1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/IntrinsicsAArch64.h" 45 #include "llvm/IR/IntrinsicsAMDGPU.h" 46 #include "llvm/IR/IntrinsicsARM.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/KnownBits.h" 55 #include "llvm/Support/MathExtras.h" 56 #include <cassert> 57 #include <cerrno> 58 #include <cfenv> 59 #include <cmath> 60 #include <cstddef> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 67 //===----------------------------------------------------------------------===// 68 // Constant Folding internal helper functions 69 //===----------------------------------------------------------------------===// 70 71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 72 Constant *C, Type *SrcEltTy, 73 unsigned NumSrcElts, 74 const DataLayout &DL) { 75 // Now that we know that the input value is a vector of integers, just shift 76 // and insert them into our result. 77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 78 for (unsigned i = 0; i != NumSrcElts; ++i) { 79 Constant *Element; 80 if (DL.isLittleEndian()) 81 Element = C->getAggregateElement(NumSrcElts - i - 1); 82 else 83 Element = C->getAggregateElement(i); 84 85 if (Element && isa<UndefValue>(Element)) { 86 Result <<= BitShift; 87 continue; 88 } 89 90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 91 if (!ElementCI) 92 return ConstantExpr::getBitCast(C, DestTy); 93 94 Result <<= BitShift; 95 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 96 } 97 98 return nullptr; 99 } 100 101 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 102 /// This always returns a non-null constant, but it may be a 103 /// ConstantExpr if unfoldable. 104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 106 "Invalid constantexpr bitcast!"); 107 108 // Catch the obvious splat cases. 109 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 110 return Res; 111 112 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 113 // Handle a vector->scalar integer/fp cast. 114 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 115 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 116 Type *SrcEltTy = VTy->getElementType(); 117 118 // If the vector is a vector of floating point, convert it to vector of int 119 // to simplify things. 120 if (SrcEltTy->isFloatingPointTy()) { 121 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 122 auto *SrcIVTy = FixedVectorType::get( 123 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 124 // Ask IR to do the conversion now that #elts line up. 125 C = ConstantExpr::getBitCast(C, SrcIVTy); 126 } 127 128 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 129 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 130 SrcEltTy, NumSrcElts, DL)) 131 return CE; 132 133 if (isa<IntegerType>(DestTy)) 134 return ConstantInt::get(DestTy, Result); 135 136 APFloat FP(DestTy->getFltSemantics(), Result); 137 return ConstantFP::get(DestTy->getContext(), FP); 138 } 139 } 140 141 // The code below only handles casts to vectors currently. 142 auto *DestVTy = dyn_cast<VectorType>(DestTy); 143 if (!DestVTy) 144 return ConstantExpr::getBitCast(C, DestTy); 145 146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 147 // vector so the code below can handle it uniformly. 148 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 149 Constant *Ops = C; // don't take the address of C! 150 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 151 } 152 153 // If this is a bitcast from constant vector -> vector, fold it. 154 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 155 return ConstantExpr::getBitCast(C, DestTy); 156 157 // If the element types match, IR can fold it. 158 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 159 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 160 if (NumDstElt == NumSrcElt) 161 return ConstantExpr::getBitCast(C, DestTy); 162 163 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 164 Type *DstEltTy = DestVTy->getElementType(); 165 166 // Otherwise, we're changing the number of elements in a vector, which 167 // requires endianness information to do the right thing. For example, 168 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 169 // folds to (little endian): 170 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 171 // and to (big endian): 172 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 173 174 // First thing is first. We only want to think about integer here, so if 175 // we have something in FP form, recast it as integer. 176 if (DstEltTy->isFloatingPointTy()) { 177 // Fold to an vector of integers with same size as our FP type. 178 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 179 auto *DestIVTy = FixedVectorType::get( 180 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 181 // Recursively handle this integer conversion, if possible. 182 C = FoldBitCast(C, DestIVTy, DL); 183 184 // Finally, IR can handle this now that #elts line up. 185 return ConstantExpr::getBitCast(C, DestTy); 186 } 187 188 // Okay, we know the destination is integer, if the input is FP, convert 189 // it to integer first. 190 if (SrcEltTy->isFloatingPointTy()) { 191 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 192 auto *SrcIVTy = FixedVectorType::get( 193 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 194 // Ask IR to do the conversion now that #elts line up. 195 C = ConstantExpr::getBitCast(C, SrcIVTy); 196 // If IR wasn't able to fold it, bail out. 197 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 198 !isa<ConstantDataVector>(C)) 199 return C; 200 } 201 202 // Now we know that the input and output vectors are both integer vectors 203 // of the same size, and that their #elements is not the same. Do the 204 // conversion here, which depends on whether the input or output has 205 // more elements. 206 bool isLittleEndian = DL.isLittleEndian(); 207 208 SmallVector<Constant*, 32> Result; 209 if (NumDstElt < NumSrcElt) { 210 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 211 Constant *Zero = Constant::getNullValue(DstEltTy); 212 unsigned Ratio = NumSrcElt/NumDstElt; 213 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 214 unsigned SrcElt = 0; 215 for (unsigned i = 0; i != NumDstElt; ++i) { 216 // Build each element of the result. 217 Constant *Elt = Zero; 218 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 219 for (unsigned j = 0; j != Ratio; ++j) { 220 Constant *Src = C->getAggregateElement(SrcElt++); 221 if (Src && isa<UndefValue>(Src)) 222 Src = Constant::getNullValue( 223 cast<VectorType>(C->getType())->getElementType()); 224 else 225 Src = dyn_cast_or_null<ConstantInt>(Src); 226 if (!Src) // Reject constantexpr elements. 227 return ConstantExpr::getBitCast(C, DestTy); 228 229 // Zero extend the element to the right size. 230 Src = ConstantExpr::getZExt(Src, Elt->getType()); 231 232 // Shift it to the right place, depending on endianness. 233 Src = ConstantExpr::getShl(Src, 234 ConstantInt::get(Src->getType(), ShiftAmt)); 235 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 236 237 // Mix it in. 238 Elt = ConstantExpr::getOr(Elt, Src); 239 } 240 Result.push_back(Elt); 241 } 242 return ConstantVector::get(Result); 243 } 244 245 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 246 unsigned Ratio = NumDstElt/NumSrcElt; 247 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 248 249 // Loop over each source value, expanding into multiple results. 250 for (unsigned i = 0; i != NumSrcElt; ++i) { 251 auto *Element = C->getAggregateElement(i); 252 253 if (!Element) // Reject constantexpr elements. 254 return ConstantExpr::getBitCast(C, DestTy); 255 256 if (isa<UndefValue>(Element)) { 257 // Correctly Propagate undef values. 258 Result.append(Ratio, UndefValue::get(DstEltTy)); 259 continue; 260 } 261 262 auto *Src = dyn_cast<ConstantInt>(Element); 263 if (!Src) 264 return ConstantExpr::getBitCast(C, DestTy); 265 266 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 267 for (unsigned j = 0; j != Ratio; ++j) { 268 // Shift the piece of the value into the right place, depending on 269 // endianness. 270 Constant *Elt = ConstantExpr::getLShr(Src, 271 ConstantInt::get(Src->getType(), ShiftAmt)); 272 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 273 274 // Truncate the element to an integer with the same pointer size and 275 // convert the element back to a pointer using a inttoptr. 276 if (DstEltTy->isPointerTy()) { 277 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 278 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 279 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 280 continue; 281 } 282 283 // Truncate and remember this piece. 284 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 285 } 286 } 287 288 return ConstantVector::get(Result); 289 } 290 291 } // end anonymous namespace 292 293 /// If this constant is a constant offset from a global, return the global and 294 /// the constant. Because of constantexprs, this function is recursive. 295 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 296 APInt &Offset, const DataLayout &DL, 297 DSOLocalEquivalent **DSOEquiv) { 298 if (DSOEquiv) 299 *DSOEquiv = nullptr; 300 301 // Trivial case, constant is the global. 302 if ((GV = dyn_cast<GlobalValue>(C))) { 303 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 304 Offset = APInt(BitWidth, 0); 305 return true; 306 } 307 308 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 309 if (DSOEquiv) 310 *DSOEquiv = FoundDSOEquiv; 311 GV = FoundDSOEquiv->getGlobalValue(); 312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 313 Offset = APInt(BitWidth, 0); 314 return true; 315 } 316 317 // Otherwise, if this isn't a constant expr, bail out. 318 auto *CE = dyn_cast<ConstantExpr>(C); 319 if (!CE) return false; 320 321 // Look through ptr->int and ptr->ptr casts. 322 if (CE->getOpcode() == Instruction::PtrToInt || 323 CE->getOpcode() == Instruction::BitCast) 324 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 325 DSOEquiv); 326 327 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 328 auto *GEP = dyn_cast<GEPOperator>(CE); 329 if (!GEP) 330 return false; 331 332 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 333 APInt TmpOffset(BitWidth, 0); 334 335 // If the base isn't a global+constant, we aren't either. 336 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 337 DSOEquiv)) 338 return false; 339 340 // Otherwise, add any offset that our operands provide. 341 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 342 return false; 343 344 Offset = TmpOffset; 345 return true; 346 } 347 348 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 349 const DataLayout &DL) { 350 do { 351 Type *SrcTy = C->getType(); 352 if (SrcTy == DestTy) 353 return C; 354 355 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 356 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 357 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 358 return nullptr; 359 360 // Catch the obvious splat cases (since all-zeros can coerce non-integral 361 // pointers legally). 362 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 363 return Res; 364 365 // If the type sizes are the same and a cast is legal, just directly 366 // cast the constant. 367 // But be careful not to coerce non-integral pointers illegally. 368 if (SrcSize == DestSize && 369 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 370 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 371 Instruction::CastOps Cast = Instruction::BitCast; 372 // If we are going from a pointer to int or vice versa, we spell the cast 373 // differently. 374 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 375 Cast = Instruction::IntToPtr; 376 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 377 Cast = Instruction::PtrToInt; 378 379 if (CastInst::castIsValid(Cast, C, DestTy)) 380 return ConstantExpr::getCast(Cast, C, DestTy); 381 } 382 383 // If this isn't an aggregate type, there is nothing we can do to drill down 384 // and find a bitcastable constant. 385 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 386 return nullptr; 387 388 // We're simulating a load through a pointer that was bitcast to point to 389 // a different type, so we can try to walk down through the initial 390 // elements of an aggregate to see if some part of the aggregate is 391 // castable to implement the "load" semantic model. 392 if (SrcTy->isStructTy()) { 393 // Struct types might have leading zero-length elements like [0 x i32], 394 // which are certainly not what we are looking for, so skip them. 395 unsigned Elem = 0; 396 Constant *ElemC; 397 do { 398 ElemC = C->getAggregateElement(Elem++); 399 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 400 C = ElemC; 401 } else { 402 // For non-byte-sized vector elements, the first element is not 403 // necessarily located at the vector base address. 404 if (auto *VT = dyn_cast<VectorType>(SrcTy)) 405 if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) 406 return nullptr; 407 408 C = C->getAggregateElement(0u); 409 } 410 } while (C); 411 412 return nullptr; 413 } 414 415 namespace { 416 417 /// Recursive helper to read bits out of global. C is the constant being copied 418 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 419 /// results into and BytesLeft is the number of bytes left in 420 /// the CurPtr buffer. DL is the DataLayout. 421 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 422 unsigned BytesLeft, const DataLayout &DL) { 423 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 424 "Out of range access"); 425 426 // If this element is zero or undefined, we can just return since *CurPtr is 427 // zero initialized. 428 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 429 return true; 430 431 if (auto *CI = dyn_cast<ConstantInt>(C)) { 432 if (CI->getBitWidth() > 64 || 433 (CI->getBitWidth() & 7) != 0) 434 return false; 435 436 uint64_t Val = CI->getZExtValue(); 437 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 438 439 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 440 int n = ByteOffset; 441 if (!DL.isLittleEndian()) 442 n = IntBytes - n - 1; 443 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 444 ++ByteOffset; 445 } 446 return true; 447 } 448 449 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 450 if (CFP->getType()->isDoubleTy()) { 451 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 452 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 453 } 454 if (CFP->getType()->isFloatTy()){ 455 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 456 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 457 } 458 if (CFP->getType()->isHalfTy()){ 459 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 460 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 461 } 462 return false; 463 } 464 465 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 466 const StructLayout *SL = DL.getStructLayout(CS->getType()); 467 unsigned Index = SL->getElementContainingOffset(ByteOffset); 468 uint64_t CurEltOffset = SL->getElementOffset(Index); 469 ByteOffset -= CurEltOffset; 470 471 while (true) { 472 // If the element access is to the element itself and not to tail padding, 473 // read the bytes from the element. 474 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 475 476 if (ByteOffset < EltSize && 477 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 478 BytesLeft, DL)) 479 return false; 480 481 ++Index; 482 483 // Check to see if we read from the last struct element, if so we're done. 484 if (Index == CS->getType()->getNumElements()) 485 return true; 486 487 // If we read all of the bytes we needed from this element we're done. 488 uint64_t NextEltOffset = SL->getElementOffset(Index); 489 490 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 491 return true; 492 493 // Move to the next element of the struct. 494 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 495 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 496 ByteOffset = 0; 497 CurEltOffset = NextEltOffset; 498 } 499 // not reached. 500 } 501 502 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 503 isa<ConstantDataSequential>(C)) { 504 uint64_t NumElts; 505 Type *EltTy; 506 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 507 NumElts = AT->getNumElements(); 508 EltTy = AT->getElementType(); 509 } else { 510 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 511 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 512 } 513 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 514 uint64_t Index = ByteOffset / EltSize; 515 uint64_t Offset = ByteOffset - Index * EltSize; 516 517 for (; Index != NumElts; ++Index) { 518 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 519 BytesLeft, DL)) 520 return false; 521 522 uint64_t BytesWritten = EltSize - Offset; 523 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 524 if (BytesWritten >= BytesLeft) 525 return true; 526 527 Offset = 0; 528 BytesLeft -= BytesWritten; 529 CurPtr += BytesWritten; 530 } 531 return true; 532 } 533 534 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 535 if (CE->getOpcode() == Instruction::IntToPtr && 536 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 537 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 538 BytesLeft, DL); 539 } 540 } 541 542 // Otherwise, unknown initializer type. 543 return false; 544 } 545 546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 547 int64_t Offset, const DataLayout &DL) { 548 // Bail out early. Not expect to load from scalable global variable. 549 if (isa<ScalableVectorType>(LoadTy)) 550 return nullptr; 551 552 auto *IntType = dyn_cast<IntegerType>(LoadTy); 553 554 // If this isn't an integer load we can't fold it directly. 555 if (!IntType) { 556 // If this is a non-integer load, we can try folding it as an int load and 557 // then bitcast the result. This can be useful for union cases. Note 558 // that address spaces don't matter here since we're not going to result in 559 // an actual new load. 560 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && 561 !LoadTy->isVectorTy()) 562 return nullptr; 563 564 Type *MapTy = Type::getIntNTy( 565 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 566 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 567 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 568 !LoadTy->isX86_AMXTy()) 569 // Materializing a zero can be done trivially without a bitcast 570 return Constant::getNullValue(LoadTy); 571 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 572 Res = FoldBitCast(Res, CastTy, DL); 573 if (LoadTy->isPtrOrPtrVectorTy()) { 574 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 575 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 576 !LoadTy->isX86_AMXTy()) 577 return Constant::getNullValue(LoadTy); 578 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 579 // Be careful not to replace a load of an addrspace value with an inttoptr here 580 return nullptr; 581 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 582 } 583 return Res; 584 } 585 return nullptr; 586 } 587 588 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 589 if (BytesLoaded > 32 || BytesLoaded == 0) 590 return nullptr; 591 592 int64_t InitializerSize = DL.getTypeAllocSize(C->getType()).getFixedSize(); 593 594 // If we're not accessing anything in this constant, the result is undefined. 595 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 596 return UndefValue::get(IntType); 597 598 // If we're not accessing anything in this constant, the result is undefined. 599 if (Offset >= InitializerSize) 600 return UndefValue::get(IntType); 601 602 unsigned char RawBytes[32] = {0}; 603 unsigned char *CurPtr = RawBytes; 604 unsigned BytesLeft = BytesLoaded; 605 606 // If we're loading off the beginning of the global, some bytes may be valid. 607 if (Offset < 0) { 608 CurPtr += -Offset; 609 BytesLeft += Offset; 610 Offset = 0; 611 } 612 613 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 614 return nullptr; 615 616 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 617 if (DL.isLittleEndian()) { 618 ResultVal = RawBytes[BytesLoaded - 1]; 619 for (unsigned i = 1; i != BytesLoaded; ++i) { 620 ResultVal <<= 8; 621 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 622 } 623 } else { 624 ResultVal = RawBytes[0]; 625 for (unsigned i = 1; i != BytesLoaded; ++i) { 626 ResultVal <<= 8; 627 ResultVal |= RawBytes[i]; 628 } 629 } 630 631 return ConstantInt::get(IntType->getContext(), ResultVal); 632 } 633 634 /// If this Offset points exactly to the start of an aggregate element, return 635 /// that element, otherwise return nullptr. 636 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 637 const DataLayout &DL) { 638 if (Offset.isZero()) 639 return Base; 640 641 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 642 return nullptr; 643 644 Type *ElemTy = Base->getType(); 645 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 646 if (!Offset.isZero() || !Indices[0].isZero()) 647 return nullptr; 648 649 Constant *C = Base; 650 for (const APInt &Index : drop_begin(Indices)) { 651 if (Index.isNegative() || Index.getActiveBits() >= 32) 652 return nullptr; 653 654 C = C->getAggregateElement(Index.getZExtValue()); 655 if (!C) 656 return nullptr; 657 } 658 659 return C; 660 } 661 662 } // end anonymous namespace 663 664 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 665 const APInt &Offset, 666 const DataLayout &DL) { 667 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 668 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 669 return Result; 670 671 // Explicitly check for out-of-bounds access, so we return undef even if the 672 // constant is a uniform value. 673 TypeSize Size = DL.getTypeAllocSize(C->getType()); 674 if (!Size.isScalable() && Offset.sge(Size.getFixedSize())) 675 return UndefValue::get(Ty); 676 677 // Try an offset-independent fold of a uniform value. 678 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty)) 679 return Result; 680 681 // Try hard to fold loads from bitcasted strange and non-type-safe things. 682 if (Offset.getMinSignedBits() <= 64) 683 if (Constant *Result = 684 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) 685 return Result; 686 687 return nullptr; 688 } 689 690 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 691 const DataLayout &DL) { 692 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 693 } 694 695 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 696 APInt Offset, 697 const DataLayout &DL) { 698 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 699 DL, Offset, /* AllowNonInbounds */ true)); 700 701 if (auto *GV = dyn_cast<GlobalVariable>(C)) 702 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 703 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 704 Offset, DL)) 705 return Result; 706 707 // If this load comes from anywhere in a uniform constant global, the value 708 // is always the same, regardless of the loaded offset. 709 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) { 710 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 711 if (Constant *Res = 712 ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty)) 713 return Res; 714 } 715 } 716 717 return nullptr; 718 } 719 720 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 721 const DataLayout &DL) { 722 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 723 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL); 724 } 725 726 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) { 727 if (isa<PoisonValue>(C)) 728 return PoisonValue::get(Ty); 729 if (isa<UndefValue>(C)) 730 return UndefValue::get(Ty); 731 if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) 732 return Constant::getNullValue(Ty); 733 if (C->isAllOnesValue() && 734 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) 735 return Constant::getAllOnesValue(Ty); 736 return nullptr; 737 } 738 739 namespace { 740 741 /// One of Op0/Op1 is a constant expression. 742 /// Attempt to symbolically evaluate the result of a binary operator merging 743 /// these together. If target data info is available, it is provided as DL, 744 /// otherwise DL is null. 745 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 746 const DataLayout &DL) { 747 // SROA 748 749 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 750 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 751 // bits. 752 753 if (Opc == Instruction::And) { 754 KnownBits Known0 = computeKnownBits(Op0, DL); 755 KnownBits Known1 = computeKnownBits(Op1, DL); 756 if ((Known1.One | Known0.Zero).isAllOnes()) { 757 // All the bits of Op0 that the 'and' could be masking are already zero. 758 return Op0; 759 } 760 if ((Known0.One | Known1.Zero).isAllOnes()) { 761 // All the bits of Op1 that the 'and' could be masking are already zero. 762 return Op1; 763 } 764 765 Known0 &= Known1; 766 if (Known0.isConstant()) 767 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 768 } 769 770 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 771 // constant. This happens frequently when iterating over a global array. 772 if (Opc == Instruction::Sub) { 773 GlobalValue *GV1, *GV2; 774 APInt Offs1, Offs2; 775 776 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 777 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 778 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 779 780 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 781 // PtrToInt may change the bitwidth so we have convert to the right size 782 // first. 783 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 784 Offs2.zextOrTrunc(OpSize)); 785 } 786 } 787 788 return nullptr; 789 } 790 791 /// If array indices are not pointer-sized integers, explicitly cast them so 792 /// that they aren't implicitly casted by the getelementptr. 793 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 794 Type *ResultTy, Optional<unsigned> InRangeIndex, 795 const DataLayout &DL, const TargetLibraryInfo *TLI) { 796 Type *IntIdxTy = DL.getIndexType(ResultTy); 797 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 798 799 bool Any = false; 800 SmallVector<Constant*, 32> NewIdxs; 801 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 802 if ((i == 1 || 803 !isa<StructType>(GetElementPtrInst::getIndexedType( 804 SrcElemTy, Ops.slice(1, i - 1)))) && 805 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 806 Any = true; 807 Type *NewType = Ops[i]->getType()->isVectorTy() 808 ? IntIdxTy 809 : IntIdxScalarTy; 810 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 811 true, 812 NewType, 813 true), 814 Ops[i], NewType)); 815 } else 816 NewIdxs.push_back(Ops[i]); 817 } 818 819 if (!Any) 820 return nullptr; 821 822 Constant *C = ConstantExpr::getGetElementPtr( 823 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 824 return ConstantFoldConstant(C, DL, TLI); 825 } 826 827 /// Strip the pointer casts, but preserve the address space information. 828 Constant *StripPtrCastKeepAS(Constant *Ptr) { 829 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 830 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 831 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 832 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 833 834 // Preserve the address space number of the pointer. 835 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 836 Ptr = ConstantExpr::getPointerCast( 837 Ptr, PointerType::getWithSamePointeeType(NewPtrTy, 838 OldPtrTy->getAddressSpace())); 839 } 840 return Ptr; 841 } 842 843 /// If we can symbolically evaluate the GEP constant expression, do so. 844 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 845 ArrayRef<Constant *> Ops, 846 const DataLayout &DL, 847 const TargetLibraryInfo *TLI) { 848 const GEPOperator *InnermostGEP = GEP; 849 bool InBounds = GEP->isInBounds(); 850 851 Type *SrcElemTy = GEP->getSourceElementType(); 852 Type *ResElemTy = GEP->getResultElementType(); 853 Type *ResTy = GEP->getType(); 854 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 855 return nullptr; 856 857 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 858 GEP->getInRangeIndex(), DL, TLI)) 859 return C; 860 861 Constant *Ptr = Ops[0]; 862 if (!Ptr->getType()->isPointerTy()) 863 return nullptr; 864 865 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 866 867 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 868 // "inttoptr (sub (ptrtoint Ptr), V)" 869 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 870 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 871 assert((!CE || CE->getType() == IntIdxTy) && 872 "CastGEPIndices didn't canonicalize index types!"); 873 if (CE && CE->getOpcode() == Instruction::Sub && 874 CE->getOperand(0)->isNullValue()) { 875 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 876 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 877 Res = ConstantExpr::getIntToPtr(Res, ResTy); 878 return ConstantFoldConstant(Res, DL, TLI); 879 } 880 } 881 882 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 883 if (!isa<ConstantInt>(Ops[i])) 884 return nullptr; 885 886 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 887 APInt Offset = 888 APInt(BitWidth, 889 DL.getIndexedOffsetInType( 890 SrcElemTy, 891 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 892 Ptr = StripPtrCastKeepAS(Ptr); 893 894 // If this is a GEP of a GEP, fold it all into a single GEP. 895 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 896 InnermostGEP = GEP; 897 InBounds &= GEP->isInBounds(); 898 899 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); 900 901 // Do not try the incorporate the sub-GEP if some index is not a number. 902 bool AllConstantInt = true; 903 for (Value *NestedOp : NestedOps) 904 if (!isa<ConstantInt>(NestedOp)) { 905 AllConstantInt = false; 906 break; 907 } 908 if (!AllConstantInt) 909 break; 910 911 Ptr = cast<Constant>(GEP->getOperand(0)); 912 SrcElemTy = GEP->getSourceElementType(); 913 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 914 Ptr = StripPtrCastKeepAS(Ptr); 915 } 916 917 // If the base value for this address is a literal integer value, fold the 918 // getelementptr to the resulting integer value casted to the pointer type. 919 APInt BasePtr(BitWidth, 0); 920 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 921 if (CE->getOpcode() == Instruction::IntToPtr) { 922 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 923 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 924 } 925 } 926 927 auto *PTy = cast<PointerType>(Ptr->getType()); 928 if ((Ptr->isNullValue() || BasePtr != 0) && 929 !DL.isNonIntegralPointerType(PTy)) { 930 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 931 return ConstantExpr::getIntToPtr(C, ResTy); 932 } 933 934 // Otherwise form a regular getelementptr. Recompute the indices so that 935 // we eliminate over-indexing of the notional static type array bounds. 936 // This makes it easy to determine if the getelementptr is "inbounds". 937 // Also, this helps GlobalOpt do SROA on GlobalVariables. 938 939 // For GEPs of GlobalValues, use the value type even for opaque pointers. 940 // Otherwise use an i8 GEP. 941 if (auto *GV = dyn_cast<GlobalValue>(Ptr)) 942 SrcElemTy = GV->getValueType(); 943 else if (!PTy->isOpaque()) 944 SrcElemTy = PTy->getNonOpaquePointerElementType(); 945 else 946 SrcElemTy = Type::getInt8Ty(Ptr->getContext()); 947 948 if (!SrcElemTy->isSized()) 949 return nullptr; 950 951 Type *ElemTy = SrcElemTy; 952 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 953 if (Offset != 0) 954 return nullptr; 955 956 // Try to add additional zero indices to reach the desired result element 957 // type. 958 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and 959 // we'll have to insert a bitcast anyway? 960 while (ElemTy != ResElemTy) { 961 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0); 962 if (!NextTy) 963 break; 964 965 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth)); 966 ElemTy = NextTy; 967 } 968 969 SmallVector<Constant *, 32> NewIdxs; 970 for (const APInt &Index : Indices) 971 NewIdxs.push_back(ConstantInt::get( 972 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index)); 973 974 // Preserve the inrange index from the innermost GEP if possible. We must 975 // have calculated the same indices up to and including the inrange index. 976 Optional<unsigned> InRangeIndex; 977 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 978 if (SrcElemTy == InnermostGEP->getSourceElementType() && 979 NewIdxs.size() > *LastIRIndex) { 980 InRangeIndex = LastIRIndex; 981 for (unsigned I = 0; I <= *LastIRIndex; ++I) 982 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 983 return nullptr; 984 } 985 986 // Create a GEP. 987 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 988 InBounds, InRangeIndex); 989 assert( 990 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && 991 "Computed GetElementPtr has unexpected type!"); 992 993 // If we ended up indexing a member with a type that doesn't match 994 // the type of what the original indices indexed, add a cast. 995 if (C->getType() != ResTy) 996 C = FoldBitCast(C, ResTy, DL); 997 998 return C; 999 } 1000 1001 /// Attempt to constant fold an instruction with the 1002 /// specified opcode and operands. If successful, the constant result is 1003 /// returned, if not, null is returned. Note that this function can fail when 1004 /// attempting to fold instructions like loads and stores, which have no 1005 /// constant expression form. 1006 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 1007 ArrayRef<Constant *> Ops, 1008 const DataLayout &DL, 1009 const TargetLibraryInfo *TLI) { 1010 Type *DestTy = InstOrCE->getType(); 1011 1012 if (Instruction::isUnaryOp(Opcode)) 1013 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1014 1015 if (Instruction::isBinaryOp(Opcode)) 1016 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1017 1018 if (Instruction::isCast(Opcode)) 1019 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1020 1021 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1022 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1023 return C; 1024 1025 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1026 Ops.slice(1), GEP->isInBounds(), 1027 GEP->getInRangeIndex()); 1028 } 1029 1030 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1031 return CE->getWithOperands(Ops); 1032 1033 switch (Opcode) { 1034 default: return nullptr; 1035 case Instruction::ICmp: 1036 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1037 case Instruction::Freeze: 1038 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1039 case Instruction::Call: 1040 if (auto *F = dyn_cast<Function>(Ops.back())) { 1041 const auto *Call = cast<CallBase>(InstOrCE); 1042 if (canConstantFoldCallTo(Call, F)) 1043 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1044 } 1045 return nullptr; 1046 case Instruction::Select: 1047 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1048 case Instruction::ExtractElement: 1049 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1050 case Instruction::ExtractValue: 1051 return ConstantExpr::getExtractValue( 1052 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1053 case Instruction::InsertElement: 1054 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1055 case Instruction::ShuffleVector: 1056 return ConstantExpr::getShuffleVector( 1057 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1058 } 1059 } 1060 1061 } // end anonymous namespace 1062 1063 //===----------------------------------------------------------------------===// 1064 // Constant Folding public APIs 1065 //===----------------------------------------------------------------------===// 1066 1067 namespace { 1068 1069 Constant * 1070 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1071 const TargetLibraryInfo *TLI, 1072 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1073 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1074 return const_cast<Constant *>(C); 1075 1076 SmallVector<Constant *, 8> Ops; 1077 for (const Use &OldU : C->operands()) { 1078 Constant *OldC = cast<Constant>(&OldU); 1079 Constant *NewC = OldC; 1080 // Recursively fold the ConstantExpr's operands. If we have already folded 1081 // a ConstantExpr, we don't have to process it again. 1082 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1083 auto It = FoldedOps.find(OldC); 1084 if (It == FoldedOps.end()) { 1085 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1086 FoldedOps.insert({OldC, NewC}); 1087 } else { 1088 NewC = It->second; 1089 } 1090 } 1091 Ops.push_back(NewC); 1092 } 1093 1094 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1095 if (CE->isCompare()) 1096 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1097 DL, TLI); 1098 1099 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1100 } 1101 1102 assert(isa<ConstantVector>(C)); 1103 return ConstantVector::get(Ops); 1104 } 1105 1106 } // end anonymous namespace 1107 1108 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1109 const TargetLibraryInfo *TLI) { 1110 // Handle PHI nodes quickly here... 1111 if (auto *PN = dyn_cast<PHINode>(I)) { 1112 Constant *CommonValue = nullptr; 1113 1114 SmallDenseMap<Constant *, Constant *> FoldedOps; 1115 for (Value *Incoming : PN->incoming_values()) { 1116 // If the incoming value is undef then skip it. Note that while we could 1117 // skip the value if it is equal to the phi node itself we choose not to 1118 // because that would break the rule that constant folding only applies if 1119 // all operands are constants. 1120 if (isa<UndefValue>(Incoming)) 1121 continue; 1122 // If the incoming value is not a constant, then give up. 1123 auto *C = dyn_cast<Constant>(Incoming); 1124 if (!C) 1125 return nullptr; 1126 // Fold the PHI's operands. 1127 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1128 // If the incoming value is a different constant to 1129 // the one we saw previously, then give up. 1130 if (CommonValue && C != CommonValue) 1131 return nullptr; 1132 CommonValue = C; 1133 } 1134 1135 // If we reach here, all incoming values are the same constant or undef. 1136 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1137 } 1138 1139 // Scan the operand list, checking to see if they are all constants, if so, 1140 // hand off to ConstantFoldInstOperandsImpl. 1141 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1142 return nullptr; 1143 1144 SmallDenseMap<Constant *, Constant *> FoldedOps; 1145 SmallVector<Constant *, 8> Ops; 1146 for (const Use &OpU : I->operands()) { 1147 auto *Op = cast<Constant>(&OpU); 1148 // Fold the Instruction's operands. 1149 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1150 Ops.push_back(Op); 1151 } 1152 1153 if (const auto *CI = dyn_cast<CmpInst>(I)) 1154 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1155 DL, TLI); 1156 1157 if (const auto *LI = dyn_cast<LoadInst>(I)) { 1158 if (LI->isVolatile()) 1159 return nullptr; 1160 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1161 } 1162 1163 if (auto *IVI = dyn_cast<InsertValueInst>(I)) 1164 return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices()); 1165 1166 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) 1167 return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices()); 1168 1169 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1170 } 1171 1172 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1173 const TargetLibraryInfo *TLI) { 1174 SmallDenseMap<Constant *, Constant *> FoldedOps; 1175 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1176 } 1177 1178 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1179 ArrayRef<Constant *> Ops, 1180 const DataLayout &DL, 1181 const TargetLibraryInfo *TLI) { 1182 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1183 } 1184 1185 Constant *llvm::ConstantFoldCompareInstOperands(unsigned IntPredicate, 1186 Constant *Ops0, Constant *Ops1, 1187 const DataLayout &DL, 1188 const TargetLibraryInfo *TLI) { 1189 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; 1190 // fold: icmp (inttoptr x), null -> icmp x, 0 1191 // fold: icmp null, (inttoptr x) -> icmp 0, x 1192 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1193 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1194 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1195 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1196 // 1197 // FIXME: The following comment is out of data and the DataLayout is here now. 1198 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1199 // around to know if bit truncation is happening. 1200 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1201 if (Ops1->isNullValue()) { 1202 if (CE0->getOpcode() == Instruction::IntToPtr) { 1203 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1204 // Convert the integer value to the right size to ensure we get the 1205 // proper extension or truncation. 1206 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1207 IntPtrTy, false); 1208 Constant *Null = Constant::getNullValue(C->getType()); 1209 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1210 } 1211 1212 // Only do this transformation if the int is intptrty in size, otherwise 1213 // there is a truncation or extension that we aren't modeling. 1214 if (CE0->getOpcode() == Instruction::PtrToInt) { 1215 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1216 if (CE0->getType() == IntPtrTy) { 1217 Constant *C = CE0->getOperand(0); 1218 Constant *Null = Constant::getNullValue(C->getType()); 1219 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1220 } 1221 } 1222 } 1223 1224 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1225 if (CE0->getOpcode() == CE1->getOpcode()) { 1226 if (CE0->getOpcode() == Instruction::IntToPtr) { 1227 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1228 1229 // Convert the integer value to the right size to ensure we get the 1230 // proper extension or truncation. 1231 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1232 IntPtrTy, false); 1233 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1234 IntPtrTy, false); 1235 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1236 } 1237 1238 // Only do this transformation if the int is intptrty in size, otherwise 1239 // there is a truncation or extension that we aren't modeling. 1240 if (CE0->getOpcode() == Instruction::PtrToInt) { 1241 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1242 if (CE0->getType() == IntPtrTy && 1243 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1244 return ConstantFoldCompareInstOperands( 1245 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1246 } 1247 } 1248 } 1249 } 1250 1251 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1252 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1253 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1254 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1255 Constant *LHS = ConstantFoldCompareInstOperands( 1256 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1257 Constant *RHS = ConstantFoldCompareInstOperands( 1258 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1259 unsigned OpC = 1260 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1261 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1262 } 1263 1264 // Convert pointer comparison (base+offset1) pred (base+offset2) into 1265 // offset1 pred offset2, for the case where the offset is inbounds. This 1266 // only works for equality and unsigned comparison, as inbounds permits 1267 // crossing the sign boundary. However, the offset comparison itself is 1268 // signed. 1269 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { 1270 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); 1271 APInt Offset0(IndexWidth, 0); 1272 Value *Stripped0 = 1273 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); 1274 APInt Offset1(IndexWidth, 0); 1275 Value *Stripped1 = 1276 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); 1277 if (Stripped0 == Stripped1) 1278 return ConstantExpr::getCompare( 1279 ICmpInst::getSignedPredicate(Predicate), 1280 ConstantInt::get(CE0->getContext(), Offset0), 1281 ConstantInt::get(CE0->getContext(), Offset1)); 1282 } 1283 } else if (isa<ConstantExpr>(Ops1)) { 1284 // If RHS is a constant expression, but the left side isn't, swap the 1285 // operands and try again. 1286 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1287 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1288 } 1289 1290 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1291 } 1292 1293 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1294 const DataLayout &DL) { 1295 assert(Instruction::isUnaryOp(Opcode)); 1296 1297 return ConstantExpr::get(Opcode, Op); 1298 } 1299 1300 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1301 Constant *RHS, 1302 const DataLayout &DL) { 1303 assert(Instruction::isBinaryOp(Opcode)); 1304 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1305 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1306 return C; 1307 1308 return ConstantExpr::get(Opcode, LHS, RHS); 1309 } 1310 1311 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1312 Type *DestTy, const DataLayout &DL) { 1313 assert(Instruction::isCast(Opcode)); 1314 switch (Opcode) { 1315 default: 1316 llvm_unreachable("Missing case"); 1317 case Instruction::PtrToInt: 1318 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1319 Constant *FoldedValue = nullptr; 1320 // If the input is a inttoptr, eliminate the pair. This requires knowing 1321 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1322 if (CE->getOpcode() == Instruction::IntToPtr) { 1323 // zext/trunc the inttoptr to pointer size. 1324 FoldedValue = ConstantExpr::getIntegerCast( 1325 CE->getOperand(0), DL.getIntPtrType(CE->getType()), 1326 /*IsSigned=*/false); 1327 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1328 // If we have GEP, we can perform the following folds: 1329 // (ptrtoint (gep null, x)) -> x 1330 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1331 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1332 APInt BaseOffset(BitWidth, 0); 1333 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1334 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1335 if (Base->isNullValue()) { 1336 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1337 } 1338 } 1339 if (FoldedValue) { 1340 // Do a zext or trunc to get to the ptrtoint dest size. 1341 return ConstantExpr::getIntegerCast(FoldedValue, DestTy, 1342 /*IsSigned=*/false); 1343 } 1344 } 1345 return ConstantExpr::getCast(Opcode, C, DestTy); 1346 case Instruction::IntToPtr: 1347 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1348 // the int size is >= the ptr size and the address spaces are the same. 1349 // This requires knowing the width of a pointer, so it can't be done in 1350 // ConstantExpr::getCast. 1351 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1352 if (CE->getOpcode() == Instruction::PtrToInt) { 1353 Constant *SrcPtr = CE->getOperand(0); 1354 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1355 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1356 1357 if (MidIntSize >= SrcPtrSize) { 1358 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1359 if (SrcAS == DestTy->getPointerAddressSpace()) 1360 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1361 } 1362 } 1363 } 1364 1365 return ConstantExpr::getCast(Opcode, C, DestTy); 1366 case Instruction::Trunc: 1367 case Instruction::ZExt: 1368 case Instruction::SExt: 1369 case Instruction::FPTrunc: 1370 case Instruction::FPExt: 1371 case Instruction::UIToFP: 1372 case Instruction::SIToFP: 1373 case Instruction::FPToUI: 1374 case Instruction::FPToSI: 1375 case Instruction::AddrSpaceCast: 1376 return ConstantExpr::getCast(Opcode, C, DestTy); 1377 case Instruction::BitCast: 1378 return FoldBitCast(C, DestTy, DL); 1379 } 1380 } 1381 1382 //===----------------------------------------------------------------------===// 1383 // Constant Folding for Calls 1384 // 1385 1386 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1387 if (Call->isNoBuiltin()) 1388 return false; 1389 switch (F->getIntrinsicID()) { 1390 // Operations that do not operate floating-point numbers and do not depend on 1391 // FP environment can be folded even in strictfp functions. 1392 case Intrinsic::bswap: 1393 case Intrinsic::ctpop: 1394 case Intrinsic::ctlz: 1395 case Intrinsic::cttz: 1396 case Intrinsic::fshl: 1397 case Intrinsic::fshr: 1398 case Intrinsic::launder_invariant_group: 1399 case Intrinsic::strip_invariant_group: 1400 case Intrinsic::masked_load: 1401 case Intrinsic::get_active_lane_mask: 1402 case Intrinsic::abs: 1403 case Intrinsic::smax: 1404 case Intrinsic::smin: 1405 case Intrinsic::umax: 1406 case Intrinsic::umin: 1407 case Intrinsic::sadd_with_overflow: 1408 case Intrinsic::uadd_with_overflow: 1409 case Intrinsic::ssub_with_overflow: 1410 case Intrinsic::usub_with_overflow: 1411 case Intrinsic::smul_with_overflow: 1412 case Intrinsic::umul_with_overflow: 1413 case Intrinsic::sadd_sat: 1414 case Intrinsic::uadd_sat: 1415 case Intrinsic::ssub_sat: 1416 case Intrinsic::usub_sat: 1417 case Intrinsic::smul_fix: 1418 case Intrinsic::smul_fix_sat: 1419 case Intrinsic::bitreverse: 1420 case Intrinsic::is_constant: 1421 case Intrinsic::vector_reduce_add: 1422 case Intrinsic::vector_reduce_mul: 1423 case Intrinsic::vector_reduce_and: 1424 case Intrinsic::vector_reduce_or: 1425 case Intrinsic::vector_reduce_xor: 1426 case Intrinsic::vector_reduce_smin: 1427 case Intrinsic::vector_reduce_smax: 1428 case Intrinsic::vector_reduce_umin: 1429 case Intrinsic::vector_reduce_umax: 1430 // Target intrinsics 1431 case Intrinsic::amdgcn_perm: 1432 case Intrinsic::arm_mve_vctp8: 1433 case Intrinsic::arm_mve_vctp16: 1434 case Intrinsic::arm_mve_vctp32: 1435 case Intrinsic::arm_mve_vctp64: 1436 case Intrinsic::aarch64_sve_convert_from_svbool: 1437 // WebAssembly float semantics are always known 1438 case Intrinsic::wasm_trunc_signed: 1439 case Intrinsic::wasm_trunc_unsigned: 1440 return true; 1441 1442 // Floating point operations cannot be folded in strictfp functions in 1443 // general case. They can be folded if FP environment is known to compiler. 1444 case Intrinsic::minnum: 1445 case Intrinsic::maxnum: 1446 case Intrinsic::minimum: 1447 case Intrinsic::maximum: 1448 case Intrinsic::log: 1449 case Intrinsic::log2: 1450 case Intrinsic::log10: 1451 case Intrinsic::exp: 1452 case Intrinsic::exp2: 1453 case Intrinsic::sqrt: 1454 case Intrinsic::sin: 1455 case Intrinsic::cos: 1456 case Intrinsic::pow: 1457 case Intrinsic::powi: 1458 case Intrinsic::fma: 1459 case Intrinsic::fmuladd: 1460 case Intrinsic::fptoui_sat: 1461 case Intrinsic::fptosi_sat: 1462 case Intrinsic::convert_from_fp16: 1463 case Intrinsic::convert_to_fp16: 1464 case Intrinsic::amdgcn_cos: 1465 case Intrinsic::amdgcn_cubeid: 1466 case Intrinsic::amdgcn_cubema: 1467 case Intrinsic::amdgcn_cubesc: 1468 case Intrinsic::amdgcn_cubetc: 1469 case Intrinsic::amdgcn_fmul_legacy: 1470 case Intrinsic::amdgcn_fma_legacy: 1471 case Intrinsic::amdgcn_fract: 1472 case Intrinsic::amdgcn_ldexp: 1473 case Intrinsic::amdgcn_sin: 1474 // The intrinsics below depend on rounding mode in MXCSR. 1475 case Intrinsic::x86_sse_cvtss2si: 1476 case Intrinsic::x86_sse_cvtss2si64: 1477 case Intrinsic::x86_sse_cvttss2si: 1478 case Intrinsic::x86_sse_cvttss2si64: 1479 case Intrinsic::x86_sse2_cvtsd2si: 1480 case Intrinsic::x86_sse2_cvtsd2si64: 1481 case Intrinsic::x86_sse2_cvttsd2si: 1482 case Intrinsic::x86_sse2_cvttsd2si64: 1483 case Intrinsic::x86_avx512_vcvtss2si32: 1484 case Intrinsic::x86_avx512_vcvtss2si64: 1485 case Intrinsic::x86_avx512_cvttss2si: 1486 case Intrinsic::x86_avx512_cvttss2si64: 1487 case Intrinsic::x86_avx512_vcvtsd2si32: 1488 case Intrinsic::x86_avx512_vcvtsd2si64: 1489 case Intrinsic::x86_avx512_cvttsd2si: 1490 case Intrinsic::x86_avx512_cvttsd2si64: 1491 case Intrinsic::x86_avx512_vcvtss2usi32: 1492 case Intrinsic::x86_avx512_vcvtss2usi64: 1493 case Intrinsic::x86_avx512_cvttss2usi: 1494 case Intrinsic::x86_avx512_cvttss2usi64: 1495 case Intrinsic::x86_avx512_vcvtsd2usi32: 1496 case Intrinsic::x86_avx512_vcvtsd2usi64: 1497 case Intrinsic::x86_avx512_cvttsd2usi: 1498 case Intrinsic::x86_avx512_cvttsd2usi64: 1499 return !Call->isStrictFP(); 1500 1501 // Sign operations are actually bitwise operations, they do not raise 1502 // exceptions even for SNANs. 1503 case Intrinsic::fabs: 1504 case Intrinsic::copysign: 1505 // Non-constrained variants of rounding operations means default FP 1506 // environment, they can be folded in any case. 1507 case Intrinsic::ceil: 1508 case Intrinsic::floor: 1509 case Intrinsic::round: 1510 case Intrinsic::roundeven: 1511 case Intrinsic::trunc: 1512 case Intrinsic::nearbyint: 1513 case Intrinsic::rint: 1514 // Constrained intrinsics can be folded if FP environment is known 1515 // to compiler. 1516 case Intrinsic::experimental_constrained_fma: 1517 case Intrinsic::experimental_constrained_fmuladd: 1518 case Intrinsic::experimental_constrained_fadd: 1519 case Intrinsic::experimental_constrained_fsub: 1520 case Intrinsic::experimental_constrained_fmul: 1521 case Intrinsic::experimental_constrained_fdiv: 1522 case Intrinsic::experimental_constrained_frem: 1523 case Intrinsic::experimental_constrained_ceil: 1524 case Intrinsic::experimental_constrained_floor: 1525 case Intrinsic::experimental_constrained_round: 1526 case Intrinsic::experimental_constrained_roundeven: 1527 case Intrinsic::experimental_constrained_trunc: 1528 case Intrinsic::experimental_constrained_nearbyint: 1529 case Intrinsic::experimental_constrained_rint: 1530 return true; 1531 default: 1532 return false; 1533 case Intrinsic::not_intrinsic: break; 1534 } 1535 1536 if (!F->hasName() || Call->isStrictFP()) 1537 return false; 1538 1539 // In these cases, the check of the length is required. We don't want to 1540 // return true for a name like "cos\0blah" which strcmp would return equal to 1541 // "cos", but has length 8. 1542 StringRef Name = F->getName(); 1543 switch (Name[0]) { 1544 default: 1545 return false; 1546 case 'a': 1547 return Name == "acos" || Name == "acosf" || 1548 Name == "asin" || Name == "asinf" || 1549 Name == "atan" || Name == "atanf" || 1550 Name == "atan2" || Name == "atan2f"; 1551 case 'c': 1552 return Name == "ceil" || Name == "ceilf" || 1553 Name == "cos" || Name == "cosf" || 1554 Name == "cosh" || Name == "coshf"; 1555 case 'e': 1556 return Name == "exp" || Name == "expf" || 1557 Name == "exp2" || Name == "exp2f"; 1558 case 'f': 1559 return Name == "fabs" || Name == "fabsf" || 1560 Name == "floor" || Name == "floorf" || 1561 Name == "fmod" || Name == "fmodf"; 1562 case 'l': 1563 return Name == "log" || Name == "logf" || 1564 Name == "log2" || Name == "log2f" || 1565 Name == "log10" || Name == "log10f"; 1566 case 'n': 1567 return Name == "nearbyint" || Name == "nearbyintf"; 1568 case 'p': 1569 return Name == "pow" || Name == "powf"; 1570 case 'r': 1571 return Name == "remainder" || Name == "remainderf" || 1572 Name == "rint" || Name == "rintf" || 1573 Name == "round" || Name == "roundf"; 1574 case 's': 1575 return Name == "sin" || Name == "sinf" || 1576 Name == "sinh" || Name == "sinhf" || 1577 Name == "sqrt" || Name == "sqrtf"; 1578 case 't': 1579 return Name == "tan" || Name == "tanf" || 1580 Name == "tanh" || Name == "tanhf" || 1581 Name == "trunc" || Name == "truncf"; 1582 case '_': 1583 // Check for various function names that get used for the math functions 1584 // when the header files are preprocessed with the macro 1585 // __FINITE_MATH_ONLY__ enabled. 1586 // The '12' here is the length of the shortest name that can match. 1587 // We need to check the size before looking at Name[1] and Name[2] 1588 // so we may as well check a limit that will eliminate mismatches. 1589 if (Name.size() < 12 || Name[1] != '_') 1590 return false; 1591 switch (Name[2]) { 1592 default: 1593 return false; 1594 case 'a': 1595 return Name == "__acos_finite" || Name == "__acosf_finite" || 1596 Name == "__asin_finite" || Name == "__asinf_finite" || 1597 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1598 case 'c': 1599 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1600 case 'e': 1601 return Name == "__exp_finite" || Name == "__expf_finite" || 1602 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1603 case 'l': 1604 return Name == "__log_finite" || Name == "__logf_finite" || 1605 Name == "__log10_finite" || Name == "__log10f_finite"; 1606 case 'p': 1607 return Name == "__pow_finite" || Name == "__powf_finite"; 1608 case 's': 1609 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1610 } 1611 } 1612 } 1613 1614 namespace { 1615 1616 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1617 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1618 APFloat APF(V); 1619 bool unused; 1620 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1621 return ConstantFP::get(Ty->getContext(), APF); 1622 } 1623 if (Ty->isDoubleTy()) 1624 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1625 llvm_unreachable("Can only constant fold half/float/double"); 1626 } 1627 1628 /// Clear the floating-point exception state. 1629 inline void llvm_fenv_clearexcept() { 1630 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1631 feclearexcept(FE_ALL_EXCEPT); 1632 #endif 1633 errno = 0; 1634 } 1635 1636 /// Test if a floating-point exception was raised. 1637 inline bool llvm_fenv_testexcept() { 1638 int errno_val = errno; 1639 if (errno_val == ERANGE || errno_val == EDOM) 1640 return true; 1641 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1642 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1643 return true; 1644 #endif 1645 return false; 1646 } 1647 1648 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1649 Type *Ty) { 1650 llvm_fenv_clearexcept(); 1651 double Result = NativeFP(V.convertToDouble()); 1652 if (llvm_fenv_testexcept()) { 1653 llvm_fenv_clearexcept(); 1654 return nullptr; 1655 } 1656 1657 return GetConstantFoldFPValue(Result, Ty); 1658 } 1659 1660 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1661 const APFloat &V, const APFloat &W, Type *Ty) { 1662 llvm_fenv_clearexcept(); 1663 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1664 if (llvm_fenv_testexcept()) { 1665 llvm_fenv_clearexcept(); 1666 return nullptr; 1667 } 1668 1669 return GetConstantFoldFPValue(Result, Ty); 1670 } 1671 1672 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1673 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1674 if (!VT) 1675 return nullptr; 1676 1677 // This isn't strictly necessary, but handle the special/common case of zero: 1678 // all integer reductions of a zero input produce zero. 1679 if (isa<ConstantAggregateZero>(Op)) 1680 return ConstantInt::get(VT->getElementType(), 0); 1681 1682 // This is the same as the underlying binops - poison propagates. 1683 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1684 return PoisonValue::get(VT->getElementType()); 1685 1686 // TODO: Handle undef. 1687 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1688 return nullptr; 1689 1690 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1691 if (!EltC) 1692 return nullptr; 1693 1694 APInt Acc = EltC->getValue(); 1695 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1696 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1697 return nullptr; 1698 const APInt &X = EltC->getValue(); 1699 switch (IID) { 1700 case Intrinsic::vector_reduce_add: 1701 Acc = Acc + X; 1702 break; 1703 case Intrinsic::vector_reduce_mul: 1704 Acc = Acc * X; 1705 break; 1706 case Intrinsic::vector_reduce_and: 1707 Acc = Acc & X; 1708 break; 1709 case Intrinsic::vector_reduce_or: 1710 Acc = Acc | X; 1711 break; 1712 case Intrinsic::vector_reduce_xor: 1713 Acc = Acc ^ X; 1714 break; 1715 case Intrinsic::vector_reduce_smin: 1716 Acc = APIntOps::smin(Acc, X); 1717 break; 1718 case Intrinsic::vector_reduce_smax: 1719 Acc = APIntOps::smax(Acc, X); 1720 break; 1721 case Intrinsic::vector_reduce_umin: 1722 Acc = APIntOps::umin(Acc, X); 1723 break; 1724 case Intrinsic::vector_reduce_umax: 1725 Acc = APIntOps::umax(Acc, X); 1726 break; 1727 } 1728 } 1729 1730 return ConstantInt::get(Op->getContext(), Acc); 1731 } 1732 1733 /// Attempt to fold an SSE floating point to integer conversion of a constant 1734 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1735 /// used (toward nearest, ties to even). This matches the behavior of the 1736 /// non-truncating SSE instructions in the default rounding mode. The desired 1737 /// integer type Ty is used to select how many bits are available for the 1738 /// result. Returns null if the conversion cannot be performed, otherwise 1739 /// returns the Constant value resulting from the conversion. 1740 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1741 Type *Ty, bool IsSigned) { 1742 // All of these conversion intrinsics form an integer of at most 64bits. 1743 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1744 assert(ResultWidth <= 64 && 1745 "Can only constant fold conversions to 64 and 32 bit ints"); 1746 1747 uint64_t UIntVal; 1748 bool isExact = false; 1749 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1750 : APFloat::rmNearestTiesToEven; 1751 APFloat::opStatus status = 1752 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1753 IsSigned, mode, &isExact); 1754 if (status != APFloat::opOK && 1755 (!roundTowardZero || status != APFloat::opInexact)) 1756 return nullptr; 1757 return ConstantInt::get(Ty, UIntVal, IsSigned); 1758 } 1759 1760 double getValueAsDouble(ConstantFP *Op) { 1761 Type *Ty = Op->getType(); 1762 1763 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1764 return Op->getValueAPF().convertToDouble(); 1765 1766 bool unused; 1767 APFloat APF = Op->getValueAPF(); 1768 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1769 return APF.convertToDouble(); 1770 } 1771 1772 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1773 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1774 C = &CI->getValue(); 1775 return true; 1776 } 1777 if (isa<UndefValue>(Op)) { 1778 C = nullptr; 1779 return true; 1780 } 1781 return false; 1782 } 1783 1784 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1785 /// to be folded. 1786 /// 1787 /// \param CI Constrained intrinsic call. 1788 /// \param St Exception flags raised during constant evaluation. 1789 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1790 APFloat::opStatus St) { 1791 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1792 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1793 1794 // If the operation does not change exception status flags, it is safe 1795 // to fold. 1796 if (St == APFloat::opStatus::opOK) 1797 return true; 1798 1799 // If evaluation raised FP exception, the result can depend on rounding 1800 // mode. If the latter is unknown, folding is not possible. 1801 if (!ORM || *ORM == RoundingMode::Dynamic) 1802 return false; 1803 1804 // If FP exceptions are ignored, fold the call, even if such exception is 1805 // raised. 1806 if (!EB || *EB != fp::ExceptionBehavior::ebStrict) 1807 return true; 1808 1809 // Leave the calculation for runtime so that exception flags be correctly set 1810 // in hardware. 1811 return false; 1812 } 1813 1814 /// Returns the rounding mode that should be used for constant evaluation. 1815 static RoundingMode 1816 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1817 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1818 if (!ORM || *ORM == RoundingMode::Dynamic) 1819 // Even if the rounding mode is unknown, try evaluating the operation. 1820 // If it does not raise inexact exception, rounding was not applied, 1821 // so the result is exact and does not depend on rounding mode. Whether 1822 // other FP exceptions are raised, it does not depend on rounding mode. 1823 return RoundingMode::NearestTiesToEven; 1824 return *ORM; 1825 } 1826 1827 static Constant *ConstantFoldScalarCall1(StringRef Name, 1828 Intrinsic::ID IntrinsicID, 1829 Type *Ty, 1830 ArrayRef<Constant *> Operands, 1831 const TargetLibraryInfo *TLI, 1832 const CallBase *Call) { 1833 assert(Operands.size() == 1 && "Wrong number of operands."); 1834 1835 if (IntrinsicID == Intrinsic::is_constant) { 1836 // We know we have a "Constant" argument. But we want to only 1837 // return true for manifest constants, not those that depend on 1838 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1839 if (Operands[0]->isManifestConstant()) 1840 return ConstantInt::getTrue(Ty->getContext()); 1841 return nullptr; 1842 } 1843 if (isa<UndefValue>(Operands[0])) { 1844 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1845 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1846 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 1847 if (IntrinsicID == Intrinsic::cos || 1848 IntrinsicID == Intrinsic::ctpop || 1849 IntrinsicID == Intrinsic::fptoui_sat || 1850 IntrinsicID == Intrinsic::fptosi_sat) 1851 return Constant::getNullValue(Ty); 1852 if (IntrinsicID == Intrinsic::bswap || 1853 IntrinsicID == Intrinsic::bitreverse || 1854 IntrinsicID == Intrinsic::launder_invariant_group || 1855 IntrinsicID == Intrinsic::strip_invariant_group) 1856 return Operands[0]; 1857 } 1858 1859 if (isa<ConstantPointerNull>(Operands[0])) { 1860 // launder(null) == null == strip(null) iff in addrspace 0 1861 if (IntrinsicID == Intrinsic::launder_invariant_group || 1862 IntrinsicID == Intrinsic::strip_invariant_group) { 1863 // If instruction is not yet put in a basic block (e.g. when cloning 1864 // a function during inlining), Call's caller may not be available. 1865 // So check Call's BB first before querying Call->getCaller. 1866 const Function *Caller = 1867 Call->getParent() ? Call->getCaller() : nullptr; 1868 if (Caller && 1869 !NullPointerIsDefined( 1870 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1871 return Operands[0]; 1872 } 1873 return nullptr; 1874 } 1875 } 1876 1877 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1878 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1879 APFloat Val(Op->getValueAPF()); 1880 1881 bool lost = false; 1882 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1883 1884 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1885 } 1886 1887 APFloat U = Op->getValueAPF(); 1888 1889 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 1890 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 1891 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 1892 1893 if (U.isNaN()) 1894 return nullptr; 1895 1896 unsigned Width = Ty->getIntegerBitWidth(); 1897 APSInt Int(Width, !Signed); 1898 bool IsExact = false; 1899 APFloat::opStatus Status = 1900 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1901 1902 if (Status == APFloat::opOK || Status == APFloat::opInexact) 1903 return ConstantInt::get(Ty, Int); 1904 1905 return nullptr; 1906 } 1907 1908 if (IntrinsicID == Intrinsic::fptoui_sat || 1909 IntrinsicID == Intrinsic::fptosi_sat) { 1910 // convertToInteger() already has the desired saturation semantics. 1911 APSInt Int(Ty->getIntegerBitWidth(), 1912 IntrinsicID == Intrinsic::fptoui_sat); 1913 bool IsExact; 1914 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1915 return ConstantInt::get(Ty, Int); 1916 } 1917 1918 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1919 return nullptr; 1920 1921 // Use internal versions of these intrinsics. 1922 1923 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 1924 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1925 return ConstantFP::get(Ty->getContext(), U); 1926 } 1927 1928 if (IntrinsicID == Intrinsic::round) { 1929 U.roundToIntegral(APFloat::rmNearestTiesToAway); 1930 return ConstantFP::get(Ty->getContext(), U); 1931 } 1932 1933 if (IntrinsicID == Intrinsic::roundeven) { 1934 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1935 return ConstantFP::get(Ty->getContext(), U); 1936 } 1937 1938 if (IntrinsicID == Intrinsic::ceil) { 1939 U.roundToIntegral(APFloat::rmTowardPositive); 1940 return ConstantFP::get(Ty->getContext(), U); 1941 } 1942 1943 if (IntrinsicID == Intrinsic::floor) { 1944 U.roundToIntegral(APFloat::rmTowardNegative); 1945 return ConstantFP::get(Ty->getContext(), U); 1946 } 1947 1948 if (IntrinsicID == Intrinsic::trunc) { 1949 U.roundToIntegral(APFloat::rmTowardZero); 1950 return ConstantFP::get(Ty->getContext(), U); 1951 } 1952 1953 if (IntrinsicID == Intrinsic::fabs) { 1954 U.clearSign(); 1955 return ConstantFP::get(Ty->getContext(), U); 1956 } 1957 1958 if (IntrinsicID == Intrinsic::amdgcn_fract) { 1959 // The v_fract instruction behaves like the OpenCL spec, which defines 1960 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 1961 // there to prevent fract(-small) from returning 1.0. It returns the 1962 // largest positive floating-point number less than 1.0." 1963 APFloat FloorU(U); 1964 FloorU.roundToIntegral(APFloat::rmTowardNegative); 1965 APFloat FractU(U - FloorU); 1966 APFloat AlmostOne(U.getSemantics(), 1); 1967 AlmostOne.next(/*nextDown*/ true); 1968 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 1969 } 1970 1971 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 1972 // raise FP exceptions, unless the argument is signaling NaN. 1973 1974 Optional<APFloat::roundingMode> RM; 1975 switch (IntrinsicID) { 1976 default: 1977 break; 1978 case Intrinsic::experimental_constrained_nearbyint: 1979 case Intrinsic::experimental_constrained_rint: { 1980 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1981 RM = CI->getRoundingMode(); 1982 if (!RM || RM.getValue() == RoundingMode::Dynamic) 1983 return nullptr; 1984 break; 1985 } 1986 case Intrinsic::experimental_constrained_round: 1987 RM = APFloat::rmNearestTiesToAway; 1988 break; 1989 case Intrinsic::experimental_constrained_ceil: 1990 RM = APFloat::rmTowardPositive; 1991 break; 1992 case Intrinsic::experimental_constrained_floor: 1993 RM = APFloat::rmTowardNegative; 1994 break; 1995 case Intrinsic::experimental_constrained_trunc: 1996 RM = APFloat::rmTowardZero; 1997 break; 1998 } 1999 if (RM) { 2000 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2001 if (U.isFinite()) { 2002 APFloat::opStatus St = U.roundToIntegral(*RM); 2003 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2004 St == APFloat::opInexact) { 2005 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2006 if (EB && *EB == fp::ebStrict) 2007 return nullptr; 2008 } 2009 } else if (U.isSignaling()) { 2010 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2011 if (EB && *EB != fp::ebIgnore) 2012 return nullptr; 2013 U = APFloat::getQNaN(U.getSemantics()); 2014 } 2015 return ConstantFP::get(Ty->getContext(), U); 2016 } 2017 2018 /// We only fold functions with finite arguments. Folding NaN and inf is 2019 /// likely to be aborted with an exception anyway, and some host libms 2020 /// have known errors raising exceptions. 2021 if (!U.isFinite()) 2022 return nullptr; 2023 2024 /// Currently APFloat versions of these functions do not exist, so we use 2025 /// the host native double versions. Float versions are not called 2026 /// directly but for all these it is true (float)(f((double)arg)) == 2027 /// f(arg). Long double not supported yet. 2028 const APFloat &APF = Op->getValueAPF(); 2029 2030 switch (IntrinsicID) { 2031 default: break; 2032 case Intrinsic::log: 2033 return ConstantFoldFP(log, APF, Ty); 2034 case Intrinsic::log2: 2035 // TODO: What about hosts that lack a C99 library? 2036 return ConstantFoldFP(Log2, APF, Ty); 2037 case Intrinsic::log10: 2038 // TODO: What about hosts that lack a C99 library? 2039 return ConstantFoldFP(log10, APF, Ty); 2040 case Intrinsic::exp: 2041 return ConstantFoldFP(exp, APF, Ty); 2042 case Intrinsic::exp2: 2043 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2044 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2045 case Intrinsic::sin: 2046 return ConstantFoldFP(sin, APF, Ty); 2047 case Intrinsic::cos: 2048 return ConstantFoldFP(cos, APF, Ty); 2049 case Intrinsic::sqrt: 2050 return ConstantFoldFP(sqrt, APF, Ty); 2051 case Intrinsic::amdgcn_cos: 2052 case Intrinsic::amdgcn_sin: { 2053 double V = getValueAsDouble(Op); 2054 if (V < -256.0 || V > 256.0) 2055 // The gfx8 and gfx9 architectures handle arguments outside the range 2056 // [-256, 256] differently. This should be a rare case so bail out 2057 // rather than trying to handle the difference. 2058 return nullptr; 2059 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2060 double V4 = V * 4.0; 2061 if (V4 == floor(V4)) { 2062 // Force exact results for quarter-integer inputs. 2063 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2064 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2065 } else { 2066 if (IsCos) 2067 V = cos(V * 2.0 * numbers::pi); 2068 else 2069 V = sin(V * 2.0 * numbers::pi); 2070 } 2071 return GetConstantFoldFPValue(V, Ty); 2072 } 2073 } 2074 2075 if (!TLI) 2076 return nullptr; 2077 2078 LibFunc Func = NotLibFunc; 2079 if (!TLI->getLibFunc(Name, Func)) 2080 return nullptr; 2081 2082 switch (Func) { 2083 default: 2084 break; 2085 case LibFunc_acos: 2086 case LibFunc_acosf: 2087 case LibFunc_acos_finite: 2088 case LibFunc_acosf_finite: 2089 if (TLI->has(Func)) 2090 return ConstantFoldFP(acos, APF, Ty); 2091 break; 2092 case LibFunc_asin: 2093 case LibFunc_asinf: 2094 case LibFunc_asin_finite: 2095 case LibFunc_asinf_finite: 2096 if (TLI->has(Func)) 2097 return ConstantFoldFP(asin, APF, Ty); 2098 break; 2099 case LibFunc_atan: 2100 case LibFunc_atanf: 2101 if (TLI->has(Func)) 2102 return ConstantFoldFP(atan, APF, Ty); 2103 break; 2104 case LibFunc_ceil: 2105 case LibFunc_ceilf: 2106 if (TLI->has(Func)) { 2107 U.roundToIntegral(APFloat::rmTowardPositive); 2108 return ConstantFP::get(Ty->getContext(), U); 2109 } 2110 break; 2111 case LibFunc_cos: 2112 case LibFunc_cosf: 2113 if (TLI->has(Func)) 2114 return ConstantFoldFP(cos, APF, Ty); 2115 break; 2116 case LibFunc_cosh: 2117 case LibFunc_coshf: 2118 case LibFunc_cosh_finite: 2119 case LibFunc_coshf_finite: 2120 if (TLI->has(Func)) 2121 return ConstantFoldFP(cosh, APF, Ty); 2122 break; 2123 case LibFunc_exp: 2124 case LibFunc_expf: 2125 case LibFunc_exp_finite: 2126 case LibFunc_expf_finite: 2127 if (TLI->has(Func)) 2128 return ConstantFoldFP(exp, APF, Ty); 2129 break; 2130 case LibFunc_exp2: 2131 case LibFunc_exp2f: 2132 case LibFunc_exp2_finite: 2133 case LibFunc_exp2f_finite: 2134 if (TLI->has(Func)) 2135 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2136 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2137 break; 2138 case LibFunc_fabs: 2139 case LibFunc_fabsf: 2140 if (TLI->has(Func)) { 2141 U.clearSign(); 2142 return ConstantFP::get(Ty->getContext(), U); 2143 } 2144 break; 2145 case LibFunc_floor: 2146 case LibFunc_floorf: 2147 if (TLI->has(Func)) { 2148 U.roundToIntegral(APFloat::rmTowardNegative); 2149 return ConstantFP::get(Ty->getContext(), U); 2150 } 2151 break; 2152 case LibFunc_log: 2153 case LibFunc_logf: 2154 case LibFunc_log_finite: 2155 case LibFunc_logf_finite: 2156 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2157 return ConstantFoldFP(log, APF, Ty); 2158 break; 2159 case LibFunc_log2: 2160 case LibFunc_log2f: 2161 case LibFunc_log2_finite: 2162 case LibFunc_log2f_finite: 2163 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2164 // TODO: What about hosts that lack a C99 library? 2165 return ConstantFoldFP(Log2, APF, Ty); 2166 break; 2167 case LibFunc_log10: 2168 case LibFunc_log10f: 2169 case LibFunc_log10_finite: 2170 case LibFunc_log10f_finite: 2171 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2172 // TODO: What about hosts that lack a C99 library? 2173 return ConstantFoldFP(log10, APF, Ty); 2174 break; 2175 case LibFunc_nearbyint: 2176 case LibFunc_nearbyintf: 2177 case LibFunc_rint: 2178 case LibFunc_rintf: 2179 if (TLI->has(Func)) { 2180 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2181 return ConstantFP::get(Ty->getContext(), U); 2182 } 2183 break; 2184 case LibFunc_round: 2185 case LibFunc_roundf: 2186 if (TLI->has(Func)) { 2187 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2188 return ConstantFP::get(Ty->getContext(), U); 2189 } 2190 break; 2191 case LibFunc_sin: 2192 case LibFunc_sinf: 2193 if (TLI->has(Func)) 2194 return ConstantFoldFP(sin, APF, Ty); 2195 break; 2196 case LibFunc_sinh: 2197 case LibFunc_sinhf: 2198 case LibFunc_sinh_finite: 2199 case LibFunc_sinhf_finite: 2200 if (TLI->has(Func)) 2201 return ConstantFoldFP(sinh, APF, Ty); 2202 break; 2203 case LibFunc_sqrt: 2204 case LibFunc_sqrtf: 2205 if (!APF.isNegative() && TLI->has(Func)) 2206 return ConstantFoldFP(sqrt, APF, Ty); 2207 break; 2208 case LibFunc_tan: 2209 case LibFunc_tanf: 2210 if (TLI->has(Func)) 2211 return ConstantFoldFP(tan, APF, Ty); 2212 break; 2213 case LibFunc_tanh: 2214 case LibFunc_tanhf: 2215 if (TLI->has(Func)) 2216 return ConstantFoldFP(tanh, APF, Ty); 2217 break; 2218 case LibFunc_trunc: 2219 case LibFunc_truncf: 2220 if (TLI->has(Func)) { 2221 U.roundToIntegral(APFloat::rmTowardZero); 2222 return ConstantFP::get(Ty->getContext(), U); 2223 } 2224 break; 2225 } 2226 return nullptr; 2227 } 2228 2229 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2230 switch (IntrinsicID) { 2231 case Intrinsic::bswap: 2232 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2233 case Intrinsic::ctpop: 2234 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2235 case Intrinsic::bitreverse: 2236 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2237 case Intrinsic::convert_from_fp16: { 2238 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2239 2240 bool lost = false; 2241 APFloat::opStatus status = Val.convert( 2242 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2243 2244 // Conversion is always precise. 2245 (void)status; 2246 assert(status == APFloat::opOK && !lost && 2247 "Precision lost during fp16 constfolding"); 2248 2249 return ConstantFP::get(Ty->getContext(), Val); 2250 } 2251 default: 2252 return nullptr; 2253 } 2254 } 2255 2256 switch (IntrinsicID) { 2257 default: break; 2258 case Intrinsic::vector_reduce_add: 2259 case Intrinsic::vector_reduce_mul: 2260 case Intrinsic::vector_reduce_and: 2261 case Intrinsic::vector_reduce_or: 2262 case Intrinsic::vector_reduce_xor: 2263 case Intrinsic::vector_reduce_smin: 2264 case Intrinsic::vector_reduce_smax: 2265 case Intrinsic::vector_reduce_umin: 2266 case Intrinsic::vector_reduce_umax: 2267 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2268 return C; 2269 break; 2270 } 2271 2272 // Support ConstantVector in case we have an Undef in the top. 2273 if (isa<ConstantVector>(Operands[0]) || 2274 isa<ConstantDataVector>(Operands[0])) { 2275 auto *Op = cast<Constant>(Operands[0]); 2276 switch (IntrinsicID) { 2277 default: break; 2278 case Intrinsic::x86_sse_cvtss2si: 2279 case Intrinsic::x86_sse_cvtss2si64: 2280 case Intrinsic::x86_sse2_cvtsd2si: 2281 case Intrinsic::x86_sse2_cvtsd2si64: 2282 if (ConstantFP *FPOp = 2283 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2284 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2285 /*roundTowardZero=*/false, Ty, 2286 /*IsSigned*/true); 2287 break; 2288 case Intrinsic::x86_sse_cvttss2si: 2289 case Intrinsic::x86_sse_cvttss2si64: 2290 case Intrinsic::x86_sse2_cvttsd2si: 2291 case Intrinsic::x86_sse2_cvttsd2si64: 2292 if (ConstantFP *FPOp = 2293 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2294 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2295 /*roundTowardZero=*/true, Ty, 2296 /*IsSigned*/true); 2297 break; 2298 } 2299 } 2300 2301 return nullptr; 2302 } 2303 2304 static Constant *ConstantFoldScalarCall2(StringRef Name, 2305 Intrinsic::ID IntrinsicID, 2306 Type *Ty, 2307 ArrayRef<Constant *> Operands, 2308 const TargetLibraryInfo *TLI, 2309 const CallBase *Call) { 2310 assert(Operands.size() == 2 && "Wrong number of operands."); 2311 2312 if (Ty->isFloatingPointTy()) { 2313 // TODO: We should have undef handling for all of the FP intrinsics that 2314 // are attempted to be folded in this function. 2315 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2316 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2317 switch (IntrinsicID) { 2318 case Intrinsic::maxnum: 2319 case Intrinsic::minnum: 2320 case Intrinsic::maximum: 2321 case Intrinsic::minimum: 2322 // If one argument is undef, return the other argument. 2323 if (IsOp0Undef) 2324 return Operands[1]; 2325 if (IsOp1Undef) 2326 return Operands[0]; 2327 break; 2328 } 2329 } 2330 2331 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2332 if (!Ty->isFloatingPointTy()) 2333 return nullptr; 2334 const APFloat &Op1V = Op1->getValueAPF(); 2335 2336 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2337 if (Op2->getType() != Op1->getType()) 2338 return nullptr; 2339 const APFloat &Op2V = Op2->getValueAPF(); 2340 2341 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2342 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2343 APFloat Res = Op1V; 2344 APFloat::opStatus St; 2345 switch (IntrinsicID) { 2346 default: 2347 return nullptr; 2348 case Intrinsic::experimental_constrained_fadd: 2349 St = Res.add(Op2V, RM); 2350 break; 2351 case Intrinsic::experimental_constrained_fsub: 2352 St = Res.subtract(Op2V, RM); 2353 break; 2354 case Intrinsic::experimental_constrained_fmul: 2355 St = Res.multiply(Op2V, RM); 2356 break; 2357 case Intrinsic::experimental_constrained_fdiv: 2358 St = Res.divide(Op2V, RM); 2359 break; 2360 case Intrinsic::experimental_constrained_frem: 2361 St = Res.mod(Op2V); 2362 break; 2363 } 2364 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2365 St)) 2366 return ConstantFP::get(Ty->getContext(), Res); 2367 return nullptr; 2368 } 2369 2370 switch (IntrinsicID) { 2371 default: 2372 break; 2373 case Intrinsic::copysign: 2374 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2375 case Intrinsic::minnum: 2376 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2377 case Intrinsic::maxnum: 2378 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2379 case Intrinsic::minimum: 2380 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2381 case Intrinsic::maximum: 2382 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2383 } 2384 2385 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2386 return nullptr; 2387 2388 switch (IntrinsicID) { 2389 default: 2390 break; 2391 case Intrinsic::pow: 2392 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2393 case Intrinsic::amdgcn_fmul_legacy: 2394 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2395 // NaN or infinity, gives +0.0. 2396 if (Op1V.isZero() || Op2V.isZero()) 2397 return ConstantFP::getNullValue(Ty); 2398 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2399 } 2400 2401 if (!TLI) 2402 return nullptr; 2403 2404 LibFunc Func = NotLibFunc; 2405 if (!TLI->getLibFunc(Name, Func)) 2406 return nullptr; 2407 2408 switch (Func) { 2409 default: 2410 break; 2411 case LibFunc_pow: 2412 case LibFunc_powf: 2413 case LibFunc_pow_finite: 2414 case LibFunc_powf_finite: 2415 if (TLI->has(Func)) 2416 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2417 break; 2418 case LibFunc_fmod: 2419 case LibFunc_fmodf: 2420 if (TLI->has(Func)) { 2421 APFloat V = Op1->getValueAPF(); 2422 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2423 return ConstantFP::get(Ty->getContext(), V); 2424 } 2425 break; 2426 case LibFunc_remainder: 2427 case LibFunc_remainderf: 2428 if (TLI->has(Func)) { 2429 APFloat V = Op1->getValueAPF(); 2430 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2431 return ConstantFP::get(Ty->getContext(), V); 2432 } 2433 break; 2434 case LibFunc_atan2: 2435 case LibFunc_atan2f: 2436 case LibFunc_atan2_finite: 2437 case LibFunc_atan2f_finite: 2438 if (TLI->has(Func)) 2439 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2440 break; 2441 } 2442 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2443 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2444 return nullptr; 2445 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2446 return ConstantFP::get( 2447 Ty->getContext(), 2448 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2449 (int)Op2C->getZExtValue()))); 2450 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2451 return ConstantFP::get( 2452 Ty->getContext(), 2453 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2454 (int)Op2C->getZExtValue()))); 2455 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2456 return ConstantFP::get( 2457 Ty->getContext(), 2458 APFloat((double)std::pow(Op1V.convertToDouble(), 2459 (int)Op2C->getZExtValue()))); 2460 2461 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2462 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2463 // everywhere else. 2464 2465 // scalbn is equivalent to ldexp with float radix 2 2466 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2467 APFloat::rmNearestTiesToEven); 2468 return ConstantFP::get(Ty->getContext(), Result); 2469 } 2470 } 2471 return nullptr; 2472 } 2473 2474 if (Operands[0]->getType()->isIntegerTy() && 2475 Operands[1]->getType()->isIntegerTy()) { 2476 const APInt *C0, *C1; 2477 if (!getConstIntOrUndef(Operands[0], C0) || 2478 !getConstIntOrUndef(Operands[1], C1)) 2479 return nullptr; 2480 2481 switch (IntrinsicID) { 2482 default: break; 2483 case Intrinsic::smax: 2484 case Intrinsic::smin: 2485 case Intrinsic::umax: 2486 case Intrinsic::umin: 2487 if (!C0 && !C1) 2488 return UndefValue::get(Ty); 2489 if (!C0 || !C1) 2490 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); 2491 return ConstantInt::get( 2492 Ty, ICmpInst::compare(*C0, *C1, 2493 MinMaxIntrinsic::getPredicate(IntrinsicID)) 2494 ? *C0 2495 : *C1); 2496 2497 case Intrinsic::usub_with_overflow: 2498 case Intrinsic::ssub_with_overflow: 2499 // X - undef -> { 0, false } 2500 // undef - X -> { 0, false } 2501 if (!C0 || !C1) 2502 return Constant::getNullValue(Ty); 2503 LLVM_FALLTHROUGH; 2504 case Intrinsic::uadd_with_overflow: 2505 case Intrinsic::sadd_with_overflow: 2506 // X + undef -> { -1, false } 2507 // undef + x -> { -1, false } 2508 if (!C0 || !C1) { 2509 return ConstantStruct::get( 2510 cast<StructType>(Ty), 2511 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2512 Constant::getNullValue(Ty->getStructElementType(1))}); 2513 } 2514 LLVM_FALLTHROUGH; 2515 case Intrinsic::smul_with_overflow: 2516 case Intrinsic::umul_with_overflow: { 2517 // undef * X -> { 0, false } 2518 // X * undef -> { 0, false } 2519 if (!C0 || !C1) 2520 return Constant::getNullValue(Ty); 2521 2522 APInt Res; 2523 bool Overflow; 2524 switch (IntrinsicID) { 2525 default: llvm_unreachable("Invalid case"); 2526 case Intrinsic::sadd_with_overflow: 2527 Res = C0->sadd_ov(*C1, Overflow); 2528 break; 2529 case Intrinsic::uadd_with_overflow: 2530 Res = C0->uadd_ov(*C1, Overflow); 2531 break; 2532 case Intrinsic::ssub_with_overflow: 2533 Res = C0->ssub_ov(*C1, Overflow); 2534 break; 2535 case Intrinsic::usub_with_overflow: 2536 Res = C0->usub_ov(*C1, Overflow); 2537 break; 2538 case Intrinsic::smul_with_overflow: 2539 Res = C0->smul_ov(*C1, Overflow); 2540 break; 2541 case Intrinsic::umul_with_overflow: 2542 Res = C0->umul_ov(*C1, Overflow); 2543 break; 2544 } 2545 Constant *Ops[] = { 2546 ConstantInt::get(Ty->getContext(), Res), 2547 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2548 }; 2549 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2550 } 2551 case Intrinsic::uadd_sat: 2552 case Intrinsic::sadd_sat: 2553 if (!C0 && !C1) 2554 return UndefValue::get(Ty); 2555 if (!C0 || !C1) 2556 return Constant::getAllOnesValue(Ty); 2557 if (IntrinsicID == Intrinsic::uadd_sat) 2558 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2559 else 2560 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2561 case Intrinsic::usub_sat: 2562 case Intrinsic::ssub_sat: 2563 if (!C0 && !C1) 2564 return UndefValue::get(Ty); 2565 if (!C0 || !C1) 2566 return Constant::getNullValue(Ty); 2567 if (IntrinsicID == Intrinsic::usub_sat) 2568 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2569 else 2570 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2571 case Intrinsic::cttz: 2572 case Intrinsic::ctlz: 2573 assert(C1 && "Must be constant int"); 2574 2575 // cttz(0, 1) and ctlz(0, 1) are poison. 2576 if (C1->isOne() && (!C0 || C0->isZero())) 2577 return PoisonValue::get(Ty); 2578 if (!C0) 2579 return Constant::getNullValue(Ty); 2580 if (IntrinsicID == Intrinsic::cttz) 2581 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2582 else 2583 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2584 2585 case Intrinsic::abs: 2586 assert(C1 && "Must be constant int"); 2587 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); 2588 2589 // Undef or minimum val operand with poison min --> undef 2590 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 2591 return UndefValue::get(Ty); 2592 2593 // Undef operand with no poison min --> 0 (sign bit must be clear) 2594 if (!C0) 2595 return Constant::getNullValue(Ty); 2596 2597 return ConstantInt::get(Ty, C0->abs()); 2598 } 2599 2600 return nullptr; 2601 } 2602 2603 // Support ConstantVector in case we have an Undef in the top. 2604 if ((isa<ConstantVector>(Operands[0]) || 2605 isa<ConstantDataVector>(Operands[0])) && 2606 // Check for default rounding mode. 2607 // FIXME: Support other rounding modes? 2608 isa<ConstantInt>(Operands[1]) && 2609 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2610 auto *Op = cast<Constant>(Operands[0]); 2611 switch (IntrinsicID) { 2612 default: break; 2613 case Intrinsic::x86_avx512_vcvtss2si32: 2614 case Intrinsic::x86_avx512_vcvtss2si64: 2615 case Intrinsic::x86_avx512_vcvtsd2si32: 2616 case Intrinsic::x86_avx512_vcvtsd2si64: 2617 if (ConstantFP *FPOp = 2618 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2619 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2620 /*roundTowardZero=*/false, Ty, 2621 /*IsSigned*/true); 2622 break; 2623 case Intrinsic::x86_avx512_vcvtss2usi32: 2624 case Intrinsic::x86_avx512_vcvtss2usi64: 2625 case Intrinsic::x86_avx512_vcvtsd2usi32: 2626 case Intrinsic::x86_avx512_vcvtsd2usi64: 2627 if (ConstantFP *FPOp = 2628 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2629 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2630 /*roundTowardZero=*/false, Ty, 2631 /*IsSigned*/false); 2632 break; 2633 case Intrinsic::x86_avx512_cvttss2si: 2634 case Intrinsic::x86_avx512_cvttss2si64: 2635 case Intrinsic::x86_avx512_cvttsd2si: 2636 case Intrinsic::x86_avx512_cvttsd2si64: 2637 if (ConstantFP *FPOp = 2638 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2639 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2640 /*roundTowardZero=*/true, Ty, 2641 /*IsSigned*/true); 2642 break; 2643 case Intrinsic::x86_avx512_cvttss2usi: 2644 case Intrinsic::x86_avx512_cvttss2usi64: 2645 case Intrinsic::x86_avx512_cvttsd2usi: 2646 case Intrinsic::x86_avx512_cvttsd2usi64: 2647 if (ConstantFP *FPOp = 2648 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2649 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2650 /*roundTowardZero=*/true, Ty, 2651 /*IsSigned*/false); 2652 break; 2653 } 2654 } 2655 return nullptr; 2656 } 2657 2658 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2659 const APFloat &S0, 2660 const APFloat &S1, 2661 const APFloat &S2) { 2662 unsigned ID; 2663 const fltSemantics &Sem = S0.getSemantics(); 2664 APFloat MA(Sem), SC(Sem), TC(Sem); 2665 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2666 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2667 // S2 < 0 2668 ID = 5; 2669 SC = -S0; 2670 } else { 2671 ID = 4; 2672 SC = S0; 2673 } 2674 MA = S2; 2675 TC = -S1; 2676 } else if (abs(S1) >= abs(S0)) { 2677 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2678 // S1 < 0 2679 ID = 3; 2680 TC = -S2; 2681 } else { 2682 ID = 2; 2683 TC = S2; 2684 } 2685 MA = S1; 2686 SC = S0; 2687 } else { 2688 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2689 // S0 < 0 2690 ID = 1; 2691 SC = S2; 2692 } else { 2693 ID = 0; 2694 SC = -S2; 2695 } 2696 MA = S0; 2697 TC = -S1; 2698 } 2699 switch (IntrinsicID) { 2700 default: 2701 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2702 case Intrinsic::amdgcn_cubeid: 2703 return APFloat(Sem, ID); 2704 case Intrinsic::amdgcn_cubema: 2705 return MA + MA; 2706 case Intrinsic::amdgcn_cubesc: 2707 return SC; 2708 case Intrinsic::amdgcn_cubetc: 2709 return TC; 2710 } 2711 } 2712 2713 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 2714 Type *Ty) { 2715 const APInt *C0, *C1, *C2; 2716 if (!getConstIntOrUndef(Operands[0], C0) || 2717 !getConstIntOrUndef(Operands[1], C1) || 2718 !getConstIntOrUndef(Operands[2], C2)) 2719 return nullptr; 2720 2721 if (!C2) 2722 return UndefValue::get(Ty); 2723 2724 APInt Val(32, 0); 2725 unsigned NumUndefBytes = 0; 2726 for (unsigned I = 0; I < 32; I += 8) { 2727 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 2728 unsigned B = 0; 2729 2730 if (Sel >= 13) 2731 B = 0xff; 2732 else if (Sel == 12) 2733 B = 0x00; 2734 else { 2735 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 2736 if (!Src) 2737 ++NumUndefBytes; 2738 else if (Sel < 8) 2739 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 2740 else 2741 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 2742 } 2743 2744 Val.insertBits(B, I, 8); 2745 } 2746 2747 if (NumUndefBytes == 4) 2748 return UndefValue::get(Ty); 2749 2750 return ConstantInt::get(Ty, Val); 2751 } 2752 2753 static Constant *ConstantFoldScalarCall3(StringRef Name, 2754 Intrinsic::ID IntrinsicID, 2755 Type *Ty, 2756 ArrayRef<Constant *> Operands, 2757 const TargetLibraryInfo *TLI, 2758 const CallBase *Call) { 2759 assert(Operands.size() == 3 && "Wrong number of operands."); 2760 2761 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2762 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2763 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2764 const APFloat &C1 = Op1->getValueAPF(); 2765 const APFloat &C2 = Op2->getValueAPF(); 2766 const APFloat &C3 = Op3->getValueAPF(); 2767 2768 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2769 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2770 APFloat Res = C1; 2771 APFloat::opStatus St; 2772 switch (IntrinsicID) { 2773 default: 2774 return nullptr; 2775 case Intrinsic::experimental_constrained_fma: 2776 case Intrinsic::experimental_constrained_fmuladd: 2777 St = Res.fusedMultiplyAdd(C2, C3, RM); 2778 break; 2779 } 2780 if (mayFoldConstrained( 2781 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 2782 return ConstantFP::get(Ty->getContext(), Res); 2783 return nullptr; 2784 } 2785 2786 switch (IntrinsicID) { 2787 default: break; 2788 case Intrinsic::amdgcn_fma_legacy: { 2789 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2790 // NaN or infinity, gives +0.0. 2791 if (C1.isZero() || C2.isZero()) { 2792 // It's tempting to just return C3 here, but that would give the 2793 // wrong result if C3 was -0.0. 2794 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 2795 } 2796 LLVM_FALLTHROUGH; 2797 } 2798 case Intrinsic::fma: 2799 case Intrinsic::fmuladd: { 2800 APFloat V = C1; 2801 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 2802 return ConstantFP::get(Ty->getContext(), V); 2803 } 2804 case Intrinsic::amdgcn_cubeid: 2805 case Intrinsic::amdgcn_cubema: 2806 case Intrinsic::amdgcn_cubesc: 2807 case Intrinsic::amdgcn_cubetc: { 2808 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 2809 return ConstantFP::get(Ty->getContext(), V); 2810 } 2811 } 2812 } 2813 } 2814 } 2815 2816 if (IntrinsicID == Intrinsic::smul_fix || 2817 IntrinsicID == Intrinsic::smul_fix_sat) { 2818 // poison * C -> poison 2819 // C * poison -> poison 2820 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2821 return PoisonValue::get(Ty); 2822 2823 const APInt *C0, *C1; 2824 if (!getConstIntOrUndef(Operands[0], C0) || 2825 !getConstIntOrUndef(Operands[1], C1)) 2826 return nullptr; 2827 2828 // undef * C -> 0 2829 // C * undef -> 0 2830 if (!C0 || !C1) 2831 return Constant::getNullValue(Ty); 2832 2833 // This code performs rounding towards negative infinity in case the result 2834 // cannot be represented exactly for the given scale. Targets that do care 2835 // about rounding should use a target hook for specifying how rounding 2836 // should be done, and provide their own folding to be consistent with 2837 // rounding. This is the same approach as used by 2838 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2839 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 2840 unsigned Width = C0->getBitWidth(); 2841 assert(Scale < Width && "Illegal scale."); 2842 unsigned ExtendedWidth = Width * 2; 2843 APInt Product = (C0->sextOrSelf(ExtendedWidth) * 2844 C1->sextOrSelf(ExtendedWidth)).ashr(Scale); 2845 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2846 APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2847 APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2848 Product = APIntOps::smin(Product, Max); 2849 Product = APIntOps::smax(Product, Min); 2850 } 2851 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 2852 } 2853 2854 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2855 const APInt *C0, *C1, *C2; 2856 if (!getConstIntOrUndef(Operands[0], C0) || 2857 !getConstIntOrUndef(Operands[1], C1) || 2858 !getConstIntOrUndef(Operands[2], C2)) 2859 return nullptr; 2860 2861 bool IsRight = IntrinsicID == Intrinsic::fshr; 2862 if (!C2) 2863 return Operands[IsRight ? 1 : 0]; 2864 if (!C0 && !C1) 2865 return UndefValue::get(Ty); 2866 2867 // The shift amount is interpreted as modulo the bitwidth. If the shift 2868 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2869 unsigned BitWidth = C2->getBitWidth(); 2870 unsigned ShAmt = C2->urem(BitWidth); 2871 if (!ShAmt) 2872 return Operands[IsRight ? 1 : 0]; 2873 2874 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2875 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2876 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2877 if (!C0) 2878 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2879 if (!C1) 2880 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2881 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2882 } 2883 2884 if (IntrinsicID == Intrinsic::amdgcn_perm) 2885 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 2886 2887 return nullptr; 2888 } 2889 2890 static Constant *ConstantFoldScalarCall(StringRef Name, 2891 Intrinsic::ID IntrinsicID, 2892 Type *Ty, 2893 ArrayRef<Constant *> Operands, 2894 const TargetLibraryInfo *TLI, 2895 const CallBase *Call) { 2896 if (Operands.size() == 1) 2897 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2898 2899 if (Operands.size() == 2) 2900 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2901 2902 if (Operands.size() == 3) 2903 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2904 2905 return nullptr; 2906 } 2907 2908 static Constant *ConstantFoldFixedVectorCall( 2909 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 2910 ArrayRef<Constant *> Operands, const DataLayout &DL, 2911 const TargetLibraryInfo *TLI, const CallBase *Call) { 2912 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 2913 SmallVector<Constant *, 4> Lane(Operands.size()); 2914 Type *Ty = FVTy->getElementType(); 2915 2916 switch (IntrinsicID) { 2917 case Intrinsic::masked_load: { 2918 auto *SrcPtr = Operands[0]; 2919 auto *Mask = Operands[2]; 2920 auto *Passthru = Operands[3]; 2921 2922 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 2923 2924 SmallVector<Constant *, 32> NewElements; 2925 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2926 auto *MaskElt = Mask->getAggregateElement(I); 2927 if (!MaskElt) 2928 break; 2929 auto *PassthruElt = Passthru->getAggregateElement(I); 2930 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2931 if (isa<UndefValue>(MaskElt)) { 2932 if (PassthruElt) 2933 NewElements.push_back(PassthruElt); 2934 else if (VecElt) 2935 NewElements.push_back(VecElt); 2936 else 2937 return nullptr; 2938 } 2939 if (MaskElt->isNullValue()) { 2940 if (!PassthruElt) 2941 return nullptr; 2942 NewElements.push_back(PassthruElt); 2943 } else if (MaskElt->isOneValue()) { 2944 if (!VecElt) 2945 return nullptr; 2946 NewElements.push_back(VecElt); 2947 } else { 2948 return nullptr; 2949 } 2950 } 2951 if (NewElements.size() != FVTy->getNumElements()) 2952 return nullptr; 2953 return ConstantVector::get(NewElements); 2954 } 2955 case Intrinsic::arm_mve_vctp8: 2956 case Intrinsic::arm_mve_vctp16: 2957 case Intrinsic::arm_mve_vctp32: 2958 case Intrinsic::arm_mve_vctp64: { 2959 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2960 unsigned Lanes = FVTy->getNumElements(); 2961 uint64_t Limit = Op->getZExtValue(); 2962 2963 SmallVector<Constant *, 16> NCs; 2964 for (unsigned i = 0; i < Lanes; i++) { 2965 if (i < Limit) 2966 NCs.push_back(ConstantInt::getTrue(Ty)); 2967 else 2968 NCs.push_back(ConstantInt::getFalse(Ty)); 2969 } 2970 return ConstantVector::get(NCs); 2971 } 2972 break; 2973 } 2974 case Intrinsic::get_active_lane_mask: { 2975 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 2976 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 2977 if (Op0 && Op1) { 2978 unsigned Lanes = FVTy->getNumElements(); 2979 uint64_t Base = Op0->getZExtValue(); 2980 uint64_t Limit = Op1->getZExtValue(); 2981 2982 SmallVector<Constant *, 16> NCs; 2983 for (unsigned i = 0; i < Lanes; i++) { 2984 if (Base + i < Limit) 2985 NCs.push_back(ConstantInt::getTrue(Ty)); 2986 else 2987 NCs.push_back(ConstantInt::getFalse(Ty)); 2988 } 2989 return ConstantVector::get(NCs); 2990 } 2991 break; 2992 } 2993 default: 2994 break; 2995 } 2996 2997 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2998 // Gather a column of constants. 2999 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3000 // Some intrinsics use a scalar type for certain arguments. 3001 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 3002 Lane[J] = Operands[J]; 3003 continue; 3004 } 3005 3006 Constant *Agg = Operands[J]->getAggregateElement(I); 3007 if (!Agg) 3008 return nullptr; 3009 3010 Lane[J] = Agg; 3011 } 3012 3013 // Use the regular scalar folding to simplify this column. 3014 Constant *Folded = 3015 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3016 if (!Folded) 3017 return nullptr; 3018 Result[I] = Folded; 3019 } 3020 3021 return ConstantVector::get(Result); 3022 } 3023 3024 static Constant *ConstantFoldScalableVectorCall( 3025 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3026 ArrayRef<Constant *> Operands, const DataLayout &DL, 3027 const TargetLibraryInfo *TLI, const CallBase *Call) { 3028 switch (IntrinsicID) { 3029 case Intrinsic::aarch64_sve_convert_from_svbool: { 3030 auto *Src = dyn_cast<Constant>(Operands[0]); 3031 if (!Src || !Src->isNullValue()) 3032 break; 3033 3034 return ConstantInt::getFalse(SVTy); 3035 } 3036 default: 3037 break; 3038 } 3039 return nullptr; 3040 } 3041 3042 } // end anonymous namespace 3043 3044 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3045 ArrayRef<Constant *> Operands, 3046 const TargetLibraryInfo *TLI) { 3047 if (Call->isNoBuiltin()) 3048 return nullptr; 3049 if (!F->hasName()) 3050 return nullptr; 3051 3052 // If this is not an intrinsic and not recognized as a library call, bail out. 3053 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) { 3054 if (!TLI) 3055 return nullptr; 3056 LibFunc LibF; 3057 if (!TLI->getLibFunc(*F, LibF)) 3058 return nullptr; 3059 } 3060 3061 StringRef Name = F->getName(); 3062 Type *Ty = F->getReturnType(); 3063 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3064 return ConstantFoldFixedVectorCall( 3065 Name, F->getIntrinsicID(), FVTy, Operands, 3066 F->getParent()->getDataLayout(), TLI, Call); 3067 3068 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3069 return ConstantFoldScalableVectorCall( 3070 Name, F->getIntrinsicID(), SVTy, Operands, 3071 F->getParent()->getDataLayout(), TLI, Call); 3072 3073 // TODO: If this is a library function, we already discovered that above, 3074 // so we should pass the LibFunc, not the name (and it might be better 3075 // still to separate intrinsic handling from libcalls). 3076 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 3077 Call); 3078 } 3079 3080 bool llvm::isMathLibCallNoop(const CallBase *Call, 3081 const TargetLibraryInfo *TLI) { 3082 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3083 // (and to some extent ConstantFoldScalarCall). 3084 if (Call->isNoBuiltin() || Call->isStrictFP()) 3085 return false; 3086 Function *F = Call->getCalledFunction(); 3087 if (!F) 3088 return false; 3089 3090 LibFunc Func; 3091 if (!TLI || !TLI->getLibFunc(*F, Func)) 3092 return false; 3093 3094 if (Call->arg_size() == 1) { 3095 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3096 const APFloat &Op = OpC->getValueAPF(); 3097 switch (Func) { 3098 case LibFunc_logl: 3099 case LibFunc_log: 3100 case LibFunc_logf: 3101 case LibFunc_log2l: 3102 case LibFunc_log2: 3103 case LibFunc_log2f: 3104 case LibFunc_log10l: 3105 case LibFunc_log10: 3106 case LibFunc_log10f: 3107 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3108 3109 case LibFunc_expl: 3110 case LibFunc_exp: 3111 case LibFunc_expf: 3112 // FIXME: These boundaries are slightly conservative. 3113 if (OpC->getType()->isDoubleTy()) 3114 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3115 if (OpC->getType()->isFloatTy()) 3116 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3117 break; 3118 3119 case LibFunc_exp2l: 3120 case LibFunc_exp2: 3121 case LibFunc_exp2f: 3122 // FIXME: These boundaries are slightly conservative. 3123 if (OpC->getType()->isDoubleTy()) 3124 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3125 if (OpC->getType()->isFloatTy()) 3126 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3127 break; 3128 3129 case LibFunc_sinl: 3130 case LibFunc_sin: 3131 case LibFunc_sinf: 3132 case LibFunc_cosl: 3133 case LibFunc_cos: 3134 case LibFunc_cosf: 3135 return !Op.isInfinity(); 3136 3137 case LibFunc_tanl: 3138 case LibFunc_tan: 3139 case LibFunc_tanf: { 3140 // FIXME: Stop using the host math library. 3141 // FIXME: The computation isn't done in the right precision. 3142 Type *Ty = OpC->getType(); 3143 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3144 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3145 break; 3146 } 3147 3148 case LibFunc_asinl: 3149 case LibFunc_asin: 3150 case LibFunc_asinf: 3151 case LibFunc_acosl: 3152 case LibFunc_acos: 3153 case LibFunc_acosf: 3154 return !(Op < APFloat(Op.getSemantics(), "-1") || 3155 Op > APFloat(Op.getSemantics(), "1")); 3156 3157 case LibFunc_sinh: 3158 case LibFunc_cosh: 3159 case LibFunc_sinhf: 3160 case LibFunc_coshf: 3161 case LibFunc_sinhl: 3162 case LibFunc_coshl: 3163 // FIXME: These boundaries are slightly conservative. 3164 if (OpC->getType()->isDoubleTy()) 3165 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3166 if (OpC->getType()->isFloatTy()) 3167 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3168 break; 3169 3170 case LibFunc_sqrtl: 3171 case LibFunc_sqrt: 3172 case LibFunc_sqrtf: 3173 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3174 3175 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3176 // maybe others? 3177 default: 3178 break; 3179 } 3180 } 3181 } 3182 3183 if (Call->arg_size() == 2) { 3184 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3185 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3186 if (Op0C && Op1C) { 3187 const APFloat &Op0 = Op0C->getValueAPF(); 3188 const APFloat &Op1 = Op1C->getValueAPF(); 3189 3190 switch (Func) { 3191 case LibFunc_powl: 3192 case LibFunc_pow: 3193 case LibFunc_powf: { 3194 // FIXME: Stop using the host math library. 3195 // FIXME: The computation isn't done in the right precision. 3196 Type *Ty = Op0C->getType(); 3197 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3198 if (Ty == Op1C->getType()) 3199 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3200 } 3201 break; 3202 } 3203 3204 case LibFunc_fmodl: 3205 case LibFunc_fmod: 3206 case LibFunc_fmodf: 3207 case LibFunc_remainderl: 3208 case LibFunc_remainder: 3209 case LibFunc_remainderf: 3210 return Op0.isNaN() || Op1.isNaN() || 3211 (!Op0.isInfinity() && !Op1.isZero()); 3212 3213 default: 3214 break; 3215 } 3216 } 3217 } 3218 3219 return false; 3220 } 3221 3222 void TargetFolder::anchor() {} 3223