1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/IntrinsicsAMDGPU.h" 45 #include "llvm/IR/IntrinsicsARM.h" 46 #include "llvm/IR/IntrinsicsWebAssembly.h" 47 #include "llvm/IR/IntrinsicsX86.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/KnownBits.h" 54 #include "llvm/Support/MathExtras.h" 55 #include <cassert> 56 #include <cerrno> 57 #include <cfenv> 58 #include <cmath> 59 #include <cstddef> 60 #include <cstdint> 61 62 using namespace llvm; 63 64 namespace { 65 66 //===----------------------------------------------------------------------===// 67 // Constant Folding internal helper functions 68 //===----------------------------------------------------------------------===// 69 70 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 71 Constant *C, Type *SrcEltTy, 72 unsigned NumSrcElts, 73 const DataLayout &DL) { 74 // Now that we know that the input value is a vector of integers, just shift 75 // and insert them into our result. 76 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 77 for (unsigned i = 0; i != NumSrcElts; ++i) { 78 Constant *Element; 79 if (DL.isLittleEndian()) 80 Element = C->getAggregateElement(NumSrcElts - i - 1); 81 else 82 Element = C->getAggregateElement(i); 83 84 if (Element && isa<UndefValue>(Element)) { 85 Result <<= BitShift; 86 continue; 87 } 88 89 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 90 if (!ElementCI) 91 return ConstantExpr::getBitCast(C, DestTy); 92 93 Result <<= BitShift; 94 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 95 } 96 97 return nullptr; 98 } 99 100 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 101 /// This always returns a non-null constant, but it may be a 102 /// ConstantExpr if unfoldable. 103 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 104 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 105 "Invalid constantexpr bitcast!"); 106 107 // Catch the obvious splat cases. 108 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 109 return Constant::getNullValue(DestTy); 110 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 111 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 112 return Constant::getAllOnesValue(DestTy); 113 114 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 115 // Handle a vector->scalar integer/fp cast. 116 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 117 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 118 Type *SrcEltTy = VTy->getElementType(); 119 120 // If the vector is a vector of floating point, convert it to vector of int 121 // to simplify things. 122 if (SrcEltTy->isFloatingPointTy()) { 123 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 124 auto *SrcIVTy = FixedVectorType::get( 125 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 126 // Ask IR to do the conversion now that #elts line up. 127 C = ConstantExpr::getBitCast(C, SrcIVTy); 128 } 129 130 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 131 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 132 SrcEltTy, NumSrcElts, DL)) 133 return CE; 134 135 if (isa<IntegerType>(DestTy)) 136 return ConstantInt::get(DestTy, Result); 137 138 APFloat FP(DestTy->getFltSemantics(), Result); 139 return ConstantFP::get(DestTy->getContext(), FP); 140 } 141 } 142 143 // The code below only handles casts to vectors currently. 144 auto *DestVTy = dyn_cast<VectorType>(DestTy); 145 if (!DestVTy) 146 return ConstantExpr::getBitCast(C, DestTy); 147 148 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 149 // vector so the code below can handle it uniformly. 150 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 151 Constant *Ops = C; // don't take the address of C! 152 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 153 } 154 155 // If this is a bitcast from constant vector -> vector, fold it. 156 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 157 return ConstantExpr::getBitCast(C, DestTy); 158 159 // If the element types match, IR can fold it. 160 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 161 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 162 if (NumDstElt == NumSrcElt) 163 return ConstantExpr::getBitCast(C, DestTy); 164 165 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 166 Type *DstEltTy = DestVTy->getElementType(); 167 168 // Otherwise, we're changing the number of elements in a vector, which 169 // requires endianness information to do the right thing. For example, 170 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 171 // folds to (little endian): 172 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 173 // and to (big endian): 174 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 175 176 // First thing is first. We only want to think about integer here, so if 177 // we have something in FP form, recast it as integer. 178 if (DstEltTy->isFloatingPointTy()) { 179 // Fold to an vector of integers with same size as our FP type. 180 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 181 auto *DestIVTy = FixedVectorType::get( 182 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 183 // Recursively handle this integer conversion, if possible. 184 C = FoldBitCast(C, DestIVTy, DL); 185 186 // Finally, IR can handle this now that #elts line up. 187 return ConstantExpr::getBitCast(C, DestTy); 188 } 189 190 // Okay, we know the destination is integer, if the input is FP, convert 191 // it to integer first. 192 if (SrcEltTy->isFloatingPointTy()) { 193 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 194 auto *SrcIVTy = FixedVectorType::get( 195 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 196 // Ask IR to do the conversion now that #elts line up. 197 C = ConstantExpr::getBitCast(C, SrcIVTy); 198 // If IR wasn't able to fold it, bail out. 199 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 200 !isa<ConstantDataVector>(C)) 201 return C; 202 } 203 204 // Now we know that the input and output vectors are both integer vectors 205 // of the same size, and that their #elements is not the same. Do the 206 // conversion here, which depends on whether the input or output has 207 // more elements. 208 bool isLittleEndian = DL.isLittleEndian(); 209 210 SmallVector<Constant*, 32> Result; 211 if (NumDstElt < NumSrcElt) { 212 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 213 Constant *Zero = Constant::getNullValue(DstEltTy); 214 unsigned Ratio = NumSrcElt/NumDstElt; 215 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 216 unsigned SrcElt = 0; 217 for (unsigned i = 0; i != NumDstElt; ++i) { 218 // Build each element of the result. 219 Constant *Elt = Zero; 220 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 221 for (unsigned j = 0; j != Ratio; ++j) { 222 Constant *Src = C->getAggregateElement(SrcElt++); 223 if (Src && isa<UndefValue>(Src)) 224 Src = Constant::getNullValue( 225 cast<VectorType>(C->getType())->getElementType()); 226 else 227 Src = dyn_cast_or_null<ConstantInt>(Src); 228 if (!Src) // Reject constantexpr elements. 229 return ConstantExpr::getBitCast(C, DestTy); 230 231 // Zero extend the element to the right size. 232 Src = ConstantExpr::getZExt(Src, Elt->getType()); 233 234 // Shift it to the right place, depending on endianness. 235 Src = ConstantExpr::getShl(Src, 236 ConstantInt::get(Src->getType(), ShiftAmt)); 237 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 238 239 // Mix it in. 240 Elt = ConstantExpr::getOr(Elt, Src); 241 } 242 Result.push_back(Elt); 243 } 244 return ConstantVector::get(Result); 245 } 246 247 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 248 unsigned Ratio = NumDstElt/NumSrcElt; 249 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 250 251 // Loop over each source value, expanding into multiple results. 252 for (unsigned i = 0; i != NumSrcElt; ++i) { 253 auto *Element = C->getAggregateElement(i); 254 255 if (!Element) // Reject constantexpr elements. 256 return ConstantExpr::getBitCast(C, DestTy); 257 258 if (isa<UndefValue>(Element)) { 259 // Correctly Propagate undef values. 260 Result.append(Ratio, UndefValue::get(DstEltTy)); 261 continue; 262 } 263 264 auto *Src = dyn_cast<ConstantInt>(Element); 265 if (!Src) 266 return ConstantExpr::getBitCast(C, DestTy); 267 268 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 269 for (unsigned j = 0; j != Ratio; ++j) { 270 // Shift the piece of the value into the right place, depending on 271 // endianness. 272 Constant *Elt = ConstantExpr::getLShr(Src, 273 ConstantInt::get(Src->getType(), ShiftAmt)); 274 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 275 276 // Truncate the element to an integer with the same pointer size and 277 // convert the element back to a pointer using a inttoptr. 278 if (DstEltTy->isPointerTy()) { 279 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 280 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 281 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 282 continue; 283 } 284 285 // Truncate and remember this piece. 286 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 287 } 288 } 289 290 return ConstantVector::get(Result); 291 } 292 293 } // end anonymous namespace 294 295 /// If this constant is a constant offset from a global, return the global and 296 /// the constant. Because of constantexprs, this function is recursive. 297 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 298 APInt &Offset, const DataLayout &DL, 299 DSOLocalEquivalent **DSOEquiv) { 300 if (DSOEquiv) 301 *DSOEquiv = nullptr; 302 303 // Trivial case, constant is the global. 304 if ((GV = dyn_cast<GlobalValue>(C))) { 305 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 306 Offset = APInt(BitWidth, 0); 307 return true; 308 } 309 310 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 311 if (DSOEquiv) 312 *DSOEquiv = FoundDSOEquiv; 313 GV = FoundDSOEquiv->getGlobalValue(); 314 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 315 Offset = APInt(BitWidth, 0); 316 return true; 317 } 318 319 // Otherwise, if this isn't a constant expr, bail out. 320 auto *CE = dyn_cast<ConstantExpr>(C); 321 if (!CE) return false; 322 323 // Look through ptr->int and ptr->ptr casts. 324 if (CE->getOpcode() == Instruction::PtrToInt || 325 CE->getOpcode() == Instruction::BitCast) 326 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 327 DSOEquiv); 328 329 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 330 auto *GEP = dyn_cast<GEPOperator>(CE); 331 if (!GEP) 332 return false; 333 334 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 335 APInt TmpOffset(BitWidth, 0); 336 337 // If the base isn't a global+constant, we aren't either. 338 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 339 DSOEquiv)) 340 return false; 341 342 // Otherwise, add any offset that our operands provide. 343 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 344 return false; 345 346 Offset = TmpOffset; 347 return true; 348 } 349 350 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 351 const DataLayout &DL) { 352 do { 353 Type *SrcTy = C->getType(); 354 uint64_t DestSize = DL.getTypeSizeInBits(DestTy); 355 uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy); 356 if (SrcSize < DestSize) 357 return nullptr; 358 359 // Catch the obvious splat cases (since all-zeros can coerce non-integral 360 // pointers legally). 361 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 362 return Constant::getNullValue(DestTy); 363 if (C->isAllOnesValue() && 364 (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() || 365 DestTy->isVectorTy()) && 366 !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() && 367 !DestTy->isPtrOrPtrVectorTy()) 368 // Get ones when the input is trivial, but 369 // only for supported types inside getAllOnesValue. 370 return Constant::getAllOnesValue(DestTy); 371 372 // If the type sizes are the same and a cast is legal, just directly 373 // cast the constant. 374 // But be careful not to coerce non-integral pointers illegally. 375 if (SrcSize == DestSize && 376 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 377 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 378 Instruction::CastOps Cast = Instruction::BitCast; 379 // If we are going from a pointer to int or vice versa, we spell the cast 380 // differently. 381 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 382 Cast = Instruction::IntToPtr; 383 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 384 Cast = Instruction::PtrToInt; 385 386 if (CastInst::castIsValid(Cast, C, DestTy)) 387 return ConstantExpr::getCast(Cast, C, DestTy); 388 } 389 390 // If this isn't an aggregate type, there is nothing we can do to drill down 391 // and find a bitcastable constant. 392 if (!SrcTy->isAggregateType()) 393 return nullptr; 394 395 // We're simulating a load through a pointer that was bitcast to point to 396 // a different type, so we can try to walk down through the initial 397 // elements of an aggregate to see if some part of the aggregate is 398 // castable to implement the "load" semantic model. 399 if (SrcTy->isStructTy()) { 400 // Struct types might have leading zero-length elements like [0 x i32], 401 // which are certainly not what we are looking for, so skip them. 402 unsigned Elem = 0; 403 Constant *ElemC; 404 do { 405 ElemC = C->getAggregateElement(Elem++); 406 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 407 C = ElemC; 408 } else { 409 C = C->getAggregateElement(0u); 410 } 411 } while (C); 412 413 return nullptr; 414 } 415 416 namespace { 417 418 /// Recursive helper to read bits out of global. C is the constant being copied 419 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 420 /// results into and BytesLeft is the number of bytes left in 421 /// the CurPtr buffer. DL is the DataLayout. 422 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 423 unsigned BytesLeft, const DataLayout &DL) { 424 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 425 "Out of range access"); 426 427 // If this element is zero or undefined, we can just return since *CurPtr is 428 // zero initialized. 429 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 430 return true; 431 432 if (auto *CI = dyn_cast<ConstantInt>(C)) { 433 if (CI->getBitWidth() > 64 || 434 (CI->getBitWidth() & 7) != 0) 435 return false; 436 437 uint64_t Val = CI->getZExtValue(); 438 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 439 440 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 441 int n = ByteOffset; 442 if (!DL.isLittleEndian()) 443 n = IntBytes - n - 1; 444 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 445 ++ByteOffset; 446 } 447 return true; 448 } 449 450 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 451 if (CFP->getType()->isDoubleTy()) { 452 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 453 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 454 } 455 if (CFP->getType()->isFloatTy()){ 456 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 457 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 458 } 459 if (CFP->getType()->isHalfTy()){ 460 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 461 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 462 } 463 return false; 464 } 465 466 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 467 const StructLayout *SL = DL.getStructLayout(CS->getType()); 468 unsigned Index = SL->getElementContainingOffset(ByteOffset); 469 uint64_t CurEltOffset = SL->getElementOffset(Index); 470 ByteOffset -= CurEltOffset; 471 472 while (true) { 473 // If the element access is to the element itself and not to tail padding, 474 // read the bytes from the element. 475 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 476 477 if (ByteOffset < EltSize && 478 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 479 BytesLeft, DL)) 480 return false; 481 482 ++Index; 483 484 // Check to see if we read from the last struct element, if so we're done. 485 if (Index == CS->getType()->getNumElements()) 486 return true; 487 488 // If we read all of the bytes we needed from this element we're done. 489 uint64_t NextEltOffset = SL->getElementOffset(Index); 490 491 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 492 return true; 493 494 // Move to the next element of the struct. 495 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 496 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 497 ByteOffset = 0; 498 CurEltOffset = NextEltOffset; 499 } 500 // not reached. 501 } 502 503 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 504 isa<ConstantDataSequential>(C)) { 505 uint64_t NumElts; 506 Type *EltTy; 507 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 508 NumElts = AT->getNumElements(); 509 EltTy = AT->getElementType(); 510 } else { 511 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 512 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 513 } 514 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 515 uint64_t Index = ByteOffset / EltSize; 516 uint64_t Offset = ByteOffset - Index * EltSize; 517 518 for (; Index != NumElts; ++Index) { 519 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 520 BytesLeft, DL)) 521 return false; 522 523 uint64_t BytesWritten = EltSize - Offset; 524 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 525 if (BytesWritten >= BytesLeft) 526 return true; 527 528 Offset = 0; 529 BytesLeft -= BytesWritten; 530 CurPtr += BytesWritten; 531 } 532 return true; 533 } 534 535 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 536 if (CE->getOpcode() == Instruction::IntToPtr && 537 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 538 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 539 BytesLeft, DL); 540 } 541 } 542 543 // Otherwise, unknown initializer type. 544 return false; 545 } 546 547 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, 548 const DataLayout &DL) { 549 // Bail out early. Not expect to load from scalable global variable. 550 if (isa<ScalableVectorType>(LoadTy)) 551 return nullptr; 552 553 auto *PTy = cast<PointerType>(C->getType()); 554 auto *IntType = dyn_cast<IntegerType>(LoadTy); 555 556 // If this isn't an integer load we can't fold it directly. 557 if (!IntType) { 558 unsigned AS = PTy->getAddressSpace(); 559 560 // If this is a float/double load, we can try folding it as an int32/64 load 561 // and then bitcast the result. This can be useful for union cases. Note 562 // that address spaces don't matter here since we're not going to result in 563 // an actual new load. 564 Type *MapTy; 565 if (LoadTy->isHalfTy()) 566 MapTy = Type::getInt16Ty(C->getContext()); 567 else if (LoadTy->isFloatTy()) 568 MapTy = Type::getInt32Ty(C->getContext()); 569 else if (LoadTy->isDoubleTy()) 570 MapTy = Type::getInt64Ty(C->getContext()); 571 else if (LoadTy->isVectorTy()) { 572 MapTy = PointerType::getIntNTy( 573 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 574 } else 575 return nullptr; 576 577 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); 578 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) { 579 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 580 !LoadTy->isX86_AMXTy()) 581 // Materializing a zero can be done trivially without a bitcast 582 return Constant::getNullValue(LoadTy); 583 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 584 Res = FoldBitCast(Res, CastTy, DL); 585 if (LoadTy->isPtrOrPtrVectorTy()) { 586 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 587 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 588 !LoadTy->isX86_AMXTy()) 589 return Constant::getNullValue(LoadTy); 590 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 591 // Be careful not to replace a load of an addrspace value with an inttoptr here 592 return nullptr; 593 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 594 } 595 return Res; 596 } 597 return nullptr; 598 } 599 600 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 601 if (BytesLoaded > 32 || BytesLoaded == 0) 602 return nullptr; 603 604 GlobalValue *GVal; 605 APInt OffsetAI; 606 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) 607 return nullptr; 608 609 auto *GV = dyn_cast<GlobalVariable>(GVal); 610 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 611 !GV->getInitializer()->getType()->isSized()) 612 return nullptr; 613 614 int64_t Offset = OffsetAI.getSExtValue(); 615 int64_t InitializerSize = 616 DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize(); 617 618 // If we're not accessing anything in this constant, the result is undefined. 619 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 620 return UndefValue::get(IntType); 621 622 // If we're not accessing anything in this constant, the result is undefined. 623 if (Offset >= InitializerSize) 624 return UndefValue::get(IntType); 625 626 unsigned char RawBytes[32] = {0}; 627 unsigned char *CurPtr = RawBytes; 628 unsigned BytesLeft = BytesLoaded; 629 630 // If we're loading off the beginning of the global, some bytes may be valid. 631 if (Offset < 0) { 632 CurPtr += -Offset; 633 BytesLeft += Offset; 634 Offset = 0; 635 } 636 637 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) 638 return nullptr; 639 640 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 641 if (DL.isLittleEndian()) { 642 ResultVal = RawBytes[BytesLoaded - 1]; 643 for (unsigned i = 1; i != BytesLoaded; ++i) { 644 ResultVal <<= 8; 645 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 646 } 647 } else { 648 ResultVal = RawBytes[0]; 649 for (unsigned i = 1; i != BytesLoaded; ++i) { 650 ResultVal <<= 8; 651 ResultVal |= RawBytes[i]; 652 } 653 } 654 655 return ConstantInt::get(IntType->getContext(), ResultVal); 656 } 657 658 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, 659 const DataLayout &DL) { 660 auto *SrcPtr = CE->getOperand(0); 661 auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); 662 if (!SrcPtrTy) 663 return nullptr; 664 Type *SrcTy = SrcPtrTy->getPointerElementType(); 665 666 Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); 667 if (!C) 668 return nullptr; 669 670 return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); 671 } 672 673 } // end anonymous namespace 674 675 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 676 const DataLayout &DL) { 677 // First, try the easy cases: 678 if (auto *GV = dyn_cast<GlobalVariable>(C)) 679 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 680 return GV->getInitializer(); 681 682 if (auto *GA = dyn_cast<GlobalAlias>(C)) 683 if (GA->getAliasee() && !GA->isInterposable()) 684 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); 685 686 // If the loaded value isn't a constant expr, we can't handle it. 687 auto *CE = dyn_cast<ConstantExpr>(C); 688 if (!CE) 689 return nullptr; 690 691 if (CE->getOpcode() == Instruction::GetElementPtr) { 692 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { 693 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 694 if (Constant *V = 695 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) 696 return V; 697 } 698 } 699 } 700 701 if (CE->getOpcode() == Instruction::BitCast) 702 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) 703 return LoadedC; 704 705 // Instead of loading constant c string, use corresponding integer value 706 // directly if string length is small enough. 707 StringRef Str; 708 if (getConstantStringInfo(CE, Str) && !Str.empty()) { 709 size_t StrLen = Str.size(); 710 unsigned NumBits = Ty->getPrimitiveSizeInBits(); 711 // Replace load with immediate integer if the result is an integer or fp 712 // value. 713 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && 714 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { 715 APInt StrVal(NumBits, 0); 716 APInt SingleChar(NumBits, 0); 717 if (DL.isLittleEndian()) { 718 for (unsigned char C : reverse(Str.bytes())) { 719 SingleChar = static_cast<uint64_t>(C); 720 StrVal = (StrVal << 8) | SingleChar; 721 } 722 } else { 723 for (unsigned char C : Str.bytes()) { 724 SingleChar = static_cast<uint64_t>(C); 725 StrVal = (StrVal << 8) | SingleChar; 726 } 727 // Append NULL at the end. 728 SingleChar = 0; 729 StrVal = (StrVal << 8) | SingleChar; 730 } 731 732 Constant *Res = ConstantInt::get(CE->getContext(), StrVal); 733 if (Ty->isFloatingPointTy()) 734 Res = ConstantExpr::getBitCast(Res, Ty); 735 return Res; 736 } 737 } 738 739 // If this load comes from anywhere in a constant global, and if the global 740 // is all undef or zero, we know what it loads. 741 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(CE))) { 742 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 743 if (GV->getInitializer()->isNullValue()) 744 return Constant::getNullValue(Ty); 745 if (isa<UndefValue>(GV->getInitializer())) 746 return UndefValue::get(Ty); 747 } 748 } 749 750 // Try hard to fold loads from bitcasted strange and non-type-safe things. 751 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); 752 } 753 754 namespace { 755 756 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { 757 if (LI->isVolatile()) return nullptr; 758 759 if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) 760 return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); 761 762 return nullptr; 763 } 764 765 /// One of Op0/Op1 is a constant expression. 766 /// Attempt to symbolically evaluate the result of a binary operator merging 767 /// these together. If target data info is available, it is provided as DL, 768 /// otherwise DL is null. 769 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 770 const DataLayout &DL) { 771 // SROA 772 773 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 774 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 775 // bits. 776 777 if (Opc == Instruction::And) { 778 KnownBits Known0 = computeKnownBits(Op0, DL); 779 KnownBits Known1 = computeKnownBits(Op1, DL); 780 if ((Known1.One | Known0.Zero).isAllOnesValue()) { 781 // All the bits of Op0 that the 'and' could be masking are already zero. 782 return Op0; 783 } 784 if ((Known0.One | Known1.Zero).isAllOnesValue()) { 785 // All the bits of Op1 that the 'and' could be masking are already zero. 786 return Op1; 787 } 788 789 Known0 &= Known1; 790 if (Known0.isConstant()) 791 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 792 } 793 794 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 795 // constant. This happens frequently when iterating over a global array. 796 if (Opc == Instruction::Sub) { 797 GlobalValue *GV1, *GV2; 798 APInt Offs1, Offs2; 799 800 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 801 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 802 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 803 804 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 805 // PtrToInt may change the bitwidth so we have convert to the right size 806 // first. 807 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 808 Offs2.zextOrTrunc(OpSize)); 809 } 810 } 811 812 return nullptr; 813 } 814 815 /// If array indices are not pointer-sized integers, explicitly cast them so 816 /// that they aren't implicitly casted by the getelementptr. 817 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 818 Type *ResultTy, Optional<unsigned> InRangeIndex, 819 const DataLayout &DL, const TargetLibraryInfo *TLI) { 820 Type *IntIdxTy = DL.getIndexType(ResultTy); 821 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 822 823 bool Any = false; 824 SmallVector<Constant*, 32> NewIdxs; 825 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 826 if ((i == 1 || 827 !isa<StructType>(GetElementPtrInst::getIndexedType( 828 SrcElemTy, Ops.slice(1, i - 1)))) && 829 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 830 Any = true; 831 Type *NewType = Ops[i]->getType()->isVectorTy() 832 ? IntIdxTy 833 : IntIdxScalarTy; 834 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 835 true, 836 NewType, 837 true), 838 Ops[i], NewType)); 839 } else 840 NewIdxs.push_back(Ops[i]); 841 } 842 843 if (!Any) 844 return nullptr; 845 846 Constant *C = ConstantExpr::getGetElementPtr( 847 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 848 return ConstantFoldConstant(C, DL, TLI); 849 } 850 851 /// Strip the pointer casts, but preserve the address space information. 852 Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) { 853 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 854 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 855 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 856 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 857 858 ElemTy = NewPtrTy->getPointerElementType(); 859 860 // Preserve the address space number of the pointer. 861 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 862 NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); 863 Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); 864 } 865 return Ptr; 866 } 867 868 /// If we can symbolically evaluate the GEP constant expression, do so. 869 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 870 ArrayRef<Constant *> Ops, 871 const DataLayout &DL, 872 const TargetLibraryInfo *TLI) { 873 const GEPOperator *InnermostGEP = GEP; 874 bool InBounds = GEP->isInBounds(); 875 876 Type *SrcElemTy = GEP->getSourceElementType(); 877 Type *ResElemTy = GEP->getResultElementType(); 878 Type *ResTy = GEP->getType(); 879 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 880 return nullptr; 881 882 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 883 GEP->getInRangeIndex(), DL, TLI)) 884 return C; 885 886 Constant *Ptr = Ops[0]; 887 if (!Ptr->getType()->isPointerTy()) 888 return nullptr; 889 890 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 891 892 // If this is a constant expr gep that is effectively computing an 893 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' 894 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 895 if (!isa<ConstantInt>(Ops[i])) { 896 897 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 898 // "inttoptr (sub (ptrtoint Ptr), V)" 899 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 900 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 901 assert((!CE || CE->getType() == IntIdxTy) && 902 "CastGEPIndices didn't canonicalize index types!"); 903 if (CE && CE->getOpcode() == Instruction::Sub && 904 CE->getOperand(0)->isNullValue()) { 905 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 906 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 907 Res = ConstantExpr::getIntToPtr(Res, ResTy); 908 return ConstantFoldConstant(Res, DL, TLI); 909 } 910 } 911 return nullptr; 912 } 913 914 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 915 APInt Offset = 916 APInt(BitWidth, 917 DL.getIndexedOffsetInType( 918 SrcElemTy, 919 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 920 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 921 922 // If this is a GEP of a GEP, fold it all into a single GEP. 923 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 924 InnermostGEP = GEP; 925 InBounds &= GEP->isInBounds(); 926 927 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); 928 929 // Do not try the incorporate the sub-GEP if some index is not a number. 930 bool AllConstantInt = true; 931 for (Value *NestedOp : NestedOps) 932 if (!isa<ConstantInt>(NestedOp)) { 933 AllConstantInt = false; 934 break; 935 } 936 if (!AllConstantInt) 937 break; 938 939 Ptr = cast<Constant>(GEP->getOperand(0)); 940 SrcElemTy = GEP->getSourceElementType(); 941 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 942 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 943 } 944 945 // If the base value for this address is a literal integer value, fold the 946 // getelementptr to the resulting integer value casted to the pointer type. 947 APInt BasePtr(BitWidth, 0); 948 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 949 if (CE->getOpcode() == Instruction::IntToPtr) { 950 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 951 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 952 } 953 } 954 955 auto *PTy = cast<PointerType>(Ptr->getType()); 956 if ((Ptr->isNullValue() || BasePtr != 0) && 957 !DL.isNonIntegralPointerType(PTy)) { 958 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 959 return ConstantExpr::getIntToPtr(C, ResTy); 960 } 961 962 // Otherwise form a regular getelementptr. Recompute the indices so that 963 // we eliminate over-indexing of the notional static type array bounds. 964 // This makes it easy to determine if the getelementptr is "inbounds". 965 // Also, this helps GlobalOpt do SROA on GlobalVariables. 966 Type *Ty = PTy; 967 SmallVector<Constant *, 32> NewIdxs; 968 969 do { 970 if (!Ty->isStructTy()) { 971 if (Ty->isPointerTy()) { 972 // The only pointer indexing we'll do is on the first index of the GEP. 973 if (!NewIdxs.empty()) 974 break; 975 976 Ty = SrcElemTy; 977 978 // Only handle pointers to sized types, not pointers to functions. 979 if (!Ty->isSized()) 980 return nullptr; 981 } else { 982 Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0); 983 if (!NextTy) 984 break; 985 Ty = NextTy; 986 } 987 988 // Determine which element of the array the offset points into. 989 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); 990 if (ElemSize == 0) { 991 // The element size is 0. This may be [0 x Ty]*, so just use a zero 992 // index for this level and proceed to the next level to see if it can 993 // accommodate the offset. 994 NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0)); 995 } else { 996 // The element size is non-zero divide the offset by the element 997 // size (rounding down), to compute the index at this level. 998 bool Overflow; 999 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); 1000 if (Overflow) 1001 break; 1002 Offset -= NewIdx * ElemSize; 1003 NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx)); 1004 } 1005 } else { 1006 auto *STy = cast<StructType>(Ty); 1007 // If we end up with an offset that isn't valid for this struct type, we 1008 // can't re-form this GEP in a regular form, so bail out. The pointer 1009 // operand likely went through casts that are necessary to make the GEP 1010 // sensible. 1011 const StructLayout &SL = *DL.getStructLayout(STy); 1012 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) 1013 break; 1014 1015 // Determine which field of the struct the offset points into. The 1016 // getZExtValue is fine as we've already ensured that the offset is 1017 // within the range representable by the StructLayout API. 1018 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); 1019 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1020 ElIdx)); 1021 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); 1022 Ty = STy->getTypeAtIndex(ElIdx); 1023 } 1024 } while (Ty != ResElemTy); 1025 1026 // If we haven't used up the entire offset by descending the static 1027 // type, then the offset is pointing into the middle of an indivisible 1028 // member, so we can't simplify it. 1029 if (Offset != 0) 1030 return nullptr; 1031 1032 // Preserve the inrange index from the innermost GEP if possible. We must 1033 // have calculated the same indices up to and including the inrange index. 1034 Optional<unsigned> InRangeIndex; 1035 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 1036 if (SrcElemTy == InnermostGEP->getSourceElementType() && 1037 NewIdxs.size() > *LastIRIndex) { 1038 InRangeIndex = LastIRIndex; 1039 for (unsigned I = 0; I <= *LastIRIndex; ++I) 1040 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 1041 return nullptr; 1042 } 1043 1044 // Create a GEP. 1045 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 1046 InBounds, InRangeIndex); 1047 assert(C->getType()->getPointerElementType() == Ty && 1048 "Computed GetElementPtr has unexpected type!"); 1049 1050 // If we ended up indexing a member with a type that doesn't match 1051 // the type of what the original indices indexed, add a cast. 1052 if (Ty != ResElemTy) 1053 C = FoldBitCast(C, ResTy, DL); 1054 1055 return C; 1056 } 1057 1058 /// Attempt to constant fold an instruction with the 1059 /// specified opcode and operands. If successful, the constant result is 1060 /// returned, if not, null is returned. Note that this function can fail when 1061 /// attempting to fold instructions like loads and stores, which have no 1062 /// constant expression form. 1063 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 1064 ArrayRef<Constant *> Ops, 1065 const DataLayout &DL, 1066 const TargetLibraryInfo *TLI) { 1067 Type *DestTy = InstOrCE->getType(); 1068 1069 if (Instruction::isUnaryOp(Opcode)) 1070 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1071 1072 if (Instruction::isBinaryOp(Opcode)) 1073 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1074 1075 if (Instruction::isCast(Opcode)) 1076 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1077 1078 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1079 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1080 return C; 1081 1082 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1083 Ops.slice(1), GEP->isInBounds(), 1084 GEP->getInRangeIndex()); 1085 } 1086 1087 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1088 return CE->getWithOperands(Ops); 1089 1090 switch (Opcode) { 1091 default: return nullptr; 1092 case Instruction::ICmp: 1093 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1094 case Instruction::Freeze: 1095 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1096 case Instruction::Call: 1097 if (auto *F = dyn_cast<Function>(Ops.back())) { 1098 const auto *Call = cast<CallBase>(InstOrCE); 1099 if (canConstantFoldCallTo(Call, F)) 1100 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1101 } 1102 return nullptr; 1103 case Instruction::Select: 1104 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1105 case Instruction::ExtractElement: 1106 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1107 case Instruction::ExtractValue: 1108 return ConstantExpr::getExtractValue( 1109 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1110 case Instruction::InsertElement: 1111 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1112 case Instruction::ShuffleVector: 1113 return ConstantExpr::getShuffleVector( 1114 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1115 } 1116 } 1117 1118 } // end anonymous namespace 1119 1120 //===----------------------------------------------------------------------===// 1121 // Constant Folding public APIs 1122 //===----------------------------------------------------------------------===// 1123 1124 namespace { 1125 1126 Constant * 1127 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1128 const TargetLibraryInfo *TLI, 1129 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1130 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1131 return const_cast<Constant *>(C); 1132 1133 SmallVector<Constant *, 8> Ops; 1134 for (const Use &OldU : C->operands()) { 1135 Constant *OldC = cast<Constant>(&OldU); 1136 Constant *NewC = OldC; 1137 // Recursively fold the ConstantExpr's operands. If we have already folded 1138 // a ConstantExpr, we don't have to process it again. 1139 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1140 auto It = FoldedOps.find(OldC); 1141 if (It == FoldedOps.end()) { 1142 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1143 FoldedOps.insert({OldC, NewC}); 1144 } else { 1145 NewC = It->second; 1146 } 1147 } 1148 Ops.push_back(NewC); 1149 } 1150 1151 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1152 if (CE->isCompare()) 1153 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1154 DL, TLI); 1155 1156 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1157 } 1158 1159 assert(isa<ConstantVector>(C)); 1160 return ConstantVector::get(Ops); 1161 } 1162 1163 } // end anonymous namespace 1164 1165 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1166 const TargetLibraryInfo *TLI) { 1167 // Handle PHI nodes quickly here... 1168 if (auto *PN = dyn_cast<PHINode>(I)) { 1169 Constant *CommonValue = nullptr; 1170 1171 SmallDenseMap<Constant *, Constant *> FoldedOps; 1172 for (Value *Incoming : PN->incoming_values()) { 1173 // If the incoming value is undef then skip it. Note that while we could 1174 // skip the value if it is equal to the phi node itself we choose not to 1175 // because that would break the rule that constant folding only applies if 1176 // all operands are constants. 1177 if (isa<UndefValue>(Incoming)) 1178 continue; 1179 // If the incoming value is not a constant, then give up. 1180 auto *C = dyn_cast<Constant>(Incoming); 1181 if (!C) 1182 return nullptr; 1183 // Fold the PHI's operands. 1184 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1185 // If the incoming value is a different constant to 1186 // the one we saw previously, then give up. 1187 if (CommonValue && C != CommonValue) 1188 return nullptr; 1189 CommonValue = C; 1190 } 1191 1192 // If we reach here, all incoming values are the same constant or undef. 1193 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1194 } 1195 1196 // Scan the operand list, checking to see if they are all constants, if so, 1197 // hand off to ConstantFoldInstOperandsImpl. 1198 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1199 return nullptr; 1200 1201 SmallDenseMap<Constant *, Constant *> FoldedOps; 1202 SmallVector<Constant *, 8> Ops; 1203 for (const Use &OpU : I->operands()) { 1204 auto *Op = cast<Constant>(&OpU); 1205 // Fold the Instruction's operands. 1206 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1207 Ops.push_back(Op); 1208 } 1209 1210 if (const auto *CI = dyn_cast<CmpInst>(I)) 1211 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1212 DL, TLI); 1213 1214 if (const auto *LI = dyn_cast<LoadInst>(I)) 1215 return ConstantFoldLoadInst(LI, DL); 1216 1217 if (auto *IVI = dyn_cast<InsertValueInst>(I)) { 1218 return ConstantExpr::getInsertValue( 1219 cast<Constant>(IVI->getAggregateOperand()), 1220 cast<Constant>(IVI->getInsertedValueOperand()), 1221 IVI->getIndices()); 1222 } 1223 1224 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { 1225 return ConstantExpr::getExtractValue( 1226 cast<Constant>(EVI->getAggregateOperand()), 1227 EVI->getIndices()); 1228 } 1229 1230 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1231 } 1232 1233 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1234 const TargetLibraryInfo *TLI) { 1235 SmallDenseMap<Constant *, Constant *> FoldedOps; 1236 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1237 } 1238 1239 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1240 ArrayRef<Constant *> Ops, 1241 const DataLayout &DL, 1242 const TargetLibraryInfo *TLI) { 1243 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1244 } 1245 1246 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1247 Constant *Ops0, Constant *Ops1, 1248 const DataLayout &DL, 1249 const TargetLibraryInfo *TLI) { 1250 // fold: icmp (inttoptr x), null -> icmp x, 0 1251 // fold: icmp null, (inttoptr x) -> icmp 0, x 1252 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1253 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1254 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1255 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1256 // 1257 // FIXME: The following comment is out of data and the DataLayout is here now. 1258 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1259 // around to know if bit truncation is happening. 1260 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1261 if (Ops1->isNullValue()) { 1262 if (CE0->getOpcode() == Instruction::IntToPtr) { 1263 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1264 // Convert the integer value to the right size to ensure we get the 1265 // proper extension or truncation. 1266 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1267 IntPtrTy, false); 1268 Constant *Null = Constant::getNullValue(C->getType()); 1269 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1270 } 1271 1272 // Only do this transformation if the int is intptrty in size, otherwise 1273 // there is a truncation or extension that we aren't modeling. 1274 if (CE0->getOpcode() == Instruction::PtrToInt) { 1275 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1276 if (CE0->getType() == IntPtrTy) { 1277 Constant *C = CE0->getOperand(0); 1278 Constant *Null = Constant::getNullValue(C->getType()); 1279 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1280 } 1281 } 1282 } 1283 1284 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1285 if (CE0->getOpcode() == CE1->getOpcode()) { 1286 if (CE0->getOpcode() == Instruction::IntToPtr) { 1287 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1288 1289 // Convert the integer value to the right size to ensure we get the 1290 // proper extension or truncation. 1291 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1292 IntPtrTy, false); 1293 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1294 IntPtrTy, false); 1295 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1296 } 1297 1298 // Only do this transformation if the int is intptrty in size, otherwise 1299 // there is a truncation or extension that we aren't modeling. 1300 if (CE0->getOpcode() == Instruction::PtrToInt) { 1301 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1302 if (CE0->getType() == IntPtrTy && 1303 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1304 return ConstantFoldCompareInstOperands( 1305 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1306 } 1307 } 1308 } 1309 } 1310 1311 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1312 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1313 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1314 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1315 Constant *LHS = ConstantFoldCompareInstOperands( 1316 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1317 Constant *RHS = ConstantFoldCompareInstOperands( 1318 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1319 unsigned OpC = 1320 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1321 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1322 } 1323 } else if (isa<ConstantExpr>(Ops1)) { 1324 // If RHS is a constant expression, but the left side isn't, swap the 1325 // operands and try again. 1326 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1327 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1328 } 1329 1330 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1331 } 1332 1333 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1334 const DataLayout &DL) { 1335 assert(Instruction::isUnaryOp(Opcode)); 1336 1337 return ConstantExpr::get(Opcode, Op); 1338 } 1339 1340 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1341 Constant *RHS, 1342 const DataLayout &DL) { 1343 assert(Instruction::isBinaryOp(Opcode)); 1344 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1345 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1346 return C; 1347 1348 return ConstantExpr::get(Opcode, LHS, RHS); 1349 } 1350 1351 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1352 Type *DestTy, const DataLayout &DL) { 1353 assert(Instruction::isCast(Opcode)); 1354 switch (Opcode) { 1355 default: 1356 llvm_unreachable("Missing case"); 1357 case Instruction::PtrToInt: 1358 // If the input is a inttoptr, eliminate the pair. This requires knowing 1359 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1360 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1361 if (CE->getOpcode() == Instruction::IntToPtr) { 1362 Constant *Input = CE->getOperand(0); 1363 unsigned InWidth = Input->getType()->getScalarSizeInBits(); 1364 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); 1365 if (PtrWidth < InWidth) { 1366 Constant *Mask = 1367 ConstantInt::get(CE->getContext(), 1368 APInt::getLowBitsSet(InWidth, PtrWidth)); 1369 Input = ConstantExpr::getAnd(Input, Mask); 1370 } 1371 // Do a zext or trunc to get to the dest size. 1372 return ConstantExpr::getIntegerCast(Input, DestTy, false); 1373 } 1374 } 1375 return ConstantExpr::getCast(Opcode, C, DestTy); 1376 case Instruction::IntToPtr: 1377 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1378 // the int size is >= the ptr size and the address spaces are the same. 1379 // This requires knowing the width of a pointer, so it can't be done in 1380 // ConstantExpr::getCast. 1381 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1382 if (CE->getOpcode() == Instruction::PtrToInt) { 1383 Constant *SrcPtr = CE->getOperand(0); 1384 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1385 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1386 1387 if (MidIntSize >= SrcPtrSize) { 1388 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1389 if (SrcAS == DestTy->getPointerAddressSpace()) 1390 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1391 } 1392 } 1393 } 1394 1395 return ConstantExpr::getCast(Opcode, C, DestTy); 1396 case Instruction::Trunc: 1397 case Instruction::ZExt: 1398 case Instruction::SExt: 1399 case Instruction::FPTrunc: 1400 case Instruction::FPExt: 1401 case Instruction::UIToFP: 1402 case Instruction::SIToFP: 1403 case Instruction::FPToUI: 1404 case Instruction::FPToSI: 1405 case Instruction::AddrSpaceCast: 1406 return ConstantExpr::getCast(Opcode, C, DestTy); 1407 case Instruction::BitCast: 1408 return FoldBitCast(C, DestTy, DL); 1409 } 1410 } 1411 1412 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1413 ConstantExpr *CE) { 1414 if (!CE->getOperand(1)->isNullValue()) 1415 return nullptr; // Do not allow stepping over the value! 1416 1417 // Loop over all of the operands, tracking down which value we are 1418 // addressing. 1419 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1420 C = C->getAggregateElement(CE->getOperand(i)); 1421 if (!C) 1422 return nullptr; 1423 } 1424 return C; 1425 } 1426 1427 Constant * 1428 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, 1429 ArrayRef<Constant *> Indices) { 1430 // Loop over all of the operands, tracking down which value we are 1431 // addressing. 1432 for (Constant *Index : Indices) { 1433 C = C->getAggregateElement(Index); 1434 if (!C) 1435 return nullptr; 1436 } 1437 return C; 1438 } 1439 1440 //===----------------------------------------------------------------------===// 1441 // Constant Folding for Calls 1442 // 1443 1444 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1445 if (Call->isNoBuiltin()) 1446 return false; 1447 switch (F->getIntrinsicID()) { 1448 // Operations that do not operate floating-point numbers and do not depend on 1449 // FP environment can be folded even in strictfp functions. 1450 case Intrinsic::bswap: 1451 case Intrinsic::ctpop: 1452 case Intrinsic::ctlz: 1453 case Intrinsic::cttz: 1454 case Intrinsic::fshl: 1455 case Intrinsic::fshr: 1456 case Intrinsic::launder_invariant_group: 1457 case Intrinsic::strip_invariant_group: 1458 case Intrinsic::masked_load: 1459 case Intrinsic::get_active_lane_mask: 1460 case Intrinsic::abs: 1461 case Intrinsic::smax: 1462 case Intrinsic::smin: 1463 case Intrinsic::umax: 1464 case Intrinsic::umin: 1465 case Intrinsic::sadd_with_overflow: 1466 case Intrinsic::uadd_with_overflow: 1467 case Intrinsic::ssub_with_overflow: 1468 case Intrinsic::usub_with_overflow: 1469 case Intrinsic::smul_with_overflow: 1470 case Intrinsic::umul_with_overflow: 1471 case Intrinsic::sadd_sat: 1472 case Intrinsic::uadd_sat: 1473 case Intrinsic::ssub_sat: 1474 case Intrinsic::usub_sat: 1475 case Intrinsic::smul_fix: 1476 case Intrinsic::smul_fix_sat: 1477 case Intrinsic::bitreverse: 1478 case Intrinsic::is_constant: 1479 case Intrinsic::vector_reduce_add: 1480 case Intrinsic::vector_reduce_mul: 1481 case Intrinsic::vector_reduce_and: 1482 case Intrinsic::vector_reduce_or: 1483 case Intrinsic::vector_reduce_xor: 1484 case Intrinsic::vector_reduce_smin: 1485 case Intrinsic::vector_reduce_smax: 1486 case Intrinsic::vector_reduce_umin: 1487 case Intrinsic::vector_reduce_umax: 1488 // Target intrinsics 1489 case Intrinsic::arm_mve_vctp8: 1490 case Intrinsic::arm_mve_vctp16: 1491 case Intrinsic::arm_mve_vctp32: 1492 case Intrinsic::arm_mve_vctp64: 1493 // WebAssembly float semantics are always known 1494 case Intrinsic::wasm_trunc_signed: 1495 case Intrinsic::wasm_trunc_unsigned: 1496 case Intrinsic::wasm_trunc_saturate_signed: 1497 case Intrinsic::wasm_trunc_saturate_unsigned: 1498 return true; 1499 1500 // Floating point operations cannot be folded in strictfp functions in 1501 // general case. They can be folded if FP environment is known to compiler. 1502 case Intrinsic::minnum: 1503 case Intrinsic::maxnum: 1504 case Intrinsic::minimum: 1505 case Intrinsic::maximum: 1506 case Intrinsic::log: 1507 case Intrinsic::log2: 1508 case Intrinsic::log10: 1509 case Intrinsic::exp: 1510 case Intrinsic::exp2: 1511 case Intrinsic::sqrt: 1512 case Intrinsic::sin: 1513 case Intrinsic::cos: 1514 case Intrinsic::pow: 1515 case Intrinsic::powi: 1516 case Intrinsic::fma: 1517 case Intrinsic::fmuladd: 1518 case Intrinsic::fptoui_sat: 1519 case Intrinsic::fptosi_sat: 1520 case Intrinsic::convert_from_fp16: 1521 case Intrinsic::convert_to_fp16: 1522 case Intrinsic::amdgcn_cos: 1523 case Intrinsic::amdgcn_cubeid: 1524 case Intrinsic::amdgcn_cubema: 1525 case Intrinsic::amdgcn_cubesc: 1526 case Intrinsic::amdgcn_cubetc: 1527 case Intrinsic::amdgcn_fmul_legacy: 1528 case Intrinsic::amdgcn_fma_legacy: 1529 case Intrinsic::amdgcn_fract: 1530 case Intrinsic::amdgcn_ldexp: 1531 case Intrinsic::amdgcn_sin: 1532 // The intrinsics below depend on rounding mode in MXCSR. 1533 case Intrinsic::x86_sse_cvtss2si: 1534 case Intrinsic::x86_sse_cvtss2si64: 1535 case Intrinsic::x86_sse_cvttss2si: 1536 case Intrinsic::x86_sse_cvttss2si64: 1537 case Intrinsic::x86_sse2_cvtsd2si: 1538 case Intrinsic::x86_sse2_cvtsd2si64: 1539 case Intrinsic::x86_sse2_cvttsd2si: 1540 case Intrinsic::x86_sse2_cvttsd2si64: 1541 case Intrinsic::x86_avx512_vcvtss2si32: 1542 case Intrinsic::x86_avx512_vcvtss2si64: 1543 case Intrinsic::x86_avx512_cvttss2si: 1544 case Intrinsic::x86_avx512_cvttss2si64: 1545 case Intrinsic::x86_avx512_vcvtsd2si32: 1546 case Intrinsic::x86_avx512_vcvtsd2si64: 1547 case Intrinsic::x86_avx512_cvttsd2si: 1548 case Intrinsic::x86_avx512_cvttsd2si64: 1549 case Intrinsic::x86_avx512_vcvtss2usi32: 1550 case Intrinsic::x86_avx512_vcvtss2usi64: 1551 case Intrinsic::x86_avx512_cvttss2usi: 1552 case Intrinsic::x86_avx512_cvttss2usi64: 1553 case Intrinsic::x86_avx512_vcvtsd2usi32: 1554 case Intrinsic::x86_avx512_vcvtsd2usi64: 1555 case Intrinsic::x86_avx512_cvttsd2usi: 1556 case Intrinsic::x86_avx512_cvttsd2usi64: 1557 return !Call->isStrictFP(); 1558 1559 // Sign operations are actually bitwise operations, they do not raise 1560 // exceptions even for SNANs. 1561 case Intrinsic::fabs: 1562 case Intrinsic::copysign: 1563 // Non-constrained variants of rounding operations means default FP 1564 // environment, they can be folded in any case. 1565 case Intrinsic::ceil: 1566 case Intrinsic::floor: 1567 case Intrinsic::round: 1568 case Intrinsic::roundeven: 1569 case Intrinsic::trunc: 1570 case Intrinsic::nearbyint: 1571 case Intrinsic::rint: 1572 // Constrained intrinsics can be folded if FP environment is known 1573 // to compiler. 1574 case Intrinsic::experimental_constrained_ceil: 1575 case Intrinsic::experimental_constrained_floor: 1576 case Intrinsic::experimental_constrained_round: 1577 case Intrinsic::experimental_constrained_roundeven: 1578 case Intrinsic::experimental_constrained_trunc: 1579 case Intrinsic::experimental_constrained_nearbyint: 1580 case Intrinsic::experimental_constrained_rint: 1581 return true; 1582 default: 1583 return false; 1584 case Intrinsic::not_intrinsic: break; 1585 } 1586 1587 if (!F->hasName() || Call->isStrictFP()) 1588 return false; 1589 1590 // In these cases, the check of the length is required. We don't want to 1591 // return true for a name like "cos\0blah" which strcmp would return equal to 1592 // "cos", but has length 8. 1593 StringRef Name = F->getName(); 1594 switch (Name[0]) { 1595 default: 1596 return false; 1597 case 'a': 1598 return Name == "acos" || Name == "acosf" || 1599 Name == "asin" || Name == "asinf" || 1600 Name == "atan" || Name == "atanf" || 1601 Name == "atan2" || Name == "atan2f"; 1602 case 'c': 1603 return Name == "ceil" || Name == "ceilf" || 1604 Name == "cos" || Name == "cosf" || 1605 Name == "cosh" || Name == "coshf"; 1606 case 'e': 1607 return Name == "exp" || Name == "expf" || 1608 Name == "exp2" || Name == "exp2f"; 1609 case 'f': 1610 return Name == "fabs" || Name == "fabsf" || 1611 Name == "floor" || Name == "floorf" || 1612 Name == "fmod" || Name == "fmodf"; 1613 case 'l': 1614 return Name == "log" || Name == "logf" || 1615 Name == "log2" || Name == "log2f" || 1616 Name == "log10" || Name == "log10f"; 1617 case 'n': 1618 return Name == "nearbyint" || Name == "nearbyintf"; 1619 case 'p': 1620 return Name == "pow" || Name == "powf"; 1621 case 'r': 1622 return Name == "remainder" || Name == "remainderf" || 1623 Name == "rint" || Name == "rintf" || 1624 Name == "round" || Name == "roundf"; 1625 case 's': 1626 return Name == "sin" || Name == "sinf" || 1627 Name == "sinh" || Name == "sinhf" || 1628 Name == "sqrt" || Name == "sqrtf"; 1629 case 't': 1630 return Name == "tan" || Name == "tanf" || 1631 Name == "tanh" || Name == "tanhf" || 1632 Name == "trunc" || Name == "truncf"; 1633 case '_': 1634 // Check for various function names that get used for the math functions 1635 // when the header files are preprocessed with the macro 1636 // __FINITE_MATH_ONLY__ enabled. 1637 // The '12' here is the length of the shortest name that can match. 1638 // We need to check the size before looking at Name[1] and Name[2] 1639 // so we may as well check a limit that will eliminate mismatches. 1640 if (Name.size() < 12 || Name[1] != '_') 1641 return false; 1642 switch (Name[2]) { 1643 default: 1644 return false; 1645 case 'a': 1646 return Name == "__acos_finite" || Name == "__acosf_finite" || 1647 Name == "__asin_finite" || Name == "__asinf_finite" || 1648 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1649 case 'c': 1650 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1651 case 'e': 1652 return Name == "__exp_finite" || Name == "__expf_finite" || 1653 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1654 case 'l': 1655 return Name == "__log_finite" || Name == "__logf_finite" || 1656 Name == "__log10_finite" || Name == "__log10f_finite"; 1657 case 'p': 1658 return Name == "__pow_finite" || Name == "__powf_finite"; 1659 case 's': 1660 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1661 } 1662 } 1663 } 1664 1665 namespace { 1666 1667 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1668 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1669 APFloat APF(V); 1670 bool unused; 1671 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1672 return ConstantFP::get(Ty->getContext(), APF); 1673 } 1674 if (Ty->isDoubleTy()) 1675 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1676 llvm_unreachable("Can only constant fold half/float/double"); 1677 } 1678 1679 /// Clear the floating-point exception state. 1680 inline void llvm_fenv_clearexcept() { 1681 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1682 feclearexcept(FE_ALL_EXCEPT); 1683 #endif 1684 errno = 0; 1685 } 1686 1687 /// Test if a floating-point exception was raised. 1688 inline bool llvm_fenv_testexcept() { 1689 int errno_val = errno; 1690 if (errno_val == ERANGE || errno_val == EDOM) 1691 return true; 1692 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1693 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1694 return true; 1695 #endif 1696 return false; 1697 } 1698 1699 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { 1700 llvm_fenv_clearexcept(); 1701 V = NativeFP(V); 1702 if (llvm_fenv_testexcept()) { 1703 llvm_fenv_clearexcept(); 1704 return nullptr; 1705 } 1706 1707 return GetConstantFoldFPValue(V, Ty); 1708 } 1709 1710 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, 1711 double W, Type *Ty) { 1712 llvm_fenv_clearexcept(); 1713 V = NativeFP(V, W); 1714 if (llvm_fenv_testexcept()) { 1715 llvm_fenv_clearexcept(); 1716 return nullptr; 1717 } 1718 1719 return GetConstantFoldFPValue(V, Ty); 1720 } 1721 1722 Constant *ConstantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1723 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1724 if (!VT) 1725 return nullptr; 1726 ConstantInt *CI = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1727 if (!CI) 1728 return nullptr; 1729 APInt Acc = CI->getValue(); 1730 1731 for (unsigned I = 1; I < VT->getNumElements(); I++) { 1732 if (!(CI = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1733 return nullptr; 1734 const APInt &X = CI->getValue(); 1735 switch (IID) { 1736 case Intrinsic::vector_reduce_add: 1737 Acc = Acc + X; 1738 break; 1739 case Intrinsic::vector_reduce_mul: 1740 Acc = Acc * X; 1741 break; 1742 case Intrinsic::vector_reduce_and: 1743 Acc = Acc & X; 1744 break; 1745 case Intrinsic::vector_reduce_or: 1746 Acc = Acc | X; 1747 break; 1748 case Intrinsic::vector_reduce_xor: 1749 Acc = Acc ^ X; 1750 break; 1751 case Intrinsic::vector_reduce_smin: 1752 Acc = APIntOps::smin(Acc, X); 1753 break; 1754 case Intrinsic::vector_reduce_smax: 1755 Acc = APIntOps::smax(Acc, X); 1756 break; 1757 case Intrinsic::vector_reduce_umin: 1758 Acc = APIntOps::umin(Acc, X); 1759 break; 1760 case Intrinsic::vector_reduce_umax: 1761 Acc = APIntOps::umax(Acc, X); 1762 break; 1763 } 1764 } 1765 1766 return ConstantInt::get(Op->getContext(), Acc); 1767 } 1768 1769 /// Attempt to fold an SSE floating point to integer conversion of a constant 1770 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1771 /// used (toward nearest, ties to even). This matches the behavior of the 1772 /// non-truncating SSE instructions in the default rounding mode. The desired 1773 /// integer type Ty is used to select how many bits are available for the 1774 /// result. Returns null if the conversion cannot be performed, otherwise 1775 /// returns the Constant value resulting from the conversion. 1776 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1777 Type *Ty, bool IsSigned) { 1778 // All of these conversion intrinsics form an integer of at most 64bits. 1779 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1780 assert(ResultWidth <= 64 && 1781 "Can only constant fold conversions to 64 and 32 bit ints"); 1782 1783 uint64_t UIntVal; 1784 bool isExact = false; 1785 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1786 : APFloat::rmNearestTiesToEven; 1787 APFloat::opStatus status = 1788 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1789 IsSigned, mode, &isExact); 1790 if (status != APFloat::opOK && 1791 (!roundTowardZero || status != APFloat::opInexact)) 1792 return nullptr; 1793 return ConstantInt::get(Ty, UIntVal, IsSigned); 1794 } 1795 1796 double getValueAsDouble(ConstantFP *Op) { 1797 Type *Ty = Op->getType(); 1798 1799 if (Ty->isFloatTy()) 1800 return Op->getValueAPF().convertToFloat(); 1801 1802 if (Ty->isDoubleTy()) 1803 return Op->getValueAPF().convertToDouble(); 1804 1805 bool unused; 1806 APFloat APF = Op->getValueAPF(); 1807 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1808 return APF.convertToDouble(); 1809 } 1810 1811 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1812 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1813 C = &CI->getValue(); 1814 return true; 1815 } 1816 if (isa<UndefValue>(Op)) { 1817 C = nullptr; 1818 return true; 1819 } 1820 return false; 1821 } 1822 1823 static Constant *ConstantFoldScalarCall1(StringRef Name, 1824 Intrinsic::ID IntrinsicID, 1825 Type *Ty, 1826 ArrayRef<Constant *> Operands, 1827 const TargetLibraryInfo *TLI, 1828 const CallBase *Call) { 1829 assert(Operands.size() == 1 && "Wrong number of operands."); 1830 1831 if (IntrinsicID == Intrinsic::is_constant) { 1832 // We know we have a "Constant" argument. But we want to only 1833 // return true for manifest constants, not those that depend on 1834 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1835 if (Operands[0]->isManifestConstant()) 1836 return ConstantInt::getTrue(Ty->getContext()); 1837 return nullptr; 1838 } 1839 if (isa<UndefValue>(Operands[0])) { 1840 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1841 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1842 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 1843 if (IntrinsicID == Intrinsic::cos || 1844 IntrinsicID == Intrinsic::ctpop || 1845 IntrinsicID == Intrinsic::fptoui_sat || 1846 IntrinsicID == Intrinsic::fptosi_sat) 1847 return Constant::getNullValue(Ty); 1848 if (IntrinsicID == Intrinsic::bswap || 1849 IntrinsicID == Intrinsic::bitreverse || 1850 IntrinsicID == Intrinsic::launder_invariant_group || 1851 IntrinsicID == Intrinsic::strip_invariant_group) 1852 return Operands[0]; 1853 } 1854 1855 if (isa<ConstantPointerNull>(Operands[0])) { 1856 // launder(null) == null == strip(null) iff in addrspace 0 1857 if (IntrinsicID == Intrinsic::launder_invariant_group || 1858 IntrinsicID == Intrinsic::strip_invariant_group) { 1859 // If instruction is not yet put in a basic block (e.g. when cloning 1860 // a function during inlining), Call's caller may not be available. 1861 // So check Call's BB first before querying Call->getCaller. 1862 const Function *Caller = 1863 Call->getParent() ? Call->getCaller() : nullptr; 1864 if (Caller && 1865 !NullPointerIsDefined( 1866 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1867 return Operands[0]; 1868 } 1869 return nullptr; 1870 } 1871 } 1872 1873 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1874 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1875 APFloat Val(Op->getValueAPF()); 1876 1877 bool lost = false; 1878 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1879 1880 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1881 } 1882 1883 APFloat U = Op->getValueAPF(); 1884 1885 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 1886 IntrinsicID == Intrinsic::wasm_trunc_unsigned || 1887 IntrinsicID == Intrinsic::wasm_trunc_saturate_signed || 1888 IntrinsicID == Intrinsic::wasm_trunc_saturate_unsigned) { 1889 1890 bool Saturating = IntrinsicID == Intrinsic::wasm_trunc_saturate_signed || 1891 IntrinsicID == Intrinsic::wasm_trunc_saturate_unsigned; 1892 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed || 1893 IntrinsicID == Intrinsic::wasm_trunc_saturate_signed; 1894 1895 if (U.isNaN()) 1896 return Saturating ? ConstantInt::get(Ty, 0) : nullptr; 1897 1898 unsigned Width = Ty->getIntegerBitWidth(); 1899 APSInt Int(Width, !Signed); 1900 bool IsExact = false; 1901 APFloat::opStatus Status = 1902 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1903 1904 if (Status == APFloat::opOK || Status == APFloat::opInexact) 1905 return ConstantInt::get(Ty, Int); 1906 1907 if (!Saturating) 1908 return nullptr; 1909 1910 if (U.isNegative()) 1911 return Signed ? ConstantInt::get(Ty, APInt::getSignedMinValue(Width)) 1912 : ConstantInt::get(Ty, APInt::getMinValue(Width)); 1913 else 1914 return Signed ? ConstantInt::get(Ty, APInt::getSignedMaxValue(Width)) 1915 : ConstantInt::get(Ty, APInt::getMaxValue(Width)); 1916 } 1917 1918 if (IntrinsicID == Intrinsic::fptoui_sat || 1919 IntrinsicID == Intrinsic::fptosi_sat) { 1920 // convertToInteger() already has the desired saturation semantics. 1921 APSInt Int(Ty->getIntegerBitWidth(), 1922 IntrinsicID == Intrinsic::fptoui_sat); 1923 bool IsExact; 1924 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1925 return ConstantInt::get(Ty, Int); 1926 } 1927 1928 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1929 return nullptr; 1930 1931 // Use internal versions of these intrinsics. 1932 1933 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 1934 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1935 return ConstantFP::get(Ty->getContext(), U); 1936 } 1937 1938 if (IntrinsicID == Intrinsic::round) { 1939 U.roundToIntegral(APFloat::rmNearestTiesToAway); 1940 return ConstantFP::get(Ty->getContext(), U); 1941 } 1942 1943 if (IntrinsicID == Intrinsic::roundeven) { 1944 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1945 return ConstantFP::get(Ty->getContext(), U); 1946 } 1947 1948 if (IntrinsicID == Intrinsic::ceil) { 1949 U.roundToIntegral(APFloat::rmTowardPositive); 1950 return ConstantFP::get(Ty->getContext(), U); 1951 } 1952 1953 if (IntrinsicID == Intrinsic::floor) { 1954 U.roundToIntegral(APFloat::rmTowardNegative); 1955 return ConstantFP::get(Ty->getContext(), U); 1956 } 1957 1958 if (IntrinsicID == Intrinsic::trunc) { 1959 U.roundToIntegral(APFloat::rmTowardZero); 1960 return ConstantFP::get(Ty->getContext(), U); 1961 } 1962 1963 if (IntrinsicID == Intrinsic::fabs) { 1964 U.clearSign(); 1965 return ConstantFP::get(Ty->getContext(), U); 1966 } 1967 1968 if (IntrinsicID == Intrinsic::amdgcn_fract) { 1969 // The v_fract instruction behaves like the OpenCL spec, which defines 1970 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 1971 // there to prevent fract(-small) from returning 1.0. It returns the 1972 // largest positive floating-point number less than 1.0." 1973 APFloat FloorU(U); 1974 FloorU.roundToIntegral(APFloat::rmTowardNegative); 1975 APFloat FractU(U - FloorU); 1976 APFloat AlmostOne(U.getSemantics(), 1); 1977 AlmostOne.next(/*nextDown*/ true); 1978 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 1979 } 1980 1981 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 1982 // raise FP exceptions, unless the argument is signaling NaN. 1983 1984 Optional<APFloat::roundingMode> RM; 1985 switch (IntrinsicID) { 1986 default: 1987 break; 1988 case Intrinsic::experimental_constrained_nearbyint: 1989 case Intrinsic::experimental_constrained_rint: { 1990 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1991 RM = CI->getRoundingMode(); 1992 if (!RM || RM.getValue() == RoundingMode::Dynamic) 1993 return nullptr; 1994 break; 1995 } 1996 case Intrinsic::experimental_constrained_round: 1997 RM = APFloat::rmNearestTiesToAway; 1998 break; 1999 case Intrinsic::experimental_constrained_ceil: 2000 RM = APFloat::rmTowardPositive; 2001 break; 2002 case Intrinsic::experimental_constrained_floor: 2003 RM = APFloat::rmTowardNegative; 2004 break; 2005 case Intrinsic::experimental_constrained_trunc: 2006 RM = APFloat::rmTowardZero; 2007 break; 2008 } 2009 if (RM) { 2010 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2011 if (U.isFinite()) { 2012 APFloat::opStatus St = U.roundToIntegral(*RM); 2013 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2014 St == APFloat::opInexact) { 2015 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2016 if (EB && *EB == fp::ebStrict) 2017 return nullptr; 2018 } 2019 } else if (U.isSignaling()) { 2020 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2021 if (EB && *EB != fp::ebIgnore) 2022 return nullptr; 2023 U = APFloat::getQNaN(U.getSemantics()); 2024 } 2025 return ConstantFP::get(Ty->getContext(), U); 2026 } 2027 2028 /// We only fold functions with finite arguments. Folding NaN and inf is 2029 /// likely to be aborted with an exception anyway, and some host libms 2030 /// have known errors raising exceptions. 2031 if (!U.isFinite()) 2032 return nullptr; 2033 2034 /// Currently APFloat versions of these functions do not exist, so we use 2035 /// the host native double versions. Float versions are not called 2036 /// directly but for all these it is true (float)(f((double)arg)) == 2037 /// f(arg). Long double not supported yet. 2038 double V = getValueAsDouble(Op); 2039 2040 switch (IntrinsicID) { 2041 default: break; 2042 case Intrinsic::log: 2043 return ConstantFoldFP(log, V, Ty); 2044 case Intrinsic::log2: 2045 // TODO: What about hosts that lack a C99 library? 2046 return ConstantFoldFP(Log2, V, Ty); 2047 case Intrinsic::log10: 2048 // TODO: What about hosts that lack a C99 library? 2049 return ConstantFoldFP(log10, V, Ty); 2050 case Intrinsic::exp: 2051 return ConstantFoldFP(exp, V, Ty); 2052 case Intrinsic::exp2: 2053 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2054 return ConstantFoldBinaryFP(pow, 2.0, V, Ty); 2055 case Intrinsic::sin: 2056 return ConstantFoldFP(sin, V, Ty); 2057 case Intrinsic::cos: 2058 return ConstantFoldFP(cos, V, Ty); 2059 case Intrinsic::sqrt: 2060 return ConstantFoldFP(sqrt, V, Ty); 2061 case Intrinsic::amdgcn_cos: 2062 case Intrinsic::amdgcn_sin: 2063 if (V < -256.0 || V > 256.0) 2064 // The gfx8 and gfx9 architectures handle arguments outside the range 2065 // [-256, 256] differently. This should be a rare case so bail out 2066 // rather than trying to handle the difference. 2067 return nullptr; 2068 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2069 double V4 = V * 4.0; 2070 if (V4 == floor(V4)) { 2071 // Force exact results for quarter-integer inputs. 2072 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2073 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2074 } else { 2075 if (IsCos) 2076 V = cos(V * 2.0 * numbers::pi); 2077 else 2078 V = sin(V * 2.0 * numbers::pi); 2079 } 2080 return GetConstantFoldFPValue(V, Ty); 2081 } 2082 2083 if (!TLI) 2084 return nullptr; 2085 2086 LibFunc Func = NotLibFunc; 2087 TLI->getLibFunc(Name, Func); 2088 switch (Func) { 2089 default: 2090 break; 2091 case LibFunc_acos: 2092 case LibFunc_acosf: 2093 case LibFunc_acos_finite: 2094 case LibFunc_acosf_finite: 2095 if (TLI->has(Func)) 2096 return ConstantFoldFP(acos, V, Ty); 2097 break; 2098 case LibFunc_asin: 2099 case LibFunc_asinf: 2100 case LibFunc_asin_finite: 2101 case LibFunc_asinf_finite: 2102 if (TLI->has(Func)) 2103 return ConstantFoldFP(asin, V, Ty); 2104 break; 2105 case LibFunc_atan: 2106 case LibFunc_atanf: 2107 if (TLI->has(Func)) 2108 return ConstantFoldFP(atan, V, Ty); 2109 break; 2110 case LibFunc_ceil: 2111 case LibFunc_ceilf: 2112 if (TLI->has(Func)) { 2113 U.roundToIntegral(APFloat::rmTowardPositive); 2114 return ConstantFP::get(Ty->getContext(), U); 2115 } 2116 break; 2117 case LibFunc_cos: 2118 case LibFunc_cosf: 2119 if (TLI->has(Func)) 2120 return ConstantFoldFP(cos, V, Ty); 2121 break; 2122 case LibFunc_cosh: 2123 case LibFunc_coshf: 2124 case LibFunc_cosh_finite: 2125 case LibFunc_coshf_finite: 2126 if (TLI->has(Func)) 2127 return ConstantFoldFP(cosh, V, Ty); 2128 break; 2129 case LibFunc_exp: 2130 case LibFunc_expf: 2131 case LibFunc_exp_finite: 2132 case LibFunc_expf_finite: 2133 if (TLI->has(Func)) 2134 return ConstantFoldFP(exp, V, Ty); 2135 break; 2136 case LibFunc_exp2: 2137 case LibFunc_exp2f: 2138 case LibFunc_exp2_finite: 2139 case LibFunc_exp2f_finite: 2140 if (TLI->has(Func)) 2141 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2142 return ConstantFoldBinaryFP(pow, 2.0, V, Ty); 2143 break; 2144 case LibFunc_fabs: 2145 case LibFunc_fabsf: 2146 if (TLI->has(Func)) { 2147 U.clearSign(); 2148 return ConstantFP::get(Ty->getContext(), U); 2149 } 2150 break; 2151 case LibFunc_floor: 2152 case LibFunc_floorf: 2153 if (TLI->has(Func)) { 2154 U.roundToIntegral(APFloat::rmTowardNegative); 2155 return ConstantFP::get(Ty->getContext(), U); 2156 } 2157 break; 2158 case LibFunc_log: 2159 case LibFunc_logf: 2160 case LibFunc_log_finite: 2161 case LibFunc_logf_finite: 2162 if (V > 0.0 && TLI->has(Func)) 2163 return ConstantFoldFP(log, V, Ty); 2164 break; 2165 case LibFunc_log2: 2166 case LibFunc_log2f: 2167 case LibFunc_log2_finite: 2168 case LibFunc_log2f_finite: 2169 if (V > 0.0 && TLI->has(Func)) 2170 // TODO: What about hosts that lack a C99 library? 2171 return ConstantFoldFP(Log2, V, Ty); 2172 break; 2173 case LibFunc_log10: 2174 case LibFunc_log10f: 2175 case LibFunc_log10_finite: 2176 case LibFunc_log10f_finite: 2177 if (V > 0.0 && TLI->has(Func)) 2178 // TODO: What about hosts that lack a C99 library? 2179 return ConstantFoldFP(log10, V, Ty); 2180 break; 2181 case LibFunc_nearbyint: 2182 case LibFunc_nearbyintf: 2183 case LibFunc_rint: 2184 case LibFunc_rintf: 2185 if (TLI->has(Func)) { 2186 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2187 return ConstantFP::get(Ty->getContext(), U); 2188 } 2189 break; 2190 case LibFunc_round: 2191 case LibFunc_roundf: 2192 if (TLI->has(Func)) { 2193 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2194 return ConstantFP::get(Ty->getContext(), U); 2195 } 2196 break; 2197 case LibFunc_sin: 2198 case LibFunc_sinf: 2199 if (TLI->has(Func)) 2200 return ConstantFoldFP(sin, V, Ty); 2201 break; 2202 case LibFunc_sinh: 2203 case LibFunc_sinhf: 2204 case LibFunc_sinh_finite: 2205 case LibFunc_sinhf_finite: 2206 if (TLI->has(Func)) 2207 return ConstantFoldFP(sinh, V, Ty); 2208 break; 2209 case LibFunc_sqrt: 2210 case LibFunc_sqrtf: 2211 if (V >= 0.0 && TLI->has(Func)) 2212 return ConstantFoldFP(sqrt, V, Ty); 2213 break; 2214 case LibFunc_tan: 2215 case LibFunc_tanf: 2216 if (TLI->has(Func)) 2217 return ConstantFoldFP(tan, V, Ty); 2218 break; 2219 case LibFunc_tanh: 2220 case LibFunc_tanhf: 2221 if (TLI->has(Func)) 2222 return ConstantFoldFP(tanh, V, Ty); 2223 break; 2224 case LibFunc_trunc: 2225 case LibFunc_truncf: 2226 if (TLI->has(Func)) { 2227 U.roundToIntegral(APFloat::rmTowardZero); 2228 return ConstantFP::get(Ty->getContext(), U); 2229 } 2230 break; 2231 } 2232 return nullptr; 2233 } 2234 2235 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2236 switch (IntrinsicID) { 2237 case Intrinsic::bswap: 2238 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2239 case Intrinsic::ctpop: 2240 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2241 case Intrinsic::bitreverse: 2242 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2243 case Intrinsic::convert_from_fp16: { 2244 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2245 2246 bool lost = false; 2247 APFloat::opStatus status = Val.convert( 2248 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2249 2250 // Conversion is always precise. 2251 (void)status; 2252 assert(status == APFloat::opOK && !lost && 2253 "Precision lost during fp16 constfolding"); 2254 2255 return ConstantFP::get(Ty->getContext(), Val); 2256 } 2257 default: 2258 return nullptr; 2259 } 2260 } 2261 2262 if (isa<ConstantAggregateZero>(Operands[0])) { 2263 switch (IntrinsicID) { 2264 default: break; 2265 case Intrinsic::vector_reduce_add: 2266 case Intrinsic::vector_reduce_mul: 2267 case Intrinsic::vector_reduce_and: 2268 case Intrinsic::vector_reduce_or: 2269 case Intrinsic::vector_reduce_xor: 2270 case Intrinsic::vector_reduce_smin: 2271 case Intrinsic::vector_reduce_smax: 2272 case Intrinsic::vector_reduce_umin: 2273 case Intrinsic::vector_reduce_umax: 2274 return ConstantInt::get(Ty, 0); 2275 } 2276 } 2277 2278 // Support ConstantVector in case we have an Undef in the top. 2279 if (isa<ConstantVector>(Operands[0]) || 2280 isa<ConstantDataVector>(Operands[0])) { 2281 auto *Op = cast<Constant>(Operands[0]); 2282 switch (IntrinsicID) { 2283 default: break; 2284 case Intrinsic::vector_reduce_add: 2285 case Intrinsic::vector_reduce_mul: 2286 case Intrinsic::vector_reduce_and: 2287 case Intrinsic::vector_reduce_or: 2288 case Intrinsic::vector_reduce_xor: 2289 case Intrinsic::vector_reduce_smin: 2290 case Intrinsic::vector_reduce_smax: 2291 case Intrinsic::vector_reduce_umin: 2292 case Intrinsic::vector_reduce_umax: 2293 if (Constant *C = ConstantFoldVectorReduce(IntrinsicID, Op)) 2294 return C; 2295 break; 2296 case Intrinsic::x86_sse_cvtss2si: 2297 case Intrinsic::x86_sse_cvtss2si64: 2298 case Intrinsic::x86_sse2_cvtsd2si: 2299 case Intrinsic::x86_sse2_cvtsd2si64: 2300 if (ConstantFP *FPOp = 2301 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2302 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2303 /*roundTowardZero=*/false, Ty, 2304 /*IsSigned*/true); 2305 break; 2306 case Intrinsic::x86_sse_cvttss2si: 2307 case Intrinsic::x86_sse_cvttss2si64: 2308 case Intrinsic::x86_sse2_cvttsd2si: 2309 case Intrinsic::x86_sse2_cvttsd2si64: 2310 if (ConstantFP *FPOp = 2311 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2312 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2313 /*roundTowardZero=*/true, Ty, 2314 /*IsSigned*/true); 2315 break; 2316 } 2317 } 2318 2319 return nullptr; 2320 } 2321 2322 static Constant *ConstantFoldScalarCall2(StringRef Name, 2323 Intrinsic::ID IntrinsicID, 2324 Type *Ty, 2325 ArrayRef<Constant *> Operands, 2326 const TargetLibraryInfo *TLI, 2327 const CallBase *Call) { 2328 assert(Operands.size() == 2 && "Wrong number of operands."); 2329 2330 if (Ty->isFloatingPointTy()) { 2331 // TODO: We should have undef handling for all of the FP intrinsics that 2332 // are attempted to be folded in this function. 2333 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2334 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2335 switch (IntrinsicID) { 2336 case Intrinsic::maxnum: 2337 case Intrinsic::minnum: 2338 case Intrinsic::maximum: 2339 case Intrinsic::minimum: 2340 // If one argument is undef, return the other argument. 2341 if (IsOp0Undef) 2342 return Operands[1]; 2343 if (IsOp1Undef) 2344 return Operands[0]; 2345 break; 2346 } 2347 } 2348 2349 if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2350 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2351 return nullptr; 2352 double Op1V = getValueAsDouble(Op1); 2353 2354 if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2355 if (Op2->getType() != Op1->getType()) 2356 return nullptr; 2357 2358 double Op2V = getValueAsDouble(Op2); 2359 if (IntrinsicID == Intrinsic::pow) { 2360 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2361 } 2362 if (IntrinsicID == Intrinsic::copysign) { 2363 APFloat V1 = Op1->getValueAPF(); 2364 const APFloat &V2 = Op2->getValueAPF(); 2365 V1.copySign(V2); 2366 return ConstantFP::get(Ty->getContext(), V1); 2367 } 2368 2369 if (IntrinsicID == Intrinsic::minnum) { 2370 const APFloat &C1 = Op1->getValueAPF(); 2371 const APFloat &C2 = Op2->getValueAPF(); 2372 return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); 2373 } 2374 2375 if (IntrinsicID == Intrinsic::maxnum) { 2376 const APFloat &C1 = Op1->getValueAPF(); 2377 const APFloat &C2 = Op2->getValueAPF(); 2378 return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); 2379 } 2380 2381 if (IntrinsicID == Intrinsic::minimum) { 2382 const APFloat &C1 = Op1->getValueAPF(); 2383 const APFloat &C2 = Op2->getValueAPF(); 2384 return ConstantFP::get(Ty->getContext(), minimum(C1, C2)); 2385 } 2386 2387 if (IntrinsicID == Intrinsic::maximum) { 2388 const APFloat &C1 = Op1->getValueAPF(); 2389 const APFloat &C2 = Op2->getValueAPF(); 2390 return ConstantFP::get(Ty->getContext(), maximum(C1, C2)); 2391 } 2392 2393 if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) { 2394 const APFloat &C1 = Op1->getValueAPF(); 2395 const APFloat &C2 = Op2->getValueAPF(); 2396 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2397 // NaN or infinity, gives +0.0. 2398 if (C1.isZero() || C2.isZero()) 2399 return ConstantFP::getNullValue(Ty); 2400 return ConstantFP::get(Ty->getContext(), C1 * C2); 2401 } 2402 2403 if (!TLI) 2404 return nullptr; 2405 2406 LibFunc Func = NotLibFunc; 2407 TLI->getLibFunc(Name, Func); 2408 switch (Func) { 2409 default: 2410 break; 2411 case LibFunc_pow: 2412 case LibFunc_powf: 2413 case LibFunc_pow_finite: 2414 case LibFunc_powf_finite: 2415 if (TLI->has(Func)) 2416 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2417 break; 2418 case LibFunc_fmod: 2419 case LibFunc_fmodf: 2420 if (TLI->has(Func)) { 2421 APFloat V = Op1->getValueAPF(); 2422 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2423 return ConstantFP::get(Ty->getContext(), V); 2424 } 2425 break; 2426 case LibFunc_remainder: 2427 case LibFunc_remainderf: 2428 if (TLI->has(Func)) { 2429 APFloat V = Op1->getValueAPF(); 2430 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2431 return ConstantFP::get(Ty->getContext(), V); 2432 } 2433 break; 2434 case LibFunc_atan2: 2435 case LibFunc_atan2f: 2436 case LibFunc_atan2_finite: 2437 case LibFunc_atan2f_finite: 2438 if (TLI->has(Func)) 2439 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2440 break; 2441 } 2442 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2443 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2444 return ConstantFP::get(Ty->getContext(), 2445 APFloat((float)std::pow((float)Op1V, 2446 (int)Op2C->getZExtValue()))); 2447 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2448 return ConstantFP::get(Ty->getContext(), 2449 APFloat((float)std::pow((float)Op1V, 2450 (int)Op2C->getZExtValue()))); 2451 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2452 return ConstantFP::get(Ty->getContext(), 2453 APFloat((double)std::pow((double)Op1V, 2454 (int)Op2C->getZExtValue()))); 2455 2456 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2457 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2458 // everywhere else. 2459 2460 // scalbn is equivalent to ldexp with float radix 2 2461 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2462 APFloat::rmNearestTiesToEven); 2463 return ConstantFP::get(Ty->getContext(), Result); 2464 } 2465 } 2466 return nullptr; 2467 } 2468 2469 if (Operands[0]->getType()->isIntegerTy() && 2470 Operands[1]->getType()->isIntegerTy()) { 2471 const APInt *C0, *C1; 2472 if (!getConstIntOrUndef(Operands[0], C0) || 2473 !getConstIntOrUndef(Operands[1], C1)) 2474 return nullptr; 2475 2476 unsigned BitWidth = Ty->getScalarSizeInBits(); 2477 switch (IntrinsicID) { 2478 default: break; 2479 case Intrinsic::smax: 2480 if (!C0 && !C1) 2481 return UndefValue::get(Ty); 2482 if (!C0 || !C1) 2483 return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); 2484 return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1); 2485 2486 case Intrinsic::smin: 2487 if (!C0 && !C1) 2488 return UndefValue::get(Ty); 2489 if (!C0 || !C1) 2490 return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)); 2491 return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1); 2492 2493 case Intrinsic::umax: 2494 if (!C0 && !C1) 2495 return UndefValue::get(Ty); 2496 if (!C0 || !C1) 2497 return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth)); 2498 return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1); 2499 2500 case Intrinsic::umin: 2501 if (!C0 && !C1) 2502 return UndefValue::get(Ty); 2503 if (!C0 || !C1) 2504 return ConstantInt::get(Ty, APInt::getMinValue(BitWidth)); 2505 return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1); 2506 2507 case Intrinsic::usub_with_overflow: 2508 case Intrinsic::ssub_with_overflow: 2509 case Intrinsic::uadd_with_overflow: 2510 case Intrinsic::sadd_with_overflow: 2511 // X - undef -> { undef, false } 2512 // undef - X -> { undef, false } 2513 // X + undef -> { undef, false } 2514 // undef + x -> { undef, false } 2515 if (!C0 || !C1) { 2516 return ConstantStruct::get( 2517 cast<StructType>(Ty), 2518 {UndefValue::get(Ty->getStructElementType(0)), 2519 Constant::getNullValue(Ty->getStructElementType(1))}); 2520 } 2521 LLVM_FALLTHROUGH; 2522 case Intrinsic::smul_with_overflow: 2523 case Intrinsic::umul_with_overflow: { 2524 // undef * X -> { 0, false } 2525 // X * undef -> { 0, false } 2526 if (!C0 || !C1) 2527 return Constant::getNullValue(Ty); 2528 2529 APInt Res; 2530 bool Overflow; 2531 switch (IntrinsicID) { 2532 default: llvm_unreachable("Invalid case"); 2533 case Intrinsic::sadd_with_overflow: 2534 Res = C0->sadd_ov(*C1, Overflow); 2535 break; 2536 case Intrinsic::uadd_with_overflow: 2537 Res = C0->uadd_ov(*C1, Overflow); 2538 break; 2539 case Intrinsic::ssub_with_overflow: 2540 Res = C0->ssub_ov(*C1, Overflow); 2541 break; 2542 case Intrinsic::usub_with_overflow: 2543 Res = C0->usub_ov(*C1, Overflow); 2544 break; 2545 case Intrinsic::smul_with_overflow: 2546 Res = C0->smul_ov(*C1, Overflow); 2547 break; 2548 case Intrinsic::umul_with_overflow: 2549 Res = C0->umul_ov(*C1, Overflow); 2550 break; 2551 } 2552 Constant *Ops[] = { 2553 ConstantInt::get(Ty->getContext(), Res), 2554 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2555 }; 2556 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2557 } 2558 case Intrinsic::uadd_sat: 2559 case Intrinsic::sadd_sat: 2560 if (!C0 && !C1) 2561 return UndefValue::get(Ty); 2562 if (!C0 || !C1) 2563 return Constant::getAllOnesValue(Ty); 2564 if (IntrinsicID == Intrinsic::uadd_sat) 2565 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2566 else 2567 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2568 case Intrinsic::usub_sat: 2569 case Intrinsic::ssub_sat: 2570 if (!C0 && !C1) 2571 return UndefValue::get(Ty); 2572 if (!C0 || !C1) 2573 return Constant::getNullValue(Ty); 2574 if (IntrinsicID == Intrinsic::usub_sat) 2575 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2576 else 2577 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2578 case Intrinsic::cttz: 2579 case Intrinsic::ctlz: 2580 assert(C1 && "Must be constant int"); 2581 2582 // cttz(0, 1) and ctlz(0, 1) are undef. 2583 if (C1->isOneValue() && (!C0 || C0->isNullValue())) 2584 return UndefValue::get(Ty); 2585 if (!C0) 2586 return Constant::getNullValue(Ty); 2587 if (IntrinsicID == Intrinsic::cttz) 2588 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2589 else 2590 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2591 2592 case Intrinsic::abs: 2593 // Undef or minimum val operand with poison min --> undef 2594 assert(C1 && "Must be constant int"); 2595 if (C1->isOneValue() && (!C0 || C0->isMinSignedValue())) 2596 return UndefValue::get(Ty); 2597 2598 // Undef operand with no poison min --> 0 (sign bit must be clear) 2599 if (C1->isNullValue() && !C0) 2600 return Constant::getNullValue(Ty); 2601 2602 return ConstantInt::get(Ty, C0->abs()); 2603 } 2604 2605 return nullptr; 2606 } 2607 2608 // Support ConstantVector in case we have an Undef in the top. 2609 if ((isa<ConstantVector>(Operands[0]) || 2610 isa<ConstantDataVector>(Operands[0])) && 2611 // Check for default rounding mode. 2612 // FIXME: Support other rounding modes? 2613 isa<ConstantInt>(Operands[1]) && 2614 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2615 auto *Op = cast<Constant>(Operands[0]); 2616 switch (IntrinsicID) { 2617 default: break; 2618 case Intrinsic::x86_avx512_vcvtss2si32: 2619 case Intrinsic::x86_avx512_vcvtss2si64: 2620 case Intrinsic::x86_avx512_vcvtsd2si32: 2621 case Intrinsic::x86_avx512_vcvtsd2si64: 2622 if (ConstantFP *FPOp = 2623 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2624 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2625 /*roundTowardZero=*/false, Ty, 2626 /*IsSigned*/true); 2627 break; 2628 case Intrinsic::x86_avx512_vcvtss2usi32: 2629 case Intrinsic::x86_avx512_vcvtss2usi64: 2630 case Intrinsic::x86_avx512_vcvtsd2usi32: 2631 case Intrinsic::x86_avx512_vcvtsd2usi64: 2632 if (ConstantFP *FPOp = 2633 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2634 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2635 /*roundTowardZero=*/false, Ty, 2636 /*IsSigned*/false); 2637 break; 2638 case Intrinsic::x86_avx512_cvttss2si: 2639 case Intrinsic::x86_avx512_cvttss2si64: 2640 case Intrinsic::x86_avx512_cvttsd2si: 2641 case Intrinsic::x86_avx512_cvttsd2si64: 2642 if (ConstantFP *FPOp = 2643 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2644 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2645 /*roundTowardZero=*/true, Ty, 2646 /*IsSigned*/true); 2647 break; 2648 case Intrinsic::x86_avx512_cvttss2usi: 2649 case Intrinsic::x86_avx512_cvttss2usi64: 2650 case Intrinsic::x86_avx512_cvttsd2usi: 2651 case Intrinsic::x86_avx512_cvttsd2usi64: 2652 if (ConstantFP *FPOp = 2653 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2654 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2655 /*roundTowardZero=*/true, Ty, 2656 /*IsSigned*/false); 2657 break; 2658 } 2659 } 2660 return nullptr; 2661 } 2662 2663 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2664 const APFloat &S0, 2665 const APFloat &S1, 2666 const APFloat &S2) { 2667 unsigned ID; 2668 const fltSemantics &Sem = S0.getSemantics(); 2669 APFloat MA(Sem), SC(Sem), TC(Sem); 2670 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2671 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2672 // S2 < 0 2673 ID = 5; 2674 SC = -S0; 2675 } else { 2676 ID = 4; 2677 SC = S0; 2678 } 2679 MA = S2; 2680 TC = -S1; 2681 } else if (abs(S1) >= abs(S0)) { 2682 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2683 // S1 < 0 2684 ID = 3; 2685 TC = -S2; 2686 } else { 2687 ID = 2; 2688 TC = S2; 2689 } 2690 MA = S1; 2691 SC = S0; 2692 } else { 2693 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2694 // S0 < 0 2695 ID = 1; 2696 SC = S2; 2697 } else { 2698 ID = 0; 2699 SC = -S2; 2700 } 2701 MA = S0; 2702 TC = -S1; 2703 } 2704 switch (IntrinsicID) { 2705 default: 2706 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2707 case Intrinsic::amdgcn_cubeid: 2708 return APFloat(Sem, ID); 2709 case Intrinsic::amdgcn_cubema: 2710 return MA + MA; 2711 case Intrinsic::amdgcn_cubesc: 2712 return SC; 2713 case Intrinsic::amdgcn_cubetc: 2714 return TC; 2715 } 2716 } 2717 2718 static Constant *ConstantFoldScalarCall3(StringRef Name, 2719 Intrinsic::ID IntrinsicID, 2720 Type *Ty, 2721 ArrayRef<Constant *> Operands, 2722 const TargetLibraryInfo *TLI, 2723 const CallBase *Call) { 2724 assert(Operands.size() == 3 && "Wrong number of operands."); 2725 2726 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2727 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2728 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2729 switch (IntrinsicID) { 2730 default: break; 2731 case Intrinsic::amdgcn_fma_legacy: { 2732 const APFloat &C1 = Op1->getValueAPF(); 2733 const APFloat &C2 = Op2->getValueAPF(); 2734 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2735 // NaN or infinity, gives +0.0. 2736 if (C1.isZero() || C2.isZero()) { 2737 const APFloat &C3 = Op3->getValueAPF(); 2738 // It's tempting to just return C3 here, but that would give the 2739 // wrong result if C3 was -0.0. 2740 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 2741 } 2742 LLVM_FALLTHROUGH; 2743 } 2744 case Intrinsic::fma: 2745 case Intrinsic::fmuladd: { 2746 APFloat V = Op1->getValueAPF(); 2747 V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(), 2748 APFloat::rmNearestTiesToEven); 2749 return ConstantFP::get(Ty->getContext(), V); 2750 } 2751 case Intrinsic::amdgcn_cubeid: 2752 case Intrinsic::amdgcn_cubema: 2753 case Intrinsic::amdgcn_cubesc: 2754 case Intrinsic::amdgcn_cubetc: { 2755 APFloat V = ConstantFoldAMDGCNCubeIntrinsic( 2756 IntrinsicID, Op1->getValueAPF(), Op2->getValueAPF(), 2757 Op3->getValueAPF()); 2758 return ConstantFP::get(Ty->getContext(), V); 2759 } 2760 } 2761 } 2762 } 2763 } 2764 2765 if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { 2766 if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { 2767 if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) { 2768 switch (IntrinsicID) { 2769 default: break; 2770 case Intrinsic::smul_fix: 2771 case Intrinsic::smul_fix_sat: { 2772 // This code performs rounding towards negative infinity in case the 2773 // result cannot be represented exactly for the given scale. Targets 2774 // that do care about rounding should use a target hook for specifying 2775 // how rounding should be done, and provide their own folding to be 2776 // consistent with rounding. This is the same approach as used by 2777 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2778 const APInt &Lhs = Op1->getValue(); 2779 const APInt &Rhs = Op2->getValue(); 2780 unsigned Scale = Op3->getValue().getZExtValue(); 2781 unsigned Width = Lhs.getBitWidth(); 2782 assert(Scale < Width && "Illegal scale."); 2783 unsigned ExtendedWidth = Width * 2; 2784 APInt Product = (Lhs.sextOrSelf(ExtendedWidth) * 2785 Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale); 2786 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2787 APInt MaxValue = 2788 APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2789 APInt MinValue = 2790 APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2791 Product = APIntOps::smin(Product, MaxValue); 2792 Product = APIntOps::smax(Product, MinValue); 2793 } 2794 return ConstantInt::get(Ty->getContext(), 2795 Product.sextOrTrunc(Width)); 2796 } 2797 } 2798 } 2799 } 2800 } 2801 2802 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2803 const APInt *C0, *C1, *C2; 2804 if (!getConstIntOrUndef(Operands[0], C0) || 2805 !getConstIntOrUndef(Operands[1], C1) || 2806 !getConstIntOrUndef(Operands[2], C2)) 2807 return nullptr; 2808 2809 bool IsRight = IntrinsicID == Intrinsic::fshr; 2810 if (!C2) 2811 return Operands[IsRight ? 1 : 0]; 2812 if (!C0 && !C1) 2813 return UndefValue::get(Ty); 2814 2815 // The shift amount is interpreted as modulo the bitwidth. If the shift 2816 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2817 unsigned BitWidth = C2->getBitWidth(); 2818 unsigned ShAmt = C2->urem(BitWidth); 2819 if (!ShAmt) 2820 return Operands[IsRight ? 1 : 0]; 2821 2822 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2823 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2824 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2825 if (!C0) 2826 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2827 if (!C1) 2828 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2829 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2830 } 2831 2832 return nullptr; 2833 } 2834 2835 static Constant *ConstantFoldScalarCall(StringRef Name, 2836 Intrinsic::ID IntrinsicID, 2837 Type *Ty, 2838 ArrayRef<Constant *> Operands, 2839 const TargetLibraryInfo *TLI, 2840 const CallBase *Call) { 2841 if (Operands.size() == 1) 2842 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2843 2844 if (Operands.size() == 2) 2845 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2846 2847 if (Operands.size() == 3) 2848 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2849 2850 return nullptr; 2851 } 2852 2853 static Constant *ConstantFoldVectorCall(StringRef Name, 2854 Intrinsic::ID IntrinsicID, 2855 VectorType *VTy, 2856 ArrayRef<Constant *> Operands, 2857 const DataLayout &DL, 2858 const TargetLibraryInfo *TLI, 2859 const CallBase *Call) { 2860 // Do not iterate on scalable vector. The number of elements is unknown at 2861 // compile-time. 2862 if (isa<ScalableVectorType>(VTy)) 2863 return nullptr; 2864 2865 auto *FVTy = cast<FixedVectorType>(VTy); 2866 2867 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 2868 SmallVector<Constant *, 4> Lane(Operands.size()); 2869 Type *Ty = FVTy->getElementType(); 2870 2871 switch (IntrinsicID) { 2872 case Intrinsic::masked_load: { 2873 auto *SrcPtr = Operands[0]; 2874 auto *Mask = Operands[2]; 2875 auto *Passthru = Operands[3]; 2876 2877 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 2878 2879 SmallVector<Constant *, 32> NewElements; 2880 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2881 auto *MaskElt = Mask->getAggregateElement(I); 2882 if (!MaskElt) 2883 break; 2884 auto *PassthruElt = Passthru->getAggregateElement(I); 2885 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2886 if (isa<UndefValue>(MaskElt)) { 2887 if (PassthruElt) 2888 NewElements.push_back(PassthruElt); 2889 else if (VecElt) 2890 NewElements.push_back(VecElt); 2891 else 2892 return nullptr; 2893 } 2894 if (MaskElt->isNullValue()) { 2895 if (!PassthruElt) 2896 return nullptr; 2897 NewElements.push_back(PassthruElt); 2898 } else if (MaskElt->isOneValue()) { 2899 if (!VecElt) 2900 return nullptr; 2901 NewElements.push_back(VecElt); 2902 } else { 2903 return nullptr; 2904 } 2905 } 2906 if (NewElements.size() != FVTy->getNumElements()) 2907 return nullptr; 2908 return ConstantVector::get(NewElements); 2909 } 2910 case Intrinsic::arm_mve_vctp8: 2911 case Intrinsic::arm_mve_vctp16: 2912 case Intrinsic::arm_mve_vctp32: 2913 case Intrinsic::arm_mve_vctp64: { 2914 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2915 unsigned Lanes = FVTy->getNumElements(); 2916 uint64_t Limit = Op->getZExtValue(); 2917 // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make 2918 // sure we get the limit right in that case and set all relevant lanes. 2919 if (IntrinsicID == Intrinsic::arm_mve_vctp64) 2920 Limit *= 2; 2921 2922 SmallVector<Constant *, 16> NCs; 2923 for (unsigned i = 0; i < Lanes; i++) { 2924 if (i < Limit) 2925 NCs.push_back(ConstantInt::getTrue(Ty)); 2926 else 2927 NCs.push_back(ConstantInt::getFalse(Ty)); 2928 } 2929 return ConstantVector::get(NCs); 2930 } 2931 break; 2932 } 2933 case Intrinsic::get_active_lane_mask: { 2934 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 2935 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 2936 if (Op0 && Op1) { 2937 unsigned Lanes = FVTy->getNumElements(); 2938 uint64_t Base = Op0->getZExtValue(); 2939 uint64_t Limit = Op1->getZExtValue(); 2940 2941 SmallVector<Constant *, 16> NCs; 2942 for (unsigned i = 0; i < Lanes; i++) { 2943 if (Base + i < Limit) 2944 NCs.push_back(ConstantInt::getTrue(Ty)); 2945 else 2946 NCs.push_back(ConstantInt::getFalse(Ty)); 2947 } 2948 return ConstantVector::get(NCs); 2949 } 2950 break; 2951 } 2952 default: 2953 break; 2954 } 2955 2956 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2957 // Gather a column of constants. 2958 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 2959 // Some intrinsics use a scalar type for certain arguments. 2960 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 2961 Lane[J] = Operands[J]; 2962 continue; 2963 } 2964 2965 Constant *Agg = Operands[J]->getAggregateElement(I); 2966 if (!Agg) 2967 return nullptr; 2968 2969 Lane[J] = Agg; 2970 } 2971 2972 // Use the regular scalar folding to simplify this column. 2973 Constant *Folded = 2974 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 2975 if (!Folded) 2976 return nullptr; 2977 Result[I] = Folded; 2978 } 2979 2980 return ConstantVector::get(Result); 2981 } 2982 2983 } // end anonymous namespace 2984 2985 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 2986 ArrayRef<Constant *> Operands, 2987 const TargetLibraryInfo *TLI) { 2988 if (Call->isNoBuiltin()) 2989 return nullptr; 2990 if (!F->hasName()) 2991 return nullptr; 2992 StringRef Name = F->getName(); 2993 2994 Type *Ty = F->getReturnType(); 2995 2996 if (auto *VTy = dyn_cast<VectorType>(Ty)) 2997 return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, 2998 F->getParent()->getDataLayout(), TLI, Call); 2999 3000 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 3001 Call); 3002 } 3003 3004 bool llvm::isMathLibCallNoop(const CallBase *Call, 3005 const TargetLibraryInfo *TLI) { 3006 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3007 // (and to some extent ConstantFoldScalarCall). 3008 if (Call->isNoBuiltin() || Call->isStrictFP()) 3009 return false; 3010 Function *F = Call->getCalledFunction(); 3011 if (!F) 3012 return false; 3013 3014 LibFunc Func; 3015 if (!TLI || !TLI->getLibFunc(*F, Func)) 3016 return false; 3017 3018 if (Call->getNumArgOperands() == 1) { 3019 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3020 const APFloat &Op = OpC->getValueAPF(); 3021 switch (Func) { 3022 case LibFunc_logl: 3023 case LibFunc_log: 3024 case LibFunc_logf: 3025 case LibFunc_log2l: 3026 case LibFunc_log2: 3027 case LibFunc_log2f: 3028 case LibFunc_log10l: 3029 case LibFunc_log10: 3030 case LibFunc_log10f: 3031 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3032 3033 case LibFunc_expl: 3034 case LibFunc_exp: 3035 case LibFunc_expf: 3036 // FIXME: These boundaries are slightly conservative. 3037 if (OpC->getType()->isDoubleTy()) 3038 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3039 if (OpC->getType()->isFloatTy()) 3040 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3041 break; 3042 3043 case LibFunc_exp2l: 3044 case LibFunc_exp2: 3045 case LibFunc_exp2f: 3046 // FIXME: These boundaries are slightly conservative. 3047 if (OpC->getType()->isDoubleTy()) 3048 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3049 if (OpC->getType()->isFloatTy()) 3050 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3051 break; 3052 3053 case LibFunc_sinl: 3054 case LibFunc_sin: 3055 case LibFunc_sinf: 3056 case LibFunc_cosl: 3057 case LibFunc_cos: 3058 case LibFunc_cosf: 3059 return !Op.isInfinity(); 3060 3061 case LibFunc_tanl: 3062 case LibFunc_tan: 3063 case LibFunc_tanf: { 3064 // FIXME: Stop using the host math library. 3065 // FIXME: The computation isn't done in the right precision. 3066 Type *Ty = OpC->getType(); 3067 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3068 double OpV = getValueAsDouble(OpC); 3069 return ConstantFoldFP(tan, OpV, Ty) != nullptr; 3070 } 3071 break; 3072 } 3073 3074 case LibFunc_asinl: 3075 case LibFunc_asin: 3076 case LibFunc_asinf: 3077 case LibFunc_acosl: 3078 case LibFunc_acos: 3079 case LibFunc_acosf: 3080 return !(Op < APFloat(Op.getSemantics(), "-1") || 3081 Op > APFloat(Op.getSemantics(), "1")); 3082 3083 case LibFunc_sinh: 3084 case LibFunc_cosh: 3085 case LibFunc_sinhf: 3086 case LibFunc_coshf: 3087 case LibFunc_sinhl: 3088 case LibFunc_coshl: 3089 // FIXME: These boundaries are slightly conservative. 3090 if (OpC->getType()->isDoubleTy()) 3091 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3092 if (OpC->getType()->isFloatTy()) 3093 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3094 break; 3095 3096 case LibFunc_sqrtl: 3097 case LibFunc_sqrt: 3098 case LibFunc_sqrtf: 3099 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3100 3101 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3102 // maybe others? 3103 default: 3104 break; 3105 } 3106 } 3107 } 3108 3109 if (Call->getNumArgOperands() == 2) { 3110 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3111 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3112 if (Op0C && Op1C) { 3113 const APFloat &Op0 = Op0C->getValueAPF(); 3114 const APFloat &Op1 = Op1C->getValueAPF(); 3115 3116 switch (Func) { 3117 case LibFunc_powl: 3118 case LibFunc_pow: 3119 case LibFunc_powf: { 3120 // FIXME: Stop using the host math library. 3121 // FIXME: The computation isn't done in the right precision. 3122 Type *Ty = Op0C->getType(); 3123 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3124 if (Ty == Op1C->getType()) { 3125 double Op0V = getValueAsDouble(Op0C); 3126 double Op1V = getValueAsDouble(Op1C); 3127 return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; 3128 } 3129 } 3130 break; 3131 } 3132 3133 case LibFunc_fmodl: 3134 case LibFunc_fmod: 3135 case LibFunc_fmodf: 3136 case LibFunc_remainderl: 3137 case LibFunc_remainder: 3138 case LibFunc_remainderf: 3139 return Op0.isNaN() || Op1.isNaN() || 3140 (!Op0.isInfinity() && !Op1.isZero()); 3141 3142 default: 3143 break; 3144 } 3145 } 3146 } 3147 3148 return false; 3149 } 3150 3151 void TargetFolder::anchor() {} 3152