1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantFold.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/IntrinsicsAArch64.h" 46 #include "llvm/IR/IntrinsicsAMDGPU.h" 47 #include "llvm/IR/IntrinsicsARM.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/KnownBits.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <cassert> 58 #include <cerrno> 59 #include <cfenv> 60 #include <cmath> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 67 //===----------------------------------------------------------------------===// 68 // Constant Folding internal helper functions 69 //===----------------------------------------------------------------------===// 70 71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 72 Constant *C, Type *SrcEltTy, 73 unsigned NumSrcElts, 74 const DataLayout &DL) { 75 // Now that we know that the input value is a vector of integers, just shift 76 // and insert them into our result. 77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 78 for (unsigned i = 0; i != NumSrcElts; ++i) { 79 Constant *Element; 80 if (DL.isLittleEndian()) 81 Element = C->getAggregateElement(NumSrcElts - i - 1); 82 else 83 Element = C->getAggregateElement(i); 84 85 if (Element && isa<UndefValue>(Element)) { 86 Result <<= BitShift; 87 continue; 88 } 89 90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 91 if (!ElementCI) 92 return ConstantExpr::getBitCast(C, DestTy); 93 94 Result <<= BitShift; 95 Result |= ElementCI->getValue().zext(Result.getBitWidth()); 96 } 97 98 return nullptr; 99 } 100 101 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 102 /// This always returns a non-null constant, but it may be a 103 /// ConstantExpr if unfoldable. 104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 106 "Invalid constantexpr bitcast!"); 107 108 // Catch the obvious splat cases. 109 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL)) 110 return Res; 111 112 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 113 // Handle a vector->scalar integer/fp cast. 114 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 115 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 116 Type *SrcEltTy = VTy->getElementType(); 117 118 // If the vector is a vector of floating point, convert it to vector of int 119 // to simplify things. 120 if (SrcEltTy->isFloatingPointTy()) { 121 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 122 auto *SrcIVTy = FixedVectorType::get( 123 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 124 // Ask IR to do the conversion now that #elts line up. 125 C = ConstantExpr::getBitCast(C, SrcIVTy); 126 } 127 128 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 129 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 130 SrcEltTy, NumSrcElts, DL)) 131 return CE; 132 133 if (isa<IntegerType>(DestTy)) 134 return ConstantInt::get(DestTy, Result); 135 136 APFloat FP(DestTy->getFltSemantics(), Result); 137 return ConstantFP::get(DestTy->getContext(), FP); 138 } 139 } 140 141 // The code below only handles casts to vectors currently. 142 auto *DestVTy = dyn_cast<VectorType>(DestTy); 143 if (!DestVTy) 144 return ConstantExpr::getBitCast(C, DestTy); 145 146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 147 // vector so the code below can handle it uniformly. 148 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 149 Constant *Ops = C; // don't take the address of C! 150 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 151 } 152 153 // If this is a bitcast from constant vector -> vector, fold it. 154 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 155 return ConstantExpr::getBitCast(C, DestTy); 156 157 // If the element types match, IR can fold it. 158 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 159 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 160 if (NumDstElt == NumSrcElt) 161 return ConstantExpr::getBitCast(C, DestTy); 162 163 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 164 Type *DstEltTy = DestVTy->getElementType(); 165 166 // Otherwise, we're changing the number of elements in a vector, which 167 // requires endianness information to do the right thing. For example, 168 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 169 // folds to (little endian): 170 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 171 // and to (big endian): 172 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 173 174 // First thing is first. We only want to think about integer here, so if 175 // we have something in FP form, recast it as integer. 176 if (DstEltTy->isFloatingPointTy()) { 177 // Fold to an vector of integers with same size as our FP type. 178 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 179 auto *DestIVTy = FixedVectorType::get( 180 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 181 // Recursively handle this integer conversion, if possible. 182 C = FoldBitCast(C, DestIVTy, DL); 183 184 // Finally, IR can handle this now that #elts line up. 185 return ConstantExpr::getBitCast(C, DestTy); 186 } 187 188 // Okay, we know the destination is integer, if the input is FP, convert 189 // it to integer first. 190 if (SrcEltTy->isFloatingPointTy()) { 191 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 192 auto *SrcIVTy = FixedVectorType::get( 193 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 194 // Ask IR to do the conversion now that #elts line up. 195 C = ConstantExpr::getBitCast(C, SrcIVTy); 196 // If IR wasn't able to fold it, bail out. 197 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 198 !isa<ConstantDataVector>(C)) 199 return C; 200 } 201 202 // Now we know that the input and output vectors are both integer vectors 203 // of the same size, and that their #elements is not the same. Do the 204 // conversion here, which depends on whether the input or output has 205 // more elements. 206 bool isLittleEndian = DL.isLittleEndian(); 207 208 SmallVector<Constant*, 32> Result; 209 if (NumDstElt < NumSrcElt) { 210 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 211 Constant *Zero = Constant::getNullValue(DstEltTy); 212 unsigned Ratio = NumSrcElt/NumDstElt; 213 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 214 unsigned SrcElt = 0; 215 for (unsigned i = 0; i != NumDstElt; ++i) { 216 // Build each element of the result. 217 Constant *Elt = Zero; 218 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 219 for (unsigned j = 0; j != Ratio; ++j) { 220 Constant *Src = C->getAggregateElement(SrcElt++); 221 if (Src && isa<UndefValue>(Src)) 222 Src = Constant::getNullValue( 223 cast<VectorType>(C->getType())->getElementType()); 224 else 225 Src = dyn_cast_or_null<ConstantInt>(Src); 226 if (!Src) // Reject constantexpr elements. 227 return ConstantExpr::getBitCast(C, DestTy); 228 229 // Zero extend the element to the right size. 230 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(), 231 DL); 232 assert(Src && "Constant folding cannot fail on plain integers"); 233 234 // Shift it to the right place, depending on endianness. 235 Src = ConstantFoldBinaryOpOperands( 236 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt), 237 DL); 238 assert(Src && "Constant folding cannot fail on plain integers"); 239 240 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 241 242 // Mix it in. 243 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL); 244 assert(Elt && "Constant folding cannot fail on plain integers"); 245 } 246 Result.push_back(Elt); 247 } 248 return ConstantVector::get(Result); 249 } 250 251 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 252 unsigned Ratio = NumDstElt/NumSrcElt; 253 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 254 255 // Loop over each source value, expanding into multiple results. 256 for (unsigned i = 0; i != NumSrcElt; ++i) { 257 auto *Element = C->getAggregateElement(i); 258 259 if (!Element) // Reject constantexpr elements. 260 return ConstantExpr::getBitCast(C, DestTy); 261 262 if (isa<UndefValue>(Element)) { 263 // Correctly Propagate undef values. 264 Result.append(Ratio, UndefValue::get(DstEltTy)); 265 continue; 266 } 267 268 auto *Src = dyn_cast<ConstantInt>(Element); 269 if (!Src) 270 return ConstantExpr::getBitCast(C, DestTy); 271 272 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 273 for (unsigned j = 0; j != Ratio; ++j) { 274 // Shift the piece of the value into the right place, depending on 275 // endianness. 276 APInt Elt = Src->getValue().lshr(ShiftAmt); 277 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 278 279 // Truncate and remember this piece. 280 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize))); 281 } 282 } 283 284 return ConstantVector::get(Result); 285 } 286 287 } // end anonymous namespace 288 289 /// If this constant is a constant offset from a global, return the global and 290 /// the constant. Because of constantexprs, this function is recursive. 291 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 292 APInt &Offset, const DataLayout &DL, 293 DSOLocalEquivalent **DSOEquiv) { 294 if (DSOEquiv) 295 *DSOEquiv = nullptr; 296 297 // Trivial case, constant is the global. 298 if ((GV = dyn_cast<GlobalValue>(C))) { 299 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 300 Offset = APInt(BitWidth, 0); 301 return true; 302 } 303 304 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 305 if (DSOEquiv) 306 *DSOEquiv = FoundDSOEquiv; 307 GV = FoundDSOEquiv->getGlobalValue(); 308 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 309 Offset = APInt(BitWidth, 0); 310 return true; 311 } 312 313 // Otherwise, if this isn't a constant expr, bail out. 314 auto *CE = dyn_cast<ConstantExpr>(C); 315 if (!CE) return false; 316 317 // Look through ptr->int and ptr->ptr casts. 318 if (CE->getOpcode() == Instruction::PtrToInt || 319 CE->getOpcode() == Instruction::BitCast) 320 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 321 DSOEquiv); 322 323 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 324 auto *GEP = dyn_cast<GEPOperator>(CE); 325 if (!GEP) 326 return false; 327 328 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 329 APInt TmpOffset(BitWidth, 0); 330 331 // If the base isn't a global+constant, we aren't either. 332 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 333 DSOEquiv)) 334 return false; 335 336 // Otherwise, add any offset that our operands provide. 337 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 338 return false; 339 340 Offset = TmpOffset; 341 return true; 342 } 343 344 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 345 const DataLayout &DL) { 346 do { 347 Type *SrcTy = C->getType(); 348 if (SrcTy == DestTy) 349 return C; 350 351 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 352 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 353 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 354 return nullptr; 355 356 // Catch the obvious splat cases (since all-zeros can coerce non-integral 357 // pointers legally). 358 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL)) 359 return Res; 360 361 // If the type sizes are the same and a cast is legal, just directly 362 // cast the constant. 363 // But be careful not to coerce non-integral pointers illegally. 364 if (SrcSize == DestSize && 365 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 366 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 367 Instruction::CastOps Cast = Instruction::BitCast; 368 // If we are going from a pointer to int or vice versa, we spell the cast 369 // differently. 370 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 371 Cast = Instruction::IntToPtr; 372 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 373 Cast = Instruction::PtrToInt; 374 375 if (CastInst::castIsValid(Cast, C, DestTy)) 376 return ConstantFoldCastOperand(Cast, C, DestTy, DL); 377 } 378 379 // If this isn't an aggregate type, there is nothing we can do to drill down 380 // and find a bitcastable constant. 381 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 382 return nullptr; 383 384 // We're simulating a load through a pointer that was bitcast to point to 385 // a different type, so we can try to walk down through the initial 386 // elements of an aggregate to see if some part of the aggregate is 387 // castable to implement the "load" semantic model. 388 if (SrcTy->isStructTy()) { 389 // Struct types might have leading zero-length elements like [0 x i32], 390 // which are certainly not what we are looking for, so skip them. 391 unsigned Elem = 0; 392 Constant *ElemC; 393 do { 394 ElemC = C->getAggregateElement(Elem++); 395 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 396 C = ElemC; 397 } else { 398 // For non-byte-sized vector elements, the first element is not 399 // necessarily located at the vector base address. 400 if (auto *VT = dyn_cast<VectorType>(SrcTy)) 401 if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) 402 return nullptr; 403 404 C = C->getAggregateElement(0u); 405 } 406 } while (C); 407 408 return nullptr; 409 } 410 411 namespace { 412 413 /// Recursive helper to read bits out of global. C is the constant being copied 414 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 415 /// results into and BytesLeft is the number of bytes left in 416 /// the CurPtr buffer. DL is the DataLayout. 417 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 418 unsigned BytesLeft, const DataLayout &DL) { 419 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 420 "Out of range access"); 421 422 // If this element is zero or undefined, we can just return since *CurPtr is 423 // zero initialized. 424 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 425 return true; 426 427 if (auto *CI = dyn_cast<ConstantInt>(C)) { 428 if ((CI->getBitWidth() & 7) != 0) 429 return false; 430 const APInt &Val = CI->getValue(); 431 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 432 433 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 434 unsigned n = ByteOffset; 435 if (!DL.isLittleEndian()) 436 n = IntBytes - n - 1; 437 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue(); 438 ++ByteOffset; 439 } 440 return true; 441 } 442 443 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 444 if (CFP->getType()->isDoubleTy()) { 445 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 446 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 447 } 448 if (CFP->getType()->isFloatTy()){ 449 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 450 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 451 } 452 if (CFP->getType()->isHalfTy()){ 453 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 454 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 455 } 456 return false; 457 } 458 459 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 460 const StructLayout *SL = DL.getStructLayout(CS->getType()); 461 unsigned Index = SL->getElementContainingOffset(ByteOffset); 462 uint64_t CurEltOffset = SL->getElementOffset(Index); 463 ByteOffset -= CurEltOffset; 464 465 while (true) { 466 // If the element access is to the element itself and not to tail padding, 467 // read the bytes from the element. 468 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 469 470 if (ByteOffset < EltSize && 471 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 472 BytesLeft, DL)) 473 return false; 474 475 ++Index; 476 477 // Check to see if we read from the last struct element, if so we're done. 478 if (Index == CS->getType()->getNumElements()) 479 return true; 480 481 // If we read all of the bytes we needed from this element we're done. 482 uint64_t NextEltOffset = SL->getElementOffset(Index); 483 484 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 485 return true; 486 487 // Move to the next element of the struct. 488 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 489 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 490 ByteOffset = 0; 491 CurEltOffset = NextEltOffset; 492 } 493 // not reached. 494 } 495 496 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 497 isa<ConstantDataSequential>(C)) { 498 uint64_t NumElts, EltSize; 499 Type *EltTy; 500 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 501 NumElts = AT->getNumElements(); 502 EltTy = AT->getElementType(); 503 EltSize = DL.getTypeAllocSize(EltTy); 504 } else { 505 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 506 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 507 // TODO: For non-byte-sized vectors, current implementation assumes there is 508 // padding to the next byte boundary between elements. 509 if (!DL.typeSizeEqualsStoreSize(EltTy)) 510 return false; 511 512 EltSize = DL.getTypeStoreSize(EltTy); 513 } 514 uint64_t Index = ByteOffset / EltSize; 515 uint64_t Offset = ByteOffset - Index * EltSize; 516 517 for (; Index != NumElts; ++Index) { 518 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 519 BytesLeft, DL)) 520 return false; 521 522 uint64_t BytesWritten = EltSize - Offset; 523 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 524 if (BytesWritten >= BytesLeft) 525 return true; 526 527 Offset = 0; 528 BytesLeft -= BytesWritten; 529 CurPtr += BytesWritten; 530 } 531 return true; 532 } 533 534 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 535 if (CE->getOpcode() == Instruction::IntToPtr && 536 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 537 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 538 BytesLeft, DL); 539 } 540 } 541 542 // Otherwise, unknown initializer type. 543 return false; 544 } 545 546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 547 int64_t Offset, const DataLayout &DL) { 548 // Bail out early. Not expect to load from scalable global variable. 549 if (isa<ScalableVectorType>(LoadTy)) 550 return nullptr; 551 552 auto *IntType = dyn_cast<IntegerType>(LoadTy); 553 554 // If this isn't an integer load we can't fold it directly. 555 if (!IntType) { 556 // If this is a non-integer load, we can try folding it as an int load and 557 // then bitcast the result. This can be useful for union cases. Note 558 // that address spaces don't matter here since we're not going to result in 559 // an actual new load. 560 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && 561 !LoadTy->isVectorTy()) 562 return nullptr; 563 564 Type *MapTy = Type::getIntNTy(C->getContext(), 565 DL.getTypeSizeInBits(LoadTy).getFixedValue()); 566 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 567 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 568 !LoadTy->isX86_AMXTy()) 569 // Materializing a zero can be done trivially without a bitcast 570 return Constant::getNullValue(LoadTy); 571 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 572 Res = FoldBitCast(Res, CastTy, DL); 573 if (LoadTy->isPtrOrPtrVectorTy()) { 574 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 575 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 576 !LoadTy->isX86_AMXTy()) 577 return Constant::getNullValue(LoadTy); 578 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 579 // Be careful not to replace a load of an addrspace value with an inttoptr here 580 return nullptr; 581 Res = ConstantExpr::getIntToPtr(Res, LoadTy); 582 } 583 return Res; 584 } 585 return nullptr; 586 } 587 588 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 589 if (BytesLoaded > 32 || BytesLoaded == 0) 590 return nullptr; 591 592 // If we're not accessing anything in this constant, the result is undefined. 593 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 594 return PoisonValue::get(IntType); 595 596 // TODO: We should be able to support scalable types. 597 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType()); 598 if (InitializerSize.isScalable()) 599 return nullptr; 600 601 // If we're not accessing anything in this constant, the result is undefined. 602 if (Offset >= (int64_t)InitializerSize.getFixedValue()) 603 return PoisonValue::get(IntType); 604 605 unsigned char RawBytes[32] = {0}; 606 unsigned char *CurPtr = RawBytes; 607 unsigned BytesLeft = BytesLoaded; 608 609 // If we're loading off the beginning of the global, some bytes may be valid. 610 if (Offset < 0) { 611 CurPtr += -Offset; 612 BytesLeft += Offset; 613 Offset = 0; 614 } 615 616 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 617 return nullptr; 618 619 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 620 if (DL.isLittleEndian()) { 621 ResultVal = RawBytes[BytesLoaded - 1]; 622 for (unsigned i = 1; i != BytesLoaded; ++i) { 623 ResultVal <<= 8; 624 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 625 } 626 } else { 627 ResultVal = RawBytes[0]; 628 for (unsigned i = 1; i != BytesLoaded; ++i) { 629 ResultVal <<= 8; 630 ResultVal |= RawBytes[i]; 631 } 632 } 633 634 return ConstantInt::get(IntType->getContext(), ResultVal); 635 } 636 637 } // anonymous namespace 638 639 // If GV is a constant with an initializer read its representation starting 640 // at Offset and return it as a constant array of unsigned char. Otherwise 641 // return null. 642 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV, 643 uint64_t Offset) { 644 if (!GV->isConstant() || !GV->hasDefinitiveInitializer()) 645 return nullptr; 646 647 const DataLayout &DL = GV->getDataLayout(); 648 Constant *Init = const_cast<Constant *>(GV->getInitializer()); 649 TypeSize InitSize = DL.getTypeAllocSize(Init->getType()); 650 if (InitSize < Offset) 651 return nullptr; 652 653 uint64_t NBytes = InitSize - Offset; 654 if (NBytes > UINT16_MAX) 655 // Bail for large initializers in excess of 64K to avoid allocating 656 // too much memory. 657 // Offset is assumed to be less than or equal than InitSize (this 658 // is enforced in ReadDataFromGlobal). 659 return nullptr; 660 661 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes)); 662 unsigned char *CurPtr = RawBytes.data(); 663 664 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL)) 665 return nullptr; 666 667 return ConstantDataArray::get(GV->getContext(), RawBytes); 668 } 669 670 /// If this Offset points exactly to the start of an aggregate element, return 671 /// that element, otherwise return nullptr. 672 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 673 const DataLayout &DL) { 674 if (Offset.isZero()) 675 return Base; 676 677 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 678 return nullptr; 679 680 Type *ElemTy = Base->getType(); 681 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 682 if (!Offset.isZero() || !Indices[0].isZero()) 683 return nullptr; 684 685 Constant *C = Base; 686 for (const APInt &Index : drop_begin(Indices)) { 687 if (Index.isNegative() || Index.getActiveBits() >= 32) 688 return nullptr; 689 690 C = C->getAggregateElement(Index.getZExtValue()); 691 if (!C) 692 return nullptr; 693 } 694 695 return C; 696 } 697 698 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 699 const APInt &Offset, 700 const DataLayout &DL) { 701 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 702 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 703 return Result; 704 705 // Explicitly check for out-of-bounds access, so we return poison even if the 706 // constant is a uniform value. 707 TypeSize Size = DL.getTypeAllocSize(C->getType()); 708 if (!Size.isScalable() && Offset.sge(Size.getFixedValue())) 709 return PoisonValue::get(Ty); 710 711 // Try an offset-independent fold of a uniform value. 712 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL)) 713 return Result; 714 715 // Try hard to fold loads from bitcasted strange and non-type-safe things. 716 if (Offset.getSignificantBits() <= 64) 717 if (Constant *Result = 718 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) 719 return Result; 720 721 return nullptr; 722 } 723 724 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 725 const DataLayout &DL) { 726 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 727 } 728 729 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 730 APInt Offset, 731 const DataLayout &DL) { 732 // We can only fold loads from constant globals with a definitive initializer. 733 // Check this upfront, to skip expensive offset calculations. 734 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 735 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 736 return nullptr; 737 738 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 739 DL, Offset, /* AllowNonInbounds */ true)); 740 741 if (C == GV) 742 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 743 Offset, DL)) 744 return Result; 745 746 // If this load comes from anywhere in a uniform constant global, the value 747 // is always the same, regardless of the loaded offset. 748 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL); 749 } 750 751 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 752 const DataLayout &DL) { 753 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 754 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL); 755 } 756 757 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, 758 const DataLayout &DL) { 759 if (isa<PoisonValue>(C)) 760 return PoisonValue::get(Ty); 761 if (isa<UndefValue>(C)) 762 return UndefValue::get(Ty); 763 // If padding is needed when storing C to memory, then it isn't considered as 764 // uniform. 765 if (!DL.typeSizeEqualsStoreSize(C->getType())) 766 return nullptr; 767 if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) 768 return Constant::getNullValue(Ty); 769 if (C->isAllOnesValue() && 770 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) 771 return Constant::getAllOnesValue(Ty); 772 return nullptr; 773 } 774 775 namespace { 776 777 /// One of Op0/Op1 is a constant expression. 778 /// Attempt to symbolically evaluate the result of a binary operator merging 779 /// these together. If target data info is available, it is provided as DL, 780 /// otherwise DL is null. 781 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 782 const DataLayout &DL) { 783 // SROA 784 785 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 786 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 787 // bits. 788 789 if (Opc == Instruction::And) { 790 KnownBits Known0 = computeKnownBits(Op0, DL); 791 KnownBits Known1 = computeKnownBits(Op1, DL); 792 if ((Known1.One | Known0.Zero).isAllOnes()) { 793 // All the bits of Op0 that the 'and' could be masking are already zero. 794 return Op0; 795 } 796 if ((Known0.One | Known1.Zero).isAllOnes()) { 797 // All the bits of Op1 that the 'and' could be masking are already zero. 798 return Op1; 799 } 800 801 Known0 &= Known1; 802 if (Known0.isConstant()) 803 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 804 } 805 806 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 807 // constant. This happens frequently when iterating over a global array. 808 if (Opc == Instruction::Sub) { 809 GlobalValue *GV1, *GV2; 810 APInt Offs1, Offs2; 811 812 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 813 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 814 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 815 816 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 817 // PtrToInt may change the bitwidth so we have convert to the right size 818 // first. 819 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 820 Offs2.zextOrTrunc(OpSize)); 821 } 822 } 823 824 return nullptr; 825 } 826 827 /// If array indices are not pointer-sized integers, explicitly cast them so 828 /// that they aren't implicitly casted by the getelementptr. 829 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 830 Type *ResultTy, GEPNoWrapFlags NW, 831 std::optional<ConstantRange> InRange, 832 const DataLayout &DL, const TargetLibraryInfo *TLI) { 833 Type *IntIdxTy = DL.getIndexType(ResultTy); 834 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 835 836 bool Any = false; 837 SmallVector<Constant*, 32> NewIdxs; 838 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 839 if ((i == 1 || 840 !isa<StructType>(GetElementPtrInst::getIndexedType( 841 SrcElemTy, Ops.slice(1, i - 1)))) && 842 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 843 Any = true; 844 Type *NewType = 845 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy; 846 Constant *NewIdx = ConstantFoldCastOperand( 847 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType, 848 DL); 849 if (!NewIdx) 850 return nullptr; 851 NewIdxs.push_back(NewIdx); 852 } else 853 NewIdxs.push_back(Ops[i]); 854 } 855 856 if (!Any) 857 return nullptr; 858 859 Constant *C = 860 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange); 861 return ConstantFoldConstant(C, DL, TLI); 862 } 863 864 /// If we can symbolically evaluate the GEP constant expression, do so. 865 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 866 ArrayRef<Constant *> Ops, 867 const DataLayout &DL, 868 const TargetLibraryInfo *TLI) { 869 Type *SrcElemTy = GEP->getSourceElementType(); 870 Type *ResTy = GEP->getType(); 871 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 872 return nullptr; 873 874 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(), 875 GEP->getInRange(), DL, TLI)) 876 return C; 877 878 Constant *Ptr = Ops[0]; 879 if (!Ptr->getType()->isPointerTy()) 880 return nullptr; 881 882 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 883 884 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 885 if (!isa<ConstantInt>(Ops[i])) 886 return nullptr; 887 888 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 889 APInt Offset = APInt( 890 BitWidth, 891 DL.getIndexedOffsetInType( 892 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1))); 893 894 std::optional<ConstantRange> InRange = GEP->getInRange(); 895 if (InRange) 896 InRange = InRange->sextOrTrunc(BitWidth); 897 898 // If this is a GEP of a GEP, fold it all into a single GEP. 899 GEPNoWrapFlags NW = GEP->getNoWrapFlags(); 900 bool Overflow = false; 901 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 902 NW &= GEP->getNoWrapFlags(); 903 904 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); 905 906 // Do not try the incorporate the sub-GEP if some index is not a number. 907 bool AllConstantInt = true; 908 for (Value *NestedOp : NestedOps) 909 if (!isa<ConstantInt>(NestedOp)) { 910 AllConstantInt = false; 911 break; 912 } 913 if (!AllConstantInt) 914 break; 915 916 // TODO: Try to intersect two inrange attributes? 917 if (!InRange) { 918 InRange = GEP->getInRange(); 919 if (InRange) 920 // Adjust inrange by offset until now. 921 InRange = InRange->sextOrTrunc(BitWidth).subtract(Offset); 922 } 923 924 Ptr = cast<Constant>(GEP->getOperand(0)); 925 SrcElemTy = GEP->getSourceElementType(); 926 Offset = Offset.sadd_ov( 927 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)), 928 Overflow); 929 } 930 931 // Preserving nusw (without inbounds) also requires that the offset 932 // additions did not overflow. 933 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow) 934 NW = NW.withoutNoUnsignedSignedWrap(); 935 936 // If the base value for this address is a literal integer value, fold the 937 // getelementptr to the resulting integer value casted to the pointer type. 938 APInt BasePtr(BitWidth, 0); 939 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 940 if (CE->getOpcode() == Instruction::IntToPtr) { 941 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 942 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 943 } 944 } 945 946 auto *PTy = cast<PointerType>(Ptr->getType()); 947 if ((Ptr->isNullValue() || BasePtr != 0) && 948 !DL.isNonIntegralPointerType(PTy)) { 949 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 950 return ConstantExpr::getIntToPtr(C, ResTy); 951 } 952 953 // Try to infer inbounds for GEPs of globals. 954 // TODO(gep_nowrap): Also infer nuw flag. 955 if (!NW.isInBounds() && Offset.isNonNegative()) { 956 bool CanBeNull, CanBeFreed; 957 uint64_t DerefBytes = 958 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 959 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes)) 960 NW |= GEPNoWrapFlags::inBounds(); 961 } 962 963 // Otherwise canonicalize this to a single ptradd. 964 LLVMContext &Ctx = Ptr->getContext(); 965 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx), Ptr, 966 ConstantInt::get(Ctx, Offset), NW, 967 InRange); 968 } 969 970 /// Attempt to constant fold an instruction with the 971 /// specified opcode and operands. If successful, the constant result is 972 /// returned, if not, null is returned. Note that this function can fail when 973 /// attempting to fold instructions like loads and stores, which have no 974 /// constant expression form. 975 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 976 ArrayRef<Constant *> Ops, 977 const DataLayout &DL, 978 const TargetLibraryInfo *TLI, 979 bool AllowNonDeterministic) { 980 Type *DestTy = InstOrCE->getType(); 981 982 if (Instruction::isUnaryOp(Opcode)) 983 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 984 985 if (Instruction::isBinaryOp(Opcode)) { 986 switch (Opcode) { 987 default: 988 break; 989 case Instruction::FAdd: 990 case Instruction::FSub: 991 case Instruction::FMul: 992 case Instruction::FDiv: 993 case Instruction::FRem: 994 // Handle floating point instructions separately to account for denormals 995 // TODO: If a constant expression is being folded rather than an 996 // instruction, denormals will not be flushed/treated as zero 997 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) { 998 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I, 999 AllowNonDeterministic); 1000 } 1001 } 1002 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1003 } 1004 1005 if (Instruction::isCast(Opcode)) 1006 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1007 1008 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1009 Type *SrcElemTy = GEP->getSourceElementType(); 1010 if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy)) 1011 return nullptr; 1012 1013 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1014 return C; 1015 1016 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1), 1017 GEP->getNoWrapFlags(), 1018 GEP->getInRange()); 1019 } 1020 1021 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1022 return CE->getWithOperands(Ops); 1023 1024 switch (Opcode) { 1025 default: return nullptr; 1026 case Instruction::ICmp: 1027 case Instruction::FCmp: { 1028 auto *C = cast<CmpInst>(InstOrCE); 1029 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1], 1030 DL, TLI, C); 1031 } 1032 case Instruction::Freeze: 1033 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1034 case Instruction::Call: 1035 if (auto *F = dyn_cast<Function>(Ops.back())) { 1036 const auto *Call = cast<CallBase>(InstOrCE); 1037 if (canConstantFoldCallTo(Call, F)) 1038 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI, 1039 AllowNonDeterministic); 1040 } 1041 return nullptr; 1042 case Instruction::Select: 1043 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]); 1044 case Instruction::ExtractElement: 1045 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1046 case Instruction::ExtractValue: 1047 return ConstantFoldExtractValueInstruction( 1048 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1049 case Instruction::InsertElement: 1050 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1051 case Instruction::InsertValue: 1052 return ConstantFoldInsertValueInstruction( 1053 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices()); 1054 case Instruction::ShuffleVector: 1055 return ConstantExpr::getShuffleVector( 1056 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1057 case Instruction::Load: { 1058 const auto *LI = dyn_cast<LoadInst>(InstOrCE); 1059 if (LI->isVolatile()) 1060 return nullptr; 1061 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1062 } 1063 } 1064 } 1065 1066 } // end anonymous namespace 1067 1068 //===----------------------------------------------------------------------===// 1069 // Constant Folding public APIs 1070 //===----------------------------------------------------------------------===// 1071 1072 namespace { 1073 1074 Constant * 1075 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1076 const TargetLibraryInfo *TLI, 1077 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1078 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1079 return const_cast<Constant *>(C); 1080 1081 SmallVector<Constant *, 8> Ops; 1082 for (const Use &OldU : C->operands()) { 1083 Constant *OldC = cast<Constant>(&OldU); 1084 Constant *NewC = OldC; 1085 // Recursively fold the ConstantExpr's operands. If we have already folded 1086 // a ConstantExpr, we don't have to process it again. 1087 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1088 auto It = FoldedOps.find(OldC); 1089 if (It == FoldedOps.end()) { 1090 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1091 FoldedOps.insert({OldC, NewC}); 1092 } else { 1093 NewC = It->second; 1094 } 1095 } 1096 Ops.push_back(NewC); 1097 } 1098 1099 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1100 if (Constant *Res = ConstantFoldInstOperandsImpl( 1101 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true)) 1102 return Res; 1103 return const_cast<Constant *>(C); 1104 } 1105 1106 assert(isa<ConstantVector>(C)); 1107 return ConstantVector::get(Ops); 1108 } 1109 1110 } // end anonymous namespace 1111 1112 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1113 const TargetLibraryInfo *TLI) { 1114 // Handle PHI nodes quickly here... 1115 if (auto *PN = dyn_cast<PHINode>(I)) { 1116 Constant *CommonValue = nullptr; 1117 1118 SmallDenseMap<Constant *, Constant *> FoldedOps; 1119 for (Value *Incoming : PN->incoming_values()) { 1120 // If the incoming value is undef then skip it. Note that while we could 1121 // skip the value if it is equal to the phi node itself we choose not to 1122 // because that would break the rule that constant folding only applies if 1123 // all operands are constants. 1124 if (isa<UndefValue>(Incoming)) 1125 continue; 1126 // If the incoming value is not a constant, then give up. 1127 auto *C = dyn_cast<Constant>(Incoming); 1128 if (!C) 1129 return nullptr; 1130 // Fold the PHI's operands. 1131 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1132 // If the incoming value is a different constant to 1133 // the one we saw previously, then give up. 1134 if (CommonValue && C != CommonValue) 1135 return nullptr; 1136 CommonValue = C; 1137 } 1138 1139 // If we reach here, all incoming values are the same constant or undef. 1140 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1141 } 1142 1143 // Scan the operand list, checking to see if they are all constants, if so, 1144 // hand off to ConstantFoldInstOperandsImpl. 1145 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1146 return nullptr; 1147 1148 SmallDenseMap<Constant *, Constant *> FoldedOps; 1149 SmallVector<Constant *, 8> Ops; 1150 for (const Use &OpU : I->operands()) { 1151 auto *Op = cast<Constant>(&OpU); 1152 // Fold the Instruction's operands. 1153 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1154 Ops.push_back(Op); 1155 } 1156 1157 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1158 } 1159 1160 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1161 const TargetLibraryInfo *TLI) { 1162 SmallDenseMap<Constant *, Constant *> FoldedOps; 1163 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1164 } 1165 1166 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1167 ArrayRef<Constant *> Ops, 1168 const DataLayout &DL, 1169 const TargetLibraryInfo *TLI, 1170 bool AllowNonDeterministic) { 1171 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI, 1172 AllowNonDeterministic); 1173 } 1174 1175 Constant *llvm::ConstantFoldCompareInstOperands( 1176 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, 1177 const TargetLibraryInfo *TLI, const Instruction *I) { 1178 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; 1179 // fold: icmp (inttoptr x), null -> icmp x, 0 1180 // fold: icmp null, (inttoptr x) -> icmp 0, x 1181 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1182 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1183 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1184 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1185 // 1186 // FIXME: The following comment is out of data and the DataLayout is here now. 1187 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1188 // around to know if bit truncation is happening. 1189 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1190 if (Ops1->isNullValue()) { 1191 if (CE0->getOpcode() == Instruction::IntToPtr) { 1192 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1193 // Convert the integer value to the right size to ensure we get the 1194 // proper extension or truncation. 1195 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, 1196 /*IsSigned*/ false, DL)) { 1197 Constant *Null = Constant::getNullValue(C->getType()); 1198 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1199 } 1200 } 1201 1202 // Only do this transformation if the int is intptrty in size, otherwise 1203 // there is a truncation or extension that we aren't modeling. 1204 if (CE0->getOpcode() == Instruction::PtrToInt) { 1205 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1206 if (CE0->getType() == IntPtrTy) { 1207 Constant *C = CE0->getOperand(0); 1208 Constant *Null = Constant::getNullValue(C->getType()); 1209 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1210 } 1211 } 1212 } 1213 1214 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1215 if (CE0->getOpcode() == CE1->getOpcode()) { 1216 if (CE0->getOpcode() == Instruction::IntToPtr) { 1217 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1218 1219 // Convert the integer value to the right size to ensure we get the 1220 // proper extension or truncation. 1221 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, 1222 /*IsSigned*/ false, DL); 1223 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy, 1224 /*IsSigned*/ false, DL); 1225 if (C0 && C1) 1226 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1227 } 1228 1229 // Only do this transformation if the int is intptrty in size, otherwise 1230 // there is a truncation or extension that we aren't modeling. 1231 if (CE0->getOpcode() == Instruction::PtrToInt) { 1232 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1233 if (CE0->getType() == IntPtrTy && 1234 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1235 return ConstantFoldCompareInstOperands( 1236 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1237 } 1238 } 1239 } 1240 } 1241 1242 // Convert pointer comparison (base+offset1) pred (base+offset2) into 1243 // offset1 pred offset2, for the case where the offset is inbounds. This 1244 // only works for equality and unsigned comparison, as inbounds permits 1245 // crossing the sign boundary. However, the offset comparison itself is 1246 // signed. 1247 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { 1248 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); 1249 APInt Offset0(IndexWidth, 0); 1250 Value *Stripped0 = 1251 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); 1252 APInt Offset1(IndexWidth, 0); 1253 Value *Stripped1 = 1254 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); 1255 if (Stripped0 == Stripped1) 1256 return ConstantInt::getBool( 1257 Ops0->getContext(), 1258 ICmpInst::compare(Offset0, Offset1, 1259 ICmpInst::getSignedPredicate(Predicate))); 1260 } 1261 } else if (isa<ConstantExpr>(Ops1)) { 1262 // If RHS is a constant expression, but the left side isn't, swap the 1263 // operands and try again. 1264 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1265 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1266 } 1267 1268 // Flush any denormal constant float input according to denormal handling 1269 // mode. 1270 Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false); 1271 if (!Ops0) 1272 return nullptr; 1273 Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false); 1274 if (!Ops1) 1275 return nullptr; 1276 1277 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1); 1278 } 1279 1280 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1281 const DataLayout &DL) { 1282 assert(Instruction::isUnaryOp(Opcode)); 1283 1284 return ConstantFoldUnaryInstruction(Opcode, Op); 1285 } 1286 1287 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1288 Constant *RHS, 1289 const DataLayout &DL) { 1290 assert(Instruction::isBinaryOp(Opcode)); 1291 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1292 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1293 return C; 1294 1295 if (ConstantExpr::isDesirableBinOp(Opcode)) 1296 return ConstantExpr::get(Opcode, LHS, RHS); 1297 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 1298 } 1299 1300 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I, 1301 bool IsOutput) { 1302 if (!I || !I->getParent() || !I->getFunction()) 1303 return Operand; 1304 1305 ConstantFP *CFP = dyn_cast<ConstantFP>(Operand); 1306 if (!CFP) 1307 return Operand; 1308 1309 const APFloat &APF = CFP->getValueAPF(); 1310 // TODO: Should this canonicalize nans? 1311 if (!APF.isDenormal()) 1312 return Operand; 1313 1314 Type *Ty = CFP->getType(); 1315 DenormalMode DenormMode = 1316 I->getFunction()->getDenormalMode(Ty->getFltSemantics()); 1317 DenormalMode::DenormalModeKind Mode = 1318 IsOutput ? DenormMode.Output : DenormMode.Input; 1319 switch (Mode) { 1320 default: 1321 llvm_unreachable("unknown denormal mode"); 1322 case DenormalMode::Dynamic: 1323 return nullptr; 1324 case DenormalMode::IEEE: 1325 return Operand; 1326 case DenormalMode::PreserveSign: 1327 if (APF.isDenormal()) { 1328 return ConstantFP::get( 1329 Ty->getContext(), 1330 APFloat::getZero(Ty->getFltSemantics(), APF.isNegative())); 1331 } 1332 return Operand; 1333 case DenormalMode::PositiveZero: 1334 if (APF.isDenormal()) { 1335 return ConstantFP::get(Ty->getContext(), 1336 APFloat::getZero(Ty->getFltSemantics(), false)); 1337 } 1338 return Operand; 1339 } 1340 return Operand; 1341 } 1342 1343 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, 1344 Constant *RHS, const DataLayout &DL, 1345 const Instruction *I, 1346 bool AllowNonDeterministic) { 1347 if (Instruction::isBinaryOp(Opcode)) { 1348 // Flush denormal inputs if needed. 1349 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false); 1350 if (!Op0) 1351 return nullptr; 1352 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false); 1353 if (!Op1) 1354 return nullptr; 1355 1356 // If nsz or an algebraic FMF flag is set, the result of the FP operation 1357 // may change due to future optimization. Don't constant fold them if 1358 // non-deterministic results are not allowed. 1359 if (!AllowNonDeterministic) 1360 if (auto *FP = dyn_cast_or_null<FPMathOperator>(I)) 1361 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() || 1362 FP->hasAllowContract() || FP->hasAllowReciprocal()) 1363 return nullptr; 1364 1365 // Calculate constant result. 1366 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL); 1367 if (!C) 1368 return nullptr; 1369 1370 // Flush denormal output if needed. 1371 C = FlushFPConstant(C, I, /* IsOutput */ true); 1372 if (!C) 1373 return nullptr; 1374 1375 // The precise NaN value is non-deterministic. 1376 if (!AllowNonDeterministic && C->isNaN()) 1377 return nullptr; 1378 1379 return C; 1380 } 1381 // If instruction lacks a parent/function and the denormal mode cannot be 1382 // determined, use the default (IEEE). 1383 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL); 1384 } 1385 1386 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1387 Type *DestTy, const DataLayout &DL) { 1388 assert(Instruction::isCast(Opcode)); 1389 switch (Opcode) { 1390 default: 1391 llvm_unreachable("Missing case"); 1392 case Instruction::PtrToInt: 1393 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1394 Constant *FoldedValue = nullptr; 1395 // If the input is a inttoptr, eliminate the pair. This requires knowing 1396 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1397 if (CE->getOpcode() == Instruction::IntToPtr) { 1398 // zext/trunc the inttoptr to pointer size. 1399 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), 1400 DL.getIntPtrType(CE->getType()), 1401 /*IsSigned=*/false, DL); 1402 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1403 // If we have GEP, we can perform the following folds: 1404 // (ptrtoint (gep null, x)) -> x 1405 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1406 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1407 APInt BaseOffset(BitWidth, 0); 1408 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1409 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1410 if (Base->isNullValue()) { 1411 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1412 } else { 1413 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V 1414 if (GEP->getNumIndices() == 1 && 1415 GEP->getSourceElementType()->isIntegerTy(8)) { 1416 auto *Ptr = cast<Constant>(GEP->getPointerOperand()); 1417 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1)); 1418 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 1419 if (Sub && Sub->getType() == IntIdxTy && 1420 Sub->getOpcode() == Instruction::Sub && 1421 Sub->getOperand(0)->isNullValue()) 1422 FoldedValue = ConstantExpr::getSub( 1423 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1)); 1424 } 1425 } 1426 } 1427 if (FoldedValue) { 1428 // Do a zext or trunc to get to the ptrtoint dest size. 1429 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false, 1430 DL); 1431 } 1432 } 1433 break; 1434 case Instruction::IntToPtr: 1435 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1436 // the int size is >= the ptr size and the address spaces are the same. 1437 // This requires knowing the width of a pointer, so it can't be done in 1438 // ConstantExpr::getCast. 1439 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1440 if (CE->getOpcode() == Instruction::PtrToInt) { 1441 Constant *SrcPtr = CE->getOperand(0); 1442 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1443 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1444 1445 if (MidIntSize >= SrcPtrSize) { 1446 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1447 if (SrcAS == DestTy->getPointerAddressSpace()) 1448 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1449 } 1450 } 1451 } 1452 break; 1453 case Instruction::Trunc: 1454 case Instruction::ZExt: 1455 case Instruction::SExt: 1456 case Instruction::FPTrunc: 1457 case Instruction::FPExt: 1458 case Instruction::UIToFP: 1459 case Instruction::SIToFP: 1460 case Instruction::FPToUI: 1461 case Instruction::FPToSI: 1462 case Instruction::AddrSpaceCast: 1463 break; 1464 case Instruction::BitCast: 1465 return FoldBitCast(C, DestTy, DL); 1466 } 1467 1468 if (ConstantExpr::isDesirableCastOp(Opcode)) 1469 return ConstantExpr::getCast(Opcode, C, DestTy); 1470 return ConstantFoldCastInstruction(Opcode, C, DestTy); 1471 } 1472 1473 Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy, 1474 bool IsSigned, const DataLayout &DL) { 1475 Type *SrcTy = C->getType(); 1476 if (SrcTy == DestTy) 1477 return C; 1478 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) 1479 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL); 1480 if (IsSigned) 1481 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL); 1482 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL); 1483 } 1484 1485 //===----------------------------------------------------------------------===// 1486 // Constant Folding for Calls 1487 // 1488 1489 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1490 if (Call->isNoBuiltin()) 1491 return false; 1492 if (Call->getFunctionType() != F->getFunctionType()) 1493 return false; 1494 switch (F->getIntrinsicID()) { 1495 // Operations that do not operate floating-point numbers and do not depend on 1496 // FP environment can be folded even in strictfp functions. 1497 case Intrinsic::bswap: 1498 case Intrinsic::ctpop: 1499 case Intrinsic::ctlz: 1500 case Intrinsic::cttz: 1501 case Intrinsic::fshl: 1502 case Intrinsic::fshr: 1503 case Intrinsic::launder_invariant_group: 1504 case Intrinsic::strip_invariant_group: 1505 case Intrinsic::masked_load: 1506 case Intrinsic::get_active_lane_mask: 1507 case Intrinsic::abs: 1508 case Intrinsic::smax: 1509 case Intrinsic::smin: 1510 case Intrinsic::umax: 1511 case Intrinsic::umin: 1512 case Intrinsic::scmp: 1513 case Intrinsic::ucmp: 1514 case Intrinsic::sadd_with_overflow: 1515 case Intrinsic::uadd_with_overflow: 1516 case Intrinsic::ssub_with_overflow: 1517 case Intrinsic::usub_with_overflow: 1518 case Intrinsic::smul_with_overflow: 1519 case Intrinsic::umul_with_overflow: 1520 case Intrinsic::sadd_sat: 1521 case Intrinsic::uadd_sat: 1522 case Intrinsic::ssub_sat: 1523 case Intrinsic::usub_sat: 1524 case Intrinsic::smul_fix: 1525 case Intrinsic::smul_fix_sat: 1526 case Intrinsic::bitreverse: 1527 case Intrinsic::is_constant: 1528 case Intrinsic::vector_reduce_add: 1529 case Intrinsic::vector_reduce_mul: 1530 case Intrinsic::vector_reduce_and: 1531 case Intrinsic::vector_reduce_or: 1532 case Intrinsic::vector_reduce_xor: 1533 case Intrinsic::vector_reduce_smin: 1534 case Intrinsic::vector_reduce_smax: 1535 case Intrinsic::vector_reduce_umin: 1536 case Intrinsic::vector_reduce_umax: 1537 // Target intrinsics 1538 case Intrinsic::amdgcn_perm: 1539 case Intrinsic::amdgcn_wave_reduce_umin: 1540 case Intrinsic::amdgcn_wave_reduce_umax: 1541 case Intrinsic::amdgcn_s_wqm: 1542 case Intrinsic::amdgcn_s_quadmask: 1543 case Intrinsic::amdgcn_s_bitreplicate: 1544 case Intrinsic::arm_mve_vctp8: 1545 case Intrinsic::arm_mve_vctp16: 1546 case Intrinsic::arm_mve_vctp32: 1547 case Intrinsic::arm_mve_vctp64: 1548 case Intrinsic::aarch64_sve_convert_from_svbool: 1549 // WebAssembly float semantics are always known 1550 case Intrinsic::wasm_trunc_signed: 1551 case Intrinsic::wasm_trunc_unsigned: 1552 return true; 1553 1554 // Floating point operations cannot be folded in strictfp functions in 1555 // general case. They can be folded if FP environment is known to compiler. 1556 case Intrinsic::minnum: 1557 case Intrinsic::maxnum: 1558 case Intrinsic::minimum: 1559 case Intrinsic::maximum: 1560 case Intrinsic::log: 1561 case Intrinsic::log2: 1562 case Intrinsic::log10: 1563 case Intrinsic::exp: 1564 case Intrinsic::exp2: 1565 case Intrinsic::exp10: 1566 case Intrinsic::sqrt: 1567 case Intrinsic::sin: 1568 case Intrinsic::cos: 1569 case Intrinsic::pow: 1570 case Intrinsic::powi: 1571 case Intrinsic::ldexp: 1572 case Intrinsic::fma: 1573 case Intrinsic::fmuladd: 1574 case Intrinsic::frexp: 1575 case Intrinsic::fptoui_sat: 1576 case Intrinsic::fptosi_sat: 1577 case Intrinsic::convert_from_fp16: 1578 case Intrinsic::convert_to_fp16: 1579 case Intrinsic::amdgcn_cos: 1580 case Intrinsic::amdgcn_cubeid: 1581 case Intrinsic::amdgcn_cubema: 1582 case Intrinsic::amdgcn_cubesc: 1583 case Intrinsic::amdgcn_cubetc: 1584 case Intrinsic::amdgcn_fmul_legacy: 1585 case Intrinsic::amdgcn_fma_legacy: 1586 case Intrinsic::amdgcn_fract: 1587 case Intrinsic::amdgcn_sin: 1588 // The intrinsics below depend on rounding mode in MXCSR. 1589 case Intrinsic::x86_sse_cvtss2si: 1590 case Intrinsic::x86_sse_cvtss2si64: 1591 case Intrinsic::x86_sse_cvttss2si: 1592 case Intrinsic::x86_sse_cvttss2si64: 1593 case Intrinsic::x86_sse2_cvtsd2si: 1594 case Intrinsic::x86_sse2_cvtsd2si64: 1595 case Intrinsic::x86_sse2_cvttsd2si: 1596 case Intrinsic::x86_sse2_cvttsd2si64: 1597 case Intrinsic::x86_avx512_vcvtss2si32: 1598 case Intrinsic::x86_avx512_vcvtss2si64: 1599 case Intrinsic::x86_avx512_cvttss2si: 1600 case Intrinsic::x86_avx512_cvttss2si64: 1601 case Intrinsic::x86_avx512_vcvtsd2si32: 1602 case Intrinsic::x86_avx512_vcvtsd2si64: 1603 case Intrinsic::x86_avx512_cvttsd2si: 1604 case Intrinsic::x86_avx512_cvttsd2si64: 1605 case Intrinsic::x86_avx512_vcvtss2usi32: 1606 case Intrinsic::x86_avx512_vcvtss2usi64: 1607 case Intrinsic::x86_avx512_cvttss2usi: 1608 case Intrinsic::x86_avx512_cvttss2usi64: 1609 case Intrinsic::x86_avx512_vcvtsd2usi32: 1610 case Intrinsic::x86_avx512_vcvtsd2usi64: 1611 case Intrinsic::x86_avx512_cvttsd2usi: 1612 case Intrinsic::x86_avx512_cvttsd2usi64: 1613 return !Call->isStrictFP(); 1614 1615 // Sign operations are actually bitwise operations, they do not raise 1616 // exceptions even for SNANs. 1617 case Intrinsic::fabs: 1618 case Intrinsic::copysign: 1619 case Intrinsic::is_fpclass: 1620 // Non-constrained variants of rounding operations means default FP 1621 // environment, they can be folded in any case. 1622 case Intrinsic::ceil: 1623 case Intrinsic::floor: 1624 case Intrinsic::round: 1625 case Intrinsic::roundeven: 1626 case Intrinsic::trunc: 1627 case Intrinsic::nearbyint: 1628 case Intrinsic::rint: 1629 case Intrinsic::canonicalize: 1630 // Constrained intrinsics can be folded if FP environment is known 1631 // to compiler. 1632 case Intrinsic::experimental_constrained_fma: 1633 case Intrinsic::experimental_constrained_fmuladd: 1634 case Intrinsic::experimental_constrained_fadd: 1635 case Intrinsic::experimental_constrained_fsub: 1636 case Intrinsic::experimental_constrained_fmul: 1637 case Intrinsic::experimental_constrained_fdiv: 1638 case Intrinsic::experimental_constrained_frem: 1639 case Intrinsic::experimental_constrained_ceil: 1640 case Intrinsic::experimental_constrained_floor: 1641 case Intrinsic::experimental_constrained_round: 1642 case Intrinsic::experimental_constrained_roundeven: 1643 case Intrinsic::experimental_constrained_trunc: 1644 case Intrinsic::experimental_constrained_nearbyint: 1645 case Intrinsic::experimental_constrained_rint: 1646 case Intrinsic::experimental_constrained_fcmp: 1647 case Intrinsic::experimental_constrained_fcmps: 1648 return true; 1649 default: 1650 return false; 1651 case Intrinsic::not_intrinsic: break; 1652 } 1653 1654 if (!F->hasName() || Call->isStrictFP()) 1655 return false; 1656 1657 // In these cases, the check of the length is required. We don't want to 1658 // return true for a name like "cos\0blah" which strcmp would return equal to 1659 // "cos", but has length 8. 1660 StringRef Name = F->getName(); 1661 switch (Name[0]) { 1662 default: 1663 return false; 1664 case 'a': 1665 return Name == "acos" || Name == "acosf" || 1666 Name == "asin" || Name == "asinf" || 1667 Name == "atan" || Name == "atanf" || 1668 Name == "atan2" || Name == "atan2f"; 1669 case 'c': 1670 return Name == "ceil" || Name == "ceilf" || 1671 Name == "cos" || Name == "cosf" || 1672 Name == "cosh" || Name == "coshf"; 1673 case 'e': 1674 return Name == "exp" || Name == "expf" || 1675 Name == "exp2" || Name == "exp2f"; 1676 case 'f': 1677 return Name == "fabs" || Name == "fabsf" || 1678 Name == "floor" || Name == "floorf" || 1679 Name == "fmod" || Name == "fmodf"; 1680 case 'l': 1681 return Name == "log" || Name == "logf" || Name == "log2" || 1682 Name == "log2f" || Name == "log10" || Name == "log10f" || 1683 Name == "logl"; 1684 case 'n': 1685 return Name == "nearbyint" || Name == "nearbyintf"; 1686 case 'p': 1687 return Name == "pow" || Name == "powf"; 1688 case 'r': 1689 return Name == "remainder" || Name == "remainderf" || 1690 Name == "rint" || Name == "rintf" || 1691 Name == "round" || Name == "roundf"; 1692 case 's': 1693 return Name == "sin" || Name == "sinf" || 1694 Name == "sinh" || Name == "sinhf" || 1695 Name == "sqrt" || Name == "sqrtf"; 1696 case 't': 1697 return Name == "tan" || Name == "tanf" || 1698 Name == "tanh" || Name == "tanhf" || 1699 Name == "trunc" || Name == "truncf"; 1700 case '_': 1701 // Check for various function names that get used for the math functions 1702 // when the header files are preprocessed with the macro 1703 // __FINITE_MATH_ONLY__ enabled. 1704 // The '12' here is the length of the shortest name that can match. 1705 // We need to check the size before looking at Name[1] and Name[2] 1706 // so we may as well check a limit that will eliminate mismatches. 1707 if (Name.size() < 12 || Name[1] != '_') 1708 return false; 1709 switch (Name[2]) { 1710 default: 1711 return false; 1712 case 'a': 1713 return Name == "__acos_finite" || Name == "__acosf_finite" || 1714 Name == "__asin_finite" || Name == "__asinf_finite" || 1715 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1716 case 'c': 1717 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1718 case 'e': 1719 return Name == "__exp_finite" || Name == "__expf_finite" || 1720 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1721 case 'l': 1722 return Name == "__log_finite" || Name == "__logf_finite" || 1723 Name == "__log10_finite" || Name == "__log10f_finite"; 1724 case 'p': 1725 return Name == "__pow_finite" || Name == "__powf_finite"; 1726 case 's': 1727 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1728 } 1729 } 1730 } 1731 1732 namespace { 1733 1734 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1735 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1736 APFloat APF(V); 1737 bool unused; 1738 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1739 return ConstantFP::get(Ty->getContext(), APF); 1740 } 1741 if (Ty->isDoubleTy()) 1742 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1743 llvm_unreachable("Can only constant fold half/float/double"); 1744 } 1745 1746 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) 1747 Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) { 1748 if (Ty->isFP128Ty()) 1749 return ConstantFP::get(Ty, V); 1750 llvm_unreachable("Can only constant fold fp128"); 1751 } 1752 #endif 1753 1754 /// Clear the floating-point exception state. 1755 inline void llvm_fenv_clearexcept() { 1756 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1757 feclearexcept(FE_ALL_EXCEPT); 1758 #endif 1759 errno = 0; 1760 } 1761 1762 /// Test if a floating-point exception was raised. 1763 inline bool llvm_fenv_testexcept() { 1764 int errno_val = errno; 1765 if (errno_val == ERANGE || errno_val == EDOM) 1766 return true; 1767 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1768 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1769 return true; 1770 #endif 1771 return false; 1772 } 1773 1774 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1775 Type *Ty) { 1776 llvm_fenv_clearexcept(); 1777 double Result = NativeFP(V.convertToDouble()); 1778 if (llvm_fenv_testexcept()) { 1779 llvm_fenv_clearexcept(); 1780 return nullptr; 1781 } 1782 1783 return GetConstantFoldFPValue(Result, Ty); 1784 } 1785 1786 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) 1787 Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V, 1788 Type *Ty) { 1789 llvm_fenv_clearexcept(); 1790 float128 Result = NativeFP(V.convertToQuad()); 1791 if (llvm_fenv_testexcept()) { 1792 llvm_fenv_clearexcept(); 1793 return nullptr; 1794 } 1795 1796 return GetConstantFoldFPValue128(Result, Ty); 1797 } 1798 #endif 1799 1800 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1801 const APFloat &V, const APFloat &W, Type *Ty) { 1802 llvm_fenv_clearexcept(); 1803 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1804 if (llvm_fenv_testexcept()) { 1805 llvm_fenv_clearexcept(); 1806 return nullptr; 1807 } 1808 1809 return GetConstantFoldFPValue(Result, Ty); 1810 } 1811 1812 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1813 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1814 if (!VT) 1815 return nullptr; 1816 1817 // This isn't strictly necessary, but handle the special/common case of zero: 1818 // all integer reductions of a zero input produce zero. 1819 if (isa<ConstantAggregateZero>(Op)) 1820 return ConstantInt::get(VT->getElementType(), 0); 1821 1822 // This is the same as the underlying binops - poison propagates. 1823 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1824 return PoisonValue::get(VT->getElementType()); 1825 1826 // TODO: Handle undef. 1827 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1828 return nullptr; 1829 1830 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1831 if (!EltC) 1832 return nullptr; 1833 1834 APInt Acc = EltC->getValue(); 1835 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1836 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1837 return nullptr; 1838 const APInt &X = EltC->getValue(); 1839 switch (IID) { 1840 case Intrinsic::vector_reduce_add: 1841 Acc = Acc + X; 1842 break; 1843 case Intrinsic::vector_reduce_mul: 1844 Acc = Acc * X; 1845 break; 1846 case Intrinsic::vector_reduce_and: 1847 Acc = Acc & X; 1848 break; 1849 case Intrinsic::vector_reduce_or: 1850 Acc = Acc | X; 1851 break; 1852 case Intrinsic::vector_reduce_xor: 1853 Acc = Acc ^ X; 1854 break; 1855 case Intrinsic::vector_reduce_smin: 1856 Acc = APIntOps::smin(Acc, X); 1857 break; 1858 case Intrinsic::vector_reduce_smax: 1859 Acc = APIntOps::smax(Acc, X); 1860 break; 1861 case Intrinsic::vector_reduce_umin: 1862 Acc = APIntOps::umin(Acc, X); 1863 break; 1864 case Intrinsic::vector_reduce_umax: 1865 Acc = APIntOps::umax(Acc, X); 1866 break; 1867 } 1868 } 1869 1870 return ConstantInt::get(Op->getContext(), Acc); 1871 } 1872 1873 /// Attempt to fold an SSE floating point to integer conversion of a constant 1874 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1875 /// used (toward nearest, ties to even). This matches the behavior of the 1876 /// non-truncating SSE instructions in the default rounding mode. The desired 1877 /// integer type Ty is used to select how many bits are available for the 1878 /// result. Returns null if the conversion cannot be performed, otherwise 1879 /// returns the Constant value resulting from the conversion. 1880 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1881 Type *Ty, bool IsSigned) { 1882 // All of these conversion intrinsics form an integer of at most 64bits. 1883 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1884 assert(ResultWidth <= 64 && 1885 "Can only constant fold conversions to 64 and 32 bit ints"); 1886 1887 uint64_t UIntVal; 1888 bool isExact = false; 1889 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1890 : APFloat::rmNearestTiesToEven; 1891 APFloat::opStatus status = 1892 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth, 1893 IsSigned, mode, &isExact); 1894 if (status != APFloat::opOK && 1895 (!roundTowardZero || status != APFloat::opInexact)) 1896 return nullptr; 1897 return ConstantInt::get(Ty, UIntVal, IsSigned); 1898 } 1899 1900 double getValueAsDouble(ConstantFP *Op) { 1901 Type *Ty = Op->getType(); 1902 1903 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1904 return Op->getValueAPF().convertToDouble(); 1905 1906 bool unused; 1907 APFloat APF = Op->getValueAPF(); 1908 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1909 return APF.convertToDouble(); 1910 } 1911 1912 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1913 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1914 C = &CI->getValue(); 1915 return true; 1916 } 1917 if (isa<UndefValue>(Op)) { 1918 C = nullptr; 1919 return true; 1920 } 1921 return false; 1922 } 1923 1924 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1925 /// to be folded. 1926 /// 1927 /// \param CI Constrained intrinsic call. 1928 /// \param St Exception flags raised during constant evaluation. 1929 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1930 APFloat::opStatus St) { 1931 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 1932 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1933 1934 // If the operation does not change exception status flags, it is safe 1935 // to fold. 1936 if (St == APFloat::opStatus::opOK) 1937 return true; 1938 1939 // If evaluation raised FP exception, the result can depend on rounding 1940 // mode. If the latter is unknown, folding is not possible. 1941 if (ORM && *ORM == RoundingMode::Dynamic) 1942 return false; 1943 1944 // If FP exceptions are ignored, fold the call, even if such exception is 1945 // raised. 1946 if (EB && *EB != fp::ExceptionBehavior::ebStrict) 1947 return true; 1948 1949 // Leave the calculation for runtime so that exception flags be correctly set 1950 // in hardware. 1951 return false; 1952 } 1953 1954 /// Returns the rounding mode that should be used for constant evaluation. 1955 static RoundingMode 1956 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1957 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 1958 if (!ORM || *ORM == RoundingMode::Dynamic) 1959 // Even if the rounding mode is unknown, try evaluating the operation. 1960 // If it does not raise inexact exception, rounding was not applied, 1961 // so the result is exact and does not depend on rounding mode. Whether 1962 // other FP exceptions are raised, it does not depend on rounding mode. 1963 return RoundingMode::NearestTiesToEven; 1964 return *ORM; 1965 } 1966 1967 /// Try to constant fold llvm.canonicalize for the given caller and value. 1968 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI, 1969 const APFloat &Src) { 1970 // Zero, positive and negative, is always OK to fold. 1971 if (Src.isZero()) { 1972 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros. 1973 return ConstantFP::get( 1974 CI->getContext(), 1975 APFloat::getZero(Src.getSemantics(), Src.isNegative())); 1976 } 1977 1978 if (!Ty->isIEEELikeFPTy()) 1979 return nullptr; 1980 1981 // Zero is always canonical and the sign must be preserved. 1982 // 1983 // Denorms and nans may have special encodings, but it should be OK to fold a 1984 // totally average number. 1985 if (Src.isNormal() || Src.isInfinity()) 1986 return ConstantFP::get(CI->getContext(), Src); 1987 1988 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) { 1989 DenormalMode DenormMode = 1990 CI->getFunction()->getDenormalMode(Src.getSemantics()); 1991 1992 if (DenormMode == DenormalMode::getIEEE()) 1993 return ConstantFP::get(CI->getContext(), Src); 1994 1995 if (DenormMode.Input == DenormalMode::Dynamic) 1996 return nullptr; 1997 1998 // If we know if either input or output is flushed, we can fold. 1999 if ((DenormMode.Input == DenormalMode::Dynamic && 2000 DenormMode.Output == DenormalMode::IEEE) || 2001 (DenormMode.Input == DenormalMode::IEEE && 2002 DenormMode.Output == DenormalMode::Dynamic)) 2003 return nullptr; 2004 2005 bool IsPositive = 2006 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero || 2007 (DenormMode.Output == DenormalMode::PositiveZero && 2008 DenormMode.Input == DenormalMode::IEEE)); 2009 2010 return ConstantFP::get(CI->getContext(), 2011 APFloat::getZero(Src.getSemantics(), !IsPositive)); 2012 } 2013 2014 return nullptr; 2015 } 2016 2017 static Constant *ConstantFoldScalarCall1(StringRef Name, 2018 Intrinsic::ID IntrinsicID, 2019 Type *Ty, 2020 ArrayRef<Constant *> Operands, 2021 const TargetLibraryInfo *TLI, 2022 const CallBase *Call) { 2023 assert(Operands.size() == 1 && "Wrong number of operands."); 2024 2025 if (IntrinsicID == Intrinsic::is_constant) { 2026 // We know we have a "Constant" argument. But we want to only 2027 // return true for manifest constants, not those that depend on 2028 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 2029 if (Operands[0]->isManifestConstant()) 2030 return ConstantInt::getTrue(Ty->getContext()); 2031 return nullptr; 2032 } 2033 2034 if (isa<PoisonValue>(Operands[0])) { 2035 // TODO: All of these operations should probably propagate poison. 2036 if (IntrinsicID == Intrinsic::canonicalize) 2037 return PoisonValue::get(Ty); 2038 } 2039 2040 if (isa<UndefValue>(Operands[0])) { 2041 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 2042 // ctpop() is between 0 and bitwidth, pick 0 for undef. 2043 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 2044 if (IntrinsicID == Intrinsic::cos || 2045 IntrinsicID == Intrinsic::ctpop || 2046 IntrinsicID == Intrinsic::fptoui_sat || 2047 IntrinsicID == Intrinsic::fptosi_sat || 2048 IntrinsicID == Intrinsic::canonicalize) 2049 return Constant::getNullValue(Ty); 2050 if (IntrinsicID == Intrinsic::bswap || 2051 IntrinsicID == Intrinsic::bitreverse || 2052 IntrinsicID == Intrinsic::launder_invariant_group || 2053 IntrinsicID == Intrinsic::strip_invariant_group) 2054 return Operands[0]; 2055 } 2056 2057 if (isa<ConstantPointerNull>(Operands[0])) { 2058 // launder(null) == null == strip(null) iff in addrspace 0 2059 if (IntrinsicID == Intrinsic::launder_invariant_group || 2060 IntrinsicID == Intrinsic::strip_invariant_group) { 2061 // If instruction is not yet put in a basic block (e.g. when cloning 2062 // a function during inlining), Call's caller may not be available. 2063 // So check Call's BB first before querying Call->getCaller. 2064 const Function *Caller = 2065 Call->getParent() ? Call->getCaller() : nullptr; 2066 if (Caller && 2067 !NullPointerIsDefined( 2068 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 2069 return Operands[0]; 2070 } 2071 return nullptr; 2072 } 2073 } 2074 2075 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 2076 if (IntrinsicID == Intrinsic::convert_to_fp16) { 2077 APFloat Val(Op->getValueAPF()); 2078 2079 bool lost = false; 2080 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 2081 2082 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 2083 } 2084 2085 APFloat U = Op->getValueAPF(); 2086 2087 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 2088 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 2089 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 2090 2091 if (U.isNaN()) 2092 return nullptr; 2093 2094 unsigned Width = Ty->getIntegerBitWidth(); 2095 APSInt Int(Width, !Signed); 2096 bool IsExact = false; 2097 APFloat::opStatus Status = 2098 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2099 2100 if (Status == APFloat::opOK || Status == APFloat::opInexact) 2101 return ConstantInt::get(Ty, Int); 2102 2103 return nullptr; 2104 } 2105 2106 if (IntrinsicID == Intrinsic::fptoui_sat || 2107 IntrinsicID == Intrinsic::fptosi_sat) { 2108 // convertToInteger() already has the desired saturation semantics. 2109 APSInt Int(Ty->getIntegerBitWidth(), 2110 IntrinsicID == Intrinsic::fptoui_sat); 2111 bool IsExact; 2112 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2113 return ConstantInt::get(Ty, Int); 2114 } 2115 2116 if (IntrinsicID == Intrinsic::canonicalize) 2117 return constantFoldCanonicalize(Ty, Call, U); 2118 2119 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) 2120 if (Ty->isFP128Ty()) { 2121 if (IntrinsicID == Intrinsic::log) { 2122 float128 Result = logf128(Op->getValueAPF().convertToQuad()); 2123 return GetConstantFoldFPValue128(Result, Ty); 2124 } 2125 2126 LibFunc Fp128Func = NotLibFunc; 2127 if (TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) && 2128 Fp128Func == LibFunc_logl) 2129 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty); 2130 } 2131 #endif 2132 2133 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2134 return nullptr; 2135 2136 // Use internal versions of these intrinsics. 2137 2138 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 2139 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2140 return ConstantFP::get(Ty->getContext(), U); 2141 } 2142 2143 if (IntrinsicID == Intrinsic::round) { 2144 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2145 return ConstantFP::get(Ty->getContext(), U); 2146 } 2147 2148 if (IntrinsicID == Intrinsic::roundeven) { 2149 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2150 return ConstantFP::get(Ty->getContext(), U); 2151 } 2152 2153 if (IntrinsicID == Intrinsic::ceil) { 2154 U.roundToIntegral(APFloat::rmTowardPositive); 2155 return ConstantFP::get(Ty->getContext(), U); 2156 } 2157 2158 if (IntrinsicID == Intrinsic::floor) { 2159 U.roundToIntegral(APFloat::rmTowardNegative); 2160 return ConstantFP::get(Ty->getContext(), U); 2161 } 2162 2163 if (IntrinsicID == Intrinsic::trunc) { 2164 U.roundToIntegral(APFloat::rmTowardZero); 2165 return ConstantFP::get(Ty->getContext(), U); 2166 } 2167 2168 if (IntrinsicID == Intrinsic::fabs) { 2169 U.clearSign(); 2170 return ConstantFP::get(Ty->getContext(), U); 2171 } 2172 2173 if (IntrinsicID == Intrinsic::amdgcn_fract) { 2174 // The v_fract instruction behaves like the OpenCL spec, which defines 2175 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 2176 // there to prevent fract(-small) from returning 1.0. It returns the 2177 // largest positive floating-point number less than 1.0." 2178 APFloat FloorU(U); 2179 FloorU.roundToIntegral(APFloat::rmTowardNegative); 2180 APFloat FractU(U - FloorU); 2181 APFloat AlmostOne(U.getSemantics(), 1); 2182 AlmostOne.next(/*nextDown*/ true); 2183 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 2184 } 2185 2186 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 2187 // raise FP exceptions, unless the argument is signaling NaN. 2188 2189 std::optional<APFloat::roundingMode> RM; 2190 switch (IntrinsicID) { 2191 default: 2192 break; 2193 case Intrinsic::experimental_constrained_nearbyint: 2194 case Intrinsic::experimental_constrained_rint: { 2195 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2196 RM = CI->getRoundingMode(); 2197 if (!RM || *RM == RoundingMode::Dynamic) 2198 return nullptr; 2199 break; 2200 } 2201 case Intrinsic::experimental_constrained_round: 2202 RM = APFloat::rmNearestTiesToAway; 2203 break; 2204 case Intrinsic::experimental_constrained_ceil: 2205 RM = APFloat::rmTowardPositive; 2206 break; 2207 case Intrinsic::experimental_constrained_floor: 2208 RM = APFloat::rmTowardNegative; 2209 break; 2210 case Intrinsic::experimental_constrained_trunc: 2211 RM = APFloat::rmTowardZero; 2212 break; 2213 } 2214 if (RM) { 2215 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2216 if (U.isFinite()) { 2217 APFloat::opStatus St = U.roundToIntegral(*RM); 2218 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2219 St == APFloat::opInexact) { 2220 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2221 if (EB && *EB == fp::ebStrict) 2222 return nullptr; 2223 } 2224 } else if (U.isSignaling()) { 2225 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2226 if (EB && *EB != fp::ebIgnore) 2227 return nullptr; 2228 U = APFloat::getQNaN(U.getSemantics()); 2229 } 2230 return ConstantFP::get(Ty->getContext(), U); 2231 } 2232 2233 /// We only fold functions with finite arguments. Folding NaN and inf is 2234 /// likely to be aborted with an exception anyway, and some host libms 2235 /// have known errors raising exceptions. 2236 if (!U.isFinite()) 2237 return nullptr; 2238 2239 /// Currently APFloat versions of these functions do not exist, so we use 2240 /// the host native double versions. Float versions are not called 2241 /// directly but for all these it is true (float)(f((double)arg)) == 2242 /// f(arg). Long double not supported yet. 2243 const APFloat &APF = Op->getValueAPF(); 2244 2245 switch (IntrinsicID) { 2246 default: break; 2247 case Intrinsic::log: 2248 return ConstantFoldFP(log, APF, Ty); 2249 case Intrinsic::log2: 2250 // TODO: What about hosts that lack a C99 library? 2251 return ConstantFoldFP(log2, APF, Ty); 2252 case Intrinsic::log10: 2253 // TODO: What about hosts that lack a C99 library? 2254 return ConstantFoldFP(log10, APF, Ty); 2255 case Intrinsic::exp: 2256 return ConstantFoldFP(exp, APF, Ty); 2257 case Intrinsic::exp2: 2258 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2259 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2260 case Intrinsic::exp10: 2261 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library. 2262 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty); 2263 case Intrinsic::sin: 2264 return ConstantFoldFP(sin, APF, Ty); 2265 case Intrinsic::cos: 2266 return ConstantFoldFP(cos, APF, Ty); 2267 case Intrinsic::sqrt: 2268 return ConstantFoldFP(sqrt, APF, Ty); 2269 case Intrinsic::amdgcn_cos: 2270 case Intrinsic::amdgcn_sin: { 2271 double V = getValueAsDouble(Op); 2272 if (V < -256.0 || V > 256.0) 2273 // The gfx8 and gfx9 architectures handle arguments outside the range 2274 // [-256, 256] differently. This should be a rare case so bail out 2275 // rather than trying to handle the difference. 2276 return nullptr; 2277 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2278 double V4 = V * 4.0; 2279 if (V4 == floor(V4)) { 2280 // Force exact results for quarter-integer inputs. 2281 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2282 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2283 } else { 2284 if (IsCos) 2285 V = cos(V * 2.0 * numbers::pi); 2286 else 2287 V = sin(V * 2.0 * numbers::pi); 2288 } 2289 return GetConstantFoldFPValue(V, Ty); 2290 } 2291 } 2292 2293 if (!TLI) 2294 return nullptr; 2295 2296 LibFunc Func = NotLibFunc; 2297 if (!TLI->getLibFunc(Name, Func)) 2298 return nullptr; 2299 2300 switch (Func) { 2301 default: 2302 break; 2303 case LibFunc_acos: 2304 case LibFunc_acosf: 2305 case LibFunc_acos_finite: 2306 case LibFunc_acosf_finite: 2307 if (TLI->has(Func)) 2308 return ConstantFoldFP(acos, APF, Ty); 2309 break; 2310 case LibFunc_asin: 2311 case LibFunc_asinf: 2312 case LibFunc_asin_finite: 2313 case LibFunc_asinf_finite: 2314 if (TLI->has(Func)) 2315 return ConstantFoldFP(asin, APF, Ty); 2316 break; 2317 case LibFunc_atan: 2318 case LibFunc_atanf: 2319 if (TLI->has(Func)) 2320 return ConstantFoldFP(atan, APF, Ty); 2321 break; 2322 case LibFunc_ceil: 2323 case LibFunc_ceilf: 2324 if (TLI->has(Func)) { 2325 U.roundToIntegral(APFloat::rmTowardPositive); 2326 return ConstantFP::get(Ty->getContext(), U); 2327 } 2328 break; 2329 case LibFunc_cos: 2330 case LibFunc_cosf: 2331 if (TLI->has(Func)) 2332 return ConstantFoldFP(cos, APF, Ty); 2333 break; 2334 case LibFunc_cosh: 2335 case LibFunc_coshf: 2336 case LibFunc_cosh_finite: 2337 case LibFunc_coshf_finite: 2338 if (TLI->has(Func)) 2339 return ConstantFoldFP(cosh, APF, Ty); 2340 break; 2341 case LibFunc_exp: 2342 case LibFunc_expf: 2343 case LibFunc_exp_finite: 2344 case LibFunc_expf_finite: 2345 if (TLI->has(Func)) 2346 return ConstantFoldFP(exp, APF, Ty); 2347 break; 2348 case LibFunc_exp2: 2349 case LibFunc_exp2f: 2350 case LibFunc_exp2_finite: 2351 case LibFunc_exp2f_finite: 2352 if (TLI->has(Func)) 2353 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2354 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2355 break; 2356 case LibFunc_fabs: 2357 case LibFunc_fabsf: 2358 if (TLI->has(Func)) { 2359 U.clearSign(); 2360 return ConstantFP::get(Ty->getContext(), U); 2361 } 2362 break; 2363 case LibFunc_floor: 2364 case LibFunc_floorf: 2365 if (TLI->has(Func)) { 2366 U.roundToIntegral(APFloat::rmTowardNegative); 2367 return ConstantFP::get(Ty->getContext(), U); 2368 } 2369 break; 2370 case LibFunc_log: 2371 case LibFunc_logf: 2372 case LibFunc_log_finite: 2373 case LibFunc_logf_finite: 2374 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2375 return ConstantFoldFP(log, APF, Ty); 2376 break; 2377 case LibFunc_log2: 2378 case LibFunc_log2f: 2379 case LibFunc_log2_finite: 2380 case LibFunc_log2f_finite: 2381 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2382 // TODO: What about hosts that lack a C99 library? 2383 return ConstantFoldFP(log2, APF, Ty); 2384 break; 2385 case LibFunc_log10: 2386 case LibFunc_log10f: 2387 case LibFunc_log10_finite: 2388 case LibFunc_log10f_finite: 2389 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2390 // TODO: What about hosts that lack a C99 library? 2391 return ConstantFoldFP(log10, APF, Ty); 2392 break; 2393 case LibFunc_logl: 2394 return nullptr; 2395 case LibFunc_nearbyint: 2396 case LibFunc_nearbyintf: 2397 case LibFunc_rint: 2398 case LibFunc_rintf: 2399 if (TLI->has(Func)) { 2400 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2401 return ConstantFP::get(Ty->getContext(), U); 2402 } 2403 break; 2404 case LibFunc_round: 2405 case LibFunc_roundf: 2406 if (TLI->has(Func)) { 2407 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2408 return ConstantFP::get(Ty->getContext(), U); 2409 } 2410 break; 2411 case LibFunc_sin: 2412 case LibFunc_sinf: 2413 if (TLI->has(Func)) 2414 return ConstantFoldFP(sin, APF, Ty); 2415 break; 2416 case LibFunc_sinh: 2417 case LibFunc_sinhf: 2418 case LibFunc_sinh_finite: 2419 case LibFunc_sinhf_finite: 2420 if (TLI->has(Func)) 2421 return ConstantFoldFP(sinh, APF, Ty); 2422 break; 2423 case LibFunc_sqrt: 2424 case LibFunc_sqrtf: 2425 if (!APF.isNegative() && TLI->has(Func)) 2426 return ConstantFoldFP(sqrt, APF, Ty); 2427 break; 2428 case LibFunc_tan: 2429 case LibFunc_tanf: 2430 if (TLI->has(Func)) 2431 return ConstantFoldFP(tan, APF, Ty); 2432 break; 2433 case LibFunc_tanh: 2434 case LibFunc_tanhf: 2435 if (TLI->has(Func)) 2436 return ConstantFoldFP(tanh, APF, Ty); 2437 break; 2438 case LibFunc_trunc: 2439 case LibFunc_truncf: 2440 if (TLI->has(Func)) { 2441 U.roundToIntegral(APFloat::rmTowardZero); 2442 return ConstantFP::get(Ty->getContext(), U); 2443 } 2444 break; 2445 } 2446 return nullptr; 2447 } 2448 2449 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2450 switch (IntrinsicID) { 2451 case Intrinsic::bswap: 2452 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2453 case Intrinsic::ctpop: 2454 return ConstantInt::get(Ty, Op->getValue().popcount()); 2455 case Intrinsic::bitreverse: 2456 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2457 case Intrinsic::convert_from_fp16: { 2458 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2459 2460 bool lost = false; 2461 APFloat::opStatus status = Val.convert( 2462 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2463 2464 // Conversion is always precise. 2465 (void)status; 2466 assert(status != APFloat::opInexact && !lost && 2467 "Precision lost during fp16 constfolding"); 2468 2469 return ConstantFP::get(Ty->getContext(), Val); 2470 } 2471 2472 case Intrinsic::amdgcn_s_wqm: { 2473 uint64_t Val = Op->getZExtValue(); 2474 Val |= (Val & 0x5555555555555555ULL) << 1 | 2475 ((Val >> 1) & 0x5555555555555555ULL); 2476 Val |= (Val & 0x3333333333333333ULL) << 2 | 2477 ((Val >> 2) & 0x3333333333333333ULL); 2478 return ConstantInt::get(Ty, Val); 2479 } 2480 2481 case Intrinsic::amdgcn_s_quadmask: { 2482 uint64_t Val = Op->getZExtValue(); 2483 uint64_t QuadMask = 0; 2484 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) { 2485 if (!(Val & 0xF)) 2486 continue; 2487 2488 QuadMask |= (1ULL << I); 2489 } 2490 return ConstantInt::get(Ty, QuadMask); 2491 } 2492 2493 case Intrinsic::amdgcn_s_bitreplicate: { 2494 uint64_t Val = Op->getZExtValue(); 2495 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16; 2496 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8; 2497 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4; 2498 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2; 2499 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1; 2500 Val = Val | Val << 1; 2501 return ConstantInt::get(Ty, Val); 2502 } 2503 2504 default: 2505 return nullptr; 2506 } 2507 } 2508 2509 switch (IntrinsicID) { 2510 default: break; 2511 case Intrinsic::vector_reduce_add: 2512 case Intrinsic::vector_reduce_mul: 2513 case Intrinsic::vector_reduce_and: 2514 case Intrinsic::vector_reduce_or: 2515 case Intrinsic::vector_reduce_xor: 2516 case Intrinsic::vector_reduce_smin: 2517 case Intrinsic::vector_reduce_smax: 2518 case Intrinsic::vector_reduce_umin: 2519 case Intrinsic::vector_reduce_umax: 2520 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2521 return C; 2522 break; 2523 } 2524 2525 // Support ConstantVector in case we have an Undef in the top. 2526 if (isa<ConstantVector>(Operands[0]) || 2527 isa<ConstantDataVector>(Operands[0])) { 2528 auto *Op = cast<Constant>(Operands[0]); 2529 switch (IntrinsicID) { 2530 default: break; 2531 case Intrinsic::x86_sse_cvtss2si: 2532 case Intrinsic::x86_sse_cvtss2si64: 2533 case Intrinsic::x86_sse2_cvtsd2si: 2534 case Intrinsic::x86_sse2_cvtsd2si64: 2535 if (ConstantFP *FPOp = 2536 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2537 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2538 /*roundTowardZero=*/false, Ty, 2539 /*IsSigned*/true); 2540 break; 2541 case Intrinsic::x86_sse_cvttss2si: 2542 case Intrinsic::x86_sse_cvttss2si64: 2543 case Intrinsic::x86_sse2_cvttsd2si: 2544 case Intrinsic::x86_sse2_cvttsd2si64: 2545 if (ConstantFP *FPOp = 2546 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2547 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2548 /*roundTowardZero=*/true, Ty, 2549 /*IsSigned*/true); 2550 break; 2551 } 2552 } 2553 2554 return nullptr; 2555 } 2556 2557 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2, 2558 const ConstrainedFPIntrinsic *Call) { 2559 APFloat::opStatus St = APFloat::opOK; 2560 auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call); 2561 FCmpInst::Predicate Cond = FCmp->getPredicate(); 2562 if (FCmp->isSignaling()) { 2563 if (Op1.isNaN() || Op2.isNaN()) 2564 St = APFloat::opInvalidOp; 2565 } else { 2566 if (Op1.isSignaling() || Op2.isSignaling()) 2567 St = APFloat::opInvalidOp; 2568 } 2569 bool Result = FCmpInst::compare(Op1, Op2, Cond); 2570 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St)) 2571 return ConstantInt::get(Call->getType()->getScalarType(), Result); 2572 return nullptr; 2573 } 2574 2575 static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty, 2576 ArrayRef<Constant *> Operands, 2577 const TargetLibraryInfo *TLI) { 2578 if (!TLI) 2579 return nullptr; 2580 2581 LibFunc Func = NotLibFunc; 2582 if (!TLI->getLibFunc(Name, Func)) 2583 return nullptr; 2584 2585 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]); 2586 if (!Op1) 2587 return nullptr; 2588 2589 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]); 2590 if (!Op2) 2591 return nullptr; 2592 2593 const APFloat &Op1V = Op1->getValueAPF(); 2594 const APFloat &Op2V = Op2->getValueAPF(); 2595 2596 switch (Func) { 2597 default: 2598 break; 2599 case LibFunc_pow: 2600 case LibFunc_powf: 2601 case LibFunc_pow_finite: 2602 case LibFunc_powf_finite: 2603 if (TLI->has(Func)) 2604 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2605 break; 2606 case LibFunc_fmod: 2607 case LibFunc_fmodf: 2608 if (TLI->has(Func)) { 2609 APFloat V = Op1->getValueAPF(); 2610 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2611 return ConstantFP::get(Ty->getContext(), V); 2612 } 2613 break; 2614 case LibFunc_remainder: 2615 case LibFunc_remainderf: 2616 if (TLI->has(Func)) { 2617 APFloat V = Op1->getValueAPF(); 2618 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2619 return ConstantFP::get(Ty->getContext(), V); 2620 } 2621 break; 2622 case LibFunc_atan2: 2623 case LibFunc_atan2f: 2624 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm 2625 // (Solaris), so we do not assume a known result for that. 2626 if (Op1V.isZero() && Op2V.isZero()) 2627 return nullptr; 2628 [[fallthrough]]; 2629 case LibFunc_atan2_finite: 2630 case LibFunc_atan2f_finite: 2631 if (TLI->has(Func)) 2632 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2633 break; 2634 } 2635 2636 return nullptr; 2637 } 2638 2639 static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty, 2640 ArrayRef<Constant *> Operands, 2641 const CallBase *Call) { 2642 assert(Operands.size() == 2 && "Wrong number of operands."); 2643 2644 if (Ty->isFloatingPointTy()) { 2645 // TODO: We should have undef handling for all of the FP intrinsics that 2646 // are attempted to be folded in this function. 2647 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2648 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2649 switch (IntrinsicID) { 2650 case Intrinsic::maxnum: 2651 case Intrinsic::minnum: 2652 case Intrinsic::maximum: 2653 case Intrinsic::minimum: 2654 // If one argument is undef, return the other argument. 2655 if (IsOp0Undef) 2656 return Operands[1]; 2657 if (IsOp1Undef) 2658 return Operands[0]; 2659 break; 2660 } 2661 } 2662 2663 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2664 const APFloat &Op1V = Op1->getValueAPF(); 2665 2666 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2667 if (Op2->getType() != Op1->getType()) 2668 return nullptr; 2669 const APFloat &Op2V = Op2->getValueAPF(); 2670 2671 if (const auto *ConstrIntr = 2672 dyn_cast_if_present<ConstrainedFPIntrinsic>(Call)) { 2673 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2674 APFloat Res = Op1V; 2675 APFloat::opStatus St; 2676 switch (IntrinsicID) { 2677 default: 2678 return nullptr; 2679 case Intrinsic::experimental_constrained_fadd: 2680 St = Res.add(Op2V, RM); 2681 break; 2682 case Intrinsic::experimental_constrained_fsub: 2683 St = Res.subtract(Op2V, RM); 2684 break; 2685 case Intrinsic::experimental_constrained_fmul: 2686 St = Res.multiply(Op2V, RM); 2687 break; 2688 case Intrinsic::experimental_constrained_fdiv: 2689 St = Res.divide(Op2V, RM); 2690 break; 2691 case Intrinsic::experimental_constrained_frem: 2692 St = Res.mod(Op2V); 2693 break; 2694 case Intrinsic::experimental_constrained_fcmp: 2695 case Intrinsic::experimental_constrained_fcmps: 2696 return evaluateCompare(Op1V, Op2V, ConstrIntr); 2697 } 2698 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2699 St)) 2700 return ConstantFP::get(Ty->getContext(), Res); 2701 return nullptr; 2702 } 2703 2704 switch (IntrinsicID) { 2705 default: 2706 break; 2707 case Intrinsic::copysign: 2708 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2709 case Intrinsic::minnum: 2710 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2711 case Intrinsic::maxnum: 2712 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2713 case Intrinsic::minimum: 2714 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2715 case Intrinsic::maximum: 2716 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2717 } 2718 2719 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2720 return nullptr; 2721 2722 switch (IntrinsicID) { 2723 default: 2724 break; 2725 case Intrinsic::pow: 2726 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2727 case Intrinsic::amdgcn_fmul_legacy: 2728 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2729 // NaN or infinity, gives +0.0. 2730 if (Op1V.isZero() || Op2V.isZero()) 2731 return ConstantFP::getZero(Ty); 2732 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2733 } 2734 2735 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2736 switch (IntrinsicID) { 2737 case Intrinsic::ldexp: { 2738 return ConstantFP::get( 2739 Ty->getContext(), 2740 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven)); 2741 } 2742 case Intrinsic::is_fpclass: { 2743 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue()); 2744 bool Result = 2745 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) || 2746 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) || 2747 ((Mask & fcNegInf) && Op1V.isNegInfinity()) || 2748 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) || 2749 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) || 2750 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) || 2751 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) || 2752 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) || 2753 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) || 2754 ((Mask & fcPosInf) && Op1V.isPosInfinity()); 2755 return ConstantInt::get(Ty, Result); 2756 } 2757 case Intrinsic::powi: { 2758 int Exp = static_cast<int>(Op2C->getSExtValue()); 2759 switch (Ty->getTypeID()) { 2760 case Type::HalfTyID: 2761 case Type::FloatTyID: { 2762 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp))); 2763 if (Ty->isHalfTy()) { 2764 bool Unused; 2765 Res.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 2766 &Unused); 2767 } 2768 return ConstantFP::get(Ty->getContext(), Res); 2769 } 2770 case Type::DoubleTyID: 2771 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp)); 2772 default: 2773 return nullptr; 2774 } 2775 } 2776 default: 2777 break; 2778 } 2779 } 2780 return nullptr; 2781 } 2782 2783 if (Operands[0]->getType()->isIntegerTy() && 2784 Operands[1]->getType()->isIntegerTy()) { 2785 const APInt *C0, *C1; 2786 if (!getConstIntOrUndef(Operands[0], C0) || 2787 !getConstIntOrUndef(Operands[1], C1)) 2788 return nullptr; 2789 2790 switch (IntrinsicID) { 2791 default: break; 2792 case Intrinsic::smax: 2793 case Intrinsic::smin: 2794 case Intrinsic::umax: 2795 case Intrinsic::umin: 2796 // This is the same as for binary ops - poison propagates. 2797 // TODO: Poison handling should be consolidated. 2798 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2799 return PoisonValue::get(Ty); 2800 2801 if (!C0 && !C1) 2802 return UndefValue::get(Ty); 2803 if (!C0 || !C1) 2804 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); 2805 return ConstantInt::get( 2806 Ty, ICmpInst::compare(*C0, *C1, 2807 MinMaxIntrinsic::getPredicate(IntrinsicID)) 2808 ? *C0 2809 : *C1); 2810 2811 case Intrinsic::scmp: 2812 case Intrinsic::ucmp: 2813 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2814 return PoisonValue::get(Ty); 2815 2816 if (!C0 || !C1) 2817 return ConstantInt::get(Ty, 0); 2818 2819 int Res; 2820 if (IntrinsicID == Intrinsic::scmp) 2821 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0; 2822 else 2823 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0; 2824 return ConstantInt::get(Ty, Res, /*IsSigned=*/true); 2825 2826 case Intrinsic::usub_with_overflow: 2827 case Intrinsic::ssub_with_overflow: 2828 // X - undef -> { 0, false } 2829 // undef - X -> { 0, false } 2830 if (!C0 || !C1) 2831 return Constant::getNullValue(Ty); 2832 [[fallthrough]]; 2833 case Intrinsic::uadd_with_overflow: 2834 case Intrinsic::sadd_with_overflow: 2835 // X + undef -> { -1, false } 2836 // undef + x -> { -1, false } 2837 if (!C0 || !C1) { 2838 return ConstantStruct::get( 2839 cast<StructType>(Ty), 2840 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2841 Constant::getNullValue(Ty->getStructElementType(1))}); 2842 } 2843 [[fallthrough]]; 2844 case Intrinsic::smul_with_overflow: 2845 case Intrinsic::umul_with_overflow: { 2846 // undef * X -> { 0, false } 2847 // X * undef -> { 0, false } 2848 if (!C0 || !C1) 2849 return Constant::getNullValue(Ty); 2850 2851 APInt Res; 2852 bool Overflow; 2853 switch (IntrinsicID) { 2854 default: llvm_unreachable("Invalid case"); 2855 case Intrinsic::sadd_with_overflow: 2856 Res = C0->sadd_ov(*C1, Overflow); 2857 break; 2858 case Intrinsic::uadd_with_overflow: 2859 Res = C0->uadd_ov(*C1, Overflow); 2860 break; 2861 case Intrinsic::ssub_with_overflow: 2862 Res = C0->ssub_ov(*C1, Overflow); 2863 break; 2864 case Intrinsic::usub_with_overflow: 2865 Res = C0->usub_ov(*C1, Overflow); 2866 break; 2867 case Intrinsic::smul_with_overflow: 2868 Res = C0->smul_ov(*C1, Overflow); 2869 break; 2870 case Intrinsic::umul_with_overflow: 2871 Res = C0->umul_ov(*C1, Overflow); 2872 break; 2873 } 2874 Constant *Ops[] = { 2875 ConstantInt::get(Ty->getContext(), Res), 2876 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2877 }; 2878 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2879 } 2880 case Intrinsic::uadd_sat: 2881 case Intrinsic::sadd_sat: 2882 // This is the same as for binary ops - poison propagates. 2883 // TODO: Poison handling should be consolidated. 2884 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2885 return PoisonValue::get(Ty); 2886 2887 if (!C0 && !C1) 2888 return UndefValue::get(Ty); 2889 if (!C0 || !C1) 2890 return Constant::getAllOnesValue(Ty); 2891 if (IntrinsicID == Intrinsic::uadd_sat) 2892 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2893 else 2894 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2895 case Intrinsic::usub_sat: 2896 case Intrinsic::ssub_sat: 2897 // This is the same as for binary ops - poison propagates. 2898 // TODO: Poison handling should be consolidated. 2899 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2900 return PoisonValue::get(Ty); 2901 2902 if (!C0 && !C1) 2903 return UndefValue::get(Ty); 2904 if (!C0 || !C1) 2905 return Constant::getNullValue(Ty); 2906 if (IntrinsicID == Intrinsic::usub_sat) 2907 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2908 else 2909 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2910 case Intrinsic::cttz: 2911 case Intrinsic::ctlz: 2912 assert(C1 && "Must be constant int"); 2913 2914 // cttz(0, 1) and ctlz(0, 1) are poison. 2915 if (C1->isOne() && (!C0 || C0->isZero())) 2916 return PoisonValue::get(Ty); 2917 if (!C0) 2918 return Constant::getNullValue(Ty); 2919 if (IntrinsicID == Intrinsic::cttz) 2920 return ConstantInt::get(Ty, C0->countr_zero()); 2921 else 2922 return ConstantInt::get(Ty, C0->countl_zero()); 2923 2924 case Intrinsic::abs: 2925 assert(C1 && "Must be constant int"); 2926 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); 2927 2928 // Undef or minimum val operand with poison min --> undef 2929 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 2930 return UndefValue::get(Ty); 2931 2932 // Undef operand with no poison min --> 0 (sign bit must be clear) 2933 if (!C0) 2934 return Constant::getNullValue(Ty); 2935 2936 return ConstantInt::get(Ty, C0->abs()); 2937 case Intrinsic::amdgcn_wave_reduce_umin: 2938 case Intrinsic::amdgcn_wave_reduce_umax: 2939 return dyn_cast<Constant>(Operands[0]); 2940 } 2941 2942 return nullptr; 2943 } 2944 2945 // Support ConstantVector in case we have an Undef in the top. 2946 if ((isa<ConstantVector>(Operands[0]) || 2947 isa<ConstantDataVector>(Operands[0])) && 2948 // Check for default rounding mode. 2949 // FIXME: Support other rounding modes? 2950 isa<ConstantInt>(Operands[1]) && 2951 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2952 auto *Op = cast<Constant>(Operands[0]); 2953 switch (IntrinsicID) { 2954 default: break; 2955 case Intrinsic::x86_avx512_vcvtss2si32: 2956 case Intrinsic::x86_avx512_vcvtss2si64: 2957 case Intrinsic::x86_avx512_vcvtsd2si32: 2958 case Intrinsic::x86_avx512_vcvtsd2si64: 2959 if (ConstantFP *FPOp = 2960 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2961 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2962 /*roundTowardZero=*/false, Ty, 2963 /*IsSigned*/true); 2964 break; 2965 case Intrinsic::x86_avx512_vcvtss2usi32: 2966 case Intrinsic::x86_avx512_vcvtss2usi64: 2967 case Intrinsic::x86_avx512_vcvtsd2usi32: 2968 case Intrinsic::x86_avx512_vcvtsd2usi64: 2969 if (ConstantFP *FPOp = 2970 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2971 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2972 /*roundTowardZero=*/false, Ty, 2973 /*IsSigned*/false); 2974 break; 2975 case Intrinsic::x86_avx512_cvttss2si: 2976 case Intrinsic::x86_avx512_cvttss2si64: 2977 case Intrinsic::x86_avx512_cvttsd2si: 2978 case Intrinsic::x86_avx512_cvttsd2si64: 2979 if (ConstantFP *FPOp = 2980 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2981 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2982 /*roundTowardZero=*/true, Ty, 2983 /*IsSigned*/true); 2984 break; 2985 case Intrinsic::x86_avx512_cvttss2usi: 2986 case Intrinsic::x86_avx512_cvttss2usi64: 2987 case Intrinsic::x86_avx512_cvttsd2usi: 2988 case Intrinsic::x86_avx512_cvttsd2usi64: 2989 if (ConstantFP *FPOp = 2990 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2991 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2992 /*roundTowardZero=*/true, Ty, 2993 /*IsSigned*/false); 2994 break; 2995 } 2996 } 2997 return nullptr; 2998 } 2999 3000 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 3001 const APFloat &S0, 3002 const APFloat &S1, 3003 const APFloat &S2) { 3004 unsigned ID; 3005 const fltSemantics &Sem = S0.getSemantics(); 3006 APFloat MA(Sem), SC(Sem), TC(Sem); 3007 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 3008 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 3009 // S2 < 0 3010 ID = 5; 3011 SC = -S0; 3012 } else { 3013 ID = 4; 3014 SC = S0; 3015 } 3016 MA = S2; 3017 TC = -S1; 3018 } else if (abs(S1) >= abs(S0)) { 3019 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 3020 // S1 < 0 3021 ID = 3; 3022 TC = -S2; 3023 } else { 3024 ID = 2; 3025 TC = S2; 3026 } 3027 MA = S1; 3028 SC = S0; 3029 } else { 3030 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 3031 // S0 < 0 3032 ID = 1; 3033 SC = S2; 3034 } else { 3035 ID = 0; 3036 SC = -S2; 3037 } 3038 MA = S0; 3039 TC = -S1; 3040 } 3041 switch (IntrinsicID) { 3042 default: 3043 llvm_unreachable("unhandled amdgcn cube intrinsic"); 3044 case Intrinsic::amdgcn_cubeid: 3045 return APFloat(Sem, ID); 3046 case Intrinsic::amdgcn_cubema: 3047 return MA + MA; 3048 case Intrinsic::amdgcn_cubesc: 3049 return SC; 3050 case Intrinsic::amdgcn_cubetc: 3051 return TC; 3052 } 3053 } 3054 3055 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 3056 Type *Ty) { 3057 const APInt *C0, *C1, *C2; 3058 if (!getConstIntOrUndef(Operands[0], C0) || 3059 !getConstIntOrUndef(Operands[1], C1) || 3060 !getConstIntOrUndef(Operands[2], C2)) 3061 return nullptr; 3062 3063 if (!C2) 3064 return UndefValue::get(Ty); 3065 3066 APInt Val(32, 0); 3067 unsigned NumUndefBytes = 0; 3068 for (unsigned I = 0; I < 32; I += 8) { 3069 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 3070 unsigned B = 0; 3071 3072 if (Sel >= 13) 3073 B = 0xff; 3074 else if (Sel == 12) 3075 B = 0x00; 3076 else { 3077 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 3078 if (!Src) 3079 ++NumUndefBytes; 3080 else if (Sel < 8) 3081 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 3082 else 3083 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 3084 } 3085 3086 Val.insertBits(B, I, 8); 3087 } 3088 3089 if (NumUndefBytes == 4) 3090 return UndefValue::get(Ty); 3091 3092 return ConstantInt::get(Ty, Val); 3093 } 3094 3095 static Constant *ConstantFoldScalarCall3(StringRef Name, 3096 Intrinsic::ID IntrinsicID, 3097 Type *Ty, 3098 ArrayRef<Constant *> Operands, 3099 const TargetLibraryInfo *TLI, 3100 const CallBase *Call) { 3101 assert(Operands.size() == 3 && "Wrong number of operands."); 3102 3103 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 3104 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 3105 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 3106 const APFloat &C1 = Op1->getValueAPF(); 3107 const APFloat &C2 = Op2->getValueAPF(); 3108 const APFloat &C3 = Op3->getValueAPF(); 3109 3110 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 3111 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 3112 APFloat Res = C1; 3113 APFloat::opStatus St; 3114 switch (IntrinsicID) { 3115 default: 3116 return nullptr; 3117 case Intrinsic::experimental_constrained_fma: 3118 case Intrinsic::experimental_constrained_fmuladd: 3119 St = Res.fusedMultiplyAdd(C2, C3, RM); 3120 break; 3121 } 3122 if (mayFoldConstrained( 3123 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 3124 return ConstantFP::get(Ty->getContext(), Res); 3125 return nullptr; 3126 } 3127 3128 switch (IntrinsicID) { 3129 default: break; 3130 case Intrinsic::amdgcn_fma_legacy: { 3131 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 3132 // NaN or infinity, gives +0.0. 3133 if (C1.isZero() || C2.isZero()) { 3134 // It's tempting to just return C3 here, but that would give the 3135 // wrong result if C3 was -0.0. 3136 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 3137 } 3138 [[fallthrough]]; 3139 } 3140 case Intrinsic::fma: 3141 case Intrinsic::fmuladd: { 3142 APFloat V = C1; 3143 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 3144 return ConstantFP::get(Ty->getContext(), V); 3145 } 3146 case Intrinsic::amdgcn_cubeid: 3147 case Intrinsic::amdgcn_cubema: 3148 case Intrinsic::amdgcn_cubesc: 3149 case Intrinsic::amdgcn_cubetc: { 3150 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 3151 return ConstantFP::get(Ty->getContext(), V); 3152 } 3153 } 3154 } 3155 } 3156 } 3157 3158 if (IntrinsicID == Intrinsic::smul_fix || 3159 IntrinsicID == Intrinsic::smul_fix_sat) { 3160 // poison * C -> poison 3161 // C * poison -> poison 3162 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 3163 return PoisonValue::get(Ty); 3164 3165 const APInt *C0, *C1; 3166 if (!getConstIntOrUndef(Operands[0], C0) || 3167 !getConstIntOrUndef(Operands[1], C1)) 3168 return nullptr; 3169 3170 // undef * C -> 0 3171 // C * undef -> 0 3172 if (!C0 || !C1) 3173 return Constant::getNullValue(Ty); 3174 3175 // This code performs rounding towards negative infinity in case the result 3176 // cannot be represented exactly for the given scale. Targets that do care 3177 // about rounding should use a target hook for specifying how rounding 3178 // should be done, and provide their own folding to be consistent with 3179 // rounding. This is the same approach as used by 3180 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 3181 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 3182 unsigned Width = C0->getBitWidth(); 3183 assert(Scale < Width && "Illegal scale."); 3184 unsigned ExtendedWidth = Width * 2; 3185 APInt Product = 3186 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale); 3187 if (IntrinsicID == Intrinsic::smul_fix_sat) { 3188 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth); 3189 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth); 3190 Product = APIntOps::smin(Product, Max); 3191 Product = APIntOps::smax(Product, Min); 3192 } 3193 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 3194 } 3195 3196 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 3197 const APInt *C0, *C1, *C2; 3198 if (!getConstIntOrUndef(Operands[0], C0) || 3199 !getConstIntOrUndef(Operands[1], C1) || 3200 !getConstIntOrUndef(Operands[2], C2)) 3201 return nullptr; 3202 3203 bool IsRight = IntrinsicID == Intrinsic::fshr; 3204 if (!C2) 3205 return Operands[IsRight ? 1 : 0]; 3206 if (!C0 && !C1) 3207 return UndefValue::get(Ty); 3208 3209 // The shift amount is interpreted as modulo the bitwidth. If the shift 3210 // amount is effectively 0, avoid UB due to oversized inverse shift below. 3211 unsigned BitWidth = C2->getBitWidth(); 3212 unsigned ShAmt = C2->urem(BitWidth); 3213 if (!ShAmt) 3214 return Operands[IsRight ? 1 : 0]; 3215 3216 // (C0 << ShlAmt) | (C1 >> LshrAmt) 3217 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 3218 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 3219 if (!C0) 3220 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 3221 if (!C1) 3222 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 3223 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 3224 } 3225 3226 if (IntrinsicID == Intrinsic::amdgcn_perm) 3227 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 3228 3229 return nullptr; 3230 } 3231 3232 static Constant *ConstantFoldScalarCall(StringRef Name, 3233 Intrinsic::ID IntrinsicID, 3234 Type *Ty, 3235 ArrayRef<Constant *> Operands, 3236 const TargetLibraryInfo *TLI, 3237 const CallBase *Call) { 3238 if (Operands.size() == 1) 3239 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 3240 3241 if (Operands.size() == 2) { 3242 if (Constant *FoldedLibCall = 3243 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) { 3244 return FoldedLibCall; 3245 } 3246 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call); 3247 } 3248 3249 if (Operands.size() == 3) 3250 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 3251 3252 return nullptr; 3253 } 3254 3255 static Constant *ConstantFoldFixedVectorCall( 3256 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 3257 ArrayRef<Constant *> Operands, const DataLayout &DL, 3258 const TargetLibraryInfo *TLI, const CallBase *Call) { 3259 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 3260 SmallVector<Constant *, 4> Lane(Operands.size()); 3261 Type *Ty = FVTy->getElementType(); 3262 3263 switch (IntrinsicID) { 3264 case Intrinsic::masked_load: { 3265 auto *SrcPtr = Operands[0]; 3266 auto *Mask = Operands[2]; 3267 auto *Passthru = Operands[3]; 3268 3269 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 3270 3271 SmallVector<Constant *, 32> NewElements; 3272 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3273 auto *MaskElt = Mask->getAggregateElement(I); 3274 if (!MaskElt) 3275 break; 3276 auto *PassthruElt = Passthru->getAggregateElement(I); 3277 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 3278 if (isa<UndefValue>(MaskElt)) { 3279 if (PassthruElt) 3280 NewElements.push_back(PassthruElt); 3281 else if (VecElt) 3282 NewElements.push_back(VecElt); 3283 else 3284 return nullptr; 3285 } 3286 if (MaskElt->isNullValue()) { 3287 if (!PassthruElt) 3288 return nullptr; 3289 NewElements.push_back(PassthruElt); 3290 } else if (MaskElt->isOneValue()) { 3291 if (!VecElt) 3292 return nullptr; 3293 NewElements.push_back(VecElt); 3294 } else { 3295 return nullptr; 3296 } 3297 } 3298 if (NewElements.size() != FVTy->getNumElements()) 3299 return nullptr; 3300 return ConstantVector::get(NewElements); 3301 } 3302 case Intrinsic::arm_mve_vctp8: 3303 case Intrinsic::arm_mve_vctp16: 3304 case Intrinsic::arm_mve_vctp32: 3305 case Intrinsic::arm_mve_vctp64: { 3306 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 3307 unsigned Lanes = FVTy->getNumElements(); 3308 uint64_t Limit = Op->getZExtValue(); 3309 3310 SmallVector<Constant *, 16> NCs; 3311 for (unsigned i = 0; i < Lanes; i++) { 3312 if (i < Limit) 3313 NCs.push_back(ConstantInt::getTrue(Ty)); 3314 else 3315 NCs.push_back(ConstantInt::getFalse(Ty)); 3316 } 3317 return ConstantVector::get(NCs); 3318 } 3319 return nullptr; 3320 } 3321 case Intrinsic::get_active_lane_mask: { 3322 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 3323 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 3324 if (Op0 && Op1) { 3325 unsigned Lanes = FVTy->getNumElements(); 3326 uint64_t Base = Op0->getZExtValue(); 3327 uint64_t Limit = Op1->getZExtValue(); 3328 3329 SmallVector<Constant *, 16> NCs; 3330 for (unsigned i = 0; i < Lanes; i++) { 3331 if (Base + i < Limit) 3332 NCs.push_back(ConstantInt::getTrue(Ty)); 3333 else 3334 NCs.push_back(ConstantInt::getFalse(Ty)); 3335 } 3336 return ConstantVector::get(NCs); 3337 } 3338 return nullptr; 3339 } 3340 default: 3341 break; 3342 } 3343 3344 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3345 // Gather a column of constants. 3346 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3347 // Some intrinsics use a scalar type for certain arguments. 3348 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) { 3349 Lane[J] = Operands[J]; 3350 continue; 3351 } 3352 3353 Constant *Agg = Operands[J]->getAggregateElement(I); 3354 if (!Agg) 3355 return nullptr; 3356 3357 Lane[J] = Agg; 3358 } 3359 3360 // Use the regular scalar folding to simplify this column. 3361 Constant *Folded = 3362 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3363 if (!Folded) 3364 return nullptr; 3365 Result[I] = Folded; 3366 } 3367 3368 return ConstantVector::get(Result); 3369 } 3370 3371 static Constant *ConstantFoldScalableVectorCall( 3372 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3373 ArrayRef<Constant *> Operands, const DataLayout &DL, 3374 const TargetLibraryInfo *TLI, const CallBase *Call) { 3375 switch (IntrinsicID) { 3376 case Intrinsic::aarch64_sve_convert_from_svbool: { 3377 auto *Src = dyn_cast<Constant>(Operands[0]); 3378 if (!Src || !Src->isNullValue()) 3379 break; 3380 3381 return ConstantInt::getFalse(SVTy); 3382 } 3383 default: 3384 break; 3385 } 3386 return nullptr; 3387 } 3388 3389 static std::pair<Constant *, Constant *> 3390 ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) { 3391 if (isa<PoisonValue>(Op)) 3392 return {Op, PoisonValue::get(IntTy)}; 3393 3394 auto *ConstFP = dyn_cast<ConstantFP>(Op); 3395 if (!ConstFP) 3396 return {}; 3397 3398 const APFloat &U = ConstFP->getValueAPF(); 3399 int FrexpExp; 3400 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven); 3401 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant); 3402 3403 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid 3404 // using undef. 3405 Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp) 3406 : ConstantInt::getNullValue(IntTy); 3407 return {Result0, Result1}; 3408 } 3409 3410 /// Handle intrinsics that return tuples, which may be tuples of vectors. 3411 static Constant * 3412 ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID, 3413 StructType *StTy, ArrayRef<Constant *> Operands, 3414 const DataLayout &DL, const TargetLibraryInfo *TLI, 3415 const CallBase *Call) { 3416 3417 switch (IntrinsicID) { 3418 case Intrinsic::frexp: { 3419 Type *Ty0 = StTy->getContainedType(0); 3420 Type *Ty1 = StTy->getContainedType(1)->getScalarType(); 3421 3422 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) { 3423 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements()); 3424 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements()); 3425 3426 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) { 3427 Constant *Lane = Operands[0]->getAggregateElement(I); 3428 std::tie(Results0[I], Results1[I]) = 3429 ConstantFoldScalarFrexpCall(Lane, Ty1); 3430 if (!Results0[I]) 3431 return nullptr; 3432 } 3433 3434 return ConstantStruct::get(StTy, ConstantVector::get(Results0), 3435 ConstantVector::get(Results1)); 3436 } 3437 3438 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1); 3439 if (!Result0) 3440 return nullptr; 3441 return ConstantStruct::get(StTy, Result0, Result1); 3442 } 3443 default: 3444 // TODO: Constant folding of vector intrinsics that fall through here does 3445 // not work (e.g. overflow intrinsics) 3446 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call); 3447 } 3448 3449 return nullptr; 3450 } 3451 3452 } // end anonymous namespace 3453 3454 Constant *llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, 3455 Constant *RHS, Type *Ty, 3456 Instruction *FMFSource) { 3457 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, 3458 dyn_cast_if_present<CallBase>(FMFSource)); 3459 } 3460 3461 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3462 ArrayRef<Constant *> Operands, 3463 const TargetLibraryInfo *TLI, 3464 bool AllowNonDeterministic) { 3465 if (Call->isNoBuiltin()) 3466 return nullptr; 3467 if (!F->hasName()) 3468 return nullptr; 3469 3470 // If this is not an intrinsic and not recognized as a library call, bail out. 3471 Intrinsic::ID IID = F->getIntrinsicID(); 3472 if (IID == Intrinsic::not_intrinsic) { 3473 if (!TLI) 3474 return nullptr; 3475 LibFunc LibF; 3476 if (!TLI->getLibFunc(*F, LibF)) 3477 return nullptr; 3478 } 3479 3480 // Conservatively assume that floating-point libcalls may be 3481 // non-deterministic. 3482 Type *Ty = F->getReturnType(); 3483 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy()) 3484 return nullptr; 3485 3486 StringRef Name = F->getName(); 3487 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3488 return ConstantFoldFixedVectorCall( 3489 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call); 3490 3491 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3492 return ConstantFoldScalableVectorCall( 3493 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call); 3494 3495 if (auto *StTy = dyn_cast<StructType>(Ty)) 3496 return ConstantFoldStructCall(Name, IID, StTy, Operands, 3497 F->getDataLayout(), TLI, Call); 3498 3499 // TODO: If this is a library function, we already discovered that above, 3500 // so we should pass the LibFunc, not the name (and it might be better 3501 // still to separate intrinsic handling from libcalls). 3502 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call); 3503 } 3504 3505 bool llvm::isMathLibCallNoop(const CallBase *Call, 3506 const TargetLibraryInfo *TLI) { 3507 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3508 // (and to some extent ConstantFoldScalarCall). 3509 if (Call->isNoBuiltin() || Call->isStrictFP()) 3510 return false; 3511 Function *F = Call->getCalledFunction(); 3512 if (!F) 3513 return false; 3514 3515 LibFunc Func; 3516 if (!TLI || !TLI->getLibFunc(*F, Func)) 3517 return false; 3518 3519 if (Call->arg_size() == 1) { 3520 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3521 const APFloat &Op = OpC->getValueAPF(); 3522 switch (Func) { 3523 case LibFunc_logl: 3524 case LibFunc_log: 3525 case LibFunc_logf: 3526 case LibFunc_log2l: 3527 case LibFunc_log2: 3528 case LibFunc_log2f: 3529 case LibFunc_log10l: 3530 case LibFunc_log10: 3531 case LibFunc_log10f: 3532 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3533 3534 case LibFunc_expl: 3535 case LibFunc_exp: 3536 case LibFunc_expf: 3537 // FIXME: These boundaries are slightly conservative. 3538 if (OpC->getType()->isDoubleTy()) 3539 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3540 if (OpC->getType()->isFloatTy()) 3541 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3542 break; 3543 3544 case LibFunc_exp2l: 3545 case LibFunc_exp2: 3546 case LibFunc_exp2f: 3547 // FIXME: These boundaries are slightly conservative. 3548 if (OpC->getType()->isDoubleTy()) 3549 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3550 if (OpC->getType()->isFloatTy()) 3551 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3552 break; 3553 3554 case LibFunc_sinl: 3555 case LibFunc_sin: 3556 case LibFunc_sinf: 3557 case LibFunc_cosl: 3558 case LibFunc_cos: 3559 case LibFunc_cosf: 3560 return !Op.isInfinity(); 3561 3562 case LibFunc_tanl: 3563 case LibFunc_tan: 3564 case LibFunc_tanf: { 3565 // FIXME: Stop using the host math library. 3566 // FIXME: The computation isn't done in the right precision. 3567 Type *Ty = OpC->getType(); 3568 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3569 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3570 break; 3571 } 3572 3573 case LibFunc_atan: 3574 case LibFunc_atanf: 3575 case LibFunc_atanl: 3576 // Per POSIX, this MAY fail if Op is denormal. We choose not failing. 3577 return true; 3578 3579 3580 case LibFunc_asinl: 3581 case LibFunc_asin: 3582 case LibFunc_asinf: 3583 case LibFunc_acosl: 3584 case LibFunc_acos: 3585 case LibFunc_acosf: 3586 return !(Op < APFloat(Op.getSemantics(), "-1") || 3587 Op > APFloat(Op.getSemantics(), "1")); 3588 3589 case LibFunc_sinh: 3590 case LibFunc_cosh: 3591 case LibFunc_sinhf: 3592 case LibFunc_coshf: 3593 case LibFunc_sinhl: 3594 case LibFunc_coshl: 3595 // FIXME: These boundaries are slightly conservative. 3596 if (OpC->getType()->isDoubleTy()) 3597 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3598 if (OpC->getType()->isFloatTy()) 3599 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3600 break; 3601 3602 case LibFunc_sqrtl: 3603 case LibFunc_sqrt: 3604 case LibFunc_sqrtf: 3605 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3606 3607 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3608 // maybe others? 3609 default: 3610 break; 3611 } 3612 } 3613 } 3614 3615 if (Call->arg_size() == 2) { 3616 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3617 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3618 if (Op0C && Op1C) { 3619 const APFloat &Op0 = Op0C->getValueAPF(); 3620 const APFloat &Op1 = Op1C->getValueAPF(); 3621 3622 switch (Func) { 3623 case LibFunc_powl: 3624 case LibFunc_pow: 3625 case LibFunc_powf: { 3626 // FIXME: Stop using the host math library. 3627 // FIXME: The computation isn't done in the right precision. 3628 Type *Ty = Op0C->getType(); 3629 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3630 if (Ty == Op1C->getType()) 3631 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3632 } 3633 break; 3634 } 3635 3636 case LibFunc_fmodl: 3637 case LibFunc_fmod: 3638 case LibFunc_fmodf: 3639 case LibFunc_remainderl: 3640 case LibFunc_remainder: 3641 case LibFunc_remainderf: 3642 return Op0.isNaN() || Op1.isNaN() || 3643 (!Op0.isInfinity() && !Op1.isZero()); 3644 3645 case LibFunc_atan2: 3646 case LibFunc_atan2f: 3647 case LibFunc_atan2l: 3648 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and 3649 // GLIBC and MSVC do not appear to raise an error on those, we 3650 // cannot rely on that behavior. POSIX and C11 say that a domain error 3651 // may occur, so allow for that possibility. 3652 return !Op0.isZero() || !Op1.isZero(); 3653 3654 default: 3655 break; 3656 } 3657 } 3658 } 3659 3660 return false; 3661 } 3662 3663 void TargetFolder::anchor() {} 3664