const APFloat &C3 = Op3->getValueAPF(); 2863 2864 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2865 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2866 APFloat Res = C1; 2867 APFloat::opStatus St; 2868 switch (IntrinsicID) { 2869 default: 2870 return nullptr; 2871 case Intrinsic::experimental_constrained_fma: 2872 case Intrinsic::experimental_constrained_fmuladd: 2873 St = Res.fusedMultiplyAdd(C2, C3, RM); 2874 break; 2875 } 2876 if (mayFoldConstrained( 2877 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 2878 return ConstantFP::get(Ty->getContext(), Res); 2879 return nullptr; 2880 } 2881 2882 switch (IntrinsicID) { 2883 default: break; 2884 case Intrinsic::amdgcn_fma_legacy: { 2885 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2886 // NaN or infinity, gives +0.0. 2887 if (C1.isZero() || C2.isZero()) { 2888 // It's tempting to just return C3 here, but that would give the 2889 // wrong result if C3 was -0.0. 2890 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 2891 } 2892 LLVM_FALLTHROUGH; 2893 } 2894 case Intrinsic::fma: 2895 case Intrinsic::fmuladd: { 2896 APFloat V = C1; 2897 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 2898 return ConstantFP::get(Ty->getContext(), V); 2899 } 2900 case Intrinsic::amdgcn_cubeid: 2901 case Intrinsic::amdgcn_cubema: 2902 case Intrinsic::amdgcn_cubesc: 2903 case Intrinsic::amdgcn_cubetc: { 2904 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 2905 return ConstantFP::get(Ty->getContext(), V); 2906 } 2907 } 2908 } 2909 } 2910 } 2911 2912 if (IntrinsicID == Intrinsic::smul_fix || 2913 IntrinsicID == Intrinsic::smul_fix_sat) { 2914 // poison * C -> poison 2915 // C * poison -> poison 2916 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2917 return PoisonValue::get(Ty); 2918 2919 const APInt *C0, *C1; 2920 if (!getConstIntOrUndef(Operands[0], C0) || 2921 !getConstIntOrUndef(Operands[1], C1)) 2922 return nullptr; 2923 2924 // undef * C -> 0 2925 // C * undef -> 0 2926 if (!C0 || !C1) 2927 return Constant::getNullValue(Ty); 2928 2929 // This code performs rounding towards negative infinity in case the result 2930 // cannot be represented exactly for the given scale. Targets that do care 2931 // about rounding should use a target hook for specifying how rounding 2932 // should be done, and provide their own folding to be consistent with 2933 // rounding. This is the same approach as used by 2934 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2935 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 2936 unsigned Width = C0->getBitWidth(); 2937 assert(Scale < Width && "Illegal scale."); 2938 unsigned ExtendedWidth = Width * 2; 2939 APInt Product = (C0->sextOrSelf(ExtendedWidth) * 2940 C1->sextOrSelf(ExtendedWidth)).ashr(Scale); 2941 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2942 APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2943 APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2944 Product = APIntOps::smin(Product, Max); 2945 Product = APIntOps::smax(Product, Min); 2946 } 2947 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 2948 } 2949 2950 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2951 const APInt *C0, *C1, *C2; 2952 if (!getConstIntOrUndef(Operands[0], C0) || 2953 !getConstIntOrUndef(Operands[1], C1) || 2954 !getConstIntOrUndef(Operands[2], C2)) 2955 return nullptr; 2956 2957 bool IsRight = IntrinsicID == Intrinsic::fshr; 2958 if (!C2) 2959 return Operands[IsRight ? 1 : 0]; 2960 if (!C0 && !C1) 2961 return UndefValue::get(Ty); 2962 2963 // The shift amount is interpreted as modulo the bitwidth. If the shift 2964 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2965 unsigned BitWidth = C2->getBitWidth(); 2966 unsigned ShAmt = C2->urem(BitWidth); 2967 if (!ShAmt) 2968 return Operands[IsRight ? 1 : 0]; 2969 2970 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2971 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2972 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2973 if (!C0) 2974 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2975 if (!C1) 2976 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2977 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2978 } 2979 2980 if (IntrinsicID == Intrinsic::amdgcn_perm) 2981 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 2982 2983 return nullptr; 2984 } 2985 2986 static Constant *ConstantFoldScalarCall(StringRef Name, 2987 Intrinsic::ID IntrinsicID, 2988 Type *Ty, 2989 ArrayRef<Constant *> Operands, 2990 const TargetLibraryInfo *TLI, 2991 const CallBase *Call) { 2992 if (Operands.size() == 1) 2993 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2994 2995 if (Operands.size() == 2) 2996 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2997 2998 if (Operands.size() == 3) 2999 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 3000 3001 return nullptr; 3002 } 3003 3004 static Constant *ConstantFoldFixedVectorCall( 3005 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 3006 ArrayRef<Constant *> Operands, const DataLayout &DL, 3007 const TargetLibraryInfo *TLI, const CallBase *Call) { 3008 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 3009 SmallVector<Constant *, 4> Lane(Operands.size()); 3010 Type *Ty = FVTy->getElementType(); 3011 3012 switch (IntrinsicID) { 3013 case Intrinsic::masked_load: { 3014 auto *SrcPtr = Operands[0]; 3015 auto *Mask = Operands[2]; 3016 auto *Passthru = Operands[3]; 3017 3018 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 3019 3020 SmallVector<Constant *, 32> NewElements; 3021 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3022 auto *MaskElt = Mask->getAggregateElement(I); 3023 if (!MaskElt) 3024 break; 3025 auto *PassthruElt = Passthru->getAggregateElement(I); 3026 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 3027 if (isa<UndefValue>(MaskElt)) { 3028 if (PassthruElt) 3029 NewElements.push_back(PassthruElt); 3030 else if (VecElt) 3031 NewElements.push_back(VecElt); 3032 else 3033 return nullptr; 3034 } 3035 if (MaskElt->isNullValue()) { 3036 if (!PassthruElt) 3037 return nullptr; 3038 NewElements.push_back(PassthruElt); 3039 } else if (MaskElt->isOneValue()) { 3040 if (!VecElt) 3041 return nullptr; 3042 NewElements.push_back(VecElt); 3043 } else { 3044 return nullptr; 3045 } 3046 } 3047 if (NewElements.size() != FVTy->getNumElements()) 3048 return nullptr; 3049 return ConstantVector::get(NewElements); 3050 } 3051 case Intrinsic::arm_mve_vctp8: 3052 case Intrinsic::arm_mve_vctp16: 3053 case Intrinsic::arm_mve_vctp32: 3054 case Intrinsic::arm_mve_vctp64: { 3055 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 3056 unsigned Lanes = FVTy->getNumElements(); 3057 uint64_t Limit = Op->getZExtValue(); 3058 // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make 3059 // sure we get the limit right in that case and set all relevant lanes. 3060 if (IntrinsicID == Intrinsic::arm_mve_vctp64) 3061 Limit *= 2; 3062 3063 SmallVector<Constant *, 16> NCs; 3064 for (unsigned i = 0; i < Lanes; i++) { 3065 if (i < Limit) 3066 NCs.push_back(ConstantInt::getTrue(Ty)); 3067 else 3068 NCs.push_back(ConstantInt::getFalse(Ty)); 3069 } 3070 return ConstantVector::get(NCs); 3071 } 3072 break; 3073 } 3074 case Intrinsic::get_active_lane_mask: { 3075 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 3076 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 3077 if (Op0 && Op1) { 3078 unsigned Lanes = FVTy->getNumElements(); 3079 uint64_t Base = Op0->getZExtValue(); 3080 uint64_t Limit = Op1->getZExtValue(); 3081 3082 SmallVector<Constant *, 16> NCs; 3083 for (unsigned i = 0; i < Lanes; i++) { 3084 if (Base + i < Limit) 3085 NCs.push_back(ConstantInt::getTrue(Ty)); 3086 else 3087 NCs.push_back(ConstantInt::getFalse(Ty)); 3088 } 3089 return ConstantVector::get(NCs); 3090 } 3091 break; 3092 } 3093 default: 3094 break; 3095 } 3096 3097 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3098 // Gather a column of constants. 3099 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3100 // Some intrinsics use a scalar type for certain arguments. 3101 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 3102 Lane[J] = Operands[J]; 3103 continue; 3104 } 3105 3106 Constant *Agg = Operands[J]->getAggregateElement(I); 3107 if (!Agg) 3108 return nullptr; 3109 3110 Lane[J] = Agg; 3111 } 3112 3113 // Use the regular scalar folding to simplify this column. 3114 Constant *Folded = 3115 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3116 if (!Folded) 3117 return nullptr; 3118 Result[I] = Folded; 3119 } 3120 3121 return ConstantVector::get(Result); 3122 } 3123 3124 static Constant *ConstantFoldScalableVectorCall( 3125 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3126 ArrayRef<Constant *> Operands, const DataLayout &DL, 3127 const TargetLibraryInfo *TLI, const CallBase *Call) { 3128 switch (IntrinsicID) { 3129 case Intrinsic::aarch64_sve_convert_from_svbool: { 3130 auto *Src = dyn_cast<Constant>(Operands[0]); 3131 if (!Src || !Src->isNullValue()) 3132 break; 3133 3134 return ConstantInt::getFalse(SVTy); 3135 } 3136 default: 3137 break; 3138 } 3139 return nullptr; 3140 } 3141 3142 } // end anonymous namespace 3143 3144 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3145 ArrayRef<Constant *> Operands, 3146 const TargetLibraryInfo *TLI) { 3147 if (Call->isNoBuiltin()) 3148 return nullptr; 3149 if (!F->hasName()) 3150 return nullptr; 3151 3152 // If this is not an intrinsic and not recognized as a library call, bail out. 3153 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) { 3154 if (!TLI) 3155 return nullptr; 3156 LibFunc LibF; 3157 if (!TLI->getLibFunc(*F, LibF)) 3158 return nullptr; 3159 } 3160 3161 StringRef Name = F->getName(); 3162 Type *Ty = F->getReturnType(); 3163 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3164 return ConstantFoldFixedVectorCall( 3165 Name, F->getIntrinsicID(), FVTy, Operands, 3166 F->getParent()->getDataLayout(), TLI, Call); 3167 3168 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3169 return ConstantFoldScalableVectorCall( 3170 Name, F->getIntrinsicID(), SVTy, Operands, 3171 F->getParent()->getDataLayout(), TLI, Call); 3172 3173 // TODO: If this is a library function, we already discovered that above, 3174 // so we should pass the LibFunc, not the name (and it might be better 3175 // still to separate intrinsic handling from libcalls). 3176 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 3177 Call); 3178 } 3179 3180 bool llvm::isMathLibCallNoop(const CallBase *Call, 3181 const TargetLibraryInfo *TLI) { 3182 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3183 // (and to some extent ConstantFoldScalarCall). 3184 if (Call->isNoBuiltin() || Call->isStrictFP()) 3185 return false; 3186 Function *F = Call->getCalledFunction(); 3187 if (!F) 3188 return false; 3189 3190 LibFunc Func; 3191 if (!TLI || !TLI->getLibFunc(*F, Func)) 3192 return false; 3193 3194 if (Call->getNumArgOperands() == 1) { 3195 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3196 const APFloat &Op = OpC->getValueAPF(); 3197 switch (Func) { 3198 case LibFunc_logl: 3199 case LibFunc_log: 3200 case LibFunc_logf: 3201 case LibFunc_log2l: 3202 case LibFunc_log2: 3203 case LibFunc_log2f: 3204 case LibFunc_log10l: 3205 case LibFunc_log10: 3206 case LibFunc_log10f: 3207 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3208 3209 case LibFunc_expl: 3210 case LibFunc_exp: 3211 case LibFunc_expf: 3212 // FIXME: These boundaries are slightly conservative. 3213 if (OpC->getType()->isDoubleTy()) 3214 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3215 if (OpC->getType()->isFloatTy()) 3216 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3217 break; 3218 3219 case LibFunc_exp2l: 3220 case LibFunc_exp2: 3221 case LibFunc_exp2f: 3222 // FIXME: These boundaries are slightly conservative. 3223 if (OpC->getType()->isDoubleTy()) 3224 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3225 if (OpC->getType()->isFloatTy()) 3226 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3227 break; 3228 3229 case LibFunc_sinl: 3230 case LibFunc_sin: 3231 case LibFunc_sinf: 3232 case LibFunc_cosl: 3233 case LibFunc_cos: 3234 case LibFunc_cosf: 3235 return !Op.isInfinity(); 3236 3237 case LibFunc_tanl: 3238 case LibFunc_tan: 3239 case LibFunc_tanf: { 3240 // FIXME: Stop using the host math library. 3241 // FIXME: The computation isn't done in the right precision. 3242 Type *Ty = OpC->getType(); 3243 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3244 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3245 break; 3246 } 3247 3248 case LibFunc_asinl: 3249 case LibFunc_asin: 3250 case LibFunc_asinf: 3251 case LibFunc_acosl: 3252 case LibFunc_acos: 3253 case LibFunc_acosf: 3254 return !(Op < APFloat(Op.getSemantics(), "-1") || 3255 Op > APFloat(Op.getSemantics(), "1")); 3256 3257 case LibFunc_sinh: 3258 case LibFunc_cosh: 3259 case LibFunc_sinhf: 3260 case LibFunc_coshf: 3261 case LibFunc_sinhl: 3262 case LibFunc_coshl: 3263 // FIXME: These boundaries are slightly conservative. 3264 if (OpC->getType()->isDoubleTy()) 3265 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3266 if (OpC->getType()->isFloatTy()) 3267 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3268 break; 3269 3270 case LibFunc_sqrtl: 3271 case LibFunc_sqrt: 3272 case LibFunc_sqrtf: 3273 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3274 3275 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3276 // maybe others? 3277 default: 3278 break; 3279 } 3280 } 3281 } 3282 3283 if (Call->getNumArgOperands() == 2) { 3284 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3285 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3286 if (Op0C && Op1C) { 3287 const APFloat &Op0 = Op0C->getValueAPF(); 3288 const APFloat &Op1 = Op1C->getValueAPF(); 3289 3290 switch (Func) { 3291 case LibFunc_powl: 3292 case LibFunc_pow: 3293 case LibFunc_powf: { 3294 // FIXME: Stop using the host math library. 3295 // FIXME: The computation isn't done in the right precision. 3296 Type *Ty = Op0C->getType(); 3297 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3298 if (Ty == Op1C->getType()) 3299 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3300 } 3301 break; 3302 } 3303 3304 case LibFunc_fmodl: 3305 case LibFunc_fmod: 3306 case LibFunc_fmodf: 3307 case LibFunc_remainderl: 3308 case LibFunc_remainder: 3309 case LibFunc_remainderf: 3310 return Op0.isNaN() || Op1.isNaN() || 3311 (!Op0.isInfinity() && !Op1.isZero()); 3312 3313 default: 3314 break; 3315 } 3316 } 3317 } 3318 3319 return false; 3320 } 3321 3322 void TargetFolder::anchor() {} 3323