1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/TargetFolder.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/Config/config.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalValue.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/IntrinsicsAMDGPU.h" 44 #include "llvm/IR/IntrinsicsX86.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/KnownBits.h" 51 #include "llvm/Support/MathExtras.h" 52 #include <cassert> 53 #include <cerrno> 54 #include <cfenv> 55 #include <cmath> 56 #include <cstddef> 57 #include <cstdint> 58 59 using namespace llvm; 60 61 namespace { 62 63 //===----------------------------------------------------------------------===// 64 // Constant Folding internal helper functions 65 //===----------------------------------------------------------------------===// 66 67 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 68 Constant *C, Type *SrcEltTy, 69 unsigned NumSrcElts, 70 const DataLayout &DL) { 71 // Now that we know that the input value is a vector of integers, just shift 72 // and insert them into our result. 73 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 74 for (unsigned i = 0; i != NumSrcElts; ++i) { 75 Constant *Element; 76 if (DL.isLittleEndian()) 77 Element = C->getAggregateElement(NumSrcElts - i - 1); 78 else 79 Element = C->getAggregateElement(i); 80 81 if (Element && isa<UndefValue>(Element)) { 82 Result <<= BitShift; 83 continue; 84 } 85 86 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 87 if (!ElementCI) 88 return ConstantExpr::getBitCast(C, DestTy); 89 90 Result <<= BitShift; 91 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 92 } 93 94 return nullptr; 95 } 96 97 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 98 /// This always returns a non-null constant, but it may be a 99 /// ConstantExpr if unfoldable. 100 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 101 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 102 "Invalid constantexpr bitcast!"); 103 104 // Catch the obvious splat cases. 105 if (C->isNullValue() && !DestTy->isX86_MMXTy()) 106 return Constant::getNullValue(DestTy); 107 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && 108 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 109 return Constant::getAllOnesValue(DestTy); 110 111 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 112 // Handle a vector->scalar integer/fp cast. 113 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 114 unsigned NumSrcElts = VTy->getNumElements(); 115 Type *SrcEltTy = VTy->getElementType(); 116 117 // If the vector is a vector of floating point, convert it to vector of int 118 // to simplify things. 119 if (SrcEltTy->isFloatingPointTy()) { 120 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 121 auto *SrcIVTy = FixedVectorType::get( 122 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 123 // Ask IR to do the conversion now that #elts line up. 124 C = ConstantExpr::getBitCast(C, SrcIVTy); 125 } 126 127 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 128 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 129 SrcEltTy, NumSrcElts, DL)) 130 return CE; 131 132 if (isa<IntegerType>(DestTy)) 133 return ConstantInt::get(DestTy, Result); 134 135 APFloat FP(DestTy->getFltSemantics(), Result); 136 return ConstantFP::get(DestTy->getContext(), FP); 137 } 138 } 139 140 // The code below only handles casts to vectors currently. 141 auto *DestVTy = dyn_cast<VectorType>(DestTy); 142 if (!DestVTy) 143 return ConstantExpr::getBitCast(C, DestTy); 144 145 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 146 // vector so the code below can handle it uniformly. 147 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 148 Constant *Ops = C; // don't take the address of C! 149 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 150 } 151 152 // If this is a bitcast from constant vector -> vector, fold it. 153 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 154 return ConstantExpr::getBitCast(C, DestTy); 155 156 // If the element types match, IR can fold it. 157 unsigned NumDstElt = DestVTy->getNumElements(); 158 unsigned NumSrcElt = cast<VectorType>(C->getType())->getNumElements(); 159 if (NumDstElt == NumSrcElt) 160 return ConstantExpr::getBitCast(C, DestTy); 161 162 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 163 Type *DstEltTy = DestVTy->getElementType(); 164 165 // Otherwise, we're changing the number of elements in a vector, which 166 // requires endianness information to do the right thing. For example, 167 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 168 // folds to (little endian): 169 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 170 // and to (big endian): 171 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 172 173 // First thing is first. We only want to think about integer here, so if 174 // we have something in FP form, recast it as integer. 175 if (DstEltTy->isFloatingPointTy()) { 176 // Fold to an vector of integers with same size as our FP type. 177 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 178 auto *DestIVTy = FixedVectorType::get( 179 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 180 // Recursively handle this integer conversion, if possible. 181 C = FoldBitCast(C, DestIVTy, DL); 182 183 // Finally, IR can handle this now that #elts line up. 184 return ConstantExpr::getBitCast(C, DestTy); 185 } 186 187 // Okay, we know the destination is integer, if the input is FP, convert 188 // it to integer first. 189 if (SrcEltTy->isFloatingPointTy()) { 190 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 191 auto *SrcIVTy = FixedVectorType::get( 192 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 193 // Ask IR to do the conversion now that #elts line up. 194 C = ConstantExpr::getBitCast(C, SrcIVTy); 195 // If IR wasn't able to fold it, bail out. 196 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 197 !isa<ConstantDataVector>(C)) 198 return C; 199 } 200 201 // Now we know that the input and output vectors are both integer vectors 202 // of the same size, and that their #elements is not the same. Do the 203 // conversion here, which depends on whether the input or output has 204 // more elements. 205 bool isLittleEndian = DL.isLittleEndian(); 206 207 SmallVector<Constant*, 32> Result; 208 if (NumDstElt < NumSrcElt) { 209 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 210 Constant *Zero = Constant::getNullValue(DstEltTy); 211 unsigned Ratio = NumSrcElt/NumDstElt; 212 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 213 unsigned SrcElt = 0; 214 for (unsigned i = 0; i != NumDstElt; ++i) { 215 // Build each element of the result. 216 Constant *Elt = Zero; 217 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 218 for (unsigned j = 0; j != Ratio; ++j) { 219 Constant *Src = C->getAggregateElement(SrcElt++); 220 if (Src && isa<UndefValue>(Src)) 221 Src = Constant::getNullValue( 222 cast<VectorType>(C->getType())->getElementType()); 223 else 224 Src = dyn_cast_or_null<ConstantInt>(Src); 225 if (!Src) // Reject constantexpr elements. 226 return ConstantExpr::getBitCast(C, DestTy); 227 228 // Zero extend the element to the right size. 229 Src = ConstantExpr::getZExt(Src, Elt->getType()); 230 231 // Shift it to the right place, depending on endianness. 232 Src = ConstantExpr::getShl(Src, 233 ConstantInt::get(Src->getType(), ShiftAmt)); 234 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 235 236 // Mix it in. 237 Elt = ConstantExpr::getOr(Elt, Src); 238 } 239 Result.push_back(Elt); 240 } 241 return ConstantVector::get(Result); 242 } 243 244 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 245 unsigned Ratio = NumDstElt/NumSrcElt; 246 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 247 248 // Loop over each source value, expanding into multiple results. 249 for (unsigned i = 0; i != NumSrcElt; ++i) { 250 auto *Element = C->getAggregateElement(i); 251 252 if (!Element) // Reject constantexpr elements. 253 return ConstantExpr::getBitCast(C, DestTy); 254 255 if (isa<UndefValue>(Element)) { 256 // Correctly Propagate undef values. 257 Result.append(Ratio, UndefValue::get(DstEltTy)); 258 continue; 259 } 260 261 auto *Src = dyn_cast<ConstantInt>(Element); 262 if (!Src) 263 return ConstantExpr::getBitCast(C, DestTy); 264 265 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 266 for (unsigned j = 0; j != Ratio; ++j) { 267 // Shift the piece of the value into the right place, depending on 268 // endianness. 269 Constant *Elt = ConstantExpr::getLShr(Src, 270 ConstantInt::get(Src->getType(), ShiftAmt)); 271 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 272 273 // Truncate the element to an integer with the same pointer size and 274 // convert the element back to a pointer using a inttoptr. 275 if (DstEltTy->isPointerTy()) { 276 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 277 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 278 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 279 continue; 280 } 281 282 // Truncate and remember this piece. 283 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 284 } 285 } 286 287 return ConstantVector::get(Result); 288 } 289 290 } // end anonymous namespace 291 292 /// If this constant is a constant offset from a global, return the global and 293 /// the constant. Because of constantexprs, this function is recursive. 294 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 295 APInt &Offset, const DataLayout &DL) { 296 // Trivial case, constant is the global. 297 if ((GV = dyn_cast<GlobalValue>(C))) { 298 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 299 Offset = APInt(BitWidth, 0); 300 return true; 301 } 302 303 // Otherwise, if this isn't a constant expr, bail out. 304 auto *CE = dyn_cast<ConstantExpr>(C); 305 if (!CE) return false; 306 307 // Look through ptr->int and ptr->ptr casts. 308 if (CE->getOpcode() == Instruction::PtrToInt || 309 CE->getOpcode() == Instruction::BitCast) 310 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); 311 312 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 313 auto *GEP = dyn_cast<GEPOperator>(CE); 314 if (!GEP) 315 return false; 316 317 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 318 APInt TmpOffset(BitWidth, 0); 319 320 // If the base isn't a global+constant, we aren't either. 321 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL)) 322 return false; 323 324 // Otherwise, add any offset that our operands provide. 325 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 326 return false; 327 328 Offset = TmpOffset; 329 return true; 330 } 331 332 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 333 const DataLayout &DL) { 334 do { 335 Type *SrcTy = C->getType(); 336 uint64_t DestSize = DL.getTypeSizeInBits(DestTy); 337 uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy); 338 if (SrcSize < DestSize) 339 return nullptr; 340 341 // Catch the obvious splat cases (since all-zeros can coerce non-integral 342 // pointers legally). 343 if (C->isNullValue() && !DestTy->isX86_MMXTy()) 344 return Constant::getNullValue(DestTy); 345 if (C->isAllOnesValue() && 346 (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() || 347 DestTy->isVectorTy()) && 348 !DestTy->isX86_MMXTy() && !DestTy->isPtrOrPtrVectorTy()) 349 // Get ones when the input is trivial, but 350 // only for supported types inside getAllOnesValue. 351 return Constant::getAllOnesValue(DestTy); 352 353 // If the type sizes are the same and a cast is legal, just directly 354 // cast the constant. 355 // But be careful not to coerce non-integral pointers illegally. 356 if (SrcSize == DestSize && 357 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 358 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 359 Instruction::CastOps Cast = Instruction::BitCast; 360 // If we are going from a pointer to int or vice versa, we spell the cast 361 // differently. 362 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 363 Cast = Instruction::IntToPtr; 364 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 365 Cast = Instruction::PtrToInt; 366 367 if (CastInst::castIsValid(Cast, C, DestTy)) 368 return ConstantExpr::getCast(Cast, C, DestTy); 369 } 370 371 // If this isn't an aggregate type, there is nothing we can do to drill down 372 // and find a bitcastable constant. 373 if (!SrcTy->isAggregateType()) 374 return nullptr; 375 376 // We're simulating a load through a pointer that was bitcast to point to 377 // a different type, so we can try to walk down through the initial 378 // elements of an aggregate to see if some part of the aggregate is 379 // castable to implement the "load" semantic model. 380 if (SrcTy->isStructTy()) { 381 // Struct types might have leading zero-length elements like [0 x i32], 382 // which are certainly not what we are looking for, so skip them. 383 unsigned Elem = 0; 384 Constant *ElemC; 385 do { 386 ElemC = C->getAggregateElement(Elem++); 387 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 388 C = ElemC; 389 } else { 390 C = C->getAggregateElement(0u); 391 } 392 } while (C); 393 394 return nullptr; 395 } 396 397 namespace { 398 399 /// Recursive helper to read bits out of global. C is the constant being copied 400 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 401 /// results into and BytesLeft is the number of bytes left in 402 /// the CurPtr buffer. DL is the DataLayout. 403 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 404 unsigned BytesLeft, const DataLayout &DL) { 405 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 406 "Out of range access"); 407 408 // If this element is zero or undefined, we can just return since *CurPtr is 409 // zero initialized. 410 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 411 return true; 412 413 if (auto *CI = dyn_cast<ConstantInt>(C)) { 414 if (CI->getBitWidth() > 64 || 415 (CI->getBitWidth() & 7) != 0) 416 return false; 417 418 uint64_t Val = CI->getZExtValue(); 419 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 420 421 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 422 int n = ByteOffset; 423 if (!DL.isLittleEndian()) 424 n = IntBytes - n - 1; 425 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 426 ++ByteOffset; 427 } 428 return true; 429 } 430 431 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 432 if (CFP->getType()->isDoubleTy()) { 433 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 434 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 435 } 436 if (CFP->getType()->isFloatTy()){ 437 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 438 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 439 } 440 if (CFP->getType()->isHalfTy()){ 441 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 442 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 443 } 444 return false; 445 } 446 447 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 448 const StructLayout *SL = DL.getStructLayout(CS->getType()); 449 unsigned Index = SL->getElementContainingOffset(ByteOffset); 450 uint64_t CurEltOffset = SL->getElementOffset(Index); 451 ByteOffset -= CurEltOffset; 452 453 while (true) { 454 // If the element access is to the element itself and not to tail padding, 455 // read the bytes from the element. 456 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 457 458 if (ByteOffset < EltSize && 459 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 460 BytesLeft, DL)) 461 return false; 462 463 ++Index; 464 465 // Check to see if we read from the last struct element, if so we're done. 466 if (Index == CS->getType()->getNumElements()) 467 return true; 468 469 // If we read all of the bytes we needed from this element we're done. 470 uint64_t NextEltOffset = SL->getElementOffset(Index); 471 472 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 473 return true; 474 475 // Move to the next element of the struct. 476 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 477 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 478 ByteOffset = 0; 479 CurEltOffset = NextEltOffset; 480 } 481 // not reached. 482 } 483 484 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 485 isa<ConstantDataSequential>(C)) { 486 uint64_t NumElts; 487 Type *EltTy; 488 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 489 NumElts = AT->getNumElements(); 490 EltTy = AT->getElementType(); 491 } else { 492 NumElts = cast<VectorType>(C->getType())->getNumElements(); 493 EltTy = cast<VectorType>(C->getType())->getElementType(); 494 } 495 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 496 uint64_t Index = ByteOffset / EltSize; 497 uint64_t Offset = ByteOffset - Index * EltSize; 498 499 for (; Index != NumElts; ++Index) { 500 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 501 BytesLeft, DL)) 502 return false; 503 504 uint64_t BytesWritten = EltSize - Offset; 505 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 506 if (BytesWritten >= BytesLeft) 507 return true; 508 509 Offset = 0; 510 BytesLeft -= BytesWritten; 511 CurPtr += BytesWritten; 512 } 513 return true; 514 } 515 516 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 517 if (CE->getOpcode() == Instruction::IntToPtr && 518 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 519 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 520 BytesLeft, DL); 521 } 522 } 523 524 // Otherwise, unknown initializer type. 525 return false; 526 } 527 528 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, 529 const DataLayout &DL) { 530 // Bail out early. Not expect to load from scalable global variable. 531 if (isa<ScalableVectorType>(LoadTy)) 532 return nullptr; 533 534 auto *PTy = cast<PointerType>(C->getType()); 535 auto *IntType = dyn_cast<IntegerType>(LoadTy); 536 537 // If this isn't an integer load we can't fold it directly. 538 if (!IntType) { 539 unsigned AS = PTy->getAddressSpace(); 540 541 // If this is a float/double load, we can try folding it as an int32/64 load 542 // and then bitcast the result. This can be useful for union cases. Note 543 // that address spaces don't matter here since we're not going to result in 544 // an actual new load. 545 Type *MapTy; 546 if (LoadTy->isHalfTy()) 547 MapTy = Type::getInt16Ty(C->getContext()); 548 else if (LoadTy->isFloatTy()) 549 MapTy = Type::getInt32Ty(C->getContext()); 550 else if (LoadTy->isDoubleTy()) 551 MapTy = Type::getInt64Ty(C->getContext()); 552 else if (LoadTy->isVectorTy()) { 553 MapTy = PointerType::getIntNTy( 554 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 555 } else 556 return nullptr; 557 558 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); 559 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) { 560 if (Res->isNullValue() && !LoadTy->isX86_MMXTy()) 561 // Materializing a zero can be done trivially without a bitcast 562 return Constant::getNullValue(LoadTy); 563 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 564 Res = FoldBitCast(Res, CastTy, DL); 565 if (LoadTy->isPtrOrPtrVectorTy()) { 566 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 567 if (Res->isNullValue() && !LoadTy->isX86_MMXTy()) 568 return Constant::getNullValue(LoadTy); 569 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 570 // Be careful not to replace a load of an addrspace value with an inttoptr here 571 return nullptr; 572 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 573 } 574 return Res; 575 } 576 return nullptr; 577 } 578 579 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 580 if (BytesLoaded > 32 || BytesLoaded == 0) 581 return nullptr; 582 583 GlobalValue *GVal; 584 APInt OffsetAI; 585 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) 586 return nullptr; 587 588 auto *GV = dyn_cast<GlobalVariable>(GVal); 589 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 590 !GV->getInitializer()->getType()->isSized()) 591 return nullptr; 592 593 int64_t Offset = OffsetAI.getSExtValue(); 594 int64_t InitializerSize = 595 DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize(); 596 597 // If we're not accessing anything in this constant, the result is undefined. 598 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 599 return UndefValue::get(IntType); 600 601 // If we're not accessing anything in this constant, the result is undefined. 602 if (Offset >= InitializerSize) 603 return UndefValue::get(IntType); 604 605 unsigned char RawBytes[32] = {0}; 606 unsigned char *CurPtr = RawBytes; 607 unsigned BytesLeft = BytesLoaded; 608 609 // If we're loading off the beginning of the global, some bytes may be valid. 610 if (Offset < 0) { 611 CurPtr += -Offset; 612 BytesLeft += Offset; 613 Offset = 0; 614 } 615 616 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) 617 return nullptr; 618 619 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 620 if (DL.isLittleEndian()) { 621 ResultVal = RawBytes[BytesLoaded - 1]; 622 for (unsigned i = 1; i != BytesLoaded; ++i) { 623 ResultVal <<= 8; 624 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 625 } 626 } else { 627 ResultVal = RawBytes[0]; 628 for (unsigned i = 1; i != BytesLoaded; ++i) { 629 ResultVal <<= 8; 630 ResultVal |= RawBytes[i]; 631 } 632 } 633 634 return ConstantInt::get(IntType->getContext(), ResultVal); 635 } 636 637 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, 638 const DataLayout &DL) { 639 auto *SrcPtr = CE->getOperand(0); 640 auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); 641 if (!SrcPtrTy) 642 return nullptr; 643 Type *SrcTy = SrcPtrTy->getPointerElementType(); 644 645 Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); 646 if (!C) 647 return nullptr; 648 649 return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); 650 } 651 652 } // end anonymous namespace 653 654 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 655 const DataLayout &DL) { 656 // First, try the easy cases: 657 if (auto *GV = dyn_cast<GlobalVariable>(C)) 658 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 659 return GV->getInitializer(); 660 661 if (auto *GA = dyn_cast<GlobalAlias>(C)) 662 if (GA->getAliasee() && !GA->isInterposable()) 663 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); 664 665 // If the loaded value isn't a constant expr, we can't handle it. 666 auto *CE = dyn_cast<ConstantExpr>(C); 667 if (!CE) 668 return nullptr; 669 670 if (CE->getOpcode() == Instruction::GetElementPtr) { 671 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { 672 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 673 if (Constant *V = 674 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) 675 return V; 676 } 677 } 678 } 679 680 if (CE->getOpcode() == Instruction::BitCast) 681 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) 682 return LoadedC; 683 684 // Instead of loading constant c string, use corresponding integer value 685 // directly if string length is small enough. 686 StringRef Str; 687 if (getConstantStringInfo(CE, Str) && !Str.empty()) { 688 size_t StrLen = Str.size(); 689 unsigned NumBits = Ty->getPrimitiveSizeInBits(); 690 // Replace load with immediate integer if the result is an integer or fp 691 // value. 692 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && 693 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { 694 APInt StrVal(NumBits, 0); 695 APInt SingleChar(NumBits, 0); 696 if (DL.isLittleEndian()) { 697 for (unsigned char C : reverse(Str.bytes())) { 698 SingleChar = static_cast<uint64_t>(C); 699 StrVal = (StrVal << 8) | SingleChar; 700 } 701 } else { 702 for (unsigned char C : Str.bytes()) { 703 SingleChar = static_cast<uint64_t>(C); 704 StrVal = (StrVal << 8) | SingleChar; 705 } 706 // Append NULL at the end. 707 SingleChar = 0; 708 StrVal = (StrVal << 8) | SingleChar; 709 } 710 711 Constant *Res = ConstantInt::get(CE->getContext(), StrVal); 712 if (Ty->isFloatingPointTy()) 713 Res = ConstantExpr::getBitCast(Res, Ty); 714 return Res; 715 } 716 } 717 718 // If this load comes from anywhere in a constant global, and if the global 719 // is all undef or zero, we know what it loads. 720 if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { 721 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 722 if (GV->getInitializer()->isNullValue()) 723 return Constant::getNullValue(Ty); 724 if (isa<UndefValue>(GV->getInitializer())) 725 return UndefValue::get(Ty); 726 } 727 } 728 729 // Try hard to fold loads from bitcasted strange and non-type-safe things. 730 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); 731 } 732 733 namespace { 734 735 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { 736 if (LI->isVolatile()) return nullptr; 737 738 if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) 739 return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); 740 741 return nullptr; 742 } 743 744 /// One of Op0/Op1 is a constant expression. 745 /// Attempt to symbolically evaluate the result of a binary operator merging 746 /// these together. If target data info is available, it is provided as DL, 747 /// otherwise DL is null. 748 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 749 const DataLayout &DL) { 750 // SROA 751 752 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 753 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 754 // bits. 755 756 if (Opc == Instruction::And) { 757 KnownBits Known0 = computeKnownBits(Op0, DL); 758 KnownBits Known1 = computeKnownBits(Op1, DL); 759 if ((Known1.One | Known0.Zero).isAllOnesValue()) { 760 // All the bits of Op0 that the 'and' could be masking are already zero. 761 return Op0; 762 } 763 if ((Known0.One | Known1.Zero).isAllOnesValue()) { 764 // All the bits of Op1 that the 'and' could be masking are already zero. 765 return Op1; 766 } 767 768 Known0 &= Known1; 769 if (Known0.isConstant()) 770 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 771 } 772 773 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 774 // constant. This happens frequently when iterating over a global array. 775 if (Opc == Instruction::Sub) { 776 GlobalValue *GV1, *GV2; 777 APInt Offs1, Offs2; 778 779 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 780 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 781 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 782 783 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 784 // PtrToInt may change the bitwidth so we have convert to the right size 785 // first. 786 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 787 Offs2.zextOrTrunc(OpSize)); 788 } 789 } 790 791 return nullptr; 792 } 793 794 /// If array indices are not pointer-sized integers, explicitly cast them so 795 /// that they aren't implicitly casted by the getelementptr. 796 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 797 Type *ResultTy, Optional<unsigned> InRangeIndex, 798 const DataLayout &DL, const TargetLibraryInfo *TLI) { 799 Type *IntIdxTy = DL.getIndexType(ResultTy); 800 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 801 802 bool Any = false; 803 SmallVector<Constant*, 32> NewIdxs; 804 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 805 if ((i == 1 || 806 !isa<StructType>(GetElementPtrInst::getIndexedType( 807 SrcElemTy, Ops.slice(1, i - 1)))) && 808 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 809 Any = true; 810 Type *NewType = Ops[i]->getType()->isVectorTy() 811 ? IntIdxTy 812 : IntIdxScalarTy; 813 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 814 true, 815 NewType, 816 true), 817 Ops[i], NewType)); 818 } else 819 NewIdxs.push_back(Ops[i]); 820 } 821 822 if (!Any) 823 return nullptr; 824 825 Constant *C = ConstantExpr::getGetElementPtr( 826 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 827 return ConstantFoldConstant(C, DL, TLI); 828 } 829 830 /// Strip the pointer casts, but preserve the address space information. 831 Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) { 832 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 833 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 834 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 835 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 836 837 ElemTy = NewPtrTy->getPointerElementType(); 838 839 // Preserve the address space number of the pointer. 840 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 841 NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); 842 Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); 843 } 844 return Ptr; 845 } 846 847 /// If we can symbolically evaluate the GEP constant expression, do so. 848 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 849 ArrayRef<Constant *> Ops, 850 const DataLayout &DL, 851 const TargetLibraryInfo *TLI) { 852 const GEPOperator *InnermostGEP = GEP; 853 bool InBounds = GEP->isInBounds(); 854 855 Type *SrcElemTy = GEP->getSourceElementType(); 856 Type *ResElemTy = GEP->getResultElementType(); 857 Type *ResTy = GEP->getType(); 858 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 859 return nullptr; 860 861 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 862 GEP->getInRangeIndex(), DL, TLI)) 863 return C; 864 865 Constant *Ptr = Ops[0]; 866 if (!Ptr->getType()->isPointerTy()) 867 return nullptr; 868 869 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 870 871 // If this is a constant expr gep that is effectively computing an 872 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' 873 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 874 if (!isa<ConstantInt>(Ops[i])) { 875 876 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 877 // "inttoptr (sub (ptrtoint Ptr), V)" 878 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 879 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 880 assert((!CE || CE->getType() == IntIdxTy) && 881 "CastGEPIndices didn't canonicalize index types!"); 882 if (CE && CE->getOpcode() == Instruction::Sub && 883 CE->getOperand(0)->isNullValue()) { 884 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 885 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 886 Res = ConstantExpr::getIntToPtr(Res, ResTy); 887 return ConstantFoldConstant(Res, DL, TLI); 888 } 889 } 890 return nullptr; 891 } 892 893 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 894 APInt Offset = 895 APInt(BitWidth, 896 DL.getIndexedOffsetInType( 897 SrcElemTy, 898 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 899 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 900 901 // If this is a GEP of a GEP, fold it all into a single GEP. 902 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 903 InnermostGEP = GEP; 904 InBounds &= GEP->isInBounds(); 905 906 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); 907 908 // Do not try the incorporate the sub-GEP if some index is not a number. 909 bool AllConstantInt = true; 910 for (Value *NestedOp : NestedOps) 911 if (!isa<ConstantInt>(NestedOp)) { 912 AllConstantInt = false; 913 break; 914 } 915 if (!AllConstantInt) 916 break; 917 918 Ptr = cast<Constant>(GEP->getOperand(0)); 919 SrcElemTy = GEP->getSourceElementType(); 920 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 921 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 922 } 923 924 // If the base value for this address is a literal integer value, fold the 925 // getelementptr to the resulting integer value casted to the pointer type. 926 APInt BasePtr(BitWidth, 0); 927 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 928 if (CE->getOpcode() == Instruction::IntToPtr) { 929 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 930 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 931 } 932 } 933 934 auto *PTy = cast<PointerType>(Ptr->getType()); 935 if ((Ptr->isNullValue() || BasePtr != 0) && 936 !DL.isNonIntegralPointerType(PTy)) { 937 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 938 return ConstantExpr::getIntToPtr(C, ResTy); 939 } 940 941 // Otherwise form a regular getelementptr. Recompute the indices so that 942 // we eliminate over-indexing of the notional static type array bounds. 943 // This makes it easy to determine if the getelementptr is "inbounds". 944 // Also, this helps GlobalOpt do SROA on GlobalVariables. 945 Type *Ty = PTy; 946 SmallVector<Constant *, 32> NewIdxs; 947 948 do { 949 if (!Ty->isStructTy()) { 950 if (Ty->isPointerTy()) { 951 // The only pointer indexing we'll do is on the first index of the GEP. 952 if (!NewIdxs.empty()) 953 break; 954 955 Ty = SrcElemTy; 956 957 // Only handle pointers to sized types, not pointers to functions. 958 if (!Ty->isSized()) 959 return nullptr; 960 } else { 961 Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0); 962 if (!NextTy) 963 break; 964 Ty = NextTy; 965 } 966 967 // Determine which element of the array the offset points into. 968 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); 969 if (ElemSize == 0) { 970 // The element size is 0. This may be [0 x Ty]*, so just use a zero 971 // index for this level and proceed to the next level to see if it can 972 // accommodate the offset. 973 NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0)); 974 } else { 975 // The element size is non-zero divide the offset by the element 976 // size (rounding down), to compute the index at this level. 977 bool Overflow; 978 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); 979 if (Overflow) 980 break; 981 Offset -= NewIdx * ElemSize; 982 NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx)); 983 } 984 } else { 985 auto *STy = cast<StructType>(Ty); 986 // If we end up with an offset that isn't valid for this struct type, we 987 // can't re-form this GEP in a regular form, so bail out. The pointer 988 // operand likely went through casts that are necessary to make the GEP 989 // sensible. 990 const StructLayout &SL = *DL.getStructLayout(STy); 991 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) 992 break; 993 994 // Determine which field of the struct the offset points into. The 995 // getZExtValue is fine as we've already ensured that the offset is 996 // within the range representable by the StructLayout API. 997 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); 998 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 999 ElIdx)); 1000 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); 1001 Ty = STy->getTypeAtIndex(ElIdx); 1002 } 1003 } while (Ty != ResElemTy); 1004 1005 // If we haven't used up the entire offset by descending the static 1006 // type, then the offset is pointing into the middle of an indivisible 1007 // member, so we can't simplify it. 1008 if (Offset != 0) 1009 return nullptr; 1010 1011 // Preserve the inrange index from the innermost GEP if possible. We must 1012 // have calculated the same indices up to and including the inrange index. 1013 Optional<unsigned> InRangeIndex; 1014 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 1015 if (SrcElemTy == InnermostGEP->getSourceElementType() && 1016 NewIdxs.size() > *LastIRIndex) { 1017 InRangeIndex = LastIRIndex; 1018 for (unsigned I = 0; I <= *LastIRIndex; ++I) 1019 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 1020 return nullptr; 1021 } 1022 1023 // Create a GEP. 1024 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 1025 InBounds, InRangeIndex); 1026 assert(C->getType()->getPointerElementType() == Ty && 1027 "Computed GetElementPtr has unexpected type!"); 1028 1029 // If we ended up indexing a member with a type that doesn't match 1030 // the type of what the original indices indexed, add a cast. 1031 if (Ty != ResElemTy) 1032 C = FoldBitCast(C, ResTy, DL); 1033 1034 return C; 1035 } 1036 1037 /// Attempt to constant fold an instruction with the 1038 /// specified opcode and operands. If successful, the constant result is 1039 /// returned, if not, null is returned. Note that this function can fail when 1040 /// attempting to fold instructions like loads and stores, which have no 1041 /// constant expression form. 1042 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 1043 ArrayRef<Constant *> Ops, 1044 const DataLayout &DL, 1045 const TargetLibraryInfo *TLI) { 1046 Type *DestTy = InstOrCE->getType(); 1047 1048 if (Instruction::isUnaryOp(Opcode)) 1049 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1050 1051 if (Instruction::isBinaryOp(Opcode)) 1052 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1053 1054 if (Instruction::isCast(Opcode)) 1055 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1056 1057 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1058 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1059 return C; 1060 1061 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1062 Ops.slice(1), GEP->isInBounds(), 1063 GEP->getInRangeIndex()); 1064 } 1065 1066 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1067 return CE->getWithOperands(Ops); 1068 1069 switch (Opcode) { 1070 default: return nullptr; 1071 case Instruction::ICmp: 1072 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1073 case Instruction::Call: 1074 if (auto *F = dyn_cast<Function>(Ops.back())) { 1075 const auto *Call = cast<CallBase>(InstOrCE); 1076 if (canConstantFoldCallTo(Call, F)) 1077 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1078 } 1079 return nullptr; 1080 case Instruction::Select: 1081 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1082 case Instruction::ExtractElement: 1083 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1084 case Instruction::ExtractValue: 1085 return ConstantExpr::getExtractValue( 1086 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1087 case Instruction::InsertElement: 1088 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1089 case Instruction::ShuffleVector: 1090 return ConstantExpr::getShuffleVector( 1091 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1092 } 1093 } 1094 1095 } // end anonymous namespace 1096 1097 //===----------------------------------------------------------------------===// 1098 // Constant Folding public APIs 1099 //===----------------------------------------------------------------------===// 1100 1101 namespace { 1102 1103 Constant * 1104 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1105 const TargetLibraryInfo *TLI, 1106 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1107 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1108 return const_cast<Constant *>(C); 1109 1110 SmallVector<Constant *, 8> Ops; 1111 for (const Use &OldU : C->operands()) { 1112 Constant *OldC = cast<Constant>(&OldU); 1113 Constant *NewC = OldC; 1114 // Recursively fold the ConstantExpr's operands. If we have already folded 1115 // a ConstantExpr, we don't have to process it again. 1116 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1117 auto It = FoldedOps.find(OldC); 1118 if (It == FoldedOps.end()) { 1119 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1120 FoldedOps.insert({OldC, NewC}); 1121 } else { 1122 NewC = It->second; 1123 } 1124 } 1125 Ops.push_back(NewC); 1126 } 1127 1128 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1129 if (CE->isCompare()) 1130 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1131 DL, TLI); 1132 1133 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1134 } 1135 1136 assert(isa<ConstantVector>(C)); 1137 return ConstantVector::get(Ops); 1138 } 1139 1140 } // end anonymous namespace 1141 1142 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1143 const TargetLibraryInfo *TLI) { 1144 // Handle PHI nodes quickly here... 1145 if (auto *PN = dyn_cast<PHINode>(I)) { 1146 Constant *CommonValue = nullptr; 1147 1148 SmallDenseMap<Constant *, Constant *> FoldedOps; 1149 for (Value *Incoming : PN->incoming_values()) { 1150 // If the incoming value is undef then skip it. Note that while we could 1151 // skip the value if it is equal to the phi node itself we choose not to 1152 // because that would break the rule that constant folding only applies if 1153 // all operands are constants. 1154 if (isa<UndefValue>(Incoming)) 1155 continue; 1156 // If the incoming value is not a constant, then give up. 1157 auto *C = dyn_cast<Constant>(Incoming); 1158 if (!C) 1159 return nullptr; 1160 // Fold the PHI's operands. 1161 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1162 // If the incoming value is a different constant to 1163 // the one we saw previously, then give up. 1164 if (CommonValue && C != CommonValue) 1165 return nullptr; 1166 CommonValue = C; 1167 } 1168 1169 // If we reach here, all incoming values are the same constant or undef. 1170 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1171 } 1172 1173 // Scan the operand list, checking to see if they are all constants, if so, 1174 // hand off to ConstantFoldInstOperandsImpl. 1175 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1176 return nullptr; 1177 1178 SmallDenseMap<Constant *, Constant *> FoldedOps; 1179 SmallVector<Constant *, 8> Ops; 1180 for (const Use &OpU : I->operands()) { 1181 auto *Op = cast<Constant>(&OpU); 1182 // Fold the Instruction's operands. 1183 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1184 Ops.push_back(Op); 1185 } 1186 1187 if (const auto *CI = dyn_cast<CmpInst>(I)) 1188 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1189 DL, TLI); 1190 1191 if (const auto *LI = dyn_cast<LoadInst>(I)) 1192 return ConstantFoldLoadInst(LI, DL); 1193 1194 if (auto *IVI = dyn_cast<InsertValueInst>(I)) { 1195 return ConstantExpr::getInsertValue( 1196 cast<Constant>(IVI->getAggregateOperand()), 1197 cast<Constant>(IVI->getInsertedValueOperand()), 1198 IVI->getIndices()); 1199 } 1200 1201 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { 1202 return ConstantExpr::getExtractValue( 1203 cast<Constant>(EVI->getAggregateOperand()), 1204 EVI->getIndices()); 1205 } 1206 1207 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1208 } 1209 1210 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1211 const TargetLibraryInfo *TLI) { 1212 SmallDenseMap<Constant *, Constant *> FoldedOps; 1213 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1214 } 1215 1216 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1217 ArrayRef<Constant *> Ops, 1218 const DataLayout &DL, 1219 const TargetLibraryInfo *TLI) { 1220 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1221 } 1222 1223 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1224 Constant *Ops0, Constant *Ops1, 1225 const DataLayout &DL, 1226 const TargetLibraryInfo *TLI) { 1227 // fold: icmp (inttoptr x), null -> icmp x, 0 1228 // fold: icmp null, (inttoptr x) -> icmp 0, x 1229 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1230 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1231 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1232 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1233 // 1234 // FIXME: The following comment is out of data and the DataLayout is here now. 1235 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1236 // around to know if bit truncation is happening. 1237 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1238 if (Ops1->isNullValue()) { 1239 if (CE0->getOpcode() == Instruction::IntToPtr) { 1240 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1241 // Convert the integer value to the right size to ensure we get the 1242 // proper extension or truncation. 1243 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1244 IntPtrTy, false); 1245 Constant *Null = Constant::getNullValue(C->getType()); 1246 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1247 } 1248 1249 // Only do this transformation if the int is intptrty in size, otherwise 1250 // there is a truncation or extension that we aren't modeling. 1251 if (CE0->getOpcode() == Instruction::PtrToInt) { 1252 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1253 if (CE0->getType() == IntPtrTy) { 1254 Constant *C = CE0->getOperand(0); 1255 Constant *Null = Constant::getNullValue(C->getType()); 1256 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1257 } 1258 } 1259 } 1260 1261 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1262 if (CE0->getOpcode() == CE1->getOpcode()) { 1263 if (CE0->getOpcode() == Instruction::IntToPtr) { 1264 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1265 1266 // Convert the integer value to the right size to ensure we get the 1267 // proper extension or truncation. 1268 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1269 IntPtrTy, false); 1270 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1271 IntPtrTy, false); 1272 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1273 } 1274 1275 // Only do this transformation if the int is intptrty in size, otherwise 1276 // there is a truncation or extension that we aren't modeling. 1277 if (CE0->getOpcode() == Instruction::PtrToInt) { 1278 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1279 if (CE0->getType() == IntPtrTy && 1280 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1281 return ConstantFoldCompareInstOperands( 1282 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1283 } 1284 } 1285 } 1286 } 1287 1288 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1289 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1290 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1291 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1292 Constant *LHS = ConstantFoldCompareInstOperands( 1293 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1294 Constant *RHS = ConstantFoldCompareInstOperands( 1295 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1296 unsigned OpC = 1297 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1298 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1299 } 1300 } else if (isa<ConstantExpr>(Ops1)) { 1301 // If RHS is a constant expression, but the left side isn't, swap the 1302 // operands and try again. 1303 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1304 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1305 } 1306 1307 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1308 } 1309 1310 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1311 const DataLayout &DL) { 1312 assert(Instruction::isUnaryOp(Opcode)); 1313 1314 return ConstantExpr::get(Opcode, Op); 1315 } 1316 1317 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1318 Constant *RHS, 1319 const DataLayout &DL) { 1320 assert(Instruction::isBinaryOp(Opcode)); 1321 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1322 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1323 return C; 1324 1325 return ConstantExpr::get(Opcode, LHS, RHS); 1326 } 1327 1328 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1329 Type *DestTy, const DataLayout &DL) { 1330 assert(Instruction::isCast(Opcode)); 1331 switch (Opcode) { 1332 default: 1333 llvm_unreachable("Missing case"); 1334 case Instruction::PtrToInt: 1335 // If the input is a inttoptr, eliminate the pair. This requires knowing 1336 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1337 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1338 if (CE->getOpcode() == Instruction::IntToPtr) { 1339 Constant *Input = CE->getOperand(0); 1340 unsigned InWidth = Input->getType()->getScalarSizeInBits(); 1341 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); 1342 if (PtrWidth < InWidth) { 1343 Constant *Mask = 1344 ConstantInt::get(CE->getContext(), 1345 APInt::getLowBitsSet(InWidth, PtrWidth)); 1346 Input = ConstantExpr::getAnd(Input, Mask); 1347 } 1348 // Do a zext or trunc to get to the dest size. 1349 return ConstantExpr::getIntegerCast(Input, DestTy, false); 1350 } 1351 } 1352 return ConstantExpr::getCast(Opcode, C, DestTy); 1353 case Instruction::IntToPtr: 1354 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1355 // the int size is >= the ptr size and the address spaces are the same. 1356 // This requires knowing the width of a pointer, so it can't be done in 1357 // ConstantExpr::getCast. 1358 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1359 if (CE->getOpcode() == Instruction::PtrToInt) { 1360 Constant *SrcPtr = CE->getOperand(0); 1361 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1362 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1363 1364 if (MidIntSize >= SrcPtrSize) { 1365 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1366 if (SrcAS == DestTy->getPointerAddressSpace()) 1367 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1368 } 1369 } 1370 } 1371 1372 return ConstantExpr::getCast(Opcode, C, DestTy); 1373 case Instruction::Trunc: 1374 case Instruction::ZExt: 1375 case Instruction::SExt: 1376 case Instruction::FPTrunc: 1377 case Instruction::FPExt: 1378 case Instruction::UIToFP: 1379 case Instruction::SIToFP: 1380 case Instruction::FPToUI: 1381 case Instruction::FPToSI: 1382 case Instruction::AddrSpaceCast: 1383 return ConstantExpr::getCast(Opcode, C, DestTy); 1384 case Instruction::BitCast: 1385 return FoldBitCast(C, DestTy, DL); 1386 } 1387 } 1388 1389 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1390 ConstantExpr *CE) { 1391 if (!CE->getOperand(1)->isNullValue()) 1392 return nullptr; // Do not allow stepping over the value! 1393 1394 // Loop over all of the operands, tracking down which value we are 1395 // addressing. 1396 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1397 C = C->getAggregateElement(CE->getOperand(i)); 1398 if (!C) 1399 return nullptr; 1400 } 1401 return C; 1402 } 1403 1404 Constant * 1405 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, 1406 ArrayRef<Constant *> Indices) { 1407 // Loop over all of the operands, tracking down which value we are 1408 // addressing. 1409 for (Constant *Index : Indices) { 1410 C = C->getAggregateElement(Index); 1411 if (!C) 1412 return nullptr; 1413 } 1414 return C; 1415 } 1416 1417 //===----------------------------------------------------------------------===// 1418 // Constant Folding for Calls 1419 // 1420 1421 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1422 if (Call->isNoBuiltin()) 1423 return false; 1424 switch (F->getIntrinsicID()) { 1425 // Operations that do not operate floating-point numbers and do not depend on 1426 // FP environment can be folded even in strictfp functions. 1427 case Intrinsic::bswap: 1428 case Intrinsic::ctpop: 1429 case Intrinsic::ctlz: 1430 case Intrinsic::cttz: 1431 case Intrinsic::fshl: 1432 case Intrinsic::fshr: 1433 case Intrinsic::launder_invariant_group: 1434 case Intrinsic::strip_invariant_group: 1435 case Intrinsic::masked_load: 1436 case Intrinsic::sadd_with_overflow: 1437 case Intrinsic::uadd_with_overflow: 1438 case Intrinsic::ssub_with_overflow: 1439 case Intrinsic::usub_with_overflow: 1440 case Intrinsic::smul_with_overflow: 1441 case Intrinsic::umul_with_overflow: 1442 case Intrinsic::sadd_sat: 1443 case Intrinsic::uadd_sat: 1444 case Intrinsic::ssub_sat: 1445 case Intrinsic::usub_sat: 1446 case Intrinsic::smul_fix: 1447 case Intrinsic::smul_fix_sat: 1448 case Intrinsic::bitreverse: 1449 case Intrinsic::is_constant: 1450 case Intrinsic::experimental_vector_reduce_add: 1451 case Intrinsic::experimental_vector_reduce_mul: 1452 case Intrinsic::experimental_vector_reduce_and: 1453 case Intrinsic::experimental_vector_reduce_or: 1454 case Intrinsic::experimental_vector_reduce_xor: 1455 case Intrinsic::experimental_vector_reduce_smin: 1456 case Intrinsic::experimental_vector_reduce_smax: 1457 case Intrinsic::experimental_vector_reduce_umin: 1458 case Intrinsic::experimental_vector_reduce_umax: 1459 return true; 1460 1461 // Floating point operations cannot be folded in strictfp functions in 1462 // general case. They can be folded if FP environment is known to compiler. 1463 case Intrinsic::minnum: 1464 case Intrinsic::maxnum: 1465 case Intrinsic::minimum: 1466 case Intrinsic::maximum: 1467 case Intrinsic::log: 1468 case Intrinsic::log2: 1469 case Intrinsic::log10: 1470 case Intrinsic::exp: 1471 case Intrinsic::exp2: 1472 case Intrinsic::sqrt: 1473 case Intrinsic::sin: 1474 case Intrinsic::cos: 1475 case Intrinsic::pow: 1476 case Intrinsic::powi: 1477 case Intrinsic::fma: 1478 case Intrinsic::fmuladd: 1479 case Intrinsic::convert_from_fp16: 1480 case Intrinsic::convert_to_fp16: 1481 case Intrinsic::amdgcn_cos: 1482 case Intrinsic::amdgcn_cubeid: 1483 case Intrinsic::amdgcn_cubema: 1484 case Intrinsic::amdgcn_cubesc: 1485 case Intrinsic::amdgcn_cubetc: 1486 case Intrinsic::amdgcn_fmul_legacy: 1487 case Intrinsic::amdgcn_fract: 1488 case Intrinsic::amdgcn_ldexp: 1489 case Intrinsic::amdgcn_sin: 1490 // The intrinsics below depend on rounding mode in MXCSR. 1491 case Intrinsic::x86_sse_cvtss2si: 1492 case Intrinsic::x86_sse_cvtss2si64: 1493 case Intrinsic::x86_sse_cvttss2si: 1494 case Intrinsic::x86_sse_cvttss2si64: 1495 case Intrinsic::x86_sse2_cvtsd2si: 1496 case Intrinsic::x86_sse2_cvtsd2si64: 1497 case Intrinsic::x86_sse2_cvttsd2si: 1498 case Intrinsic::x86_sse2_cvttsd2si64: 1499 case Intrinsic::x86_avx512_vcvtss2si32: 1500 case Intrinsic::x86_avx512_vcvtss2si64: 1501 case Intrinsic::x86_avx512_cvttss2si: 1502 case Intrinsic::x86_avx512_cvttss2si64: 1503 case Intrinsic::x86_avx512_vcvtsd2si32: 1504 case Intrinsic::x86_avx512_vcvtsd2si64: 1505 case Intrinsic::x86_avx512_cvttsd2si: 1506 case Intrinsic::x86_avx512_cvttsd2si64: 1507 case Intrinsic::x86_avx512_vcvtss2usi32: 1508 case Intrinsic::x86_avx512_vcvtss2usi64: 1509 case Intrinsic::x86_avx512_cvttss2usi: 1510 case Intrinsic::x86_avx512_cvttss2usi64: 1511 case Intrinsic::x86_avx512_vcvtsd2usi32: 1512 case Intrinsic::x86_avx512_vcvtsd2usi64: 1513 case Intrinsic::x86_avx512_cvttsd2usi: 1514 case Intrinsic::x86_avx512_cvttsd2usi64: 1515 return !Call->isStrictFP(); 1516 1517 // Sign operations are actually bitwise operations, they do not raise 1518 // exceptions even for SNANs. 1519 case Intrinsic::fabs: 1520 case Intrinsic::copysign: 1521 // Non-constrained variants of rounding operations means default FP 1522 // environment, they can be folded in any case. 1523 case Intrinsic::ceil: 1524 case Intrinsic::floor: 1525 case Intrinsic::round: 1526 case Intrinsic::roundeven: 1527 case Intrinsic::trunc: 1528 case Intrinsic::nearbyint: 1529 case Intrinsic::rint: 1530 // Constrained intrinsics can be folded if FP environment is known 1531 // to compiler. 1532 case Intrinsic::experimental_constrained_ceil: 1533 case Intrinsic::experimental_constrained_floor: 1534 case Intrinsic::experimental_constrained_round: 1535 case Intrinsic::experimental_constrained_roundeven: 1536 case Intrinsic::experimental_constrained_trunc: 1537 case Intrinsic::experimental_constrained_nearbyint: 1538 case Intrinsic::experimental_constrained_rint: 1539 return true; 1540 default: 1541 return false; 1542 case Intrinsic::not_intrinsic: break; 1543 } 1544 1545 if (!F->hasName() || Call->isStrictFP()) 1546 return false; 1547 1548 // In these cases, the check of the length is required. We don't want to 1549 // return true for a name like "cos\0blah" which strcmp would return equal to 1550 // "cos", but has length 8. 1551 StringRef Name = F->getName(); 1552 switch (Name[0]) { 1553 default: 1554 return false; 1555 case 'a': 1556 return Name == "acos" || Name == "acosf" || 1557 Name == "asin" || Name == "asinf" || 1558 Name == "atan" || Name == "atanf" || 1559 Name == "atan2" || Name == "atan2f"; 1560 case 'c': 1561 return Name == "ceil" || Name == "ceilf" || 1562 Name == "cos" || Name == "cosf" || 1563 Name == "cosh" || Name == "coshf"; 1564 case 'e': 1565 return Name == "exp" || Name == "expf" || 1566 Name == "exp2" || Name == "exp2f"; 1567 case 'f': 1568 return Name == "fabs" || Name == "fabsf" || 1569 Name == "floor" || Name == "floorf" || 1570 Name == "fmod" || Name == "fmodf"; 1571 case 'l': 1572 return Name == "log" || Name == "logf" || 1573 Name == "log2" || Name == "log2f" || 1574 Name == "log10" || Name == "log10f"; 1575 case 'n': 1576 return Name == "nearbyint" || Name == "nearbyintf"; 1577 case 'p': 1578 return Name == "pow" || Name == "powf"; 1579 case 'r': 1580 return Name == "remainder" || Name == "remainderf" || 1581 Name == "rint" || Name == "rintf" || 1582 Name == "round" || Name == "roundf"; 1583 case 's': 1584 return Name == "sin" || Name == "sinf" || 1585 Name == "sinh" || Name == "sinhf" || 1586 Name == "sqrt" || Name == "sqrtf"; 1587 case 't': 1588 return Name == "tan" || Name == "tanf" || 1589 Name == "tanh" || Name == "tanhf" || 1590 Name == "trunc" || Name == "truncf"; 1591 case '_': 1592 // Check for various function names that get used for the math functions 1593 // when the header files are preprocessed with the macro 1594 // __FINITE_MATH_ONLY__ enabled. 1595 // The '12' here is the length of the shortest name that can match. 1596 // We need to check the size before looking at Name[1] and Name[2] 1597 // so we may as well check a limit that will eliminate mismatches. 1598 if (Name.size() < 12 || Name[1] != '_') 1599 return false; 1600 switch (Name[2]) { 1601 default: 1602 return false; 1603 case 'a': 1604 return Name == "__acos_finite" || Name == "__acosf_finite" || 1605 Name == "__asin_finite" || Name == "__asinf_finite" || 1606 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1607 case 'c': 1608 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1609 case 'e': 1610 return Name == "__exp_finite" || Name == "__expf_finite" || 1611 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1612 case 'l': 1613 return Name == "__log_finite" || Name == "__logf_finite" || 1614 Name == "__log10_finite" || Name == "__log10f_finite"; 1615 case 'p': 1616 return Name == "__pow_finite" || Name == "__powf_finite"; 1617 case 's': 1618 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1619 } 1620 } 1621 } 1622 1623 namespace { 1624 1625 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1626 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1627 APFloat APF(V); 1628 bool unused; 1629 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1630 return ConstantFP::get(Ty->getContext(), APF); 1631 } 1632 if (Ty->isDoubleTy()) 1633 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1634 llvm_unreachable("Can only constant fold half/float/double"); 1635 } 1636 1637 /// Clear the floating-point exception state. 1638 inline void llvm_fenv_clearexcept() { 1639 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1640 feclearexcept(FE_ALL_EXCEPT); 1641 #endif 1642 errno = 0; 1643 } 1644 1645 /// Test if a floating-point exception was raised. 1646 inline bool llvm_fenv_testexcept() { 1647 int errno_val = errno; 1648 if (errno_val == ERANGE || errno_val == EDOM) 1649 return true; 1650 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1651 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1652 return true; 1653 #endif 1654 return false; 1655 } 1656 1657 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { 1658 llvm_fenv_clearexcept(); 1659 V = NativeFP(V); 1660 if (llvm_fenv_testexcept()) { 1661 llvm_fenv_clearexcept(); 1662 return nullptr; 1663 } 1664 1665 return GetConstantFoldFPValue(V, Ty); 1666 } 1667 1668 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, 1669 double W, Type *Ty) { 1670 llvm_fenv_clearexcept(); 1671 V = NativeFP(V, W); 1672 if (llvm_fenv_testexcept()) { 1673 llvm_fenv_clearexcept(); 1674 return nullptr; 1675 } 1676 1677 return GetConstantFoldFPValue(V, Ty); 1678 } 1679 1680 Constant *ConstantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1681 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1682 if (!VT) 1683 return nullptr; 1684 ConstantInt *CI = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1685 if (!CI) 1686 return nullptr; 1687 APInt Acc = CI->getValue(); 1688 1689 for (unsigned I = 1; I < VT->getNumElements(); I++) { 1690 if (!(CI = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1691 return nullptr; 1692 const APInt &X = CI->getValue(); 1693 switch (IID) { 1694 case Intrinsic::experimental_vector_reduce_add: 1695 Acc = Acc + X; 1696 break; 1697 case Intrinsic::experimental_vector_reduce_mul: 1698 Acc = Acc * X; 1699 break; 1700 case Intrinsic::experimental_vector_reduce_and: 1701 Acc = Acc & X; 1702 break; 1703 case Intrinsic::experimental_vector_reduce_or: 1704 Acc = Acc | X; 1705 break; 1706 case Intrinsic::experimental_vector_reduce_xor: 1707 Acc = Acc ^ X; 1708 break; 1709 case Intrinsic::experimental_vector_reduce_smin: 1710 Acc = APIntOps::smin(Acc, X); 1711 break; 1712 case Intrinsic::experimental_vector_reduce_smax: 1713 Acc = APIntOps::smax(Acc, X); 1714 break; 1715 case Intrinsic::experimental_vector_reduce_umin: 1716 Acc = APIntOps::umin(Acc, X); 1717 break; 1718 case Intrinsic::experimental_vector_reduce_umax: 1719 Acc = APIntOps::umax(Acc, X); 1720 break; 1721 } 1722 } 1723 1724 return ConstantInt::get(Op->getContext(), Acc); 1725 } 1726 1727 /// Attempt to fold an SSE floating point to integer conversion of a constant 1728 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1729 /// used (toward nearest, ties to even). This matches the behavior of the 1730 /// non-truncating SSE instructions in the default rounding mode. The desired 1731 /// integer type Ty is used to select how many bits are available for the 1732 /// result. Returns null if the conversion cannot be performed, otherwise 1733 /// returns the Constant value resulting from the conversion. 1734 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1735 Type *Ty, bool IsSigned) { 1736 // All of these conversion intrinsics form an integer of at most 64bits. 1737 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1738 assert(ResultWidth <= 64 && 1739 "Can only constant fold conversions to 64 and 32 bit ints"); 1740 1741 uint64_t UIntVal; 1742 bool isExact = false; 1743 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1744 : APFloat::rmNearestTiesToEven; 1745 APFloat::opStatus status = 1746 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1747 IsSigned, mode, &isExact); 1748 if (status != APFloat::opOK && 1749 (!roundTowardZero || status != APFloat::opInexact)) 1750 return nullptr; 1751 return ConstantInt::get(Ty, UIntVal, IsSigned); 1752 } 1753 1754 double getValueAsDouble(ConstantFP *Op) { 1755 Type *Ty = Op->getType(); 1756 1757 if (Ty->isFloatTy()) 1758 return Op->getValueAPF().convertToFloat(); 1759 1760 if (Ty->isDoubleTy()) 1761 return Op->getValueAPF().convertToDouble(); 1762 1763 bool unused; 1764 APFloat APF = Op->getValueAPF(); 1765 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1766 return APF.convertToDouble(); 1767 } 1768 1769 static bool isManifestConstant(const Constant *c) { 1770 if (isa<ConstantData>(c)) { 1771 return true; 1772 } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) { 1773 for (const Value *subc : c->operand_values()) { 1774 if (!isManifestConstant(cast<Constant>(subc))) 1775 return false; 1776 } 1777 return true; 1778 } 1779 return false; 1780 } 1781 1782 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1783 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1784 C = &CI->getValue(); 1785 return true; 1786 } 1787 if (isa<UndefValue>(Op)) { 1788 C = nullptr; 1789 return true; 1790 } 1791 return false; 1792 } 1793 1794 static Constant *ConstantFoldScalarCall1(StringRef Name, 1795 Intrinsic::ID IntrinsicID, 1796 Type *Ty, 1797 ArrayRef<Constant *> Operands, 1798 const TargetLibraryInfo *TLI, 1799 const CallBase *Call) { 1800 assert(Operands.size() == 1 && "Wrong number of operands."); 1801 1802 if (IntrinsicID == Intrinsic::is_constant) { 1803 // We know we have a "Constant" argument. But we want to only 1804 // return true for manifest constants, not those that depend on 1805 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1806 if (isManifestConstant(Operands[0])) 1807 return ConstantInt::getTrue(Ty->getContext()); 1808 return nullptr; 1809 } 1810 if (isa<UndefValue>(Operands[0])) { 1811 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1812 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1813 if (IntrinsicID == Intrinsic::cos || 1814 IntrinsicID == Intrinsic::ctpop) 1815 return Constant::getNullValue(Ty); 1816 if (IntrinsicID == Intrinsic::bswap || 1817 IntrinsicID == Intrinsic::bitreverse || 1818 IntrinsicID == Intrinsic::launder_invariant_group || 1819 IntrinsicID == Intrinsic::strip_invariant_group) 1820 return Operands[0]; 1821 } 1822 1823 if (isa<ConstantPointerNull>(Operands[0])) { 1824 // launder(null) == null == strip(null) iff in addrspace 0 1825 if (IntrinsicID == Intrinsic::launder_invariant_group || 1826 IntrinsicID == Intrinsic::strip_invariant_group) { 1827 // If instruction is not yet put in a basic block (e.g. when cloning 1828 // a function during inlining), Call's caller may not be available. 1829 // So check Call's BB first before querying Call->getCaller. 1830 const Function *Caller = 1831 Call->getParent() ? Call->getCaller() : nullptr; 1832 if (Caller && 1833 !NullPointerIsDefined( 1834 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1835 return Operands[0]; 1836 } 1837 return nullptr; 1838 } 1839 } 1840 1841 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1842 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1843 APFloat Val(Op->getValueAPF()); 1844 1845 bool lost = false; 1846 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1847 1848 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1849 } 1850 1851 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1852 return nullptr; 1853 1854 // Use internal versions of these intrinsics. 1855 APFloat U = Op->getValueAPF(); 1856 1857 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 1858 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1859 return ConstantFP::get(Ty->getContext(), U); 1860 } 1861 1862 if (IntrinsicID == Intrinsic::round) { 1863 U.roundToIntegral(APFloat::rmNearestTiesToAway); 1864 return ConstantFP::get(Ty->getContext(), U); 1865 } 1866 1867 if (IntrinsicID == Intrinsic::roundeven) { 1868 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1869 return ConstantFP::get(Ty->getContext(), U); 1870 } 1871 1872 if (IntrinsicID == Intrinsic::ceil) { 1873 U.roundToIntegral(APFloat::rmTowardPositive); 1874 return ConstantFP::get(Ty->getContext(), U); 1875 } 1876 1877 if (IntrinsicID == Intrinsic::floor) { 1878 U.roundToIntegral(APFloat::rmTowardNegative); 1879 return ConstantFP::get(Ty->getContext(), U); 1880 } 1881 1882 if (IntrinsicID == Intrinsic::trunc) { 1883 U.roundToIntegral(APFloat::rmTowardZero); 1884 return ConstantFP::get(Ty->getContext(), U); 1885 } 1886 1887 if (IntrinsicID == Intrinsic::fabs) { 1888 U.clearSign(); 1889 return ConstantFP::get(Ty->getContext(), U); 1890 } 1891 1892 if (IntrinsicID == Intrinsic::amdgcn_fract) { 1893 // The v_fract instruction behaves like the OpenCL spec, which defines 1894 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 1895 // there to prevent fract(-small) from returning 1.0. It returns the 1896 // largest positive floating-point number less than 1.0." 1897 APFloat FloorU(U); 1898 FloorU.roundToIntegral(APFloat::rmTowardNegative); 1899 APFloat FractU(U - FloorU); 1900 APFloat AlmostOne(U.getSemantics(), 1); 1901 AlmostOne.next(/*nextDown*/ true); 1902 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 1903 } 1904 1905 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 1906 // raise FP exceptions, unless the argument is signaling NaN. 1907 1908 Optional<APFloat::roundingMode> RM; 1909 switch (IntrinsicID) { 1910 default: 1911 break; 1912 case Intrinsic::experimental_constrained_nearbyint: 1913 case Intrinsic::experimental_constrained_rint: { 1914 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1915 RM = CI->getRoundingMode(); 1916 if (!RM || RM.getValue() == RoundingMode::Dynamic) 1917 return nullptr; 1918 break; 1919 } 1920 case Intrinsic::experimental_constrained_round: 1921 RM = APFloat::rmNearestTiesToAway; 1922 break; 1923 case Intrinsic::experimental_constrained_ceil: 1924 RM = APFloat::rmTowardPositive; 1925 break; 1926 case Intrinsic::experimental_constrained_floor: 1927 RM = APFloat::rmTowardNegative; 1928 break; 1929 case Intrinsic::experimental_constrained_trunc: 1930 RM = APFloat::rmTowardZero; 1931 break; 1932 } 1933 if (RM) { 1934 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1935 if (U.isFinite()) { 1936 APFloat::opStatus St = U.roundToIntegral(*RM); 1937 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 1938 St == APFloat::opInexact) { 1939 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1940 if (EB && *EB == fp::ebStrict) 1941 return nullptr; 1942 } 1943 } else if (U.isSignaling()) { 1944 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1945 if (EB && *EB != fp::ebIgnore) 1946 return nullptr; 1947 U = APFloat::getQNaN(U.getSemantics()); 1948 } 1949 return ConstantFP::get(Ty->getContext(), U); 1950 } 1951 1952 /// We only fold functions with finite arguments. Folding NaN and inf is 1953 /// likely to be aborted with an exception anyway, and some host libms 1954 /// have known errors raising exceptions. 1955 if (!U.isFinite()) 1956 return nullptr; 1957 1958 /// Currently APFloat versions of these functions do not exist, so we use 1959 /// the host native double versions. Float versions are not called 1960 /// directly but for all these it is true (float)(f((double)arg)) == 1961 /// f(arg). Long double not supported yet. 1962 double V = getValueAsDouble(Op); 1963 1964 switch (IntrinsicID) { 1965 default: break; 1966 case Intrinsic::log: 1967 return ConstantFoldFP(log, V, Ty); 1968 case Intrinsic::log2: 1969 // TODO: What about hosts that lack a C99 library? 1970 return ConstantFoldFP(Log2, V, Ty); 1971 case Intrinsic::log10: 1972 // TODO: What about hosts that lack a C99 library? 1973 return ConstantFoldFP(log10, V, Ty); 1974 case Intrinsic::exp: 1975 return ConstantFoldFP(exp, V, Ty); 1976 case Intrinsic::exp2: 1977 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 1978 return ConstantFoldBinaryFP(pow, 2.0, V, Ty); 1979 case Intrinsic::sin: 1980 return ConstantFoldFP(sin, V, Ty); 1981 case Intrinsic::cos: 1982 return ConstantFoldFP(cos, V, Ty); 1983 case Intrinsic::sqrt: 1984 return ConstantFoldFP(sqrt, V, Ty); 1985 case Intrinsic::amdgcn_cos: 1986 case Intrinsic::amdgcn_sin: 1987 if (V < -256.0 || V > 256.0) 1988 // The gfx8 and gfx9 architectures handle arguments outside the range 1989 // [-256, 256] differently. This should be a rare case so bail out 1990 // rather than trying to handle the difference. 1991 return nullptr; 1992 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 1993 double V4 = V * 4.0; 1994 if (V4 == floor(V4)) { 1995 // Force exact results for quarter-integer inputs. 1996 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 1997 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 1998 } else { 1999 if (IsCos) 2000 V = cos(V * 2.0 * numbers::pi); 2001 else 2002 V = sin(V * 2.0 * numbers::pi); 2003 } 2004 return GetConstantFoldFPValue(V, Ty); 2005 } 2006 2007 if (!TLI) 2008 return nullptr; 2009 2010 LibFunc Func = NotLibFunc; 2011 TLI->getLibFunc(Name, Func); 2012 switch (Func) { 2013 default: 2014 break; 2015 case LibFunc_acos: 2016 case LibFunc_acosf: 2017 case LibFunc_acos_finite: 2018 case LibFunc_acosf_finite: 2019 if (TLI->has(Func)) 2020 return ConstantFoldFP(acos, V, Ty); 2021 break; 2022 case LibFunc_asin: 2023 case LibFunc_asinf: 2024 case LibFunc_asin_finite: 2025 case LibFunc_asinf_finite: 2026 if (TLI->has(Func)) 2027 return ConstantFoldFP(asin, V, Ty); 2028 break; 2029 case LibFunc_atan: 2030 case LibFunc_atanf: 2031 if (TLI->has(Func)) 2032 return ConstantFoldFP(atan, V, Ty); 2033 break; 2034 case LibFunc_ceil: 2035 case LibFunc_ceilf: 2036 if (TLI->has(Func)) { 2037 U.roundToIntegral(APFloat::rmTowardPositive); 2038 return ConstantFP::get(Ty->getContext(), U); 2039 } 2040 break; 2041 case LibFunc_cos: 2042 case LibFunc_cosf: 2043 if (TLI->has(Func)) 2044 return ConstantFoldFP(cos, V, Ty); 2045 break; 2046 case LibFunc_cosh: 2047 case LibFunc_coshf: 2048 case LibFunc_cosh_finite: 2049 case LibFunc_coshf_finite: 2050 if (TLI->has(Func)) 2051 return ConstantFoldFP(cosh, V, Ty); 2052 break; 2053 case LibFunc_exp: 2054 case LibFunc_expf: 2055 case LibFunc_exp_finite: 2056 case LibFunc_expf_finite: 2057 if (TLI->has(Func)) 2058 return ConstantFoldFP(exp, V, Ty); 2059 break; 2060 case LibFunc_exp2: 2061 case LibFunc_exp2f: 2062 case LibFunc_exp2_finite: 2063 case LibFunc_exp2f_finite: 2064 if (TLI->has(Func)) 2065 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2066 return ConstantFoldBinaryFP(pow, 2.0, V, Ty); 2067 break; 2068 case LibFunc_fabs: 2069 case LibFunc_fabsf: 2070 if (TLI->has(Func)) { 2071 U.clearSign(); 2072 return ConstantFP::get(Ty->getContext(), U); 2073 } 2074 break; 2075 case LibFunc_floor: 2076 case LibFunc_floorf: 2077 if (TLI->has(Func)) { 2078 U.roundToIntegral(APFloat::rmTowardNegative); 2079 return ConstantFP::get(Ty->getContext(), U); 2080 } 2081 break; 2082 case LibFunc_log: 2083 case LibFunc_logf: 2084 case LibFunc_log_finite: 2085 case LibFunc_logf_finite: 2086 if (V > 0.0 && TLI->has(Func)) 2087 return ConstantFoldFP(log, V, Ty); 2088 break; 2089 case LibFunc_log2: 2090 case LibFunc_log2f: 2091 case LibFunc_log2_finite: 2092 case LibFunc_log2f_finite: 2093 if (V > 0.0 && TLI->has(Func)) 2094 // TODO: What about hosts that lack a C99 library? 2095 return ConstantFoldFP(Log2, V, Ty); 2096 break; 2097 case LibFunc_log10: 2098 case LibFunc_log10f: 2099 case LibFunc_log10_finite: 2100 case LibFunc_log10f_finite: 2101 if (V > 0.0 && TLI->has(Func)) 2102 // TODO: What about hosts that lack a C99 library? 2103 return ConstantFoldFP(log10, V, Ty); 2104 break; 2105 case LibFunc_nearbyint: 2106 case LibFunc_nearbyintf: 2107 case LibFunc_rint: 2108 case LibFunc_rintf: 2109 if (TLI->has(Func)) { 2110 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2111 return ConstantFP::get(Ty->getContext(), U); 2112 } 2113 break; 2114 case LibFunc_round: 2115 case LibFunc_roundf: 2116 if (TLI->has(Func)) { 2117 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2118 return ConstantFP::get(Ty->getContext(), U); 2119 } 2120 break; 2121 case LibFunc_sin: 2122 case LibFunc_sinf: 2123 if (TLI->has(Func)) 2124 return ConstantFoldFP(sin, V, Ty); 2125 break; 2126 case LibFunc_sinh: 2127 case LibFunc_sinhf: 2128 case LibFunc_sinh_finite: 2129 case LibFunc_sinhf_finite: 2130 if (TLI->has(Func)) 2131 return ConstantFoldFP(sinh, V, Ty); 2132 break; 2133 case LibFunc_sqrt: 2134 case LibFunc_sqrtf: 2135 if (V >= 0.0 && TLI->has(Func)) 2136 return ConstantFoldFP(sqrt, V, Ty); 2137 break; 2138 case LibFunc_tan: 2139 case LibFunc_tanf: 2140 if (TLI->has(Func)) 2141 return ConstantFoldFP(tan, V, Ty); 2142 break; 2143 case LibFunc_tanh: 2144 case LibFunc_tanhf: 2145 if (TLI->has(Func)) 2146 return ConstantFoldFP(tanh, V, Ty); 2147 break; 2148 case LibFunc_trunc: 2149 case LibFunc_truncf: 2150 if (TLI->has(Func)) { 2151 U.roundToIntegral(APFloat::rmTowardZero); 2152 return ConstantFP::get(Ty->getContext(), U); 2153 } 2154 break; 2155 } 2156 return nullptr; 2157 } 2158 2159 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2160 switch (IntrinsicID) { 2161 case Intrinsic::bswap: 2162 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2163 case Intrinsic::ctpop: 2164 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2165 case Intrinsic::bitreverse: 2166 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2167 case Intrinsic::convert_from_fp16: { 2168 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2169 2170 bool lost = false; 2171 APFloat::opStatus status = Val.convert( 2172 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2173 2174 // Conversion is always precise. 2175 (void)status; 2176 assert(status == APFloat::opOK && !lost && 2177 "Precision lost during fp16 constfolding"); 2178 2179 return ConstantFP::get(Ty->getContext(), Val); 2180 } 2181 default: 2182 return nullptr; 2183 } 2184 } 2185 2186 if (isa<ConstantAggregateZero>(Operands[0])) { 2187 switch (IntrinsicID) { 2188 default: break; 2189 case Intrinsic::experimental_vector_reduce_add: 2190 case Intrinsic::experimental_vector_reduce_mul: 2191 case Intrinsic::experimental_vector_reduce_and: 2192 case Intrinsic::experimental_vector_reduce_or: 2193 case Intrinsic::experimental_vector_reduce_xor: 2194 case Intrinsic::experimental_vector_reduce_smin: 2195 case Intrinsic::experimental_vector_reduce_smax: 2196 case Intrinsic::experimental_vector_reduce_umin: 2197 case Intrinsic::experimental_vector_reduce_umax: 2198 return ConstantInt::get(Ty, 0); 2199 } 2200 } 2201 2202 // Support ConstantVector in case we have an Undef in the top. 2203 if (isa<ConstantVector>(Operands[0]) || 2204 isa<ConstantDataVector>(Operands[0])) { 2205 auto *Op = cast<Constant>(Operands[0]); 2206 switch (IntrinsicID) { 2207 default: break; 2208 case Intrinsic::experimental_vector_reduce_add: 2209 case Intrinsic::experimental_vector_reduce_mul: 2210 case Intrinsic::experimental_vector_reduce_and: 2211 case Intrinsic::experimental_vector_reduce_or: 2212 case Intrinsic::experimental_vector_reduce_xor: 2213 case Intrinsic::experimental_vector_reduce_smin: 2214 case Intrinsic::experimental_vector_reduce_smax: 2215 case Intrinsic::experimental_vector_reduce_umin: 2216 case Intrinsic::experimental_vector_reduce_umax: 2217 if (Constant *C = ConstantFoldVectorReduce(IntrinsicID, Op)) 2218 return C; 2219 break; 2220 case Intrinsic::x86_sse_cvtss2si: 2221 case Intrinsic::x86_sse_cvtss2si64: 2222 case Intrinsic::x86_sse2_cvtsd2si: 2223 case Intrinsic::x86_sse2_cvtsd2si64: 2224 if (ConstantFP *FPOp = 2225 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2226 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2227 /*roundTowardZero=*/false, Ty, 2228 /*IsSigned*/true); 2229 break; 2230 case Intrinsic::x86_sse_cvttss2si: 2231 case Intrinsic::x86_sse_cvttss2si64: 2232 case Intrinsic::x86_sse2_cvttsd2si: 2233 case Intrinsic::x86_sse2_cvttsd2si64: 2234 if (ConstantFP *FPOp = 2235 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2236 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2237 /*roundTowardZero=*/true, Ty, 2238 /*IsSigned*/true); 2239 break; 2240 } 2241 } 2242 2243 return nullptr; 2244 } 2245 2246 static Constant *ConstantFoldScalarCall2(StringRef Name, 2247 Intrinsic::ID IntrinsicID, 2248 Type *Ty, 2249 ArrayRef<Constant *> Operands, 2250 const TargetLibraryInfo *TLI, 2251 const CallBase *Call) { 2252 assert(Operands.size() == 2 && "Wrong number of operands."); 2253 2254 if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2255 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2256 return nullptr; 2257 double Op1V = getValueAsDouble(Op1); 2258 2259 if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2260 if (Op2->getType() != Op1->getType()) 2261 return nullptr; 2262 2263 double Op2V = getValueAsDouble(Op2); 2264 if (IntrinsicID == Intrinsic::pow) { 2265 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2266 } 2267 if (IntrinsicID == Intrinsic::copysign) { 2268 APFloat V1 = Op1->getValueAPF(); 2269 const APFloat &V2 = Op2->getValueAPF(); 2270 V1.copySign(V2); 2271 return ConstantFP::get(Ty->getContext(), V1); 2272 } 2273 2274 if (IntrinsicID == Intrinsic::minnum) { 2275 const APFloat &C1 = Op1->getValueAPF(); 2276 const APFloat &C2 = Op2->getValueAPF(); 2277 return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); 2278 } 2279 2280 if (IntrinsicID == Intrinsic::maxnum) { 2281 const APFloat &C1 = Op1->getValueAPF(); 2282 const APFloat &C2 = Op2->getValueAPF(); 2283 return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); 2284 } 2285 2286 if (IntrinsicID == Intrinsic::minimum) { 2287 const APFloat &C1 = Op1->getValueAPF(); 2288 const APFloat &C2 = Op2->getValueAPF(); 2289 return ConstantFP::get(Ty->getContext(), minimum(C1, C2)); 2290 } 2291 2292 if (IntrinsicID == Intrinsic::maximum) { 2293 const APFloat &C1 = Op1->getValueAPF(); 2294 const APFloat &C2 = Op2->getValueAPF(); 2295 return ConstantFP::get(Ty->getContext(), maximum(C1, C2)); 2296 } 2297 2298 if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) { 2299 const APFloat &C1 = Op1->getValueAPF(); 2300 const APFloat &C2 = Op2->getValueAPF(); 2301 // The legacy behaviour is that multiplying zero by anything, even NaN 2302 // or infinity, gives +0.0. 2303 if (C1.isZero() || C2.isZero()) 2304 return ConstantFP::getNullValue(Ty); 2305 return ConstantFP::get(Ty->getContext(), C1 * C2); 2306 } 2307 2308 if (!TLI) 2309 return nullptr; 2310 2311 LibFunc Func = NotLibFunc; 2312 TLI->getLibFunc(Name, Func); 2313 switch (Func) { 2314 default: 2315 break; 2316 case LibFunc_pow: 2317 case LibFunc_powf: 2318 case LibFunc_pow_finite: 2319 case LibFunc_powf_finite: 2320 if (TLI->has(Func)) 2321 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2322 break; 2323 case LibFunc_fmod: 2324 case LibFunc_fmodf: 2325 if (TLI->has(Func)) { 2326 APFloat V = Op1->getValueAPF(); 2327 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2328 return ConstantFP::get(Ty->getContext(), V); 2329 } 2330 break; 2331 case LibFunc_remainder: 2332 case LibFunc_remainderf: 2333 if (TLI->has(Func)) { 2334 APFloat V = Op1->getValueAPF(); 2335 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2336 return ConstantFP::get(Ty->getContext(), V); 2337 } 2338 break; 2339 case LibFunc_atan2: 2340 case LibFunc_atan2f: 2341 case LibFunc_atan2_finite: 2342 case LibFunc_atan2f_finite: 2343 if (TLI->has(Func)) 2344 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2345 break; 2346 } 2347 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2348 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2349 return ConstantFP::get(Ty->getContext(), 2350 APFloat((float)std::pow((float)Op1V, 2351 (int)Op2C->getZExtValue()))); 2352 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2353 return ConstantFP::get(Ty->getContext(), 2354 APFloat((float)std::pow((float)Op1V, 2355 (int)Op2C->getZExtValue()))); 2356 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2357 return ConstantFP::get(Ty->getContext(), 2358 APFloat((double)std::pow((double)Op1V, 2359 (int)Op2C->getZExtValue()))); 2360 2361 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2362 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2363 // everywhere else. 2364 2365 // scalbn is equivalent to ldexp with float radix 2 2366 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2367 APFloat::rmNearestTiesToEven); 2368 return ConstantFP::get(Ty->getContext(), Result); 2369 } 2370 } 2371 return nullptr; 2372 } 2373 2374 if (Operands[0]->getType()->isIntegerTy() && 2375 Operands[1]->getType()->isIntegerTy()) { 2376 const APInt *C0, *C1; 2377 if (!getConstIntOrUndef(Operands[0], C0) || 2378 !getConstIntOrUndef(Operands[1], C1)) 2379 return nullptr; 2380 2381 switch (IntrinsicID) { 2382 default: break; 2383 case Intrinsic::usub_with_overflow: 2384 case Intrinsic::ssub_with_overflow: 2385 case Intrinsic::uadd_with_overflow: 2386 case Intrinsic::sadd_with_overflow: 2387 // X - undef -> { undef, false } 2388 // undef - X -> { undef, false } 2389 // X + undef -> { undef, false } 2390 // undef + x -> { undef, false } 2391 if (!C0 || !C1) { 2392 return ConstantStruct::get( 2393 cast<StructType>(Ty), 2394 {UndefValue::get(Ty->getStructElementType(0)), 2395 Constant::getNullValue(Ty->getStructElementType(1))}); 2396 } 2397 LLVM_FALLTHROUGH; 2398 case Intrinsic::smul_with_overflow: 2399 case Intrinsic::umul_with_overflow: { 2400 // undef * X -> { 0, false } 2401 // X * undef -> { 0, false } 2402 if (!C0 || !C1) 2403 return Constant::getNullValue(Ty); 2404 2405 APInt Res; 2406 bool Overflow; 2407 switch (IntrinsicID) { 2408 default: llvm_unreachable("Invalid case"); 2409 case Intrinsic::sadd_with_overflow: 2410 Res = C0->sadd_ov(*C1, Overflow); 2411 break; 2412 case Intrinsic::uadd_with_overflow: 2413 Res = C0->uadd_ov(*C1, Overflow); 2414 break; 2415 case Intrinsic::ssub_with_overflow: 2416 Res = C0->ssub_ov(*C1, Overflow); 2417 break; 2418 case Intrinsic::usub_with_overflow: 2419 Res = C0->usub_ov(*C1, Overflow); 2420 break; 2421 case Intrinsic::smul_with_overflow: 2422 Res = C0->smul_ov(*C1, Overflow); 2423 break; 2424 case Intrinsic::umul_with_overflow: 2425 Res = C0->umul_ov(*C1, Overflow); 2426 break; 2427 } 2428 Constant *Ops[] = { 2429 ConstantInt::get(Ty->getContext(), Res), 2430 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2431 }; 2432 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2433 } 2434 case Intrinsic::uadd_sat: 2435 case Intrinsic::sadd_sat: 2436 if (!C0 && !C1) 2437 return UndefValue::get(Ty); 2438 if (!C0 || !C1) 2439 return Constant::getAllOnesValue(Ty); 2440 if (IntrinsicID == Intrinsic::uadd_sat) 2441 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2442 else 2443 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2444 case Intrinsic::usub_sat: 2445 case Intrinsic::ssub_sat: 2446 if (!C0 && !C1) 2447 return UndefValue::get(Ty); 2448 if (!C0 || !C1) 2449 return Constant::getNullValue(Ty); 2450 if (IntrinsicID == Intrinsic::usub_sat) 2451 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2452 else 2453 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2454 case Intrinsic::cttz: 2455 case Intrinsic::ctlz: 2456 assert(C1 && "Must be constant int"); 2457 2458 // cttz(0, 1) and ctlz(0, 1) are undef. 2459 if (C1->isOneValue() && (!C0 || C0->isNullValue())) 2460 return UndefValue::get(Ty); 2461 if (!C0) 2462 return Constant::getNullValue(Ty); 2463 if (IntrinsicID == Intrinsic::cttz) 2464 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2465 else 2466 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2467 } 2468 2469 return nullptr; 2470 } 2471 2472 // Support ConstantVector in case we have an Undef in the top. 2473 if ((isa<ConstantVector>(Operands[0]) || 2474 isa<ConstantDataVector>(Operands[0])) && 2475 // Check for default rounding mode. 2476 // FIXME: Support other rounding modes? 2477 isa<ConstantInt>(Operands[1]) && 2478 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2479 auto *Op = cast<Constant>(Operands[0]); 2480 switch (IntrinsicID) { 2481 default: break; 2482 case Intrinsic::x86_avx512_vcvtss2si32: 2483 case Intrinsic::x86_avx512_vcvtss2si64: 2484 case Intrinsic::x86_avx512_vcvtsd2si32: 2485 case Intrinsic::x86_avx512_vcvtsd2si64: 2486 if (ConstantFP *FPOp = 2487 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2488 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2489 /*roundTowardZero=*/false, Ty, 2490 /*IsSigned*/true); 2491 break; 2492 case Intrinsic::x86_avx512_vcvtss2usi32: 2493 case Intrinsic::x86_avx512_vcvtss2usi64: 2494 case Intrinsic::x86_avx512_vcvtsd2usi32: 2495 case Intrinsic::x86_avx512_vcvtsd2usi64: 2496 if (ConstantFP *FPOp = 2497 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2498 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2499 /*roundTowardZero=*/false, Ty, 2500 /*IsSigned*/false); 2501 break; 2502 case Intrinsic::x86_avx512_cvttss2si: 2503 case Intrinsic::x86_avx512_cvttss2si64: 2504 case Intrinsic::x86_avx512_cvttsd2si: 2505 case Intrinsic::x86_avx512_cvttsd2si64: 2506 if (ConstantFP *FPOp = 2507 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2508 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2509 /*roundTowardZero=*/true, Ty, 2510 /*IsSigned*/true); 2511 break; 2512 case Intrinsic::x86_avx512_cvttss2usi: 2513 case Intrinsic::x86_avx512_cvttss2usi64: 2514 case Intrinsic::x86_avx512_cvttsd2usi: 2515 case Intrinsic::x86_avx512_cvttsd2usi64: 2516 if (ConstantFP *FPOp = 2517 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2518 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2519 /*roundTowardZero=*/true, Ty, 2520 /*IsSigned*/false); 2521 break; 2522 } 2523 } 2524 return nullptr; 2525 } 2526 2527 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2528 const APFloat &S0, 2529 const APFloat &S1, 2530 const APFloat &S2) { 2531 unsigned ID; 2532 const fltSemantics &Sem = S0.getSemantics(); 2533 APFloat MA(Sem), SC(Sem), TC(Sem); 2534 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2535 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2536 // S2 < 0 2537 ID = 5; 2538 SC = -S0; 2539 } else { 2540 ID = 4; 2541 SC = S0; 2542 } 2543 MA = S2; 2544 TC = -S1; 2545 } else if (abs(S1) >= abs(S0)) { 2546 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2547 // S1 < 0 2548 ID = 3; 2549 TC = -S2; 2550 } else { 2551 ID = 2; 2552 TC = S2; 2553 } 2554 MA = S1; 2555 SC = S0; 2556 } else { 2557 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2558 // S0 < 0 2559 ID = 1; 2560 SC = S2; 2561 } else { 2562 ID = 0; 2563 SC = -S2; 2564 } 2565 MA = S0; 2566 TC = -S1; 2567 } 2568 switch (IntrinsicID) { 2569 default: 2570 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2571 case Intrinsic::amdgcn_cubeid: 2572 return APFloat(Sem, ID); 2573 case Intrinsic::amdgcn_cubema: 2574 return MA + MA; 2575 case Intrinsic::amdgcn_cubesc: 2576 return SC; 2577 case Intrinsic::amdgcn_cubetc: 2578 return TC; 2579 } 2580 } 2581 2582 static Constant *ConstantFoldScalarCall3(StringRef Name, 2583 Intrinsic::ID IntrinsicID, 2584 Type *Ty, 2585 ArrayRef<Constant *> Operands, 2586 const TargetLibraryInfo *TLI, 2587 const CallBase *Call) { 2588 assert(Operands.size() == 3 && "Wrong number of operands."); 2589 2590 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2591 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2592 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2593 switch (IntrinsicID) { 2594 default: break; 2595 case Intrinsic::fma: 2596 case Intrinsic::fmuladd: { 2597 APFloat V = Op1->getValueAPF(); 2598 V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(), 2599 APFloat::rmNearestTiesToEven); 2600 return ConstantFP::get(Ty->getContext(), V); 2601 } 2602 case Intrinsic::amdgcn_cubeid: 2603 case Intrinsic::amdgcn_cubema: 2604 case Intrinsic::amdgcn_cubesc: 2605 case Intrinsic::amdgcn_cubetc: { 2606 APFloat V = ConstantFoldAMDGCNCubeIntrinsic( 2607 IntrinsicID, Op1->getValueAPF(), Op2->getValueAPF(), 2608 Op3->getValueAPF()); 2609 return ConstantFP::get(Ty->getContext(), V); 2610 } 2611 } 2612 } 2613 } 2614 } 2615 2616 if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { 2617 if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { 2618 if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) { 2619 switch (IntrinsicID) { 2620 default: break; 2621 case Intrinsic::smul_fix: 2622 case Intrinsic::smul_fix_sat: { 2623 // This code performs rounding towards negative infinity in case the 2624 // result cannot be represented exactly for the given scale. Targets 2625 // that do care about rounding should use a target hook for specifying 2626 // how rounding should be done, and provide their own folding to be 2627 // consistent with rounding. This is the same approach as used by 2628 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2629 const APInt &Lhs = Op1->getValue(); 2630 const APInt &Rhs = Op2->getValue(); 2631 unsigned Scale = Op3->getValue().getZExtValue(); 2632 unsigned Width = Lhs.getBitWidth(); 2633 assert(Scale < Width && "Illegal scale."); 2634 unsigned ExtendedWidth = Width * 2; 2635 APInt Product = (Lhs.sextOrSelf(ExtendedWidth) * 2636 Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale); 2637 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2638 APInt MaxValue = 2639 APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2640 APInt MinValue = 2641 APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2642 Product = APIntOps::smin(Product, MaxValue); 2643 Product = APIntOps::smax(Product, MinValue); 2644 } 2645 return ConstantInt::get(Ty->getContext(), 2646 Product.sextOrTrunc(Width)); 2647 } 2648 } 2649 } 2650 } 2651 } 2652 2653 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2654 const APInt *C0, *C1, *C2; 2655 if (!getConstIntOrUndef(Operands[0], C0) || 2656 !getConstIntOrUndef(Operands[1], C1) || 2657 !getConstIntOrUndef(Operands[2], C2)) 2658 return nullptr; 2659 2660 bool IsRight = IntrinsicID == Intrinsic::fshr; 2661 if (!C2) 2662 return Operands[IsRight ? 1 : 0]; 2663 if (!C0 && !C1) 2664 return UndefValue::get(Ty); 2665 2666 // The shift amount is interpreted as modulo the bitwidth. If the shift 2667 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2668 unsigned BitWidth = C2->getBitWidth(); 2669 unsigned ShAmt = C2->urem(BitWidth); 2670 if (!ShAmt) 2671 return Operands[IsRight ? 1 : 0]; 2672 2673 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2674 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2675 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2676 if (!C0) 2677 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2678 if (!C1) 2679 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2680 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2681 } 2682 2683 return nullptr; 2684 } 2685 2686 static Constant *ConstantFoldScalarCall(StringRef Name, 2687 Intrinsic::ID IntrinsicID, 2688 Type *Ty, 2689 ArrayRef<Constant *> Operands, 2690 const TargetLibraryInfo *TLI, 2691 const CallBase *Call) { 2692 if (Operands.size() == 1) 2693 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2694 2695 if (Operands.size() == 2) 2696 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2697 2698 if (Operands.size() == 3) 2699 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2700 2701 return nullptr; 2702 } 2703 2704 static Constant *ConstantFoldVectorCall(StringRef Name, 2705 Intrinsic::ID IntrinsicID, 2706 VectorType *VTy, 2707 ArrayRef<Constant *> Operands, 2708 const DataLayout &DL, 2709 const TargetLibraryInfo *TLI, 2710 const CallBase *Call) { 2711 // Do not iterate on scalable vector. The number of elements is unknown at 2712 // compile-time. 2713 if (isa<ScalableVectorType>(VTy)) 2714 return nullptr; 2715 2716 auto *FVTy = cast<FixedVectorType>(VTy); 2717 2718 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 2719 SmallVector<Constant *, 4> Lane(Operands.size()); 2720 Type *Ty = FVTy->getElementType(); 2721 2722 if (IntrinsicID == Intrinsic::masked_load) { 2723 auto *SrcPtr = Operands[0]; 2724 auto *Mask = Operands[2]; 2725 auto *Passthru = Operands[3]; 2726 2727 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 2728 2729 SmallVector<Constant *, 32> NewElements; 2730 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2731 auto *MaskElt = Mask->getAggregateElement(I); 2732 if (!MaskElt) 2733 break; 2734 auto *PassthruElt = Passthru->getAggregateElement(I); 2735 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2736 if (isa<UndefValue>(MaskElt)) { 2737 if (PassthruElt) 2738 NewElements.push_back(PassthruElt); 2739 else if (VecElt) 2740 NewElements.push_back(VecElt); 2741 else 2742 return nullptr; 2743 } 2744 if (MaskElt->isNullValue()) { 2745 if (!PassthruElt) 2746 return nullptr; 2747 NewElements.push_back(PassthruElt); 2748 } else if (MaskElt->isOneValue()) { 2749 if (!VecElt) 2750 return nullptr; 2751 NewElements.push_back(VecElt); 2752 } else { 2753 return nullptr; 2754 } 2755 } 2756 if (NewElements.size() != FVTy->getNumElements()) 2757 return nullptr; 2758 return ConstantVector::get(NewElements); 2759 } 2760 2761 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2762 // Gather a column of constants. 2763 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 2764 // Some intrinsics use a scalar type for certain arguments. 2765 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 2766 Lane[J] = Operands[J]; 2767 continue; 2768 } 2769 2770 Constant *Agg = Operands[J]->getAggregateElement(I); 2771 if (!Agg) 2772 return nullptr; 2773 2774 Lane[J] = Agg; 2775 } 2776 2777 // Use the regular scalar folding to simplify this column. 2778 Constant *Folded = 2779 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 2780 if (!Folded) 2781 return nullptr; 2782 Result[I] = Folded; 2783 } 2784 2785 return ConstantVector::get(Result); 2786 } 2787 2788 } // end anonymous namespace 2789 2790 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 2791 ArrayRef<Constant *> Operands, 2792 const TargetLibraryInfo *TLI) { 2793 if (Call->isNoBuiltin()) 2794 return nullptr; 2795 if (!F->hasName()) 2796 return nullptr; 2797 StringRef Name = F->getName(); 2798 2799 Type *Ty = F->getReturnType(); 2800 2801 if (auto *VTy = dyn_cast<VectorType>(Ty)) 2802 return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, 2803 F->getParent()->getDataLayout(), TLI, Call); 2804 2805 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 2806 Call); 2807 } 2808 2809 bool llvm::isMathLibCallNoop(const CallBase *Call, 2810 const TargetLibraryInfo *TLI) { 2811 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 2812 // (and to some extent ConstantFoldScalarCall). 2813 if (Call->isNoBuiltin() || Call->isStrictFP()) 2814 return false; 2815 Function *F = Call->getCalledFunction(); 2816 if (!F) 2817 return false; 2818 2819 LibFunc Func; 2820 if (!TLI || !TLI->getLibFunc(*F, Func)) 2821 return false; 2822 2823 if (Call->getNumArgOperands() == 1) { 2824 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 2825 const APFloat &Op = OpC->getValueAPF(); 2826 switch (Func) { 2827 case LibFunc_logl: 2828 case LibFunc_log: 2829 case LibFunc_logf: 2830 case LibFunc_log2l: 2831 case LibFunc_log2: 2832 case LibFunc_log2f: 2833 case LibFunc_log10l: 2834 case LibFunc_log10: 2835 case LibFunc_log10f: 2836 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 2837 2838 case LibFunc_expl: 2839 case LibFunc_exp: 2840 case LibFunc_expf: 2841 // FIXME: These boundaries are slightly conservative. 2842 if (OpC->getType()->isDoubleTy()) 2843 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 2844 if (OpC->getType()->isFloatTy()) 2845 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 2846 break; 2847 2848 case LibFunc_exp2l: 2849 case LibFunc_exp2: 2850 case LibFunc_exp2f: 2851 // FIXME: These boundaries are slightly conservative. 2852 if (OpC->getType()->isDoubleTy()) 2853 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 2854 if (OpC->getType()->isFloatTy()) 2855 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 2856 break; 2857 2858 case LibFunc_sinl: 2859 case LibFunc_sin: 2860 case LibFunc_sinf: 2861 case LibFunc_cosl: 2862 case LibFunc_cos: 2863 case LibFunc_cosf: 2864 return !Op.isInfinity(); 2865 2866 case LibFunc_tanl: 2867 case LibFunc_tan: 2868 case LibFunc_tanf: { 2869 // FIXME: Stop using the host math library. 2870 // FIXME: The computation isn't done in the right precision. 2871 Type *Ty = OpC->getType(); 2872 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2873 double OpV = getValueAsDouble(OpC); 2874 return ConstantFoldFP(tan, OpV, Ty) != nullptr; 2875 } 2876 break; 2877 } 2878 2879 case LibFunc_asinl: 2880 case LibFunc_asin: 2881 case LibFunc_asinf: 2882 case LibFunc_acosl: 2883 case LibFunc_acos: 2884 case LibFunc_acosf: 2885 return !(Op < APFloat(Op.getSemantics(), "-1") || 2886 Op > APFloat(Op.getSemantics(), "1")); 2887 2888 case LibFunc_sinh: 2889 case LibFunc_cosh: 2890 case LibFunc_sinhf: 2891 case LibFunc_coshf: 2892 case LibFunc_sinhl: 2893 case LibFunc_coshl: 2894 // FIXME: These boundaries are slightly conservative. 2895 if (OpC->getType()->isDoubleTy()) 2896 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 2897 if (OpC->getType()->isFloatTy()) 2898 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 2899 break; 2900 2901 case LibFunc_sqrtl: 2902 case LibFunc_sqrt: 2903 case LibFunc_sqrtf: 2904 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 2905 2906 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 2907 // maybe others? 2908 default: 2909 break; 2910 } 2911 } 2912 } 2913 2914 if (Call->getNumArgOperands() == 2) { 2915 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 2916 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 2917 if (Op0C && Op1C) { 2918 const APFloat &Op0 = Op0C->getValueAPF(); 2919 const APFloat &Op1 = Op1C->getValueAPF(); 2920 2921 switch (Func) { 2922 case LibFunc_powl: 2923 case LibFunc_pow: 2924 case LibFunc_powf: { 2925 // FIXME: Stop using the host math library. 2926 // FIXME: The computation isn't done in the right precision. 2927 Type *Ty = Op0C->getType(); 2928 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2929 if (Ty == Op1C->getType()) { 2930 double Op0V = getValueAsDouble(Op0C); 2931 double Op1V = getValueAsDouble(Op1C); 2932 return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; 2933 } 2934 } 2935 break; 2936 } 2937 2938 case LibFunc_fmodl: 2939 case LibFunc_fmod: 2940 case LibFunc_fmodf: 2941 case LibFunc_remainderl: 2942 case LibFunc_remainder: 2943 case LibFunc_remainderf: 2944 return Op0.isNaN() || Op1.isNaN() || 2945 (!Op0.isInfinity() && !Op1.isZero()); 2946 2947 default: 2948 break; 2949 } 2950 } 2951 } 2952 2953 return false; 2954 } 2955 2956 void TargetFolder::anchor() {} 2957