xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <cassert>
58 #include <cerrno>
59 #include <cfenv>
60 #include <cmath>
61 #include <cstdint>
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
70 
71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72                                         Constant *C, Type *SrcEltTy,
73                                         unsigned NumSrcElts,
74                                         const DataLayout &DL) {
75   // Now that we know that the input value is a vector of integers, just shift
76   // and insert them into our result.
77   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78   for (unsigned i = 0; i != NumSrcElts; ++i) {
79     Constant *Element;
80     if (DL.isLittleEndian())
81       Element = C->getAggregateElement(NumSrcElts - i - 1);
82     else
83       Element = C->getAggregateElement(i);
84 
85     if (Element && isa<UndefValue>(Element)) {
86       Result <<= BitShift;
87       continue;
88     }
89 
90     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91     if (!ElementCI)
92       return ConstantExpr::getBitCast(C, DestTy);
93 
94     Result <<= BitShift;
95     Result |= ElementCI->getValue().zext(Result.getBitWidth());
96   }
97 
98   return nullptr;
99 }
100 
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106          "Invalid constantexpr bitcast!");
107 
108   // Catch the obvious splat cases.
109   if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
110     return Res;
111 
112   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113     // Handle a vector->scalar integer/fp cast.
114     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116       Type *SrcEltTy = VTy->getElementType();
117 
118       // If the vector is a vector of floating point, convert it to vector of int
119       // to simplify things.
120       if (SrcEltTy->isFloatingPointTy()) {
121         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122         auto *SrcIVTy = FixedVectorType::get(
123             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124         // Ask IR to do the conversion now that #elts line up.
125         C = ConstantExpr::getBitCast(C, SrcIVTy);
126       }
127 
128       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130                                                 SrcEltTy, NumSrcElts, DL))
131         return CE;
132 
133       if (isa<IntegerType>(DestTy))
134         return ConstantInt::get(DestTy, Result);
135 
136       APFloat FP(DestTy->getFltSemantics(), Result);
137       return ConstantFP::get(DestTy->getContext(), FP);
138     }
139   }
140 
141   // The code below only handles casts to vectors currently.
142   auto *DestVTy = dyn_cast<VectorType>(DestTy);
143   if (!DestVTy)
144     return ConstantExpr::getBitCast(C, DestTy);
145 
146   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147   // vector so the code below can handle it uniformly.
148   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149     Constant *Ops = C; // don't take the address of C!
150     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
151   }
152 
153   // If this is a bitcast from constant vector -> vector, fold it.
154   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155     return ConstantExpr::getBitCast(C, DestTy);
156 
157   // If the element types match, IR can fold it.
158   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160   if (NumDstElt == NumSrcElt)
161     return ConstantExpr::getBitCast(C, DestTy);
162 
163   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164   Type *DstEltTy = DestVTy->getElementType();
165 
166   // Otherwise, we're changing the number of elements in a vector, which
167   // requires endianness information to do the right thing.  For example,
168   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169   // folds to (little endian):
170   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171   // and to (big endian):
172   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
173 
174   // First thing is first.  We only want to think about integer here, so if
175   // we have something in FP form, recast it as integer.
176   if (DstEltTy->isFloatingPointTy()) {
177     // Fold to an vector of integers with same size as our FP type.
178     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179     auto *DestIVTy = FixedVectorType::get(
180         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181     // Recursively handle this integer conversion, if possible.
182     C = FoldBitCast(C, DestIVTy, DL);
183 
184     // Finally, IR can handle this now that #elts line up.
185     return ConstantExpr::getBitCast(C, DestTy);
186   }
187 
188   // Okay, we know the destination is integer, if the input is FP, convert
189   // it to integer first.
190   if (SrcEltTy->isFloatingPointTy()) {
191     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192     auto *SrcIVTy = FixedVectorType::get(
193         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194     // Ask IR to do the conversion now that #elts line up.
195     C = ConstantExpr::getBitCast(C, SrcIVTy);
196     // If IR wasn't able to fold it, bail out.
197     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
198         !isa<ConstantDataVector>(C))
199       return C;
200   }
201 
202   // Now we know that the input and output vectors are both integer vectors
203   // of the same size, and that their #elements is not the same.  Do the
204   // conversion here, which depends on whether the input or output has
205   // more elements.
206   bool isLittleEndian = DL.isLittleEndian();
207 
208   SmallVector<Constant*, 32> Result;
209   if (NumDstElt < NumSrcElt) {
210     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211     Constant *Zero = Constant::getNullValue(DstEltTy);
212     unsigned Ratio = NumSrcElt/NumDstElt;
213     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214     unsigned SrcElt = 0;
215     for (unsigned i = 0; i != NumDstElt; ++i) {
216       // Build each element of the result.
217       Constant *Elt = Zero;
218       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219       for (unsigned j = 0; j != Ratio; ++j) {
220         Constant *Src = C->getAggregateElement(SrcElt++);
221         if (Src && isa<UndefValue>(Src))
222           Src = Constant::getNullValue(
223               cast<VectorType>(C->getType())->getElementType());
224         else
225           Src = dyn_cast_or_null<ConstantInt>(Src);
226         if (!Src)  // Reject constantexpr elements.
227           return ConstantExpr::getBitCast(C, DestTy);
228 
229         // Zero extend the element to the right size.
230         Src = ConstantExpr::getZExt(Src, Elt->getType());
231 
232         // Shift it to the right place, depending on endianness.
233         Src = ConstantExpr::getShl(Src,
234                                    ConstantInt::get(Src->getType(), ShiftAmt));
235         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
236 
237         // Mix it in.
238         Elt = ConstantExpr::getOr(Elt, Src);
239       }
240       Result.push_back(Elt);
241     }
242     return ConstantVector::get(Result);
243   }
244 
245   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
246   unsigned Ratio = NumDstElt/NumSrcElt;
247   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
248 
249   // Loop over each source value, expanding into multiple results.
250   for (unsigned i = 0; i != NumSrcElt; ++i) {
251     auto *Element = C->getAggregateElement(i);
252 
253     if (!Element) // Reject constantexpr elements.
254       return ConstantExpr::getBitCast(C, DestTy);
255 
256     if (isa<UndefValue>(Element)) {
257       // Correctly Propagate undef values.
258       Result.append(Ratio, UndefValue::get(DstEltTy));
259       continue;
260     }
261 
262     auto *Src = dyn_cast<ConstantInt>(Element);
263     if (!Src)
264       return ConstantExpr::getBitCast(C, DestTy);
265 
266     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
267     for (unsigned j = 0; j != Ratio; ++j) {
268       // Shift the piece of the value into the right place, depending on
269       // endianness.
270       Constant *Elt = ConstantExpr::getLShr(Src,
271                                   ConstantInt::get(Src->getType(), ShiftAmt));
272       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
273 
274       // Truncate the element to an integer with the same pointer size and
275       // convert the element back to a pointer using a inttoptr.
276       if (DstEltTy->isPointerTy()) {
277         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
278         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
279         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
280         continue;
281       }
282 
283       // Truncate and remember this piece.
284       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
285     }
286   }
287 
288   return ConstantVector::get(Result);
289 }
290 
291 } // end anonymous namespace
292 
293 /// If this constant is a constant offset from a global, return the global and
294 /// the constant. Because of constantexprs, this function is recursive.
295 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
296                                       APInt &Offset, const DataLayout &DL,
297                                       DSOLocalEquivalent **DSOEquiv) {
298   if (DSOEquiv)
299     *DSOEquiv = nullptr;
300 
301   // Trivial case, constant is the global.
302   if ((GV = dyn_cast<GlobalValue>(C))) {
303     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
304     Offset = APInt(BitWidth, 0);
305     return true;
306   }
307 
308   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
309     if (DSOEquiv)
310       *DSOEquiv = FoundDSOEquiv;
311     GV = FoundDSOEquiv->getGlobalValue();
312     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313     Offset = APInt(BitWidth, 0);
314     return true;
315   }
316 
317   // Otherwise, if this isn't a constant expr, bail out.
318   auto *CE = dyn_cast<ConstantExpr>(C);
319   if (!CE) return false;
320 
321   // Look through ptr->int and ptr->ptr casts.
322   if (CE->getOpcode() == Instruction::PtrToInt ||
323       CE->getOpcode() == Instruction::BitCast)
324     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
325                                       DSOEquiv);
326 
327   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
328   auto *GEP = dyn_cast<GEPOperator>(CE);
329   if (!GEP)
330     return false;
331 
332   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
333   APInt TmpOffset(BitWidth, 0);
334 
335   // If the base isn't a global+constant, we aren't either.
336   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
337                                   DSOEquiv))
338     return false;
339 
340   // Otherwise, add any offset that our operands provide.
341   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
342     return false;
343 
344   Offset = TmpOffset;
345   return true;
346 }
347 
348 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
349                                          const DataLayout &DL) {
350   do {
351     Type *SrcTy = C->getType();
352     if (SrcTy == DestTy)
353       return C;
354 
355     TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
356     TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
357     if (!TypeSize::isKnownGE(SrcSize, DestSize))
358       return nullptr;
359 
360     // Catch the obvious splat cases (since all-zeros can coerce non-integral
361     // pointers legally).
362     if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
363       return Res;
364 
365     // If the type sizes are the same and a cast is legal, just directly
366     // cast the constant.
367     // But be careful not to coerce non-integral pointers illegally.
368     if (SrcSize == DestSize &&
369         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
370             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
371       Instruction::CastOps Cast = Instruction::BitCast;
372       // If we are going from a pointer to int or vice versa, we spell the cast
373       // differently.
374       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
375         Cast = Instruction::IntToPtr;
376       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
377         Cast = Instruction::PtrToInt;
378 
379       if (CastInst::castIsValid(Cast, C, DestTy))
380         return ConstantExpr::getCast(Cast, C, DestTy);
381     }
382 
383     // If this isn't an aggregate type, there is nothing we can do to drill down
384     // and find a bitcastable constant.
385     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
386       return nullptr;
387 
388     // We're simulating a load through a pointer that was bitcast to point to
389     // a different type, so we can try to walk down through the initial
390     // elements of an aggregate to see if some part of the aggregate is
391     // castable to implement the "load" semantic model.
392     if (SrcTy->isStructTy()) {
393       // Struct types might have leading zero-length elements like [0 x i32],
394       // which are certainly not what we are looking for, so skip them.
395       unsigned Elem = 0;
396       Constant *ElemC;
397       do {
398         ElemC = C->getAggregateElement(Elem++);
399       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
400       C = ElemC;
401     } else {
402       // For non-byte-sized vector elements, the first element is not
403       // necessarily located at the vector base address.
404       if (auto *VT = dyn_cast<VectorType>(SrcTy))
405         if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
406           return nullptr;
407 
408       C = C->getAggregateElement(0u);
409     }
410   } while (C);
411 
412   return nullptr;
413 }
414 
415 namespace {
416 
417 /// Recursive helper to read bits out of global. C is the constant being copied
418 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
419 /// results into and BytesLeft is the number of bytes left in
420 /// the CurPtr buffer. DL is the DataLayout.
421 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
422                         unsigned BytesLeft, const DataLayout &DL) {
423   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
424          "Out of range access");
425 
426   // If this element is zero or undefined, we can just return since *CurPtr is
427   // zero initialized.
428   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
429     return true;
430 
431   if (auto *CI = dyn_cast<ConstantInt>(C)) {
432     if (CI->getBitWidth() > 64 ||
433         (CI->getBitWidth() & 7) != 0)
434       return false;
435 
436     uint64_t Val = CI->getZExtValue();
437     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
438 
439     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
440       int n = ByteOffset;
441       if (!DL.isLittleEndian())
442         n = IntBytes - n - 1;
443       CurPtr[i] = (unsigned char)(Val >> (n * 8));
444       ++ByteOffset;
445     }
446     return true;
447   }
448 
449   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
450     if (CFP->getType()->isDoubleTy()) {
451       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
452       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
453     }
454     if (CFP->getType()->isFloatTy()){
455       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
456       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
457     }
458     if (CFP->getType()->isHalfTy()){
459       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
460       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
461     }
462     return false;
463   }
464 
465   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
466     const StructLayout *SL = DL.getStructLayout(CS->getType());
467     unsigned Index = SL->getElementContainingOffset(ByteOffset);
468     uint64_t CurEltOffset = SL->getElementOffset(Index);
469     ByteOffset -= CurEltOffset;
470 
471     while (true) {
472       // If the element access is to the element itself and not to tail padding,
473       // read the bytes from the element.
474       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
475 
476       if (ByteOffset < EltSize &&
477           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
478                               BytesLeft, DL))
479         return false;
480 
481       ++Index;
482 
483       // Check to see if we read from the last struct element, if so we're done.
484       if (Index == CS->getType()->getNumElements())
485         return true;
486 
487       // If we read all of the bytes we needed from this element we're done.
488       uint64_t NextEltOffset = SL->getElementOffset(Index);
489 
490       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
491         return true;
492 
493       // Move to the next element of the struct.
494       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
495       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
496       ByteOffset = 0;
497       CurEltOffset = NextEltOffset;
498     }
499     // not reached.
500   }
501 
502   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
503       isa<ConstantDataSequential>(C)) {
504     uint64_t NumElts;
505     Type *EltTy;
506     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
507       NumElts = AT->getNumElements();
508       EltTy = AT->getElementType();
509     } else {
510       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
511       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
512     }
513     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
514     uint64_t Index = ByteOffset / EltSize;
515     uint64_t Offset = ByteOffset - Index * EltSize;
516 
517     for (; Index != NumElts; ++Index) {
518       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
519                               BytesLeft, DL))
520         return false;
521 
522       uint64_t BytesWritten = EltSize - Offset;
523       assert(BytesWritten <= EltSize && "Not indexing into this element?");
524       if (BytesWritten >= BytesLeft)
525         return true;
526 
527       Offset = 0;
528       BytesLeft -= BytesWritten;
529       CurPtr += BytesWritten;
530     }
531     return true;
532   }
533 
534   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
535     if (CE->getOpcode() == Instruction::IntToPtr &&
536         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
537       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
538                                 BytesLeft, DL);
539     }
540   }
541 
542   // Otherwise, unknown initializer type.
543   return false;
544 }
545 
546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
547                                        int64_t Offset, const DataLayout &DL) {
548   // Bail out early. Not expect to load from scalable global variable.
549   if (isa<ScalableVectorType>(LoadTy))
550     return nullptr;
551 
552   auto *IntType = dyn_cast<IntegerType>(LoadTy);
553 
554   // If this isn't an integer load we can't fold it directly.
555   if (!IntType) {
556     // If this is a non-integer load, we can try folding it as an int load and
557     // then bitcast the result.  This can be useful for union cases.  Note
558     // that address spaces don't matter here since we're not going to result in
559     // an actual new load.
560     if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
561         !LoadTy->isVectorTy())
562       return nullptr;
563 
564     Type *MapTy = Type::getIntNTy(
565           C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
566     if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
567       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
568           !LoadTy->isX86_AMXTy())
569         // Materializing a zero can be done trivially without a bitcast
570         return Constant::getNullValue(LoadTy);
571       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
572       Res = FoldBitCast(Res, CastTy, DL);
573       if (LoadTy->isPtrOrPtrVectorTy()) {
574         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
575         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
576             !LoadTy->isX86_AMXTy())
577           return Constant::getNullValue(LoadTy);
578         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
579           // Be careful not to replace a load of an addrspace value with an inttoptr here
580           return nullptr;
581         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
582       }
583       return Res;
584     }
585     return nullptr;
586   }
587 
588   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
589   if (BytesLoaded > 32 || BytesLoaded == 0)
590     return nullptr;
591 
592   // If we're not accessing anything in this constant, the result is undefined.
593   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
594     return UndefValue::get(IntType);
595 
596   // TODO: We should be able to support scalable types.
597   TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
598   if (InitializerSize.isScalable())
599     return nullptr;
600 
601   // If we're not accessing anything in this constant, the result is undefined.
602   if (Offset >= (int64_t)InitializerSize.getFixedValue())
603     return UndefValue::get(IntType);
604 
605   unsigned char RawBytes[32] = {0};
606   unsigned char *CurPtr = RawBytes;
607   unsigned BytesLeft = BytesLoaded;
608 
609   // If we're loading off the beginning of the global, some bytes may be valid.
610   if (Offset < 0) {
611     CurPtr += -Offset;
612     BytesLeft += Offset;
613     Offset = 0;
614   }
615 
616   if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
617     return nullptr;
618 
619   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
620   if (DL.isLittleEndian()) {
621     ResultVal = RawBytes[BytesLoaded - 1];
622     for (unsigned i = 1; i != BytesLoaded; ++i) {
623       ResultVal <<= 8;
624       ResultVal |= RawBytes[BytesLoaded - 1 - i];
625     }
626   } else {
627     ResultVal = RawBytes[0];
628     for (unsigned i = 1; i != BytesLoaded; ++i) {
629       ResultVal <<= 8;
630       ResultVal |= RawBytes[i];
631     }
632   }
633 
634   return ConstantInt::get(IntType->getContext(), ResultVal);
635 }
636 
637 } // anonymous namespace
638 
639 // If GV is a constant with an initializer read its representation starting
640 // at Offset and return it as a constant array of unsigned char.  Otherwise
641 // return null.
642 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
643                                         uint64_t Offset) {
644   if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
645     return nullptr;
646 
647   const DataLayout &DL = GV->getParent()->getDataLayout();
648   Constant *Init = const_cast<Constant *>(GV->getInitializer());
649   TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
650   if (InitSize < Offset)
651     return nullptr;
652 
653   uint64_t NBytes = InitSize - Offset;
654   if (NBytes > UINT16_MAX)
655     // Bail for large initializers in excess of 64K to avoid allocating
656     // too much memory.
657     // Offset is assumed to be less than or equal than InitSize (this
658     // is enforced in ReadDataFromGlobal).
659     return nullptr;
660 
661   SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
662   unsigned char *CurPtr = RawBytes.data();
663 
664   if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
665     return nullptr;
666 
667   return ConstantDataArray::get(GV->getContext(), RawBytes);
668 }
669 
670 /// If this Offset points exactly to the start of an aggregate element, return
671 /// that element, otherwise return nullptr.
672 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
673                               const DataLayout &DL) {
674   if (Offset.isZero())
675     return Base;
676 
677   if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
678     return nullptr;
679 
680   Type *ElemTy = Base->getType();
681   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
682   if (!Offset.isZero() || !Indices[0].isZero())
683     return nullptr;
684 
685   Constant *C = Base;
686   for (const APInt &Index : drop_begin(Indices)) {
687     if (Index.isNegative() || Index.getActiveBits() >= 32)
688       return nullptr;
689 
690     C = C->getAggregateElement(Index.getZExtValue());
691     if (!C)
692       return nullptr;
693   }
694 
695   return C;
696 }
697 
698 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
699                                           const APInt &Offset,
700                                           const DataLayout &DL) {
701   if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
702     if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
703       return Result;
704 
705   // Explicitly check for out-of-bounds access, so we return undef even if the
706   // constant is a uniform value.
707   TypeSize Size = DL.getTypeAllocSize(C->getType());
708   if (!Size.isScalable() && Offset.sge(Size.getFixedSize()))
709     return UndefValue::get(Ty);
710 
711   // Try an offset-independent fold of a uniform value.
712   if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
713     return Result;
714 
715   // Try hard to fold loads from bitcasted strange and non-type-safe things.
716   if (Offset.getMinSignedBits() <= 64)
717     if (Constant *Result =
718             FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
719       return Result;
720 
721   return nullptr;
722 }
723 
724 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
725                                           const DataLayout &DL) {
726   return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
727 }
728 
729 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
730                                              APInt Offset,
731                                              const DataLayout &DL) {
732   C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
733           DL, Offset, /* AllowNonInbounds */ true));
734 
735   if (auto *GV = dyn_cast<GlobalVariable>(C))
736     if (GV->isConstant() && GV->hasDefinitiveInitializer())
737       if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
738                                                        Offset, DL))
739         return Result;
740 
741   // If this load comes from anywhere in a uniform constant global, the value
742   // is always the same, regardless of the loaded offset.
743   if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
744     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
745       if (Constant *Res =
746               ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty))
747         return Res;
748     }
749   }
750 
751   return nullptr;
752 }
753 
754 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
755                                              const DataLayout &DL) {
756   APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
757   return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
758 }
759 
760 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
761   if (isa<PoisonValue>(C))
762     return PoisonValue::get(Ty);
763   if (isa<UndefValue>(C))
764     return UndefValue::get(Ty);
765   if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
766     return Constant::getNullValue(Ty);
767   if (C->isAllOnesValue() &&
768       (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
769     return Constant::getAllOnesValue(Ty);
770   return nullptr;
771 }
772 
773 namespace {
774 
775 /// One of Op0/Op1 is a constant expression.
776 /// Attempt to symbolically evaluate the result of a binary operator merging
777 /// these together.  If target data info is available, it is provided as DL,
778 /// otherwise DL is null.
779 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
780                                     const DataLayout &DL) {
781   // SROA
782 
783   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
784   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
785   // bits.
786 
787   if (Opc == Instruction::And) {
788     KnownBits Known0 = computeKnownBits(Op0, DL);
789     KnownBits Known1 = computeKnownBits(Op1, DL);
790     if ((Known1.One | Known0.Zero).isAllOnes()) {
791       // All the bits of Op0 that the 'and' could be masking are already zero.
792       return Op0;
793     }
794     if ((Known0.One | Known1.Zero).isAllOnes()) {
795       // All the bits of Op1 that the 'and' could be masking are already zero.
796       return Op1;
797     }
798 
799     Known0 &= Known1;
800     if (Known0.isConstant())
801       return ConstantInt::get(Op0->getType(), Known0.getConstant());
802   }
803 
804   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
805   // constant.  This happens frequently when iterating over a global array.
806   if (Opc == Instruction::Sub) {
807     GlobalValue *GV1, *GV2;
808     APInt Offs1, Offs2;
809 
810     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
811       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
812         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
813 
814         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
815         // PtrToInt may change the bitwidth so we have convert to the right size
816         // first.
817         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
818                                                 Offs2.zextOrTrunc(OpSize));
819       }
820   }
821 
822   return nullptr;
823 }
824 
825 /// If array indices are not pointer-sized integers, explicitly cast them so
826 /// that they aren't implicitly casted by the getelementptr.
827 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
828                          Type *ResultTy, Optional<unsigned> InRangeIndex,
829                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
830   Type *IntIdxTy = DL.getIndexType(ResultTy);
831   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
832 
833   bool Any = false;
834   SmallVector<Constant*, 32> NewIdxs;
835   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
836     if ((i == 1 ||
837          !isa<StructType>(GetElementPtrInst::getIndexedType(
838              SrcElemTy, Ops.slice(1, i - 1)))) &&
839         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
840       Any = true;
841       Type *NewType = Ops[i]->getType()->isVectorTy()
842                           ? IntIdxTy
843                           : IntIdxScalarTy;
844       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
845                                                                       true,
846                                                                       NewType,
847                                                                       true),
848                                               Ops[i], NewType));
849     } else
850       NewIdxs.push_back(Ops[i]);
851   }
852 
853   if (!Any)
854     return nullptr;
855 
856   Constant *C = ConstantExpr::getGetElementPtr(
857       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
858   return ConstantFoldConstant(C, DL, TLI);
859 }
860 
861 /// Strip the pointer casts, but preserve the address space information.
862 Constant *StripPtrCastKeepAS(Constant *Ptr) {
863   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
864   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
865   Ptr = cast<Constant>(Ptr->stripPointerCasts());
866   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
867 
868   // Preserve the address space number of the pointer.
869   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
870     Ptr = ConstantExpr::getPointerCast(
871         Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
872                                                  OldPtrTy->getAddressSpace()));
873   }
874   return Ptr;
875 }
876 
877 /// If we can symbolically evaluate the GEP constant expression, do so.
878 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
879                                   ArrayRef<Constant *> Ops,
880                                   const DataLayout &DL,
881                                   const TargetLibraryInfo *TLI) {
882   const GEPOperator *InnermostGEP = GEP;
883   bool InBounds = GEP->isInBounds();
884 
885   Type *SrcElemTy = GEP->getSourceElementType();
886   Type *ResElemTy = GEP->getResultElementType();
887   Type *ResTy = GEP->getType();
888   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
889     return nullptr;
890 
891   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
892                                    GEP->getInRangeIndex(), DL, TLI))
893     return C;
894 
895   Constant *Ptr = Ops[0];
896   if (!Ptr->getType()->isPointerTy())
897     return nullptr;
898 
899   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
900 
901   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
902     if (!isa<ConstantInt>(Ops[i]))
903       return nullptr;
904 
905   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
906   APInt Offset =
907       APInt(BitWidth,
908             DL.getIndexedOffsetInType(
909                 SrcElemTy,
910                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
911   Ptr = StripPtrCastKeepAS(Ptr);
912 
913   // If this is a GEP of a GEP, fold it all into a single GEP.
914   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
915     InnermostGEP = GEP;
916     InBounds &= GEP->isInBounds();
917 
918     SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
919 
920     // Do not try the incorporate the sub-GEP if some index is not a number.
921     bool AllConstantInt = true;
922     for (Value *NestedOp : NestedOps)
923       if (!isa<ConstantInt>(NestedOp)) {
924         AllConstantInt = false;
925         break;
926       }
927     if (!AllConstantInt)
928       break;
929 
930     Ptr = cast<Constant>(GEP->getOperand(0));
931     SrcElemTy = GEP->getSourceElementType();
932     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
933     Ptr = StripPtrCastKeepAS(Ptr);
934   }
935 
936   // If the base value for this address is a literal integer value, fold the
937   // getelementptr to the resulting integer value casted to the pointer type.
938   APInt BasePtr(BitWidth, 0);
939   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
940     if (CE->getOpcode() == Instruction::IntToPtr) {
941       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
942         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
943     }
944   }
945 
946   auto *PTy = cast<PointerType>(Ptr->getType());
947   if ((Ptr->isNullValue() || BasePtr != 0) &&
948       !DL.isNonIntegralPointerType(PTy)) {
949     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
950     return ConstantExpr::getIntToPtr(C, ResTy);
951   }
952 
953   // Otherwise form a regular getelementptr. Recompute the indices so that
954   // we eliminate over-indexing of the notional static type array bounds.
955   // This makes it easy to determine if the getelementptr is "inbounds".
956   // Also, this helps GlobalOpt do SROA on GlobalVariables.
957 
958   // For GEPs of GlobalValues, use the value type even for opaque pointers.
959   // Otherwise use an i8 GEP.
960   if (auto *GV = dyn_cast<GlobalValue>(Ptr))
961     SrcElemTy = GV->getValueType();
962   else if (!PTy->isOpaque())
963     SrcElemTy = PTy->getNonOpaquePointerElementType();
964   else
965     SrcElemTy = Type::getInt8Ty(Ptr->getContext());
966 
967   if (!SrcElemTy->isSized())
968     return nullptr;
969 
970   Type *ElemTy = SrcElemTy;
971   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
972   if (Offset != 0)
973     return nullptr;
974 
975   // Try to add additional zero indices to reach the desired result element
976   // type.
977   // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
978   // we'll have to insert a bitcast anyway?
979   while (ElemTy != ResElemTy) {
980     Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
981     if (!NextTy)
982       break;
983 
984     Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
985     ElemTy = NextTy;
986   }
987 
988   SmallVector<Constant *, 32> NewIdxs;
989   for (const APInt &Index : Indices)
990     NewIdxs.push_back(ConstantInt::get(
991         Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
992 
993   // Preserve the inrange index from the innermost GEP if possible. We must
994   // have calculated the same indices up to and including the inrange index.
995   Optional<unsigned> InRangeIndex;
996   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
997     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
998         NewIdxs.size() > *LastIRIndex) {
999       InRangeIndex = LastIRIndex;
1000       for (unsigned I = 0; I <= *LastIRIndex; ++I)
1001         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
1002           return nullptr;
1003     }
1004 
1005   // Create a GEP.
1006   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1007                                                InBounds, InRangeIndex);
1008   assert(
1009       cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1010       "Computed GetElementPtr has unexpected type!");
1011 
1012   // If we ended up indexing a member with a type that doesn't match
1013   // the type of what the original indices indexed, add a cast.
1014   if (C->getType() != ResTy)
1015     C = FoldBitCast(C, ResTy, DL);
1016 
1017   return C;
1018 }
1019 
1020 /// Attempt to constant fold an instruction with the
1021 /// specified opcode and operands.  If successful, the constant result is
1022 /// returned, if not, null is returned.  Note that this function can fail when
1023 /// attempting to fold instructions like loads and stores, which have no
1024 /// constant expression form.
1025 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1026                                        ArrayRef<Constant *> Ops,
1027                                        const DataLayout &DL,
1028                                        const TargetLibraryInfo *TLI) {
1029   Type *DestTy = InstOrCE->getType();
1030 
1031   if (Instruction::isUnaryOp(Opcode))
1032     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1033 
1034   if (Instruction::isBinaryOp(Opcode)) {
1035     switch (Opcode) {
1036     default:
1037       break;
1038     case Instruction::FAdd:
1039     case Instruction::FSub:
1040     case Instruction::FMul:
1041     case Instruction::FDiv:
1042     case Instruction::FRem:
1043       // Handle floating point instructions separately to account for denormals
1044       // TODO: If a constant expression is being folded rather than an
1045       // instruction, denormals will not be flushed/treated as zero
1046       if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1047         return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
1048       }
1049     }
1050     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1051   }
1052 
1053   if (Instruction::isCast(Opcode))
1054     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1055 
1056   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1057     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1058       return C;
1059 
1060     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1061                                           Ops.slice(1), GEP->isInBounds(),
1062                                           GEP->getInRangeIndex());
1063   }
1064 
1065   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) {
1066     if (CE->isCompare())
1067       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1068                                              DL, TLI);
1069     return CE->getWithOperands(Ops);
1070   }
1071 
1072   switch (Opcode) {
1073   default: return nullptr;
1074   case Instruction::ICmp:
1075   case Instruction::FCmp: {
1076     auto *C = cast<CmpInst>(InstOrCE);
1077     return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1078                                            DL, TLI, C);
1079   }
1080   case Instruction::Freeze:
1081     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1082   case Instruction::Call:
1083     if (auto *F = dyn_cast<Function>(Ops.back())) {
1084       const auto *Call = cast<CallBase>(InstOrCE);
1085       if (canConstantFoldCallTo(Call, F))
1086         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1087     }
1088     return nullptr;
1089   case Instruction::Select:
1090     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1091   case Instruction::ExtractElement:
1092     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1093   case Instruction::ExtractValue:
1094     return ConstantFoldExtractValueInstruction(
1095         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1096   case Instruction::InsertElement:
1097     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1098   case Instruction::InsertValue:
1099     return ConstantFoldInsertValueInstruction(
1100         Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1101   case Instruction::ShuffleVector:
1102     return ConstantExpr::getShuffleVector(
1103         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1104   case Instruction::Load: {
1105     const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1106     if (LI->isVolatile())
1107       return nullptr;
1108     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1109   }
1110   }
1111 }
1112 
1113 } // end anonymous namespace
1114 
1115 //===----------------------------------------------------------------------===//
1116 // Constant Folding public APIs
1117 //===----------------------------------------------------------------------===//
1118 
1119 namespace {
1120 
1121 Constant *
1122 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1123                          const TargetLibraryInfo *TLI,
1124                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1125   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1126     return const_cast<Constant *>(C);
1127 
1128   SmallVector<Constant *, 8> Ops;
1129   for (const Use &OldU : C->operands()) {
1130     Constant *OldC = cast<Constant>(&OldU);
1131     Constant *NewC = OldC;
1132     // Recursively fold the ConstantExpr's operands. If we have already folded
1133     // a ConstantExpr, we don't have to process it again.
1134     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1135       auto It = FoldedOps.find(OldC);
1136       if (It == FoldedOps.end()) {
1137         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1138         FoldedOps.insert({OldC, NewC});
1139       } else {
1140         NewC = It->second;
1141       }
1142     }
1143     Ops.push_back(NewC);
1144   }
1145 
1146   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1147     if (Constant *Res =
1148             ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
1149       return Res;
1150     return const_cast<Constant *>(C);
1151   }
1152 
1153   assert(isa<ConstantVector>(C));
1154   return ConstantVector::get(Ops);
1155 }
1156 
1157 } // end anonymous namespace
1158 
1159 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1160                                         const TargetLibraryInfo *TLI) {
1161   // Handle PHI nodes quickly here...
1162   if (auto *PN = dyn_cast<PHINode>(I)) {
1163     Constant *CommonValue = nullptr;
1164 
1165     SmallDenseMap<Constant *, Constant *> FoldedOps;
1166     for (Value *Incoming : PN->incoming_values()) {
1167       // If the incoming value is undef then skip it.  Note that while we could
1168       // skip the value if it is equal to the phi node itself we choose not to
1169       // because that would break the rule that constant folding only applies if
1170       // all operands are constants.
1171       if (isa<UndefValue>(Incoming))
1172         continue;
1173       // If the incoming value is not a constant, then give up.
1174       auto *C = dyn_cast<Constant>(Incoming);
1175       if (!C)
1176         return nullptr;
1177       // Fold the PHI's operands.
1178       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1179       // If the incoming value is a different constant to
1180       // the one we saw previously, then give up.
1181       if (CommonValue && C != CommonValue)
1182         return nullptr;
1183       CommonValue = C;
1184     }
1185 
1186     // If we reach here, all incoming values are the same constant or undef.
1187     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1188   }
1189 
1190   // Scan the operand list, checking to see if they are all constants, if so,
1191   // hand off to ConstantFoldInstOperandsImpl.
1192   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1193     return nullptr;
1194 
1195   SmallDenseMap<Constant *, Constant *> FoldedOps;
1196   SmallVector<Constant *, 8> Ops;
1197   for (const Use &OpU : I->operands()) {
1198     auto *Op = cast<Constant>(&OpU);
1199     // Fold the Instruction's operands.
1200     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1201     Ops.push_back(Op);
1202   }
1203 
1204   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1205 }
1206 
1207 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1208                                      const TargetLibraryInfo *TLI) {
1209   SmallDenseMap<Constant *, Constant *> FoldedOps;
1210   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1211 }
1212 
1213 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1214                                          ArrayRef<Constant *> Ops,
1215                                          const DataLayout &DL,
1216                                          const TargetLibraryInfo *TLI) {
1217   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1218 }
1219 
1220 Constant *llvm::ConstantFoldCompareInstOperands(
1221     unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1222     const TargetLibraryInfo *TLI, const Instruction *I) {
1223   CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1224   // fold: icmp (inttoptr x), null         -> icmp x, 0
1225   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1226   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1227   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1228   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1229   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1230   //
1231   // FIXME: The following comment is out of data and the DataLayout is here now.
1232   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1233   // around to know if bit truncation is happening.
1234   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1235     if (Ops1->isNullValue()) {
1236       if (CE0->getOpcode() == Instruction::IntToPtr) {
1237         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1238         // Convert the integer value to the right size to ensure we get the
1239         // proper extension or truncation.
1240         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1241                                                    IntPtrTy, false);
1242         Constant *Null = Constant::getNullValue(C->getType());
1243         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1244       }
1245 
1246       // Only do this transformation if the int is intptrty in size, otherwise
1247       // there is a truncation or extension that we aren't modeling.
1248       if (CE0->getOpcode() == Instruction::PtrToInt) {
1249         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1250         if (CE0->getType() == IntPtrTy) {
1251           Constant *C = CE0->getOperand(0);
1252           Constant *Null = Constant::getNullValue(C->getType());
1253           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1254         }
1255       }
1256     }
1257 
1258     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1259       if (CE0->getOpcode() == CE1->getOpcode()) {
1260         if (CE0->getOpcode() == Instruction::IntToPtr) {
1261           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1262 
1263           // Convert the integer value to the right size to ensure we get the
1264           // proper extension or truncation.
1265           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1266                                                       IntPtrTy, false);
1267           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1268                                                       IntPtrTy, false);
1269           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1270         }
1271 
1272         // Only do this transformation if the int is intptrty in size, otherwise
1273         // there is a truncation or extension that we aren't modeling.
1274         if (CE0->getOpcode() == Instruction::PtrToInt) {
1275           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1276           if (CE0->getType() == IntPtrTy &&
1277               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1278             return ConstantFoldCompareInstOperands(
1279                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1280           }
1281         }
1282       }
1283     }
1284 
1285     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1286     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1287     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1288         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1289       Constant *LHS = ConstantFoldCompareInstOperands(
1290           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1291       Constant *RHS = ConstantFoldCompareInstOperands(
1292           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1293       unsigned OpC =
1294         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1295       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1296     }
1297 
1298     // Convert pointer comparison (base+offset1) pred (base+offset2) into
1299     // offset1 pred offset2, for the case where the offset is inbounds. This
1300     // only works for equality and unsigned comparison, as inbounds permits
1301     // crossing the sign boundary. However, the offset comparison itself is
1302     // signed.
1303     if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1304       unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1305       APInt Offset0(IndexWidth, 0);
1306       Value *Stripped0 =
1307           Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1308       APInt Offset1(IndexWidth, 0);
1309       Value *Stripped1 =
1310           Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1311       if (Stripped0 == Stripped1)
1312         return ConstantExpr::getCompare(
1313             ICmpInst::getSignedPredicate(Predicate),
1314             ConstantInt::get(CE0->getContext(), Offset0),
1315             ConstantInt::get(CE0->getContext(), Offset1));
1316     }
1317   } else if (isa<ConstantExpr>(Ops1)) {
1318     // If RHS is a constant expression, but the left side isn't, swap the
1319     // operands and try again.
1320     Predicate = ICmpInst::getSwappedPredicate(Predicate);
1321     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1322   }
1323 
1324   // Flush any denormal constant float input according to denormal handling
1325   // mode.
1326   Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1327   Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1328 
1329   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1330 }
1331 
1332 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1333                                            const DataLayout &DL) {
1334   assert(Instruction::isUnaryOp(Opcode));
1335 
1336   return ConstantExpr::get(Opcode, Op);
1337 }
1338 
1339 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1340                                              Constant *RHS,
1341                                              const DataLayout &DL) {
1342   assert(Instruction::isBinaryOp(Opcode));
1343   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1344     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1345       return C;
1346 
1347   if (ConstantExpr::isDesirableBinOp(Opcode))
1348     return ConstantExpr::get(Opcode, LHS, RHS);
1349   return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1350 }
1351 
1352 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1353                                 bool IsOutput) {
1354   if (!I || !I->getParent() || !I->getFunction())
1355     return Operand;
1356 
1357   ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1358   if (!CFP)
1359     return Operand;
1360 
1361   const APFloat &APF = CFP->getValueAPF();
1362   Type *Ty = CFP->getType();
1363   DenormalMode DenormMode =
1364       I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1365   DenormalMode::DenormalModeKind Mode =
1366       IsOutput ? DenormMode.Output : DenormMode.Input;
1367   switch (Mode) {
1368   default:
1369     llvm_unreachable("unknown denormal mode");
1370     return Operand;
1371   case DenormalMode::IEEE:
1372     return Operand;
1373   case DenormalMode::PreserveSign:
1374     if (APF.isDenormal()) {
1375       return ConstantFP::get(
1376           Ty->getContext(),
1377           APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1378     }
1379     return Operand;
1380   case DenormalMode::PositiveZero:
1381     if (APF.isDenormal()) {
1382       return ConstantFP::get(Ty->getContext(),
1383                              APFloat::getZero(Ty->getFltSemantics(), false));
1384     }
1385     return Operand;
1386   }
1387   return Operand;
1388 }
1389 
1390 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1391                                            Constant *RHS, const DataLayout &DL,
1392                                            const Instruction *I) {
1393   if (Instruction::isBinaryOp(Opcode)) {
1394     // Flush denormal inputs if needed.
1395     Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1396     Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1397 
1398     // Calculate constant result.
1399     Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1400     if (!C)
1401       return nullptr;
1402 
1403     // Flush denormal output if needed.
1404     return FlushFPConstant(C, I, /* IsOutput */ true);
1405   }
1406   // If instruction lacks a parent/function and the denormal mode cannot be
1407   // determined, use the default (IEEE).
1408   return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1409 }
1410 
1411 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1412                                         Type *DestTy, const DataLayout &DL) {
1413   assert(Instruction::isCast(Opcode));
1414   switch (Opcode) {
1415   default:
1416     llvm_unreachable("Missing case");
1417   case Instruction::PtrToInt:
1418     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1419       Constant *FoldedValue = nullptr;
1420       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1421       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1422       if (CE->getOpcode() == Instruction::IntToPtr) {
1423         // zext/trunc the inttoptr to pointer size.
1424         FoldedValue = ConstantExpr::getIntegerCast(
1425             CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1426             /*IsSigned=*/false);
1427       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1428         // If we have GEP, we can perform the following folds:
1429         // (ptrtoint (gep null, x)) -> x
1430         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1431         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1432         APInt BaseOffset(BitWidth, 0);
1433         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1434             DL, BaseOffset, /*AllowNonInbounds=*/true));
1435         if (Base->isNullValue()) {
1436           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1437         } else {
1438           // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1439           if (GEP->getNumIndices() == 1 &&
1440               GEP->getSourceElementType()->isIntegerTy(8)) {
1441             auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1442             auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1443             Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1444             if (Sub && Sub->getType() == IntIdxTy &&
1445                 Sub->getOpcode() == Instruction::Sub &&
1446                 Sub->getOperand(0)->isNullValue())
1447               FoldedValue = ConstantExpr::getSub(
1448                   ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1449           }
1450         }
1451       }
1452       if (FoldedValue) {
1453         // Do a zext or trunc to get to the ptrtoint dest size.
1454         return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1455                                             /*IsSigned=*/false);
1456       }
1457     }
1458     return ConstantExpr::getCast(Opcode, C, DestTy);
1459   case Instruction::IntToPtr:
1460     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1461     // the int size is >= the ptr size and the address spaces are the same.
1462     // This requires knowing the width of a pointer, so it can't be done in
1463     // ConstantExpr::getCast.
1464     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1465       if (CE->getOpcode() == Instruction::PtrToInt) {
1466         Constant *SrcPtr = CE->getOperand(0);
1467         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1468         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1469 
1470         if (MidIntSize >= SrcPtrSize) {
1471           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1472           if (SrcAS == DestTy->getPointerAddressSpace())
1473             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1474         }
1475       }
1476     }
1477 
1478     return ConstantExpr::getCast(Opcode, C, DestTy);
1479   case Instruction::Trunc:
1480   case Instruction::ZExt:
1481   case Instruction::SExt:
1482   case Instruction::FPTrunc:
1483   case Instruction::FPExt:
1484   case Instruction::UIToFP:
1485   case Instruction::SIToFP:
1486   case Instruction::FPToUI:
1487   case Instruction::FPToSI:
1488   case Instruction::AddrSpaceCast:
1489       return ConstantExpr::getCast(Opcode, C, DestTy);
1490   case Instruction::BitCast:
1491     return FoldBitCast(C, DestTy, DL);
1492   }
1493 }
1494 
1495 //===----------------------------------------------------------------------===//
1496 //  Constant Folding for Calls
1497 //
1498 
1499 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1500   if (Call->isNoBuiltin())
1501     return false;
1502   if (Call->getFunctionType() != F->getFunctionType())
1503     return false;
1504   switch (F->getIntrinsicID()) {
1505   // Operations that do not operate floating-point numbers and do not depend on
1506   // FP environment can be folded even in strictfp functions.
1507   case Intrinsic::bswap:
1508   case Intrinsic::ctpop:
1509   case Intrinsic::ctlz:
1510   case Intrinsic::cttz:
1511   case Intrinsic::fshl:
1512   case Intrinsic::fshr:
1513   case Intrinsic::launder_invariant_group:
1514   case Intrinsic::strip_invariant_group:
1515   case Intrinsic::masked_load:
1516   case Intrinsic::get_active_lane_mask:
1517   case Intrinsic::abs:
1518   case Intrinsic::smax:
1519   case Intrinsic::smin:
1520   case Intrinsic::umax:
1521   case Intrinsic::umin:
1522   case Intrinsic::sadd_with_overflow:
1523   case Intrinsic::uadd_with_overflow:
1524   case Intrinsic::ssub_with_overflow:
1525   case Intrinsic::usub_with_overflow:
1526   case Intrinsic::smul_with_overflow:
1527   case Intrinsic::umul_with_overflow:
1528   case Intrinsic::sadd_sat:
1529   case Intrinsic::uadd_sat:
1530   case Intrinsic::ssub_sat:
1531   case Intrinsic::usub_sat:
1532   case Intrinsic::smul_fix:
1533   case Intrinsic::smul_fix_sat:
1534   case Intrinsic::bitreverse:
1535   case Intrinsic::is_constant:
1536   case Intrinsic::vector_reduce_add:
1537   case Intrinsic::vector_reduce_mul:
1538   case Intrinsic::vector_reduce_and:
1539   case Intrinsic::vector_reduce_or:
1540   case Intrinsic::vector_reduce_xor:
1541   case Intrinsic::vector_reduce_smin:
1542   case Intrinsic::vector_reduce_smax:
1543   case Intrinsic::vector_reduce_umin:
1544   case Intrinsic::vector_reduce_umax:
1545   // Target intrinsics
1546   case Intrinsic::amdgcn_perm:
1547   case Intrinsic::arm_mve_vctp8:
1548   case Intrinsic::arm_mve_vctp16:
1549   case Intrinsic::arm_mve_vctp32:
1550   case Intrinsic::arm_mve_vctp64:
1551   case Intrinsic::aarch64_sve_convert_from_svbool:
1552   // WebAssembly float semantics are always known
1553   case Intrinsic::wasm_trunc_signed:
1554   case Intrinsic::wasm_trunc_unsigned:
1555     return true;
1556 
1557   // Floating point operations cannot be folded in strictfp functions in
1558   // general case. They can be folded if FP environment is known to compiler.
1559   case Intrinsic::minnum:
1560   case Intrinsic::maxnum:
1561   case Intrinsic::minimum:
1562   case Intrinsic::maximum:
1563   case Intrinsic::log:
1564   case Intrinsic::log2:
1565   case Intrinsic::log10:
1566   case Intrinsic::exp:
1567   case Intrinsic::exp2:
1568   case Intrinsic::sqrt:
1569   case Intrinsic::sin:
1570   case Intrinsic::cos:
1571   case Intrinsic::pow:
1572   case Intrinsic::powi:
1573   case Intrinsic::fma:
1574   case Intrinsic::fmuladd:
1575   case Intrinsic::fptoui_sat:
1576   case Intrinsic::fptosi_sat:
1577   case Intrinsic::convert_from_fp16:
1578   case Intrinsic::convert_to_fp16:
1579   case Intrinsic::amdgcn_cos:
1580   case Intrinsic::amdgcn_cubeid:
1581   case Intrinsic::amdgcn_cubema:
1582   case Intrinsic::amdgcn_cubesc:
1583   case Intrinsic::amdgcn_cubetc:
1584   case Intrinsic::amdgcn_fmul_legacy:
1585   case Intrinsic::amdgcn_fma_legacy:
1586   case Intrinsic::amdgcn_fract:
1587   case Intrinsic::amdgcn_ldexp:
1588   case Intrinsic::amdgcn_sin:
1589   // The intrinsics below depend on rounding mode in MXCSR.
1590   case Intrinsic::x86_sse_cvtss2si:
1591   case Intrinsic::x86_sse_cvtss2si64:
1592   case Intrinsic::x86_sse_cvttss2si:
1593   case Intrinsic::x86_sse_cvttss2si64:
1594   case Intrinsic::x86_sse2_cvtsd2si:
1595   case Intrinsic::x86_sse2_cvtsd2si64:
1596   case Intrinsic::x86_sse2_cvttsd2si:
1597   case Intrinsic::x86_sse2_cvttsd2si64:
1598   case Intrinsic::x86_avx512_vcvtss2si32:
1599   case Intrinsic::x86_avx512_vcvtss2si64:
1600   case Intrinsic::x86_avx512_cvttss2si:
1601   case Intrinsic::x86_avx512_cvttss2si64:
1602   case Intrinsic::x86_avx512_vcvtsd2si32:
1603   case Intrinsic::x86_avx512_vcvtsd2si64:
1604   case Intrinsic::x86_avx512_cvttsd2si:
1605   case Intrinsic::x86_avx512_cvttsd2si64:
1606   case Intrinsic::x86_avx512_vcvtss2usi32:
1607   case Intrinsic::x86_avx512_vcvtss2usi64:
1608   case Intrinsic::x86_avx512_cvttss2usi:
1609   case Intrinsic::x86_avx512_cvttss2usi64:
1610   case Intrinsic::x86_avx512_vcvtsd2usi32:
1611   case Intrinsic::x86_avx512_vcvtsd2usi64:
1612   case Intrinsic::x86_avx512_cvttsd2usi:
1613   case Intrinsic::x86_avx512_cvttsd2usi64:
1614     return !Call->isStrictFP();
1615 
1616   // Sign operations are actually bitwise operations, they do not raise
1617   // exceptions even for SNANs.
1618   case Intrinsic::fabs:
1619   case Intrinsic::copysign:
1620   // Non-constrained variants of rounding operations means default FP
1621   // environment, they can be folded in any case.
1622   case Intrinsic::ceil:
1623   case Intrinsic::floor:
1624   case Intrinsic::round:
1625   case Intrinsic::roundeven:
1626   case Intrinsic::trunc:
1627   case Intrinsic::nearbyint:
1628   case Intrinsic::rint:
1629   // Constrained intrinsics can be folded if FP environment is known
1630   // to compiler.
1631   case Intrinsic::experimental_constrained_fma:
1632   case Intrinsic::experimental_constrained_fmuladd:
1633   case Intrinsic::experimental_constrained_fadd:
1634   case Intrinsic::experimental_constrained_fsub:
1635   case Intrinsic::experimental_constrained_fmul:
1636   case Intrinsic::experimental_constrained_fdiv:
1637   case Intrinsic::experimental_constrained_frem:
1638   case Intrinsic::experimental_constrained_ceil:
1639   case Intrinsic::experimental_constrained_floor:
1640   case Intrinsic::experimental_constrained_round:
1641   case Intrinsic::experimental_constrained_roundeven:
1642   case Intrinsic::experimental_constrained_trunc:
1643   case Intrinsic::experimental_constrained_nearbyint:
1644   case Intrinsic::experimental_constrained_rint:
1645   case Intrinsic::experimental_constrained_fcmp:
1646   case Intrinsic::experimental_constrained_fcmps:
1647     return true;
1648   default:
1649     return false;
1650   case Intrinsic::not_intrinsic: break;
1651   }
1652 
1653   if (!F->hasName() || Call->isStrictFP())
1654     return false;
1655 
1656   // In these cases, the check of the length is required.  We don't want to
1657   // return true for a name like "cos\0blah" which strcmp would return equal to
1658   // "cos", but has length 8.
1659   StringRef Name = F->getName();
1660   switch (Name[0]) {
1661   default:
1662     return false;
1663   case 'a':
1664     return Name == "acos" || Name == "acosf" ||
1665            Name == "asin" || Name == "asinf" ||
1666            Name == "atan" || Name == "atanf" ||
1667            Name == "atan2" || Name == "atan2f";
1668   case 'c':
1669     return Name == "ceil" || Name == "ceilf" ||
1670            Name == "cos" || Name == "cosf" ||
1671            Name == "cosh" || Name == "coshf";
1672   case 'e':
1673     return Name == "exp" || Name == "expf" ||
1674            Name == "exp2" || Name == "exp2f";
1675   case 'f':
1676     return Name == "fabs" || Name == "fabsf" ||
1677            Name == "floor" || Name == "floorf" ||
1678            Name == "fmod" || Name == "fmodf";
1679   case 'l':
1680     return Name == "log" || Name == "logf" ||
1681            Name == "log2" || Name == "log2f" ||
1682            Name == "log10" || Name == "log10f";
1683   case 'n':
1684     return Name == "nearbyint" || Name == "nearbyintf";
1685   case 'p':
1686     return Name == "pow" || Name == "powf";
1687   case 'r':
1688     return Name == "remainder" || Name == "remainderf" ||
1689            Name == "rint" || Name == "rintf" ||
1690            Name == "round" || Name == "roundf";
1691   case 's':
1692     return Name == "sin" || Name == "sinf" ||
1693            Name == "sinh" || Name == "sinhf" ||
1694            Name == "sqrt" || Name == "sqrtf";
1695   case 't':
1696     return Name == "tan" || Name == "tanf" ||
1697            Name == "tanh" || Name == "tanhf" ||
1698            Name == "trunc" || Name == "truncf";
1699   case '_':
1700     // Check for various function names that get used for the math functions
1701     // when the header files are preprocessed with the macro
1702     // __FINITE_MATH_ONLY__ enabled.
1703     // The '12' here is the length of the shortest name that can match.
1704     // We need to check the size before looking at Name[1] and Name[2]
1705     // so we may as well check a limit that will eliminate mismatches.
1706     if (Name.size() < 12 || Name[1] != '_')
1707       return false;
1708     switch (Name[2]) {
1709     default:
1710       return false;
1711     case 'a':
1712       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1713              Name == "__asin_finite" || Name == "__asinf_finite" ||
1714              Name == "__atan2_finite" || Name == "__atan2f_finite";
1715     case 'c':
1716       return Name == "__cosh_finite" || Name == "__coshf_finite";
1717     case 'e':
1718       return Name == "__exp_finite" || Name == "__expf_finite" ||
1719              Name == "__exp2_finite" || Name == "__exp2f_finite";
1720     case 'l':
1721       return Name == "__log_finite" || Name == "__logf_finite" ||
1722              Name == "__log10_finite" || Name == "__log10f_finite";
1723     case 'p':
1724       return Name == "__pow_finite" || Name == "__powf_finite";
1725     case 's':
1726       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1727     }
1728   }
1729 }
1730 
1731 namespace {
1732 
1733 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1734   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1735     APFloat APF(V);
1736     bool unused;
1737     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1738     return ConstantFP::get(Ty->getContext(), APF);
1739   }
1740   if (Ty->isDoubleTy())
1741     return ConstantFP::get(Ty->getContext(), APFloat(V));
1742   llvm_unreachable("Can only constant fold half/float/double");
1743 }
1744 
1745 /// Clear the floating-point exception state.
1746 inline void llvm_fenv_clearexcept() {
1747 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1748   feclearexcept(FE_ALL_EXCEPT);
1749 #endif
1750   errno = 0;
1751 }
1752 
1753 /// Test if a floating-point exception was raised.
1754 inline bool llvm_fenv_testexcept() {
1755   int errno_val = errno;
1756   if (errno_val == ERANGE || errno_val == EDOM)
1757     return true;
1758 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1759   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1760     return true;
1761 #endif
1762   return false;
1763 }
1764 
1765 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1766                          Type *Ty) {
1767   llvm_fenv_clearexcept();
1768   double Result = NativeFP(V.convertToDouble());
1769   if (llvm_fenv_testexcept()) {
1770     llvm_fenv_clearexcept();
1771     return nullptr;
1772   }
1773 
1774   return GetConstantFoldFPValue(Result, Ty);
1775 }
1776 
1777 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1778                                const APFloat &V, const APFloat &W, Type *Ty) {
1779   llvm_fenv_clearexcept();
1780   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1781   if (llvm_fenv_testexcept()) {
1782     llvm_fenv_clearexcept();
1783     return nullptr;
1784   }
1785 
1786   return GetConstantFoldFPValue(Result, Ty);
1787 }
1788 
1789 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1790   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1791   if (!VT)
1792     return nullptr;
1793 
1794   // This isn't strictly necessary, but handle the special/common case of zero:
1795   // all integer reductions of a zero input produce zero.
1796   if (isa<ConstantAggregateZero>(Op))
1797     return ConstantInt::get(VT->getElementType(), 0);
1798 
1799   // This is the same as the underlying binops - poison propagates.
1800   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1801     return PoisonValue::get(VT->getElementType());
1802 
1803   // TODO: Handle undef.
1804   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1805     return nullptr;
1806 
1807   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1808   if (!EltC)
1809     return nullptr;
1810 
1811   APInt Acc = EltC->getValue();
1812   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1813     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1814       return nullptr;
1815     const APInt &X = EltC->getValue();
1816     switch (IID) {
1817     case Intrinsic::vector_reduce_add:
1818       Acc = Acc + X;
1819       break;
1820     case Intrinsic::vector_reduce_mul:
1821       Acc = Acc * X;
1822       break;
1823     case Intrinsic::vector_reduce_and:
1824       Acc = Acc & X;
1825       break;
1826     case Intrinsic::vector_reduce_or:
1827       Acc = Acc | X;
1828       break;
1829     case Intrinsic::vector_reduce_xor:
1830       Acc = Acc ^ X;
1831       break;
1832     case Intrinsic::vector_reduce_smin:
1833       Acc = APIntOps::smin(Acc, X);
1834       break;
1835     case Intrinsic::vector_reduce_smax:
1836       Acc = APIntOps::smax(Acc, X);
1837       break;
1838     case Intrinsic::vector_reduce_umin:
1839       Acc = APIntOps::umin(Acc, X);
1840       break;
1841     case Intrinsic::vector_reduce_umax:
1842       Acc = APIntOps::umax(Acc, X);
1843       break;
1844     }
1845   }
1846 
1847   return ConstantInt::get(Op->getContext(), Acc);
1848 }
1849 
1850 /// Attempt to fold an SSE floating point to integer conversion of a constant
1851 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1852 /// used (toward nearest, ties to even). This matches the behavior of the
1853 /// non-truncating SSE instructions in the default rounding mode. The desired
1854 /// integer type Ty is used to select how many bits are available for the
1855 /// result. Returns null if the conversion cannot be performed, otherwise
1856 /// returns the Constant value resulting from the conversion.
1857 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1858                                       Type *Ty, bool IsSigned) {
1859   // All of these conversion intrinsics form an integer of at most 64bits.
1860   unsigned ResultWidth = Ty->getIntegerBitWidth();
1861   assert(ResultWidth <= 64 &&
1862          "Can only constant fold conversions to 64 and 32 bit ints");
1863 
1864   uint64_t UIntVal;
1865   bool isExact = false;
1866   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1867                                               : APFloat::rmNearestTiesToEven;
1868   APFloat::opStatus status =
1869       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1870                            IsSigned, mode, &isExact);
1871   if (status != APFloat::opOK &&
1872       (!roundTowardZero || status != APFloat::opInexact))
1873     return nullptr;
1874   return ConstantInt::get(Ty, UIntVal, IsSigned);
1875 }
1876 
1877 double getValueAsDouble(ConstantFP *Op) {
1878   Type *Ty = Op->getType();
1879 
1880   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1881     return Op->getValueAPF().convertToDouble();
1882 
1883   bool unused;
1884   APFloat APF = Op->getValueAPF();
1885   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1886   return APF.convertToDouble();
1887 }
1888 
1889 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1890   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1891     C = &CI->getValue();
1892     return true;
1893   }
1894   if (isa<UndefValue>(Op)) {
1895     C = nullptr;
1896     return true;
1897   }
1898   return false;
1899 }
1900 
1901 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1902 /// to be folded.
1903 ///
1904 /// \param CI Constrained intrinsic call.
1905 /// \param St Exception flags raised during constant evaluation.
1906 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1907                                APFloat::opStatus St) {
1908   Optional<RoundingMode> ORM = CI->getRoundingMode();
1909   Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1910 
1911   // If the operation does not change exception status flags, it is safe
1912   // to fold.
1913   if (St == APFloat::opStatus::opOK)
1914     return true;
1915 
1916   // If evaluation raised FP exception, the result can depend on rounding
1917   // mode. If the latter is unknown, folding is not possible.
1918   if (ORM && *ORM == RoundingMode::Dynamic)
1919     return false;
1920 
1921   // If FP exceptions are ignored, fold the call, even if such exception is
1922   // raised.
1923   if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1924     return true;
1925 
1926   // Leave the calculation for runtime so that exception flags be correctly set
1927   // in hardware.
1928   return false;
1929 }
1930 
1931 /// Returns the rounding mode that should be used for constant evaluation.
1932 static RoundingMode
1933 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1934   Optional<RoundingMode> ORM = CI->getRoundingMode();
1935   if (!ORM || *ORM == RoundingMode::Dynamic)
1936     // Even if the rounding mode is unknown, try evaluating the operation.
1937     // If it does not raise inexact exception, rounding was not applied,
1938     // so the result is exact and does not depend on rounding mode. Whether
1939     // other FP exceptions are raised, it does not depend on rounding mode.
1940     return RoundingMode::NearestTiesToEven;
1941   return *ORM;
1942 }
1943 
1944 static Constant *ConstantFoldScalarCall1(StringRef Name,
1945                                          Intrinsic::ID IntrinsicID,
1946                                          Type *Ty,
1947                                          ArrayRef<Constant *> Operands,
1948                                          const TargetLibraryInfo *TLI,
1949                                          const CallBase *Call) {
1950   assert(Operands.size() == 1 && "Wrong number of operands.");
1951 
1952   if (IntrinsicID == Intrinsic::is_constant) {
1953     // We know we have a "Constant" argument. But we want to only
1954     // return true for manifest constants, not those that depend on
1955     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1956     if (Operands[0]->isManifestConstant())
1957       return ConstantInt::getTrue(Ty->getContext());
1958     return nullptr;
1959   }
1960   if (isa<UndefValue>(Operands[0])) {
1961     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1962     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1963     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
1964     if (IntrinsicID == Intrinsic::cos ||
1965         IntrinsicID == Intrinsic::ctpop ||
1966         IntrinsicID == Intrinsic::fptoui_sat ||
1967         IntrinsicID == Intrinsic::fptosi_sat)
1968       return Constant::getNullValue(Ty);
1969     if (IntrinsicID == Intrinsic::bswap ||
1970         IntrinsicID == Intrinsic::bitreverse ||
1971         IntrinsicID == Intrinsic::launder_invariant_group ||
1972         IntrinsicID == Intrinsic::strip_invariant_group)
1973       return Operands[0];
1974   }
1975 
1976   if (isa<ConstantPointerNull>(Operands[0])) {
1977     // launder(null) == null == strip(null) iff in addrspace 0
1978     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1979         IntrinsicID == Intrinsic::strip_invariant_group) {
1980       // If instruction is not yet put in a basic block (e.g. when cloning
1981       // a function during inlining), Call's caller may not be available.
1982       // So check Call's BB first before querying Call->getCaller.
1983       const Function *Caller =
1984           Call->getParent() ? Call->getCaller() : nullptr;
1985       if (Caller &&
1986           !NullPointerIsDefined(
1987               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1988         return Operands[0];
1989       }
1990       return nullptr;
1991     }
1992   }
1993 
1994   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1995     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1996       APFloat Val(Op->getValueAPF());
1997 
1998       bool lost = false;
1999       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2000 
2001       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2002     }
2003 
2004     APFloat U = Op->getValueAPF();
2005 
2006     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2007         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2008       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2009 
2010       if (U.isNaN())
2011         return nullptr;
2012 
2013       unsigned Width = Ty->getIntegerBitWidth();
2014       APSInt Int(Width, !Signed);
2015       bool IsExact = false;
2016       APFloat::opStatus Status =
2017           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2018 
2019       if (Status == APFloat::opOK || Status == APFloat::opInexact)
2020         return ConstantInt::get(Ty, Int);
2021 
2022       return nullptr;
2023     }
2024 
2025     if (IntrinsicID == Intrinsic::fptoui_sat ||
2026         IntrinsicID == Intrinsic::fptosi_sat) {
2027       // convertToInteger() already has the desired saturation semantics.
2028       APSInt Int(Ty->getIntegerBitWidth(),
2029                  IntrinsicID == Intrinsic::fptoui_sat);
2030       bool IsExact;
2031       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2032       return ConstantInt::get(Ty, Int);
2033     }
2034 
2035     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2036       return nullptr;
2037 
2038     // Use internal versions of these intrinsics.
2039 
2040     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2041       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2042       return ConstantFP::get(Ty->getContext(), U);
2043     }
2044 
2045     if (IntrinsicID == Intrinsic::round) {
2046       U.roundToIntegral(APFloat::rmNearestTiesToAway);
2047       return ConstantFP::get(Ty->getContext(), U);
2048     }
2049 
2050     if (IntrinsicID == Intrinsic::roundeven) {
2051       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2052       return ConstantFP::get(Ty->getContext(), U);
2053     }
2054 
2055     if (IntrinsicID == Intrinsic::ceil) {
2056       U.roundToIntegral(APFloat::rmTowardPositive);
2057       return ConstantFP::get(Ty->getContext(), U);
2058     }
2059 
2060     if (IntrinsicID == Intrinsic::floor) {
2061       U.roundToIntegral(APFloat::rmTowardNegative);
2062       return ConstantFP::get(Ty->getContext(), U);
2063     }
2064 
2065     if (IntrinsicID == Intrinsic::trunc) {
2066       U.roundToIntegral(APFloat::rmTowardZero);
2067       return ConstantFP::get(Ty->getContext(), U);
2068     }
2069 
2070     if (IntrinsicID == Intrinsic::fabs) {
2071       U.clearSign();
2072       return ConstantFP::get(Ty->getContext(), U);
2073     }
2074 
2075     if (IntrinsicID == Intrinsic::amdgcn_fract) {
2076       // The v_fract instruction behaves like the OpenCL spec, which defines
2077       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2078       //   there to prevent fract(-small) from returning 1.0. It returns the
2079       //   largest positive floating-point number less than 1.0."
2080       APFloat FloorU(U);
2081       FloorU.roundToIntegral(APFloat::rmTowardNegative);
2082       APFloat FractU(U - FloorU);
2083       APFloat AlmostOne(U.getSemantics(), 1);
2084       AlmostOne.next(/*nextDown*/ true);
2085       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2086     }
2087 
2088     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2089     // raise FP exceptions, unless the argument is signaling NaN.
2090 
2091     Optional<APFloat::roundingMode> RM;
2092     switch (IntrinsicID) {
2093     default:
2094       break;
2095     case Intrinsic::experimental_constrained_nearbyint:
2096     case Intrinsic::experimental_constrained_rint: {
2097       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2098       RM = CI->getRoundingMode();
2099       if (!RM || *RM == RoundingMode::Dynamic)
2100         return nullptr;
2101       break;
2102     }
2103     case Intrinsic::experimental_constrained_round:
2104       RM = APFloat::rmNearestTiesToAway;
2105       break;
2106     case Intrinsic::experimental_constrained_ceil:
2107       RM = APFloat::rmTowardPositive;
2108       break;
2109     case Intrinsic::experimental_constrained_floor:
2110       RM = APFloat::rmTowardNegative;
2111       break;
2112     case Intrinsic::experimental_constrained_trunc:
2113       RM = APFloat::rmTowardZero;
2114       break;
2115     }
2116     if (RM) {
2117       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2118       if (U.isFinite()) {
2119         APFloat::opStatus St = U.roundToIntegral(*RM);
2120         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2121             St == APFloat::opInexact) {
2122           Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2123           if (EB && *EB == fp::ebStrict)
2124             return nullptr;
2125         }
2126       } else if (U.isSignaling()) {
2127         Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2128         if (EB && *EB != fp::ebIgnore)
2129           return nullptr;
2130         U = APFloat::getQNaN(U.getSemantics());
2131       }
2132       return ConstantFP::get(Ty->getContext(), U);
2133     }
2134 
2135     /// We only fold functions with finite arguments. Folding NaN and inf is
2136     /// likely to be aborted with an exception anyway, and some host libms
2137     /// have known errors raising exceptions.
2138     if (!U.isFinite())
2139       return nullptr;
2140 
2141     /// Currently APFloat versions of these functions do not exist, so we use
2142     /// the host native double versions.  Float versions are not called
2143     /// directly but for all these it is true (float)(f((double)arg)) ==
2144     /// f(arg).  Long double not supported yet.
2145     const APFloat &APF = Op->getValueAPF();
2146 
2147     switch (IntrinsicID) {
2148       default: break;
2149       case Intrinsic::log:
2150         return ConstantFoldFP(log, APF, Ty);
2151       case Intrinsic::log2:
2152         // TODO: What about hosts that lack a C99 library?
2153         return ConstantFoldFP(Log2, APF, Ty);
2154       case Intrinsic::log10:
2155         // TODO: What about hosts that lack a C99 library?
2156         return ConstantFoldFP(log10, APF, Ty);
2157       case Intrinsic::exp:
2158         return ConstantFoldFP(exp, APF, Ty);
2159       case Intrinsic::exp2:
2160         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2161         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2162       case Intrinsic::sin:
2163         return ConstantFoldFP(sin, APF, Ty);
2164       case Intrinsic::cos:
2165         return ConstantFoldFP(cos, APF, Ty);
2166       case Intrinsic::sqrt:
2167         return ConstantFoldFP(sqrt, APF, Ty);
2168       case Intrinsic::amdgcn_cos:
2169       case Intrinsic::amdgcn_sin: {
2170         double V = getValueAsDouble(Op);
2171         if (V < -256.0 || V > 256.0)
2172           // The gfx8 and gfx9 architectures handle arguments outside the range
2173           // [-256, 256] differently. This should be a rare case so bail out
2174           // rather than trying to handle the difference.
2175           return nullptr;
2176         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2177         double V4 = V * 4.0;
2178         if (V4 == floor(V4)) {
2179           // Force exact results for quarter-integer inputs.
2180           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2181           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2182         } else {
2183           if (IsCos)
2184             V = cos(V * 2.0 * numbers::pi);
2185           else
2186             V = sin(V * 2.0 * numbers::pi);
2187         }
2188         return GetConstantFoldFPValue(V, Ty);
2189       }
2190     }
2191 
2192     if (!TLI)
2193       return nullptr;
2194 
2195     LibFunc Func = NotLibFunc;
2196     if (!TLI->getLibFunc(Name, Func))
2197       return nullptr;
2198 
2199     switch (Func) {
2200     default:
2201       break;
2202     case LibFunc_acos:
2203     case LibFunc_acosf:
2204     case LibFunc_acos_finite:
2205     case LibFunc_acosf_finite:
2206       if (TLI->has(Func))
2207         return ConstantFoldFP(acos, APF, Ty);
2208       break;
2209     case LibFunc_asin:
2210     case LibFunc_asinf:
2211     case LibFunc_asin_finite:
2212     case LibFunc_asinf_finite:
2213       if (TLI->has(Func))
2214         return ConstantFoldFP(asin, APF, Ty);
2215       break;
2216     case LibFunc_atan:
2217     case LibFunc_atanf:
2218       if (TLI->has(Func))
2219         return ConstantFoldFP(atan, APF, Ty);
2220       break;
2221     case LibFunc_ceil:
2222     case LibFunc_ceilf:
2223       if (TLI->has(Func)) {
2224         U.roundToIntegral(APFloat::rmTowardPositive);
2225         return ConstantFP::get(Ty->getContext(), U);
2226       }
2227       break;
2228     case LibFunc_cos:
2229     case LibFunc_cosf:
2230       if (TLI->has(Func))
2231         return ConstantFoldFP(cos, APF, Ty);
2232       break;
2233     case LibFunc_cosh:
2234     case LibFunc_coshf:
2235     case LibFunc_cosh_finite:
2236     case LibFunc_coshf_finite:
2237       if (TLI->has(Func))
2238         return ConstantFoldFP(cosh, APF, Ty);
2239       break;
2240     case LibFunc_exp:
2241     case LibFunc_expf:
2242     case LibFunc_exp_finite:
2243     case LibFunc_expf_finite:
2244       if (TLI->has(Func))
2245         return ConstantFoldFP(exp, APF, Ty);
2246       break;
2247     case LibFunc_exp2:
2248     case LibFunc_exp2f:
2249     case LibFunc_exp2_finite:
2250     case LibFunc_exp2f_finite:
2251       if (TLI->has(Func))
2252         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2253         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2254       break;
2255     case LibFunc_fabs:
2256     case LibFunc_fabsf:
2257       if (TLI->has(Func)) {
2258         U.clearSign();
2259         return ConstantFP::get(Ty->getContext(), U);
2260       }
2261       break;
2262     case LibFunc_floor:
2263     case LibFunc_floorf:
2264       if (TLI->has(Func)) {
2265         U.roundToIntegral(APFloat::rmTowardNegative);
2266         return ConstantFP::get(Ty->getContext(), U);
2267       }
2268       break;
2269     case LibFunc_log:
2270     case LibFunc_logf:
2271     case LibFunc_log_finite:
2272     case LibFunc_logf_finite:
2273       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2274         return ConstantFoldFP(log, APF, Ty);
2275       break;
2276     case LibFunc_log2:
2277     case LibFunc_log2f:
2278     case LibFunc_log2_finite:
2279     case LibFunc_log2f_finite:
2280       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2281         // TODO: What about hosts that lack a C99 library?
2282         return ConstantFoldFP(Log2, APF, Ty);
2283       break;
2284     case LibFunc_log10:
2285     case LibFunc_log10f:
2286     case LibFunc_log10_finite:
2287     case LibFunc_log10f_finite:
2288       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2289         // TODO: What about hosts that lack a C99 library?
2290         return ConstantFoldFP(log10, APF, Ty);
2291       break;
2292     case LibFunc_nearbyint:
2293     case LibFunc_nearbyintf:
2294     case LibFunc_rint:
2295     case LibFunc_rintf:
2296       if (TLI->has(Func)) {
2297         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2298         return ConstantFP::get(Ty->getContext(), U);
2299       }
2300       break;
2301     case LibFunc_round:
2302     case LibFunc_roundf:
2303       if (TLI->has(Func)) {
2304         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2305         return ConstantFP::get(Ty->getContext(), U);
2306       }
2307       break;
2308     case LibFunc_sin:
2309     case LibFunc_sinf:
2310       if (TLI->has(Func))
2311         return ConstantFoldFP(sin, APF, Ty);
2312       break;
2313     case LibFunc_sinh:
2314     case LibFunc_sinhf:
2315     case LibFunc_sinh_finite:
2316     case LibFunc_sinhf_finite:
2317       if (TLI->has(Func))
2318         return ConstantFoldFP(sinh, APF, Ty);
2319       break;
2320     case LibFunc_sqrt:
2321     case LibFunc_sqrtf:
2322       if (!APF.isNegative() && TLI->has(Func))
2323         return ConstantFoldFP(sqrt, APF, Ty);
2324       break;
2325     case LibFunc_tan:
2326     case LibFunc_tanf:
2327       if (TLI->has(Func))
2328         return ConstantFoldFP(tan, APF, Ty);
2329       break;
2330     case LibFunc_tanh:
2331     case LibFunc_tanhf:
2332       if (TLI->has(Func))
2333         return ConstantFoldFP(tanh, APF, Ty);
2334       break;
2335     case LibFunc_trunc:
2336     case LibFunc_truncf:
2337       if (TLI->has(Func)) {
2338         U.roundToIntegral(APFloat::rmTowardZero);
2339         return ConstantFP::get(Ty->getContext(), U);
2340       }
2341       break;
2342     }
2343     return nullptr;
2344   }
2345 
2346   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2347     switch (IntrinsicID) {
2348     case Intrinsic::bswap:
2349       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2350     case Intrinsic::ctpop:
2351       return ConstantInt::get(Ty, Op->getValue().countPopulation());
2352     case Intrinsic::bitreverse:
2353       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2354     case Intrinsic::convert_from_fp16: {
2355       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2356 
2357       bool lost = false;
2358       APFloat::opStatus status = Val.convert(
2359           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2360 
2361       // Conversion is always precise.
2362       (void)status;
2363       assert(status == APFloat::opOK && !lost &&
2364              "Precision lost during fp16 constfolding");
2365 
2366       return ConstantFP::get(Ty->getContext(), Val);
2367     }
2368     default:
2369       return nullptr;
2370     }
2371   }
2372 
2373   switch (IntrinsicID) {
2374   default: break;
2375   case Intrinsic::vector_reduce_add:
2376   case Intrinsic::vector_reduce_mul:
2377   case Intrinsic::vector_reduce_and:
2378   case Intrinsic::vector_reduce_or:
2379   case Intrinsic::vector_reduce_xor:
2380   case Intrinsic::vector_reduce_smin:
2381   case Intrinsic::vector_reduce_smax:
2382   case Intrinsic::vector_reduce_umin:
2383   case Intrinsic::vector_reduce_umax:
2384     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2385       return C;
2386     break;
2387   }
2388 
2389   // Support ConstantVector in case we have an Undef in the top.
2390   if (isa<ConstantVector>(Operands[0]) ||
2391       isa<ConstantDataVector>(Operands[0])) {
2392     auto *Op = cast<Constant>(Operands[0]);
2393     switch (IntrinsicID) {
2394     default: break;
2395     case Intrinsic::x86_sse_cvtss2si:
2396     case Intrinsic::x86_sse_cvtss2si64:
2397     case Intrinsic::x86_sse2_cvtsd2si:
2398     case Intrinsic::x86_sse2_cvtsd2si64:
2399       if (ConstantFP *FPOp =
2400               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2401         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2402                                            /*roundTowardZero=*/false, Ty,
2403                                            /*IsSigned*/true);
2404       break;
2405     case Intrinsic::x86_sse_cvttss2si:
2406     case Intrinsic::x86_sse_cvttss2si64:
2407     case Intrinsic::x86_sse2_cvttsd2si:
2408     case Intrinsic::x86_sse2_cvttsd2si64:
2409       if (ConstantFP *FPOp =
2410               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2411         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2412                                            /*roundTowardZero=*/true, Ty,
2413                                            /*IsSigned*/true);
2414       break;
2415     }
2416   }
2417 
2418   return nullptr;
2419 }
2420 
2421 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2422                                  const ConstrainedFPIntrinsic *Call) {
2423   APFloat::opStatus St = APFloat::opOK;
2424   auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2425   FCmpInst::Predicate Cond = FCmp->getPredicate();
2426   if (FCmp->isSignaling()) {
2427     if (Op1.isNaN() || Op2.isNaN())
2428       St = APFloat::opInvalidOp;
2429   } else {
2430     if (Op1.isSignaling() || Op2.isSignaling())
2431       St = APFloat::opInvalidOp;
2432   }
2433   bool Result = FCmpInst::compare(Op1, Op2, Cond);
2434   if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2435     return ConstantInt::get(Call->getType()->getScalarType(), Result);
2436   return nullptr;
2437 }
2438 
2439 static Constant *ConstantFoldScalarCall2(StringRef Name,
2440                                          Intrinsic::ID IntrinsicID,
2441                                          Type *Ty,
2442                                          ArrayRef<Constant *> Operands,
2443                                          const TargetLibraryInfo *TLI,
2444                                          const CallBase *Call) {
2445   assert(Operands.size() == 2 && "Wrong number of operands.");
2446 
2447   if (Ty->isFloatingPointTy()) {
2448     // TODO: We should have undef handling for all of the FP intrinsics that
2449     //       are attempted to be folded in this function.
2450     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2451     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2452     switch (IntrinsicID) {
2453     case Intrinsic::maxnum:
2454     case Intrinsic::minnum:
2455     case Intrinsic::maximum:
2456     case Intrinsic::minimum:
2457       // If one argument is undef, return the other argument.
2458       if (IsOp0Undef)
2459         return Operands[1];
2460       if (IsOp1Undef)
2461         return Operands[0];
2462       break;
2463     }
2464   }
2465 
2466   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2467     const APFloat &Op1V = Op1->getValueAPF();
2468 
2469     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2470       if (Op2->getType() != Op1->getType())
2471         return nullptr;
2472       const APFloat &Op2V = Op2->getValueAPF();
2473 
2474       if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2475         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2476         APFloat Res = Op1V;
2477         APFloat::opStatus St;
2478         switch (IntrinsicID) {
2479         default:
2480           return nullptr;
2481         case Intrinsic::experimental_constrained_fadd:
2482           St = Res.add(Op2V, RM);
2483           break;
2484         case Intrinsic::experimental_constrained_fsub:
2485           St = Res.subtract(Op2V, RM);
2486           break;
2487         case Intrinsic::experimental_constrained_fmul:
2488           St = Res.multiply(Op2V, RM);
2489           break;
2490         case Intrinsic::experimental_constrained_fdiv:
2491           St = Res.divide(Op2V, RM);
2492           break;
2493         case Intrinsic::experimental_constrained_frem:
2494           St = Res.mod(Op2V);
2495           break;
2496         case Intrinsic::experimental_constrained_fcmp:
2497         case Intrinsic::experimental_constrained_fcmps:
2498           return evaluateCompare(Op1V, Op2V, ConstrIntr);
2499         }
2500         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2501                                St))
2502           return ConstantFP::get(Ty->getContext(), Res);
2503         return nullptr;
2504       }
2505 
2506       switch (IntrinsicID) {
2507       default:
2508         break;
2509       case Intrinsic::copysign:
2510         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2511       case Intrinsic::minnum:
2512         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2513       case Intrinsic::maxnum:
2514         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2515       case Intrinsic::minimum:
2516         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2517       case Intrinsic::maximum:
2518         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2519       }
2520 
2521       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2522         return nullptr;
2523 
2524       switch (IntrinsicID) {
2525       default:
2526         break;
2527       case Intrinsic::pow:
2528         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2529       case Intrinsic::amdgcn_fmul_legacy:
2530         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2531         // NaN or infinity, gives +0.0.
2532         if (Op1V.isZero() || Op2V.isZero())
2533           return ConstantFP::getNullValue(Ty);
2534         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2535       }
2536 
2537       if (!TLI)
2538         return nullptr;
2539 
2540       LibFunc Func = NotLibFunc;
2541       if (!TLI->getLibFunc(Name, Func))
2542         return nullptr;
2543 
2544       switch (Func) {
2545       default:
2546         break;
2547       case LibFunc_pow:
2548       case LibFunc_powf:
2549       case LibFunc_pow_finite:
2550       case LibFunc_powf_finite:
2551         if (TLI->has(Func))
2552           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2553         break;
2554       case LibFunc_fmod:
2555       case LibFunc_fmodf:
2556         if (TLI->has(Func)) {
2557           APFloat V = Op1->getValueAPF();
2558           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2559             return ConstantFP::get(Ty->getContext(), V);
2560         }
2561         break;
2562       case LibFunc_remainder:
2563       case LibFunc_remainderf:
2564         if (TLI->has(Func)) {
2565           APFloat V = Op1->getValueAPF();
2566           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2567             return ConstantFP::get(Ty->getContext(), V);
2568         }
2569         break;
2570       case LibFunc_atan2:
2571       case LibFunc_atan2f:
2572       case LibFunc_atan2_finite:
2573       case LibFunc_atan2f_finite:
2574         if (TLI->has(Func))
2575           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2576         break;
2577       }
2578     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2579       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2580         return nullptr;
2581       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2582         return ConstantFP::get(
2583             Ty->getContext(),
2584             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2585                                     (int)Op2C->getZExtValue())));
2586       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2587         return ConstantFP::get(
2588             Ty->getContext(),
2589             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2590                                     (int)Op2C->getZExtValue())));
2591       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2592         return ConstantFP::get(
2593             Ty->getContext(),
2594             APFloat((double)std::pow(Op1V.convertToDouble(),
2595                                      (int)Op2C->getZExtValue())));
2596 
2597       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2598         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2599         // everywhere else.
2600 
2601         // scalbn is equivalent to ldexp with float radix 2
2602         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2603                                 APFloat::rmNearestTiesToEven);
2604         return ConstantFP::get(Ty->getContext(), Result);
2605       }
2606     }
2607     return nullptr;
2608   }
2609 
2610   if (Operands[0]->getType()->isIntegerTy() &&
2611       Operands[1]->getType()->isIntegerTy()) {
2612     const APInt *C0, *C1;
2613     if (!getConstIntOrUndef(Operands[0], C0) ||
2614         !getConstIntOrUndef(Operands[1], C1))
2615       return nullptr;
2616 
2617     switch (IntrinsicID) {
2618     default: break;
2619     case Intrinsic::smax:
2620     case Intrinsic::smin:
2621     case Intrinsic::umax:
2622     case Intrinsic::umin:
2623       // This is the same as for binary ops - poison propagates.
2624       // TODO: Poison handling should be consolidated.
2625       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2626         return PoisonValue::get(Ty);
2627 
2628       if (!C0 && !C1)
2629         return UndefValue::get(Ty);
2630       if (!C0 || !C1)
2631         return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2632       return ConstantInt::get(
2633           Ty, ICmpInst::compare(*C0, *C1,
2634                                 MinMaxIntrinsic::getPredicate(IntrinsicID))
2635                   ? *C0
2636                   : *C1);
2637 
2638     case Intrinsic::usub_with_overflow:
2639     case Intrinsic::ssub_with_overflow:
2640       // X - undef -> { 0, false }
2641       // undef - X -> { 0, false }
2642       if (!C0 || !C1)
2643         return Constant::getNullValue(Ty);
2644       LLVM_FALLTHROUGH;
2645     case Intrinsic::uadd_with_overflow:
2646     case Intrinsic::sadd_with_overflow:
2647       // X + undef -> { -1, false }
2648       // undef + x -> { -1, false }
2649       if (!C0 || !C1) {
2650         return ConstantStruct::get(
2651             cast<StructType>(Ty),
2652             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2653              Constant::getNullValue(Ty->getStructElementType(1))});
2654       }
2655       LLVM_FALLTHROUGH;
2656     case Intrinsic::smul_with_overflow:
2657     case Intrinsic::umul_with_overflow: {
2658       // undef * X -> { 0, false }
2659       // X * undef -> { 0, false }
2660       if (!C0 || !C1)
2661         return Constant::getNullValue(Ty);
2662 
2663       APInt Res;
2664       bool Overflow;
2665       switch (IntrinsicID) {
2666       default: llvm_unreachable("Invalid case");
2667       case Intrinsic::sadd_with_overflow:
2668         Res = C0->sadd_ov(*C1, Overflow);
2669         break;
2670       case Intrinsic::uadd_with_overflow:
2671         Res = C0->uadd_ov(*C1, Overflow);
2672         break;
2673       case Intrinsic::ssub_with_overflow:
2674         Res = C0->ssub_ov(*C1, Overflow);
2675         break;
2676       case Intrinsic::usub_with_overflow:
2677         Res = C0->usub_ov(*C1, Overflow);
2678         break;
2679       case Intrinsic::smul_with_overflow:
2680         Res = C0->smul_ov(*C1, Overflow);
2681         break;
2682       case Intrinsic::umul_with_overflow:
2683         Res = C0->umul_ov(*C1, Overflow);
2684         break;
2685       }
2686       Constant *Ops[] = {
2687         ConstantInt::get(Ty->getContext(), Res),
2688         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2689       };
2690       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2691     }
2692     case Intrinsic::uadd_sat:
2693     case Intrinsic::sadd_sat:
2694       // This is the same as for binary ops - poison propagates.
2695       // TODO: Poison handling should be consolidated.
2696       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2697         return PoisonValue::get(Ty);
2698 
2699       if (!C0 && !C1)
2700         return UndefValue::get(Ty);
2701       if (!C0 || !C1)
2702         return Constant::getAllOnesValue(Ty);
2703       if (IntrinsicID == Intrinsic::uadd_sat)
2704         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2705       else
2706         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2707     case Intrinsic::usub_sat:
2708     case Intrinsic::ssub_sat:
2709       // This is the same as for binary ops - poison propagates.
2710       // TODO: Poison handling should be consolidated.
2711       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2712         return PoisonValue::get(Ty);
2713 
2714       if (!C0 && !C1)
2715         return UndefValue::get(Ty);
2716       if (!C0 || !C1)
2717         return Constant::getNullValue(Ty);
2718       if (IntrinsicID == Intrinsic::usub_sat)
2719         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2720       else
2721         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2722     case Intrinsic::cttz:
2723     case Intrinsic::ctlz:
2724       assert(C1 && "Must be constant int");
2725 
2726       // cttz(0, 1) and ctlz(0, 1) are poison.
2727       if (C1->isOne() && (!C0 || C0->isZero()))
2728         return PoisonValue::get(Ty);
2729       if (!C0)
2730         return Constant::getNullValue(Ty);
2731       if (IntrinsicID == Intrinsic::cttz)
2732         return ConstantInt::get(Ty, C0->countTrailingZeros());
2733       else
2734         return ConstantInt::get(Ty, C0->countLeadingZeros());
2735 
2736     case Intrinsic::abs:
2737       assert(C1 && "Must be constant int");
2738       assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2739 
2740       // Undef or minimum val operand with poison min --> undef
2741       if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2742         return UndefValue::get(Ty);
2743 
2744       // Undef operand with no poison min --> 0 (sign bit must be clear)
2745       if (!C0)
2746         return Constant::getNullValue(Ty);
2747 
2748       return ConstantInt::get(Ty, C0->abs());
2749     }
2750 
2751     return nullptr;
2752   }
2753 
2754   // Support ConstantVector in case we have an Undef in the top.
2755   if ((isa<ConstantVector>(Operands[0]) ||
2756        isa<ConstantDataVector>(Operands[0])) &&
2757       // Check for default rounding mode.
2758       // FIXME: Support other rounding modes?
2759       isa<ConstantInt>(Operands[1]) &&
2760       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2761     auto *Op = cast<Constant>(Operands[0]);
2762     switch (IntrinsicID) {
2763     default: break;
2764     case Intrinsic::x86_avx512_vcvtss2si32:
2765     case Intrinsic::x86_avx512_vcvtss2si64:
2766     case Intrinsic::x86_avx512_vcvtsd2si32:
2767     case Intrinsic::x86_avx512_vcvtsd2si64:
2768       if (ConstantFP *FPOp =
2769               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2770         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2771                                            /*roundTowardZero=*/false, Ty,
2772                                            /*IsSigned*/true);
2773       break;
2774     case Intrinsic::x86_avx512_vcvtss2usi32:
2775     case Intrinsic::x86_avx512_vcvtss2usi64:
2776     case Intrinsic::x86_avx512_vcvtsd2usi32:
2777     case Intrinsic::x86_avx512_vcvtsd2usi64:
2778       if (ConstantFP *FPOp =
2779               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2780         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2781                                            /*roundTowardZero=*/false, Ty,
2782                                            /*IsSigned*/false);
2783       break;
2784     case Intrinsic::x86_avx512_cvttss2si:
2785     case Intrinsic::x86_avx512_cvttss2si64:
2786     case Intrinsic::x86_avx512_cvttsd2si:
2787     case Intrinsic::x86_avx512_cvttsd2si64:
2788       if (ConstantFP *FPOp =
2789               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2790         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2791                                            /*roundTowardZero=*/true, Ty,
2792                                            /*IsSigned*/true);
2793       break;
2794     case Intrinsic::x86_avx512_cvttss2usi:
2795     case Intrinsic::x86_avx512_cvttss2usi64:
2796     case Intrinsic::x86_avx512_cvttsd2usi:
2797     case Intrinsic::x86_avx512_cvttsd2usi64:
2798       if (ConstantFP *FPOp =
2799               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2800         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2801                                            /*roundTowardZero=*/true, Ty,
2802                                            /*IsSigned*/false);
2803       break;
2804     }
2805   }
2806   return nullptr;
2807 }
2808 
2809 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2810                                                const APFloat &S0,
2811                                                const APFloat &S1,
2812                                                const APFloat &S2) {
2813   unsigned ID;
2814   const fltSemantics &Sem = S0.getSemantics();
2815   APFloat MA(Sem), SC(Sem), TC(Sem);
2816   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2817     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2818       // S2 < 0
2819       ID = 5;
2820       SC = -S0;
2821     } else {
2822       ID = 4;
2823       SC = S0;
2824     }
2825     MA = S2;
2826     TC = -S1;
2827   } else if (abs(S1) >= abs(S0)) {
2828     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2829       // S1 < 0
2830       ID = 3;
2831       TC = -S2;
2832     } else {
2833       ID = 2;
2834       TC = S2;
2835     }
2836     MA = S1;
2837     SC = S0;
2838   } else {
2839     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2840       // S0 < 0
2841       ID = 1;
2842       SC = S2;
2843     } else {
2844       ID = 0;
2845       SC = -S2;
2846     }
2847     MA = S0;
2848     TC = -S1;
2849   }
2850   switch (IntrinsicID) {
2851   default:
2852     llvm_unreachable("unhandled amdgcn cube intrinsic");
2853   case Intrinsic::amdgcn_cubeid:
2854     return APFloat(Sem, ID);
2855   case Intrinsic::amdgcn_cubema:
2856     return MA + MA;
2857   case Intrinsic::amdgcn_cubesc:
2858     return SC;
2859   case Intrinsic::amdgcn_cubetc:
2860     return TC;
2861   }
2862 }
2863 
2864 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2865                                                  Type *Ty) {
2866   const APInt *C0, *C1, *C2;
2867   if (!getConstIntOrUndef(Operands[0], C0) ||
2868       !getConstIntOrUndef(Operands[1], C1) ||
2869       !getConstIntOrUndef(Operands[2], C2))
2870     return nullptr;
2871 
2872   if (!C2)
2873     return UndefValue::get(Ty);
2874 
2875   APInt Val(32, 0);
2876   unsigned NumUndefBytes = 0;
2877   for (unsigned I = 0; I < 32; I += 8) {
2878     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2879     unsigned B = 0;
2880 
2881     if (Sel >= 13)
2882       B = 0xff;
2883     else if (Sel == 12)
2884       B = 0x00;
2885     else {
2886       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2887       if (!Src)
2888         ++NumUndefBytes;
2889       else if (Sel < 8)
2890         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2891       else
2892         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2893     }
2894 
2895     Val.insertBits(B, I, 8);
2896   }
2897 
2898   if (NumUndefBytes == 4)
2899     return UndefValue::get(Ty);
2900 
2901   return ConstantInt::get(Ty, Val);
2902 }
2903 
2904 static Constant *ConstantFoldScalarCall3(StringRef Name,
2905                                          Intrinsic::ID IntrinsicID,
2906                                          Type *Ty,
2907                                          ArrayRef<Constant *> Operands,
2908                                          const TargetLibraryInfo *TLI,
2909                                          const CallBase *Call) {
2910   assert(Operands.size() == 3 && "Wrong number of operands.");
2911 
2912   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2913     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2914       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2915         const APFloat &C1 = Op1->getValueAPF();
2916         const APFloat &C2 = Op2->getValueAPF();
2917         const APFloat &C3 = Op3->getValueAPF();
2918 
2919         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2920           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2921           APFloat Res = C1;
2922           APFloat::opStatus St;
2923           switch (IntrinsicID) {
2924           default:
2925             return nullptr;
2926           case Intrinsic::experimental_constrained_fma:
2927           case Intrinsic::experimental_constrained_fmuladd:
2928             St = Res.fusedMultiplyAdd(C2, C3, RM);
2929             break;
2930           }
2931           if (mayFoldConstrained(
2932                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
2933             return ConstantFP::get(Ty->getContext(), Res);
2934           return nullptr;
2935         }
2936 
2937         switch (IntrinsicID) {
2938         default: break;
2939         case Intrinsic::amdgcn_fma_legacy: {
2940           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2941           // NaN or infinity, gives +0.0.
2942           if (C1.isZero() || C2.isZero()) {
2943             // It's tempting to just return C3 here, but that would give the
2944             // wrong result if C3 was -0.0.
2945             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
2946           }
2947           LLVM_FALLTHROUGH;
2948         }
2949         case Intrinsic::fma:
2950         case Intrinsic::fmuladd: {
2951           APFloat V = C1;
2952           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
2953           return ConstantFP::get(Ty->getContext(), V);
2954         }
2955         case Intrinsic::amdgcn_cubeid:
2956         case Intrinsic::amdgcn_cubema:
2957         case Intrinsic::amdgcn_cubesc:
2958         case Intrinsic::amdgcn_cubetc: {
2959           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
2960           return ConstantFP::get(Ty->getContext(), V);
2961         }
2962         }
2963       }
2964     }
2965   }
2966 
2967   if (IntrinsicID == Intrinsic::smul_fix ||
2968       IntrinsicID == Intrinsic::smul_fix_sat) {
2969     // poison * C -> poison
2970     // C * poison -> poison
2971     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2972       return PoisonValue::get(Ty);
2973 
2974     const APInt *C0, *C1;
2975     if (!getConstIntOrUndef(Operands[0], C0) ||
2976         !getConstIntOrUndef(Operands[1], C1))
2977       return nullptr;
2978 
2979     // undef * C -> 0
2980     // C * undef -> 0
2981     if (!C0 || !C1)
2982       return Constant::getNullValue(Ty);
2983 
2984     // This code performs rounding towards negative infinity in case the result
2985     // cannot be represented exactly for the given scale. Targets that do care
2986     // about rounding should use a target hook for specifying how rounding
2987     // should be done, and provide their own folding to be consistent with
2988     // rounding. This is the same approach as used by
2989     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2990     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
2991     unsigned Width = C0->getBitWidth();
2992     assert(Scale < Width && "Illegal scale.");
2993     unsigned ExtendedWidth = Width * 2;
2994     APInt Product =
2995         (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
2996     if (IntrinsicID == Intrinsic::smul_fix_sat) {
2997       APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
2998       APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
2999       Product = APIntOps::smin(Product, Max);
3000       Product = APIntOps::smax(Product, Min);
3001     }
3002     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3003   }
3004 
3005   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3006     const APInt *C0, *C1, *C2;
3007     if (!getConstIntOrUndef(Operands[0], C0) ||
3008         !getConstIntOrUndef(Operands[1], C1) ||
3009         !getConstIntOrUndef(Operands[2], C2))
3010       return nullptr;
3011 
3012     bool IsRight = IntrinsicID == Intrinsic::fshr;
3013     if (!C2)
3014       return Operands[IsRight ? 1 : 0];
3015     if (!C0 && !C1)
3016       return UndefValue::get(Ty);
3017 
3018     // The shift amount is interpreted as modulo the bitwidth. If the shift
3019     // amount is effectively 0, avoid UB due to oversized inverse shift below.
3020     unsigned BitWidth = C2->getBitWidth();
3021     unsigned ShAmt = C2->urem(BitWidth);
3022     if (!ShAmt)
3023       return Operands[IsRight ? 1 : 0];
3024 
3025     // (C0 << ShlAmt) | (C1 >> LshrAmt)
3026     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3027     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3028     if (!C0)
3029       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3030     if (!C1)
3031       return ConstantInt::get(Ty, C0->shl(ShlAmt));
3032     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3033   }
3034 
3035   if (IntrinsicID == Intrinsic::amdgcn_perm)
3036     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3037 
3038   return nullptr;
3039 }
3040 
3041 static Constant *ConstantFoldScalarCall(StringRef Name,
3042                                         Intrinsic::ID IntrinsicID,
3043                                         Type *Ty,
3044                                         ArrayRef<Constant *> Operands,
3045                                         const TargetLibraryInfo *TLI,
3046                                         const CallBase *Call) {
3047   if (Operands.size() == 1)
3048     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3049 
3050   if (Operands.size() == 2)
3051     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
3052 
3053   if (Operands.size() == 3)
3054     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3055 
3056   return nullptr;
3057 }
3058 
3059 static Constant *ConstantFoldFixedVectorCall(
3060     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3061     ArrayRef<Constant *> Operands, const DataLayout &DL,
3062     const TargetLibraryInfo *TLI, const CallBase *Call) {
3063   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3064   SmallVector<Constant *, 4> Lane(Operands.size());
3065   Type *Ty = FVTy->getElementType();
3066 
3067   switch (IntrinsicID) {
3068   case Intrinsic::masked_load: {
3069     auto *SrcPtr = Operands[0];
3070     auto *Mask = Operands[2];
3071     auto *Passthru = Operands[3];
3072 
3073     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3074 
3075     SmallVector<Constant *, 32> NewElements;
3076     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3077       auto *MaskElt = Mask->getAggregateElement(I);
3078       if (!MaskElt)
3079         break;
3080       auto *PassthruElt = Passthru->getAggregateElement(I);
3081       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3082       if (isa<UndefValue>(MaskElt)) {
3083         if (PassthruElt)
3084           NewElements.push_back(PassthruElt);
3085         else if (VecElt)
3086           NewElements.push_back(VecElt);
3087         else
3088           return nullptr;
3089       }
3090       if (MaskElt->isNullValue()) {
3091         if (!PassthruElt)
3092           return nullptr;
3093         NewElements.push_back(PassthruElt);
3094       } else if (MaskElt->isOneValue()) {
3095         if (!VecElt)
3096           return nullptr;
3097         NewElements.push_back(VecElt);
3098       } else {
3099         return nullptr;
3100       }
3101     }
3102     if (NewElements.size() != FVTy->getNumElements())
3103       return nullptr;
3104     return ConstantVector::get(NewElements);
3105   }
3106   case Intrinsic::arm_mve_vctp8:
3107   case Intrinsic::arm_mve_vctp16:
3108   case Intrinsic::arm_mve_vctp32:
3109   case Intrinsic::arm_mve_vctp64: {
3110     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3111       unsigned Lanes = FVTy->getNumElements();
3112       uint64_t Limit = Op->getZExtValue();
3113 
3114       SmallVector<Constant *, 16> NCs;
3115       for (unsigned i = 0; i < Lanes; i++) {
3116         if (i < Limit)
3117           NCs.push_back(ConstantInt::getTrue(Ty));
3118         else
3119           NCs.push_back(ConstantInt::getFalse(Ty));
3120       }
3121       return ConstantVector::get(NCs);
3122     }
3123     return nullptr;
3124   }
3125   case Intrinsic::get_active_lane_mask: {
3126     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3127     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3128     if (Op0 && Op1) {
3129       unsigned Lanes = FVTy->getNumElements();
3130       uint64_t Base = Op0->getZExtValue();
3131       uint64_t Limit = Op1->getZExtValue();
3132 
3133       SmallVector<Constant *, 16> NCs;
3134       for (unsigned i = 0; i < Lanes; i++) {
3135         if (Base + i < Limit)
3136           NCs.push_back(ConstantInt::getTrue(Ty));
3137         else
3138           NCs.push_back(ConstantInt::getFalse(Ty));
3139       }
3140       return ConstantVector::get(NCs);
3141     }
3142     return nullptr;
3143   }
3144   default:
3145     break;
3146   }
3147 
3148   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3149     // Gather a column of constants.
3150     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3151       // Some intrinsics use a scalar type for certain arguments.
3152       if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3153         Lane[J] = Operands[J];
3154         continue;
3155       }
3156 
3157       Constant *Agg = Operands[J]->getAggregateElement(I);
3158       if (!Agg)
3159         return nullptr;
3160 
3161       Lane[J] = Agg;
3162     }
3163 
3164     // Use the regular scalar folding to simplify this column.
3165     Constant *Folded =
3166         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3167     if (!Folded)
3168       return nullptr;
3169     Result[I] = Folded;
3170   }
3171 
3172   return ConstantVector::get(Result);
3173 }
3174 
3175 static Constant *ConstantFoldScalableVectorCall(
3176     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3177     ArrayRef<Constant *> Operands, const DataLayout &DL,
3178     const TargetLibraryInfo *TLI, const CallBase *Call) {
3179   switch (IntrinsicID) {
3180   case Intrinsic::aarch64_sve_convert_from_svbool: {
3181     auto *Src = dyn_cast<Constant>(Operands[0]);
3182     if (!Src || !Src->isNullValue())
3183       break;
3184 
3185     return ConstantInt::getFalse(SVTy);
3186   }
3187   default:
3188     break;
3189   }
3190   return nullptr;
3191 }
3192 
3193 } // end anonymous namespace
3194 
3195 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3196                                  ArrayRef<Constant *> Operands,
3197                                  const TargetLibraryInfo *TLI) {
3198   if (Call->isNoBuiltin())
3199     return nullptr;
3200   if (!F->hasName())
3201     return nullptr;
3202 
3203   // If this is not an intrinsic and not recognized as a library call, bail out.
3204   if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3205     if (!TLI)
3206       return nullptr;
3207     LibFunc LibF;
3208     if (!TLI->getLibFunc(*F, LibF))
3209       return nullptr;
3210   }
3211 
3212   StringRef Name = F->getName();
3213   Type *Ty = F->getReturnType();
3214   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3215     return ConstantFoldFixedVectorCall(
3216         Name, F->getIntrinsicID(), FVTy, Operands,
3217         F->getParent()->getDataLayout(), TLI, Call);
3218 
3219   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3220     return ConstantFoldScalableVectorCall(
3221         Name, F->getIntrinsicID(), SVTy, Operands,
3222         F->getParent()->getDataLayout(), TLI, Call);
3223 
3224   // TODO: If this is a library function, we already discovered that above,
3225   //       so we should pass the LibFunc, not the name (and it might be better
3226   //       still to separate intrinsic handling from libcalls).
3227   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3228                                 Call);
3229 }
3230 
3231 bool llvm::isMathLibCallNoop(const CallBase *Call,
3232                              const TargetLibraryInfo *TLI) {
3233   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3234   // (and to some extent ConstantFoldScalarCall).
3235   if (Call->isNoBuiltin() || Call->isStrictFP())
3236     return false;
3237   Function *F = Call->getCalledFunction();
3238   if (!F)
3239     return false;
3240 
3241   LibFunc Func;
3242   if (!TLI || !TLI->getLibFunc(*F, Func))
3243     return false;
3244 
3245   if (Call->arg_size() == 1) {
3246     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3247       const APFloat &Op = OpC->getValueAPF();
3248       switch (Func) {
3249       case LibFunc_logl:
3250       case LibFunc_log:
3251       case LibFunc_logf:
3252       case LibFunc_log2l:
3253       case LibFunc_log2:
3254       case LibFunc_log2f:
3255       case LibFunc_log10l:
3256       case LibFunc_log10:
3257       case LibFunc_log10f:
3258         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3259 
3260       case LibFunc_expl:
3261       case LibFunc_exp:
3262       case LibFunc_expf:
3263         // FIXME: These boundaries are slightly conservative.
3264         if (OpC->getType()->isDoubleTy())
3265           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3266         if (OpC->getType()->isFloatTy())
3267           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3268         break;
3269 
3270       case LibFunc_exp2l:
3271       case LibFunc_exp2:
3272       case LibFunc_exp2f:
3273         // FIXME: These boundaries are slightly conservative.
3274         if (OpC->getType()->isDoubleTy())
3275           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3276         if (OpC->getType()->isFloatTy())
3277           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3278         break;
3279 
3280       case LibFunc_sinl:
3281       case LibFunc_sin:
3282       case LibFunc_sinf:
3283       case LibFunc_cosl:
3284       case LibFunc_cos:
3285       case LibFunc_cosf:
3286         return !Op.isInfinity();
3287 
3288       case LibFunc_tanl:
3289       case LibFunc_tan:
3290       case LibFunc_tanf: {
3291         // FIXME: Stop using the host math library.
3292         // FIXME: The computation isn't done in the right precision.
3293         Type *Ty = OpC->getType();
3294         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3295           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3296         break;
3297       }
3298 
3299       case LibFunc_asinl:
3300       case LibFunc_asin:
3301       case LibFunc_asinf:
3302       case LibFunc_acosl:
3303       case LibFunc_acos:
3304       case LibFunc_acosf:
3305         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3306                  Op > APFloat(Op.getSemantics(), "1"));
3307 
3308       case LibFunc_sinh:
3309       case LibFunc_cosh:
3310       case LibFunc_sinhf:
3311       case LibFunc_coshf:
3312       case LibFunc_sinhl:
3313       case LibFunc_coshl:
3314         // FIXME: These boundaries are slightly conservative.
3315         if (OpC->getType()->isDoubleTy())
3316           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3317         if (OpC->getType()->isFloatTy())
3318           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3319         break;
3320 
3321       case LibFunc_sqrtl:
3322       case LibFunc_sqrt:
3323       case LibFunc_sqrtf:
3324         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3325 
3326       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3327       // maybe others?
3328       default:
3329         break;
3330       }
3331     }
3332   }
3333 
3334   if (Call->arg_size() == 2) {
3335     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3336     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3337     if (Op0C && Op1C) {
3338       const APFloat &Op0 = Op0C->getValueAPF();
3339       const APFloat &Op1 = Op1C->getValueAPF();
3340 
3341       switch (Func) {
3342       case LibFunc_powl:
3343       case LibFunc_pow:
3344       case LibFunc_powf: {
3345         // FIXME: Stop using the host math library.
3346         // FIXME: The computation isn't done in the right precision.
3347         Type *Ty = Op0C->getType();
3348         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3349           if (Ty == Op1C->getType())
3350             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3351         }
3352         break;
3353       }
3354 
3355       case LibFunc_fmodl:
3356       case LibFunc_fmod:
3357       case LibFunc_fmodf:
3358       case LibFunc_remainderl:
3359       case LibFunc_remainder:
3360       case LibFunc_remainderf:
3361         return Op0.isNaN() || Op1.isNaN() ||
3362                (!Op0.isInfinity() && !Op1.isZero());
3363 
3364       default:
3365         break;
3366       }
3367     }
3368   }
3369 
3370   return false;
3371 }
3372 
3373 void TargetFolder::anchor() {}
3374