xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/Config/config.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/KnownBits.h"
46 #include "llvm/Support/MathExtras.h"
47 #include <cassert>
48 #include <cerrno>
49 #include <cfenv>
50 #include <cmath>
51 #include <cstddef>
52 #include <cstdint>
53 
54 using namespace llvm;
55 
56 namespace {
57 
58 //===----------------------------------------------------------------------===//
59 // Constant Folding internal helper functions
60 //===----------------------------------------------------------------------===//
61 
62 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
63                                         Constant *C, Type *SrcEltTy,
64                                         unsigned NumSrcElts,
65                                         const DataLayout &DL) {
66   // Now that we know that the input value is a vector of integers, just shift
67   // and insert them into our result.
68   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
69   for (unsigned i = 0; i != NumSrcElts; ++i) {
70     Constant *Element;
71     if (DL.isLittleEndian())
72       Element = C->getAggregateElement(NumSrcElts - i - 1);
73     else
74       Element = C->getAggregateElement(i);
75 
76     if (Element && isa<UndefValue>(Element)) {
77       Result <<= BitShift;
78       continue;
79     }
80 
81     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
82     if (!ElementCI)
83       return ConstantExpr::getBitCast(C, DestTy);
84 
85     Result <<= BitShift;
86     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
87   }
88 
89   return nullptr;
90 }
91 
92 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
93 /// This always returns a non-null constant, but it may be a
94 /// ConstantExpr if unfoldable.
95 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
96   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
97          "Invalid constantexpr bitcast!");
98 
99   // Catch the obvious splat cases.
100   if (C->isNullValue() && !DestTy->isX86_MMXTy())
101     return Constant::getNullValue(DestTy);
102   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
103       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
104     return Constant::getAllOnesValue(DestTy);
105 
106   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
107     // Handle a vector->scalar integer/fp cast.
108     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
109       unsigned NumSrcElts = VTy->getNumElements();
110       Type *SrcEltTy = VTy->getElementType();
111 
112       // If the vector is a vector of floating point, convert it to vector of int
113       // to simplify things.
114       if (SrcEltTy->isFloatingPointTy()) {
115         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
116         Type *SrcIVTy =
117           VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
118         // Ask IR to do the conversion now that #elts line up.
119         C = ConstantExpr::getBitCast(C, SrcIVTy);
120       }
121 
122       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
123       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
124                                                 SrcEltTy, NumSrcElts, DL))
125         return CE;
126 
127       if (isa<IntegerType>(DestTy))
128         return ConstantInt::get(DestTy, Result);
129 
130       APFloat FP(DestTy->getFltSemantics(), Result);
131       return ConstantFP::get(DestTy->getContext(), FP);
132     }
133   }
134 
135   // The code below only handles casts to vectors currently.
136   auto *DestVTy = dyn_cast<VectorType>(DestTy);
137   if (!DestVTy)
138     return ConstantExpr::getBitCast(C, DestTy);
139 
140   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
141   // vector so the code below can handle it uniformly.
142   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
143     Constant *Ops = C; // don't take the address of C!
144     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
145   }
146 
147   // If this is a bitcast from constant vector -> vector, fold it.
148   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
149     return ConstantExpr::getBitCast(C, DestTy);
150 
151   // If the element types match, IR can fold it.
152   unsigned NumDstElt = DestVTy->getNumElements();
153   unsigned NumSrcElt = C->getType()->getVectorNumElements();
154   if (NumDstElt == NumSrcElt)
155     return ConstantExpr::getBitCast(C, DestTy);
156 
157   Type *SrcEltTy = C->getType()->getVectorElementType();
158   Type *DstEltTy = DestVTy->getElementType();
159 
160   // Otherwise, we're changing the number of elements in a vector, which
161   // requires endianness information to do the right thing.  For example,
162   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
163   // folds to (little endian):
164   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
165   // and to (big endian):
166   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
167 
168   // First thing is first.  We only want to think about integer here, so if
169   // we have something in FP form, recast it as integer.
170   if (DstEltTy->isFloatingPointTy()) {
171     // Fold to an vector of integers with same size as our FP type.
172     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
173     Type *DestIVTy =
174       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
175     // Recursively handle this integer conversion, if possible.
176     C = FoldBitCast(C, DestIVTy, DL);
177 
178     // Finally, IR can handle this now that #elts line up.
179     return ConstantExpr::getBitCast(C, DestTy);
180   }
181 
182   // Okay, we know the destination is integer, if the input is FP, convert
183   // it to integer first.
184   if (SrcEltTy->isFloatingPointTy()) {
185     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
186     Type *SrcIVTy =
187       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
188     // Ask IR to do the conversion now that #elts line up.
189     C = ConstantExpr::getBitCast(C, SrcIVTy);
190     // If IR wasn't able to fold it, bail out.
191     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
192         !isa<ConstantDataVector>(C))
193       return C;
194   }
195 
196   // Now we know that the input and output vectors are both integer vectors
197   // of the same size, and that their #elements is not the same.  Do the
198   // conversion here, which depends on whether the input or output has
199   // more elements.
200   bool isLittleEndian = DL.isLittleEndian();
201 
202   SmallVector<Constant*, 32> Result;
203   if (NumDstElt < NumSrcElt) {
204     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
205     Constant *Zero = Constant::getNullValue(DstEltTy);
206     unsigned Ratio = NumSrcElt/NumDstElt;
207     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
208     unsigned SrcElt = 0;
209     for (unsigned i = 0; i != NumDstElt; ++i) {
210       // Build each element of the result.
211       Constant *Elt = Zero;
212       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
213       for (unsigned j = 0; j != Ratio; ++j) {
214         Constant *Src = C->getAggregateElement(SrcElt++);
215         if (Src && isa<UndefValue>(Src))
216           Src = Constant::getNullValue(C->getType()->getVectorElementType());
217         else
218           Src = dyn_cast_or_null<ConstantInt>(Src);
219         if (!Src)  // Reject constantexpr elements.
220           return ConstantExpr::getBitCast(C, DestTy);
221 
222         // Zero extend the element to the right size.
223         Src = ConstantExpr::getZExt(Src, Elt->getType());
224 
225         // Shift it to the right place, depending on endianness.
226         Src = ConstantExpr::getShl(Src,
227                                    ConstantInt::get(Src->getType(), ShiftAmt));
228         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
229 
230         // Mix it in.
231         Elt = ConstantExpr::getOr(Elt, Src);
232       }
233       Result.push_back(Elt);
234     }
235     return ConstantVector::get(Result);
236   }
237 
238   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
239   unsigned Ratio = NumDstElt/NumSrcElt;
240   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
241 
242   // Loop over each source value, expanding into multiple results.
243   for (unsigned i = 0; i != NumSrcElt; ++i) {
244     auto *Element = C->getAggregateElement(i);
245 
246     if (!Element) // Reject constantexpr elements.
247       return ConstantExpr::getBitCast(C, DestTy);
248 
249     if (isa<UndefValue>(Element)) {
250       // Correctly Propagate undef values.
251       Result.append(Ratio, UndefValue::get(DstEltTy));
252       continue;
253     }
254 
255     auto *Src = dyn_cast<ConstantInt>(Element);
256     if (!Src)
257       return ConstantExpr::getBitCast(C, DestTy);
258 
259     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
260     for (unsigned j = 0; j != Ratio; ++j) {
261       // Shift the piece of the value into the right place, depending on
262       // endianness.
263       Constant *Elt = ConstantExpr::getLShr(Src,
264                                   ConstantInt::get(Src->getType(), ShiftAmt));
265       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
266 
267       // Truncate the element to an integer with the same pointer size and
268       // convert the element back to a pointer using a inttoptr.
269       if (DstEltTy->isPointerTy()) {
270         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
271         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
272         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
273         continue;
274       }
275 
276       // Truncate and remember this piece.
277       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
278     }
279   }
280 
281   return ConstantVector::get(Result);
282 }
283 
284 } // end anonymous namespace
285 
286 /// If this constant is a constant offset from a global, return the global and
287 /// the constant. Because of constantexprs, this function is recursive.
288 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
289                                       APInt &Offset, const DataLayout &DL) {
290   // Trivial case, constant is the global.
291   if ((GV = dyn_cast<GlobalValue>(C))) {
292     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
293     Offset = APInt(BitWidth, 0);
294     return true;
295   }
296 
297   // Otherwise, if this isn't a constant expr, bail out.
298   auto *CE = dyn_cast<ConstantExpr>(C);
299   if (!CE) return false;
300 
301   // Look through ptr->int and ptr->ptr casts.
302   if (CE->getOpcode() == Instruction::PtrToInt ||
303       CE->getOpcode() == Instruction::BitCast)
304     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
305 
306   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
307   auto *GEP = dyn_cast<GEPOperator>(CE);
308   if (!GEP)
309     return false;
310 
311   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
312   APInt TmpOffset(BitWidth, 0);
313 
314   // If the base isn't a global+constant, we aren't either.
315   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
316     return false;
317 
318   // Otherwise, add any offset that our operands provide.
319   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
320     return false;
321 
322   Offset = TmpOffset;
323   return true;
324 }
325 
326 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
327                                          const DataLayout &DL) {
328   do {
329     Type *SrcTy = C->getType();
330 
331     // If the type sizes are the same and a cast is legal, just directly
332     // cast the constant.
333     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
334       Instruction::CastOps Cast = Instruction::BitCast;
335       // If we are going from a pointer to int or vice versa, we spell the cast
336       // differently.
337       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
338         Cast = Instruction::IntToPtr;
339       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
340         Cast = Instruction::PtrToInt;
341 
342       if (CastInst::castIsValid(Cast, C, DestTy))
343         return ConstantExpr::getCast(Cast, C, DestTy);
344     }
345 
346     // If this isn't an aggregate type, there is nothing we can do to drill down
347     // and find a bitcastable constant.
348     if (!SrcTy->isAggregateType())
349       return nullptr;
350 
351     // We're simulating a load through a pointer that was bitcast to point to
352     // a different type, so we can try to walk down through the initial
353     // elements of an aggregate to see if some part of the aggregate is
354     // castable to implement the "load" semantic model.
355     if (SrcTy->isStructTy()) {
356       // Struct types might have leading zero-length elements like [0 x i32],
357       // which are certainly not what we are looking for, so skip them.
358       unsigned Elem = 0;
359       Constant *ElemC;
360       do {
361         ElemC = C->getAggregateElement(Elem++);
362       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0);
363       C = ElemC;
364     } else {
365       C = C->getAggregateElement(0u);
366     }
367   } while (C);
368 
369   return nullptr;
370 }
371 
372 namespace {
373 
374 /// Recursive helper to read bits out of global. C is the constant being copied
375 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
376 /// results into and BytesLeft is the number of bytes left in
377 /// the CurPtr buffer. DL is the DataLayout.
378 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
379                         unsigned BytesLeft, const DataLayout &DL) {
380   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
381          "Out of range access");
382 
383   // If this element is zero or undefined, we can just return since *CurPtr is
384   // zero initialized.
385   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
386     return true;
387 
388   if (auto *CI = dyn_cast<ConstantInt>(C)) {
389     if (CI->getBitWidth() > 64 ||
390         (CI->getBitWidth() & 7) != 0)
391       return false;
392 
393     uint64_t Val = CI->getZExtValue();
394     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
395 
396     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
397       int n = ByteOffset;
398       if (!DL.isLittleEndian())
399         n = IntBytes - n - 1;
400       CurPtr[i] = (unsigned char)(Val >> (n * 8));
401       ++ByteOffset;
402     }
403     return true;
404   }
405 
406   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
407     if (CFP->getType()->isDoubleTy()) {
408       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
409       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
410     }
411     if (CFP->getType()->isFloatTy()){
412       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
413       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
414     }
415     if (CFP->getType()->isHalfTy()){
416       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
417       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
418     }
419     return false;
420   }
421 
422   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
423     const StructLayout *SL = DL.getStructLayout(CS->getType());
424     unsigned Index = SL->getElementContainingOffset(ByteOffset);
425     uint64_t CurEltOffset = SL->getElementOffset(Index);
426     ByteOffset -= CurEltOffset;
427 
428     while (true) {
429       // If the element access is to the element itself and not to tail padding,
430       // read the bytes from the element.
431       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
432 
433       if (ByteOffset < EltSize &&
434           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
435                               BytesLeft, DL))
436         return false;
437 
438       ++Index;
439 
440       // Check to see if we read from the last struct element, if so we're done.
441       if (Index == CS->getType()->getNumElements())
442         return true;
443 
444       // If we read all of the bytes we needed from this element we're done.
445       uint64_t NextEltOffset = SL->getElementOffset(Index);
446 
447       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
448         return true;
449 
450       // Move to the next element of the struct.
451       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
452       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
453       ByteOffset = 0;
454       CurEltOffset = NextEltOffset;
455     }
456     // not reached.
457   }
458 
459   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
460       isa<ConstantDataSequential>(C)) {
461     Type *EltTy = C->getType()->getSequentialElementType();
462     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
463     uint64_t Index = ByteOffset / EltSize;
464     uint64_t Offset = ByteOffset - Index * EltSize;
465     uint64_t NumElts;
466     if (auto *AT = dyn_cast<ArrayType>(C->getType()))
467       NumElts = AT->getNumElements();
468     else
469       NumElts = C->getType()->getVectorNumElements();
470 
471     for (; Index != NumElts; ++Index) {
472       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
473                               BytesLeft, DL))
474         return false;
475 
476       uint64_t BytesWritten = EltSize - Offset;
477       assert(BytesWritten <= EltSize && "Not indexing into this element?");
478       if (BytesWritten >= BytesLeft)
479         return true;
480 
481       Offset = 0;
482       BytesLeft -= BytesWritten;
483       CurPtr += BytesWritten;
484     }
485     return true;
486   }
487 
488   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
489     if (CE->getOpcode() == Instruction::IntToPtr &&
490         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
491       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
492                                 BytesLeft, DL);
493     }
494   }
495 
496   // Otherwise, unknown initializer type.
497   return false;
498 }
499 
500 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
501                                           const DataLayout &DL) {
502   auto *PTy = cast<PointerType>(C->getType());
503   auto *IntType = dyn_cast<IntegerType>(LoadTy);
504 
505   // If this isn't an integer load we can't fold it directly.
506   if (!IntType) {
507     unsigned AS = PTy->getAddressSpace();
508 
509     // If this is a float/double load, we can try folding it as an int32/64 load
510     // and then bitcast the result.  This can be useful for union cases.  Note
511     // that address spaces don't matter here since we're not going to result in
512     // an actual new load.
513     Type *MapTy;
514     if (LoadTy->isHalfTy())
515       MapTy = Type::getInt16Ty(C->getContext());
516     else if (LoadTy->isFloatTy())
517       MapTy = Type::getInt32Ty(C->getContext());
518     else if (LoadTy->isDoubleTy())
519       MapTy = Type::getInt64Ty(C->getContext());
520     else if (LoadTy->isVectorTy()) {
521       MapTy = PointerType::getIntNTy(C->getContext(),
522                                      DL.getTypeSizeInBits(LoadTy));
523     } else
524       return nullptr;
525 
526     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
527     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
528       if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
529         // Materializing a zero can be done trivially without a bitcast
530         return Constant::getNullValue(LoadTy);
531       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
532       Res = FoldBitCast(Res, CastTy, DL);
533       if (LoadTy->isPtrOrPtrVectorTy()) {
534         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
535         if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
536           return Constant::getNullValue(LoadTy);
537         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
538           // Be careful not to replace a load of an addrspace value with an inttoptr here
539           return nullptr;
540         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
541       }
542       return Res;
543     }
544     return nullptr;
545   }
546 
547   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
548   if (BytesLoaded > 32 || BytesLoaded == 0)
549     return nullptr;
550 
551   GlobalValue *GVal;
552   APInt OffsetAI;
553   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
554     return nullptr;
555 
556   auto *GV = dyn_cast<GlobalVariable>(GVal);
557   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
558       !GV->getInitializer()->getType()->isSized())
559     return nullptr;
560 
561   int64_t Offset = OffsetAI.getSExtValue();
562   int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());
563 
564   // If we're not accessing anything in this constant, the result is undefined.
565   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
566     return UndefValue::get(IntType);
567 
568   // If we're not accessing anything in this constant, the result is undefined.
569   if (Offset >= InitializerSize)
570     return UndefValue::get(IntType);
571 
572   unsigned char RawBytes[32] = {0};
573   unsigned char *CurPtr = RawBytes;
574   unsigned BytesLeft = BytesLoaded;
575 
576   // If we're loading off the beginning of the global, some bytes may be valid.
577   if (Offset < 0) {
578     CurPtr += -Offset;
579     BytesLeft += Offset;
580     Offset = 0;
581   }
582 
583   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
584     return nullptr;
585 
586   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
587   if (DL.isLittleEndian()) {
588     ResultVal = RawBytes[BytesLoaded - 1];
589     for (unsigned i = 1; i != BytesLoaded; ++i) {
590       ResultVal <<= 8;
591       ResultVal |= RawBytes[BytesLoaded - 1 - i];
592     }
593   } else {
594     ResultVal = RawBytes[0];
595     for (unsigned i = 1; i != BytesLoaded; ++i) {
596       ResultVal <<= 8;
597       ResultVal |= RawBytes[i];
598     }
599   }
600 
601   return ConstantInt::get(IntType->getContext(), ResultVal);
602 }
603 
604 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
605                                              const DataLayout &DL) {
606   auto *SrcPtr = CE->getOperand(0);
607   auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
608   if (!SrcPtrTy)
609     return nullptr;
610   Type *SrcTy = SrcPtrTy->getPointerElementType();
611 
612   Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
613   if (!C)
614     return nullptr;
615 
616   return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
617 }
618 
619 } // end anonymous namespace
620 
621 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
622                                              const DataLayout &DL) {
623   // First, try the easy cases:
624   if (auto *GV = dyn_cast<GlobalVariable>(C))
625     if (GV->isConstant() && GV->hasDefinitiveInitializer())
626       return GV->getInitializer();
627 
628   if (auto *GA = dyn_cast<GlobalAlias>(C))
629     if (GA->getAliasee() && !GA->isInterposable())
630       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
631 
632   // If the loaded value isn't a constant expr, we can't handle it.
633   auto *CE = dyn_cast<ConstantExpr>(C);
634   if (!CE)
635     return nullptr;
636 
637   if (CE->getOpcode() == Instruction::GetElementPtr) {
638     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
639       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
640         if (Constant *V =
641              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
642           return V;
643       }
644     }
645   }
646 
647   if (CE->getOpcode() == Instruction::BitCast)
648     if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
649       return LoadedC;
650 
651   // Instead of loading constant c string, use corresponding integer value
652   // directly if string length is small enough.
653   StringRef Str;
654   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
655     size_t StrLen = Str.size();
656     unsigned NumBits = Ty->getPrimitiveSizeInBits();
657     // Replace load with immediate integer if the result is an integer or fp
658     // value.
659     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
660         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
661       APInt StrVal(NumBits, 0);
662       APInt SingleChar(NumBits, 0);
663       if (DL.isLittleEndian()) {
664         for (unsigned char C : reverse(Str.bytes())) {
665           SingleChar = static_cast<uint64_t>(C);
666           StrVal = (StrVal << 8) | SingleChar;
667         }
668       } else {
669         for (unsigned char C : Str.bytes()) {
670           SingleChar = static_cast<uint64_t>(C);
671           StrVal = (StrVal << 8) | SingleChar;
672         }
673         // Append NULL at the end.
674         SingleChar = 0;
675         StrVal = (StrVal << 8) | SingleChar;
676       }
677 
678       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
679       if (Ty->isFloatingPointTy())
680         Res = ConstantExpr::getBitCast(Res, Ty);
681       return Res;
682     }
683   }
684 
685   // If this load comes from anywhere in a constant global, and if the global
686   // is all undef or zero, we know what it loads.
687   if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
688     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
689       if (GV->getInitializer()->isNullValue())
690         return Constant::getNullValue(Ty);
691       if (isa<UndefValue>(GV->getInitializer()))
692         return UndefValue::get(Ty);
693     }
694   }
695 
696   // Try hard to fold loads from bitcasted strange and non-type-safe things.
697   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
698 }
699 
700 namespace {
701 
702 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
703   if (LI->isVolatile()) return nullptr;
704 
705   if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
706     return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
707 
708   return nullptr;
709 }
710 
711 /// One of Op0/Op1 is a constant expression.
712 /// Attempt to symbolically evaluate the result of a binary operator merging
713 /// these together.  If target data info is available, it is provided as DL,
714 /// otherwise DL is null.
715 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
716                                     const DataLayout &DL) {
717   // SROA
718 
719   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
720   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
721   // bits.
722 
723   if (Opc == Instruction::And) {
724     KnownBits Known0 = computeKnownBits(Op0, DL);
725     KnownBits Known1 = computeKnownBits(Op1, DL);
726     if ((Known1.One | Known0.Zero).isAllOnesValue()) {
727       // All the bits of Op0 that the 'and' could be masking are already zero.
728       return Op0;
729     }
730     if ((Known0.One | Known1.Zero).isAllOnesValue()) {
731       // All the bits of Op1 that the 'and' could be masking are already zero.
732       return Op1;
733     }
734 
735     Known0.Zero |= Known1.Zero;
736     Known0.One &= Known1.One;
737     if (Known0.isConstant())
738       return ConstantInt::get(Op0->getType(), Known0.getConstant());
739   }
740 
741   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
742   // constant.  This happens frequently when iterating over a global array.
743   if (Opc == Instruction::Sub) {
744     GlobalValue *GV1, *GV2;
745     APInt Offs1, Offs2;
746 
747     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
748       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
749         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
750 
751         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
752         // PtrToInt may change the bitwidth so we have convert to the right size
753         // first.
754         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
755                                                 Offs2.zextOrTrunc(OpSize));
756       }
757   }
758 
759   return nullptr;
760 }
761 
762 /// If array indices are not pointer-sized integers, explicitly cast them so
763 /// that they aren't implicitly casted by the getelementptr.
764 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
765                          Type *ResultTy, Optional<unsigned> InRangeIndex,
766                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
767   Type *IntPtrTy = DL.getIntPtrType(ResultTy);
768   Type *IntPtrScalarTy = IntPtrTy->getScalarType();
769 
770   bool Any = false;
771   SmallVector<Constant*, 32> NewIdxs;
772   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
773     if ((i == 1 ||
774          !isa<StructType>(GetElementPtrInst::getIndexedType(
775              SrcElemTy, Ops.slice(1, i - 1)))) &&
776         Ops[i]->getType()->getScalarType() != IntPtrScalarTy) {
777       Any = true;
778       Type *NewType = Ops[i]->getType()->isVectorTy()
779                           ? IntPtrTy
780                           : IntPtrTy->getScalarType();
781       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
782                                                                       true,
783                                                                       NewType,
784                                                                       true),
785                                               Ops[i], NewType));
786     } else
787       NewIdxs.push_back(Ops[i]);
788   }
789 
790   if (!Any)
791     return nullptr;
792 
793   Constant *C = ConstantExpr::getGetElementPtr(
794       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
795   if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
796     C = Folded;
797 
798   return C;
799 }
800 
801 /// Strip the pointer casts, but preserve the address space information.
802 Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
803   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
804   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
805   Ptr = cast<Constant>(Ptr->stripPointerCasts());
806   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
807 
808   ElemTy = NewPtrTy->getPointerElementType();
809 
810   // Preserve the address space number of the pointer.
811   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
812     NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
813     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
814   }
815   return Ptr;
816 }
817 
818 /// If we can symbolically evaluate the GEP constant expression, do so.
819 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
820                                   ArrayRef<Constant *> Ops,
821                                   const DataLayout &DL,
822                                   const TargetLibraryInfo *TLI) {
823   const GEPOperator *InnermostGEP = GEP;
824   bool InBounds = GEP->isInBounds();
825 
826   Type *SrcElemTy = GEP->getSourceElementType();
827   Type *ResElemTy = GEP->getResultElementType();
828   Type *ResTy = GEP->getType();
829   if (!SrcElemTy->isSized())
830     return nullptr;
831 
832   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
833                                    GEP->getInRangeIndex(), DL, TLI))
834     return C;
835 
836   Constant *Ptr = Ops[0];
837   if (!Ptr->getType()->isPointerTy())
838     return nullptr;
839 
840   Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
841 
842   // If this is a constant expr gep that is effectively computing an
843   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
844   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
845       if (!isa<ConstantInt>(Ops[i])) {
846 
847         // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
848         // "inttoptr (sub (ptrtoint Ptr), V)"
849         if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
850           auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
851           assert((!CE || CE->getType() == IntPtrTy) &&
852                  "CastGEPIndices didn't canonicalize index types!");
853           if (CE && CE->getOpcode() == Instruction::Sub &&
854               CE->getOperand(0)->isNullValue()) {
855             Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
856             Res = ConstantExpr::getSub(Res, CE->getOperand(1));
857             Res = ConstantExpr::getIntToPtr(Res, ResTy);
858             if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
859               Res = FoldedRes;
860             return Res;
861           }
862         }
863         return nullptr;
864       }
865 
866   unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
867   APInt Offset =
868       APInt(BitWidth,
869             DL.getIndexedOffsetInType(
870                 SrcElemTy,
871                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
872   Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
873 
874   // If this is a GEP of a GEP, fold it all into a single GEP.
875   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
876     InnermostGEP = GEP;
877     InBounds &= GEP->isInBounds();
878 
879     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
880 
881     // Do not try the incorporate the sub-GEP if some index is not a number.
882     bool AllConstantInt = true;
883     for (Value *NestedOp : NestedOps)
884       if (!isa<ConstantInt>(NestedOp)) {
885         AllConstantInt = false;
886         break;
887       }
888     if (!AllConstantInt)
889       break;
890 
891     Ptr = cast<Constant>(GEP->getOperand(0));
892     SrcElemTy = GEP->getSourceElementType();
893     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
894     Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
895   }
896 
897   // If the base value for this address is a literal integer value, fold the
898   // getelementptr to the resulting integer value casted to the pointer type.
899   APInt BasePtr(BitWidth, 0);
900   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
901     if (CE->getOpcode() == Instruction::IntToPtr) {
902       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
903         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
904     }
905   }
906 
907   auto *PTy = cast<PointerType>(Ptr->getType());
908   if ((Ptr->isNullValue() || BasePtr != 0) &&
909       !DL.isNonIntegralPointerType(PTy)) {
910     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
911     return ConstantExpr::getIntToPtr(C, ResTy);
912   }
913 
914   // Otherwise form a regular getelementptr. Recompute the indices so that
915   // we eliminate over-indexing of the notional static type array bounds.
916   // This makes it easy to determine if the getelementptr is "inbounds".
917   // Also, this helps GlobalOpt do SROA on GlobalVariables.
918   Type *Ty = PTy;
919   SmallVector<Constant *, 32> NewIdxs;
920 
921   do {
922     if (!Ty->isStructTy()) {
923       if (Ty->isPointerTy()) {
924         // The only pointer indexing we'll do is on the first index of the GEP.
925         if (!NewIdxs.empty())
926           break;
927 
928         Ty = SrcElemTy;
929 
930         // Only handle pointers to sized types, not pointers to functions.
931         if (!Ty->isSized())
932           return nullptr;
933       } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
934         Ty = ATy->getElementType();
935       } else {
936         // We've reached some non-indexable type.
937         break;
938       }
939 
940       // Determine which element of the array the offset points into.
941       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
942       if (ElemSize == 0) {
943         // The element size is 0. This may be [0 x Ty]*, so just use a zero
944         // index for this level and proceed to the next level to see if it can
945         // accommodate the offset.
946         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
947       } else {
948         // The element size is non-zero divide the offset by the element
949         // size (rounding down), to compute the index at this level.
950         bool Overflow;
951         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
952         if (Overflow)
953           break;
954         Offset -= NewIdx * ElemSize;
955         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
956       }
957     } else {
958       auto *STy = cast<StructType>(Ty);
959       // If we end up with an offset that isn't valid for this struct type, we
960       // can't re-form this GEP in a regular form, so bail out. The pointer
961       // operand likely went through casts that are necessary to make the GEP
962       // sensible.
963       const StructLayout &SL = *DL.getStructLayout(STy);
964       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
965         break;
966 
967       // Determine which field of the struct the offset points into. The
968       // getZExtValue is fine as we've already ensured that the offset is
969       // within the range representable by the StructLayout API.
970       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
971       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
972                                          ElIdx));
973       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
974       Ty = STy->getTypeAtIndex(ElIdx);
975     }
976   } while (Ty != ResElemTy);
977 
978   // If we haven't used up the entire offset by descending the static
979   // type, then the offset is pointing into the middle of an indivisible
980   // member, so we can't simplify it.
981   if (Offset != 0)
982     return nullptr;
983 
984   // Preserve the inrange index from the innermost GEP if possible. We must
985   // have calculated the same indices up to and including the inrange index.
986   Optional<unsigned> InRangeIndex;
987   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
988     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
989         NewIdxs.size() > *LastIRIndex) {
990       InRangeIndex = LastIRIndex;
991       for (unsigned I = 0; I <= *LastIRIndex; ++I)
992         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
993           return nullptr;
994     }
995 
996   // Create a GEP.
997   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
998                                                InBounds, InRangeIndex);
999   assert(C->getType()->getPointerElementType() == Ty &&
1000          "Computed GetElementPtr has unexpected type!");
1001 
1002   // If we ended up indexing a member with a type that doesn't match
1003   // the type of what the original indices indexed, add a cast.
1004   if (Ty != ResElemTy)
1005     C = FoldBitCast(C, ResTy, DL);
1006 
1007   return C;
1008 }
1009 
1010 /// Attempt to constant fold an instruction with the
1011 /// specified opcode and operands.  If successful, the constant result is
1012 /// returned, if not, null is returned.  Note that this function can fail when
1013 /// attempting to fold instructions like loads and stores, which have no
1014 /// constant expression form.
1015 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1016                                        ArrayRef<Constant *> Ops,
1017                                        const DataLayout &DL,
1018                                        const TargetLibraryInfo *TLI) {
1019   Type *DestTy = InstOrCE->getType();
1020 
1021   if (Instruction::isUnaryOp(Opcode))
1022     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1023 
1024   if (Instruction::isBinaryOp(Opcode))
1025     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1026 
1027   if (Instruction::isCast(Opcode))
1028     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1029 
1030   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1031     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1032       return C;
1033 
1034     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1035                                           Ops.slice(1), GEP->isInBounds(),
1036                                           GEP->getInRangeIndex());
1037   }
1038 
1039   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1040     return CE->getWithOperands(Ops);
1041 
1042   switch (Opcode) {
1043   default: return nullptr;
1044   case Instruction::ICmp:
1045   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1046   case Instruction::Call:
1047     if (auto *F = dyn_cast<Function>(Ops.back())) {
1048       const auto *Call = cast<CallBase>(InstOrCE);
1049       if (canConstantFoldCallTo(Call, F))
1050         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1051     }
1052     return nullptr;
1053   case Instruction::Select:
1054     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1055   case Instruction::ExtractElement:
1056     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1057   case Instruction::ExtractValue:
1058     return ConstantExpr::getExtractValue(
1059         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1060   case Instruction::InsertElement:
1061     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1062   case Instruction::ShuffleVector:
1063     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1064   }
1065 }
1066 
1067 } // end anonymous namespace
1068 
1069 //===----------------------------------------------------------------------===//
1070 // Constant Folding public APIs
1071 //===----------------------------------------------------------------------===//
1072 
1073 namespace {
1074 
1075 Constant *
1076 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1077                          const TargetLibraryInfo *TLI,
1078                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1079   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1080     return nullptr;
1081 
1082   SmallVector<Constant *, 8> Ops;
1083   for (const Use &NewU : C->operands()) {
1084     auto *NewC = cast<Constant>(&NewU);
1085     // Recursively fold the ConstantExpr's operands. If we have already folded
1086     // a ConstantExpr, we don't have to process it again.
1087     if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
1088       auto It = FoldedOps.find(NewC);
1089       if (It == FoldedOps.end()) {
1090         if (auto *FoldedC =
1091                 ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
1092           FoldedOps.insert({NewC, FoldedC});
1093           NewC = FoldedC;
1094         } else {
1095           FoldedOps.insert({NewC, NewC});
1096         }
1097       } else {
1098         NewC = It->second;
1099       }
1100     }
1101     Ops.push_back(NewC);
1102   }
1103 
1104   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1105     if (CE->isCompare())
1106       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1107                                              DL, TLI);
1108 
1109     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1110   }
1111 
1112   assert(isa<ConstantVector>(C));
1113   return ConstantVector::get(Ops);
1114 }
1115 
1116 } // end anonymous namespace
1117 
1118 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1119                                         const TargetLibraryInfo *TLI) {
1120   // Handle PHI nodes quickly here...
1121   if (auto *PN = dyn_cast<PHINode>(I)) {
1122     Constant *CommonValue = nullptr;
1123 
1124     SmallDenseMap<Constant *, Constant *> FoldedOps;
1125     for (Value *Incoming : PN->incoming_values()) {
1126       // If the incoming value is undef then skip it.  Note that while we could
1127       // skip the value if it is equal to the phi node itself we choose not to
1128       // because that would break the rule that constant folding only applies if
1129       // all operands are constants.
1130       if (isa<UndefValue>(Incoming))
1131         continue;
1132       // If the incoming value is not a constant, then give up.
1133       auto *C = dyn_cast<Constant>(Incoming);
1134       if (!C)
1135         return nullptr;
1136       // Fold the PHI's operands.
1137       if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
1138         C = FoldedC;
1139       // If the incoming value is a different constant to
1140       // the one we saw previously, then give up.
1141       if (CommonValue && C != CommonValue)
1142         return nullptr;
1143       CommonValue = C;
1144     }
1145 
1146     // If we reach here, all incoming values are the same constant or undef.
1147     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1148   }
1149 
1150   // Scan the operand list, checking to see if they are all constants, if so,
1151   // hand off to ConstantFoldInstOperandsImpl.
1152   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1153     return nullptr;
1154 
1155   SmallDenseMap<Constant *, Constant *> FoldedOps;
1156   SmallVector<Constant *, 8> Ops;
1157   for (const Use &OpU : I->operands()) {
1158     auto *Op = cast<Constant>(&OpU);
1159     // Fold the Instruction's operands.
1160     if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
1161       Op = FoldedOp;
1162 
1163     Ops.push_back(Op);
1164   }
1165 
1166   if (const auto *CI = dyn_cast<CmpInst>(I))
1167     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1168                                            DL, TLI);
1169 
1170   if (const auto *LI = dyn_cast<LoadInst>(I))
1171     return ConstantFoldLoadInst(LI, DL);
1172 
1173   if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
1174     return ConstantExpr::getInsertValue(
1175                                 cast<Constant>(IVI->getAggregateOperand()),
1176                                 cast<Constant>(IVI->getInsertedValueOperand()),
1177                                 IVI->getIndices());
1178   }
1179 
1180   if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
1181     return ConstantExpr::getExtractValue(
1182                                     cast<Constant>(EVI->getAggregateOperand()),
1183                                     EVI->getIndices());
1184   }
1185 
1186   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1187 }
1188 
1189 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1190                                      const TargetLibraryInfo *TLI) {
1191   SmallDenseMap<Constant *, Constant *> FoldedOps;
1192   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1193 }
1194 
1195 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1196                                          ArrayRef<Constant *> Ops,
1197                                          const DataLayout &DL,
1198                                          const TargetLibraryInfo *TLI) {
1199   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1200 }
1201 
1202 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1203                                                 Constant *Ops0, Constant *Ops1,
1204                                                 const DataLayout &DL,
1205                                                 const TargetLibraryInfo *TLI) {
1206   // fold: icmp (inttoptr x), null         -> icmp x, 0
1207   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1208   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1209   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1210   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1211   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1212   //
1213   // FIXME: The following comment is out of data and the DataLayout is here now.
1214   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1215   // around to know if bit truncation is happening.
1216   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1217     if (Ops1->isNullValue()) {
1218       if (CE0->getOpcode() == Instruction::IntToPtr) {
1219         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1220         // Convert the integer value to the right size to ensure we get the
1221         // proper extension or truncation.
1222         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1223                                                    IntPtrTy, false);
1224         Constant *Null = Constant::getNullValue(C->getType());
1225         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1226       }
1227 
1228       // Only do this transformation if the int is intptrty in size, otherwise
1229       // there is a truncation or extension that we aren't modeling.
1230       if (CE0->getOpcode() == Instruction::PtrToInt) {
1231         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1232         if (CE0->getType() == IntPtrTy) {
1233           Constant *C = CE0->getOperand(0);
1234           Constant *Null = Constant::getNullValue(C->getType());
1235           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1236         }
1237       }
1238     }
1239 
1240     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1241       if (CE0->getOpcode() == CE1->getOpcode()) {
1242         if (CE0->getOpcode() == Instruction::IntToPtr) {
1243           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1244 
1245           // Convert the integer value to the right size to ensure we get the
1246           // proper extension or truncation.
1247           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1248                                                       IntPtrTy, false);
1249           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1250                                                       IntPtrTy, false);
1251           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1252         }
1253 
1254         // Only do this transformation if the int is intptrty in size, otherwise
1255         // there is a truncation or extension that we aren't modeling.
1256         if (CE0->getOpcode() == Instruction::PtrToInt) {
1257           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1258           if (CE0->getType() == IntPtrTy &&
1259               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260             return ConstantFoldCompareInstOperands(
1261                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1262           }
1263         }
1264       }
1265     }
1266 
1267     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1268     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1269     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1270         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1271       Constant *LHS = ConstantFoldCompareInstOperands(
1272           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1273       Constant *RHS = ConstantFoldCompareInstOperands(
1274           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1275       unsigned OpC =
1276         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1277       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1278     }
1279   } else if (isa<ConstantExpr>(Ops1)) {
1280     // If RHS is a constant expression, but the left side isn't, swap the
1281     // operands and try again.
1282     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1283     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1284   }
1285 
1286   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1287 }
1288 
1289 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1290                                            const DataLayout &DL) {
1291   assert(Instruction::isUnaryOp(Opcode));
1292 
1293   return ConstantExpr::get(Opcode, Op);
1294 }
1295 
1296 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1297                                              Constant *RHS,
1298                                              const DataLayout &DL) {
1299   assert(Instruction::isBinaryOp(Opcode));
1300   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1301     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1302       return C;
1303 
1304   return ConstantExpr::get(Opcode, LHS, RHS);
1305 }
1306 
1307 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1308                                         Type *DestTy, const DataLayout &DL) {
1309   assert(Instruction::isCast(Opcode));
1310   switch (Opcode) {
1311   default:
1312     llvm_unreachable("Missing case");
1313   case Instruction::PtrToInt:
1314     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1315     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1316     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1317       if (CE->getOpcode() == Instruction::IntToPtr) {
1318         Constant *Input = CE->getOperand(0);
1319         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1320         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1321         if (PtrWidth < InWidth) {
1322           Constant *Mask =
1323             ConstantInt::get(CE->getContext(),
1324                              APInt::getLowBitsSet(InWidth, PtrWidth));
1325           Input = ConstantExpr::getAnd(Input, Mask);
1326         }
1327         // Do a zext or trunc to get to the dest size.
1328         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1329       }
1330     }
1331     return ConstantExpr::getCast(Opcode, C, DestTy);
1332   case Instruction::IntToPtr:
1333     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1334     // the int size is >= the ptr size and the address spaces are the same.
1335     // This requires knowing the width of a pointer, so it can't be done in
1336     // ConstantExpr::getCast.
1337     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1338       if (CE->getOpcode() == Instruction::PtrToInt) {
1339         Constant *SrcPtr = CE->getOperand(0);
1340         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1341         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1342 
1343         if (MidIntSize >= SrcPtrSize) {
1344           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1345           if (SrcAS == DestTy->getPointerAddressSpace())
1346             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1347         }
1348       }
1349     }
1350 
1351     return ConstantExpr::getCast(Opcode, C, DestTy);
1352   case Instruction::Trunc:
1353   case Instruction::ZExt:
1354   case Instruction::SExt:
1355   case Instruction::FPTrunc:
1356   case Instruction::FPExt:
1357   case Instruction::UIToFP:
1358   case Instruction::SIToFP:
1359   case Instruction::FPToUI:
1360   case Instruction::FPToSI:
1361   case Instruction::AddrSpaceCast:
1362       return ConstantExpr::getCast(Opcode, C, DestTy);
1363   case Instruction::BitCast:
1364     return FoldBitCast(C, DestTy, DL);
1365   }
1366 }
1367 
1368 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1369                                                        ConstantExpr *CE) {
1370   if (!CE->getOperand(1)->isNullValue())
1371     return nullptr;  // Do not allow stepping over the value!
1372 
1373   // Loop over all of the operands, tracking down which value we are
1374   // addressing.
1375   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1376     C = C->getAggregateElement(CE->getOperand(i));
1377     if (!C)
1378       return nullptr;
1379   }
1380   return C;
1381 }
1382 
1383 Constant *
1384 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1385                                         ArrayRef<Constant *> Indices) {
1386   // Loop over all of the operands, tracking down which value we are
1387   // addressing.
1388   for (Constant *Index : Indices) {
1389     C = C->getAggregateElement(Index);
1390     if (!C)
1391       return nullptr;
1392   }
1393   return C;
1394 }
1395 
1396 //===----------------------------------------------------------------------===//
1397 //  Constant Folding for Calls
1398 //
1399 
1400 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1401   if (Call->isNoBuiltin() || Call->isStrictFP())
1402     return false;
1403   switch (F->getIntrinsicID()) {
1404   case Intrinsic::fabs:
1405   case Intrinsic::minnum:
1406   case Intrinsic::maxnum:
1407   case Intrinsic::minimum:
1408   case Intrinsic::maximum:
1409   case Intrinsic::log:
1410   case Intrinsic::log2:
1411   case Intrinsic::log10:
1412   case Intrinsic::exp:
1413   case Intrinsic::exp2:
1414   case Intrinsic::floor:
1415   case Intrinsic::ceil:
1416   case Intrinsic::sqrt:
1417   case Intrinsic::sin:
1418   case Intrinsic::cos:
1419   case Intrinsic::trunc:
1420   case Intrinsic::rint:
1421   case Intrinsic::nearbyint:
1422   case Intrinsic::pow:
1423   case Intrinsic::powi:
1424   case Intrinsic::bswap:
1425   case Intrinsic::ctpop:
1426   case Intrinsic::ctlz:
1427   case Intrinsic::cttz:
1428   case Intrinsic::fshl:
1429   case Intrinsic::fshr:
1430   case Intrinsic::fma:
1431   case Intrinsic::fmuladd:
1432   case Intrinsic::copysign:
1433   case Intrinsic::launder_invariant_group:
1434   case Intrinsic::strip_invariant_group:
1435   case Intrinsic::round:
1436   case Intrinsic::masked_load:
1437   case Intrinsic::sadd_with_overflow:
1438   case Intrinsic::uadd_with_overflow:
1439   case Intrinsic::ssub_with_overflow:
1440   case Intrinsic::usub_with_overflow:
1441   case Intrinsic::smul_with_overflow:
1442   case Intrinsic::umul_with_overflow:
1443   case Intrinsic::sadd_sat:
1444   case Intrinsic::uadd_sat:
1445   case Intrinsic::ssub_sat:
1446   case Intrinsic::usub_sat:
1447   case Intrinsic::smul_fix:
1448   case Intrinsic::smul_fix_sat:
1449   case Intrinsic::convert_from_fp16:
1450   case Intrinsic::convert_to_fp16:
1451   case Intrinsic::bitreverse:
1452   case Intrinsic::x86_sse_cvtss2si:
1453   case Intrinsic::x86_sse_cvtss2si64:
1454   case Intrinsic::x86_sse_cvttss2si:
1455   case Intrinsic::x86_sse_cvttss2si64:
1456   case Intrinsic::x86_sse2_cvtsd2si:
1457   case Intrinsic::x86_sse2_cvtsd2si64:
1458   case Intrinsic::x86_sse2_cvttsd2si:
1459   case Intrinsic::x86_sse2_cvttsd2si64:
1460   case Intrinsic::x86_avx512_vcvtss2si32:
1461   case Intrinsic::x86_avx512_vcvtss2si64:
1462   case Intrinsic::x86_avx512_cvttss2si:
1463   case Intrinsic::x86_avx512_cvttss2si64:
1464   case Intrinsic::x86_avx512_vcvtsd2si32:
1465   case Intrinsic::x86_avx512_vcvtsd2si64:
1466   case Intrinsic::x86_avx512_cvttsd2si:
1467   case Intrinsic::x86_avx512_cvttsd2si64:
1468   case Intrinsic::x86_avx512_vcvtss2usi32:
1469   case Intrinsic::x86_avx512_vcvtss2usi64:
1470   case Intrinsic::x86_avx512_cvttss2usi:
1471   case Intrinsic::x86_avx512_cvttss2usi64:
1472   case Intrinsic::x86_avx512_vcvtsd2usi32:
1473   case Intrinsic::x86_avx512_vcvtsd2usi64:
1474   case Intrinsic::x86_avx512_cvttsd2usi:
1475   case Intrinsic::x86_avx512_cvttsd2usi64:
1476   case Intrinsic::is_constant:
1477     return true;
1478   default:
1479     return false;
1480   case Intrinsic::not_intrinsic: break;
1481   }
1482 
1483   if (!F->hasName())
1484     return false;
1485 
1486   // In these cases, the check of the length is required.  We don't want to
1487   // return true for a name like "cos\0blah" which strcmp would return equal to
1488   // "cos", but has length 8.
1489   StringRef Name = F->getName();
1490   switch (Name[0]) {
1491   default:
1492     return false;
1493   case 'a':
1494     return Name == "acos" || Name == "acosf" ||
1495            Name == "asin" || Name == "asinf" ||
1496            Name == "atan" || Name == "atanf" ||
1497            Name == "atan2" || Name == "atan2f";
1498   case 'c':
1499     return Name == "ceil" || Name == "ceilf" ||
1500            Name == "cos" || Name == "cosf" ||
1501            Name == "cosh" || Name == "coshf";
1502   case 'e':
1503     return Name == "exp" || Name == "expf" ||
1504            Name == "exp2" || Name == "exp2f";
1505   case 'f':
1506     return Name == "fabs" || Name == "fabsf" ||
1507            Name == "floor" || Name == "floorf" ||
1508            Name == "fmod" || Name == "fmodf";
1509   case 'l':
1510     return Name == "log" || Name == "logf" ||
1511            Name == "log2" || Name == "log2f" ||
1512            Name == "log10" || Name == "log10f";
1513   case 'n':
1514     return Name == "nearbyint" || Name == "nearbyintf";
1515   case 'p':
1516     return Name == "pow" || Name == "powf";
1517   case 'r':
1518     return Name == "rint" || Name == "rintf" ||
1519            Name == "round" || Name == "roundf";
1520   case 's':
1521     return Name == "sin" || Name == "sinf" ||
1522            Name == "sinh" || Name == "sinhf" ||
1523            Name == "sqrt" || Name == "sqrtf";
1524   case 't':
1525     return Name == "tan" || Name == "tanf" ||
1526            Name == "tanh" || Name == "tanhf" ||
1527            Name == "trunc" || Name == "truncf";
1528   case '_':
1529     // Check for various function names that get used for the math functions
1530     // when the header files are preprocessed with the macro
1531     // __FINITE_MATH_ONLY__ enabled.
1532     // The '12' here is the length of the shortest name that can match.
1533     // We need to check the size before looking at Name[1] and Name[2]
1534     // so we may as well check a limit that will eliminate mismatches.
1535     if (Name.size() < 12 || Name[1] != '_')
1536       return false;
1537     switch (Name[2]) {
1538     default:
1539       return false;
1540     case 'a':
1541       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1542              Name == "__asin_finite" || Name == "__asinf_finite" ||
1543              Name == "__atan2_finite" || Name == "__atan2f_finite";
1544     case 'c':
1545       return Name == "__cosh_finite" || Name == "__coshf_finite";
1546     case 'e':
1547       return Name == "__exp_finite" || Name == "__expf_finite" ||
1548              Name == "__exp2_finite" || Name == "__exp2f_finite";
1549     case 'l':
1550       return Name == "__log_finite" || Name == "__logf_finite" ||
1551              Name == "__log10_finite" || Name == "__log10f_finite";
1552     case 'p':
1553       return Name == "__pow_finite" || Name == "__powf_finite";
1554     case 's':
1555       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1556     }
1557   }
1558 }
1559 
1560 namespace {
1561 
1562 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1563   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1564     APFloat APF(V);
1565     bool unused;
1566     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1567     return ConstantFP::get(Ty->getContext(), APF);
1568   }
1569   if (Ty->isDoubleTy())
1570     return ConstantFP::get(Ty->getContext(), APFloat(V));
1571   llvm_unreachable("Can only constant fold half/float/double");
1572 }
1573 
1574 /// Clear the floating-point exception state.
1575 inline void llvm_fenv_clearexcept() {
1576 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1577   feclearexcept(FE_ALL_EXCEPT);
1578 #endif
1579   errno = 0;
1580 }
1581 
1582 /// Test if a floating-point exception was raised.
1583 inline bool llvm_fenv_testexcept() {
1584   int errno_val = errno;
1585   if (errno_val == ERANGE || errno_val == EDOM)
1586     return true;
1587 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1588   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1589     return true;
1590 #endif
1591   return false;
1592 }
1593 
1594 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
1595   llvm_fenv_clearexcept();
1596   V = NativeFP(V);
1597   if (llvm_fenv_testexcept()) {
1598     llvm_fenv_clearexcept();
1599     return nullptr;
1600   }
1601 
1602   return GetConstantFoldFPValue(V, Ty);
1603 }
1604 
1605 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
1606                                double W, Type *Ty) {
1607   llvm_fenv_clearexcept();
1608   V = NativeFP(V, W);
1609   if (llvm_fenv_testexcept()) {
1610     llvm_fenv_clearexcept();
1611     return nullptr;
1612   }
1613 
1614   return GetConstantFoldFPValue(V, Ty);
1615 }
1616 
1617 /// Attempt to fold an SSE floating point to integer conversion of a constant
1618 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1619 /// used (toward nearest, ties to even). This matches the behavior of the
1620 /// non-truncating SSE instructions in the default rounding mode. The desired
1621 /// integer type Ty is used to select how many bits are available for the
1622 /// result. Returns null if the conversion cannot be performed, otherwise
1623 /// returns the Constant value resulting from the conversion.
1624 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1625                                       Type *Ty, bool IsSigned) {
1626   // All of these conversion intrinsics form an integer of at most 64bits.
1627   unsigned ResultWidth = Ty->getIntegerBitWidth();
1628   assert(ResultWidth <= 64 &&
1629          "Can only constant fold conversions to 64 and 32 bit ints");
1630 
1631   uint64_t UIntVal;
1632   bool isExact = false;
1633   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1634                                               : APFloat::rmNearestTiesToEven;
1635   APFloat::opStatus status =
1636       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1637                            IsSigned, mode, &isExact);
1638   if (status != APFloat::opOK &&
1639       (!roundTowardZero || status != APFloat::opInexact))
1640     return nullptr;
1641   return ConstantInt::get(Ty, UIntVal, IsSigned);
1642 }
1643 
1644 double getValueAsDouble(ConstantFP *Op) {
1645   Type *Ty = Op->getType();
1646 
1647   if (Ty->isFloatTy())
1648     return Op->getValueAPF().convertToFloat();
1649 
1650   if (Ty->isDoubleTy())
1651     return Op->getValueAPF().convertToDouble();
1652 
1653   bool unused;
1654   APFloat APF = Op->getValueAPF();
1655   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1656   return APF.convertToDouble();
1657 }
1658 
1659 static bool isManifestConstant(const Constant *c) {
1660   if (isa<ConstantData>(c)) {
1661     return true;
1662   } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
1663     for (const Value *subc : c->operand_values()) {
1664       if (!isManifestConstant(cast<Constant>(subc)))
1665         return false;
1666     }
1667     return true;
1668   }
1669   return false;
1670 }
1671 
1672 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1673   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1674     C = &CI->getValue();
1675     return true;
1676   }
1677   if (isa<UndefValue>(Op)) {
1678     C = nullptr;
1679     return true;
1680   }
1681   return false;
1682 }
1683 
1684 static Constant *ConstantFoldScalarCall1(StringRef Name,
1685                                          Intrinsic::ID IntrinsicID,
1686                                          Type *Ty,
1687                                          ArrayRef<Constant *> Operands,
1688                                          const TargetLibraryInfo *TLI,
1689                                          const CallBase *Call) {
1690   assert(Operands.size() == 1 && "Wrong number of operands.");
1691 
1692   if (IntrinsicID == Intrinsic::is_constant) {
1693     // We know we have a "Constant" argument. But we want to only
1694     // return true for manifest constants, not those that depend on
1695     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1696     if (isManifestConstant(Operands[0]))
1697       return ConstantInt::getTrue(Ty->getContext());
1698     return nullptr;
1699   }
1700   if (isa<UndefValue>(Operands[0])) {
1701     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1702     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1703     if (IntrinsicID == Intrinsic::cos ||
1704         IntrinsicID == Intrinsic::ctpop)
1705       return Constant::getNullValue(Ty);
1706     if (IntrinsicID == Intrinsic::bswap ||
1707         IntrinsicID == Intrinsic::bitreverse ||
1708         IntrinsicID == Intrinsic::launder_invariant_group ||
1709         IntrinsicID == Intrinsic::strip_invariant_group)
1710       return Operands[0];
1711   }
1712 
1713   if (isa<ConstantPointerNull>(Operands[0])) {
1714     // launder(null) == null == strip(null) iff in addrspace 0
1715     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1716         IntrinsicID == Intrinsic::strip_invariant_group) {
1717       // If instruction is not yet put in a basic block (e.g. when cloning
1718       // a function during inlining), Call's caller may not be available.
1719       // So check Call's BB first before querying Call->getCaller.
1720       const Function *Caller =
1721           Call->getParent() ? Call->getCaller() : nullptr;
1722       if (Caller &&
1723           !NullPointerIsDefined(
1724               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1725         return Operands[0];
1726       }
1727       return nullptr;
1728     }
1729   }
1730 
1731   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1732     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1733       APFloat Val(Op->getValueAPF());
1734 
1735       bool lost = false;
1736       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1737 
1738       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1739     }
1740 
1741     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1742       return nullptr;
1743 
1744     // Use internal versions of these intrinsics.
1745     APFloat U = Op->getValueAPF();
1746 
1747     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1748       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1749       return ConstantFP::get(Ty->getContext(), U);
1750     }
1751 
1752     if (IntrinsicID == Intrinsic::round) {
1753       U.roundToIntegral(APFloat::rmNearestTiesToAway);
1754       return ConstantFP::get(Ty->getContext(), U);
1755     }
1756 
1757     if (IntrinsicID == Intrinsic::ceil) {
1758       U.roundToIntegral(APFloat::rmTowardPositive);
1759       return ConstantFP::get(Ty->getContext(), U);
1760     }
1761 
1762     if (IntrinsicID == Intrinsic::floor) {
1763       U.roundToIntegral(APFloat::rmTowardNegative);
1764       return ConstantFP::get(Ty->getContext(), U);
1765     }
1766 
1767     if (IntrinsicID == Intrinsic::trunc) {
1768       U.roundToIntegral(APFloat::rmTowardZero);
1769       return ConstantFP::get(Ty->getContext(), U);
1770     }
1771 
1772     if (IntrinsicID == Intrinsic::fabs) {
1773       U.clearSign();
1774       return ConstantFP::get(Ty->getContext(), U);
1775     }
1776 
1777     /// We only fold functions with finite arguments. Folding NaN and inf is
1778     /// likely to be aborted with an exception anyway, and some host libms
1779     /// have known errors raising exceptions.
1780     if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1781       return nullptr;
1782 
1783     /// Currently APFloat versions of these functions do not exist, so we use
1784     /// the host native double versions.  Float versions are not called
1785     /// directly but for all these it is true (float)(f((double)arg)) ==
1786     /// f(arg).  Long double not supported yet.
1787     double V = getValueAsDouble(Op);
1788 
1789     switch (IntrinsicID) {
1790       default: break;
1791       case Intrinsic::log:
1792         return ConstantFoldFP(log, V, Ty);
1793       case Intrinsic::log2:
1794         // TODO: What about hosts that lack a C99 library?
1795         return ConstantFoldFP(Log2, V, Ty);
1796       case Intrinsic::log10:
1797         // TODO: What about hosts that lack a C99 library?
1798         return ConstantFoldFP(log10, V, Ty);
1799       case Intrinsic::exp:
1800         return ConstantFoldFP(exp, V, Ty);
1801       case Intrinsic::exp2:
1802         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
1803         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1804       case Intrinsic::sin:
1805         return ConstantFoldFP(sin, V, Ty);
1806       case Intrinsic::cos:
1807         return ConstantFoldFP(cos, V, Ty);
1808       case Intrinsic::sqrt:
1809         return ConstantFoldFP(sqrt, V, Ty);
1810     }
1811 
1812     if (!TLI)
1813       return nullptr;
1814 
1815     LibFunc Func = NotLibFunc;
1816     TLI->getLibFunc(Name, Func);
1817     switch (Func) {
1818     default:
1819       break;
1820     case LibFunc_acos:
1821     case LibFunc_acosf:
1822     case LibFunc_acos_finite:
1823     case LibFunc_acosf_finite:
1824       if (TLI->has(Func))
1825         return ConstantFoldFP(acos, V, Ty);
1826       break;
1827     case LibFunc_asin:
1828     case LibFunc_asinf:
1829     case LibFunc_asin_finite:
1830     case LibFunc_asinf_finite:
1831       if (TLI->has(Func))
1832         return ConstantFoldFP(asin, V, Ty);
1833       break;
1834     case LibFunc_atan:
1835     case LibFunc_atanf:
1836       if (TLI->has(Func))
1837         return ConstantFoldFP(atan, V, Ty);
1838       break;
1839     case LibFunc_ceil:
1840     case LibFunc_ceilf:
1841       if (TLI->has(Func)) {
1842         U.roundToIntegral(APFloat::rmTowardPositive);
1843         return ConstantFP::get(Ty->getContext(), U);
1844       }
1845       break;
1846     case LibFunc_cos:
1847     case LibFunc_cosf:
1848       if (TLI->has(Func))
1849         return ConstantFoldFP(cos, V, Ty);
1850       break;
1851     case LibFunc_cosh:
1852     case LibFunc_coshf:
1853     case LibFunc_cosh_finite:
1854     case LibFunc_coshf_finite:
1855       if (TLI->has(Func))
1856         return ConstantFoldFP(cosh, V, Ty);
1857       break;
1858     case LibFunc_exp:
1859     case LibFunc_expf:
1860     case LibFunc_exp_finite:
1861     case LibFunc_expf_finite:
1862       if (TLI->has(Func))
1863         return ConstantFoldFP(exp, V, Ty);
1864       break;
1865     case LibFunc_exp2:
1866     case LibFunc_exp2f:
1867     case LibFunc_exp2_finite:
1868     case LibFunc_exp2f_finite:
1869       if (TLI->has(Func))
1870         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
1871         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1872       break;
1873     case LibFunc_fabs:
1874     case LibFunc_fabsf:
1875       if (TLI->has(Func)) {
1876         U.clearSign();
1877         return ConstantFP::get(Ty->getContext(), U);
1878       }
1879       break;
1880     case LibFunc_floor:
1881     case LibFunc_floorf:
1882       if (TLI->has(Func)) {
1883         U.roundToIntegral(APFloat::rmTowardNegative);
1884         return ConstantFP::get(Ty->getContext(), U);
1885       }
1886       break;
1887     case LibFunc_log:
1888     case LibFunc_logf:
1889     case LibFunc_log_finite:
1890     case LibFunc_logf_finite:
1891       if (V > 0.0 && TLI->has(Func))
1892         return ConstantFoldFP(log, V, Ty);
1893       break;
1894     case LibFunc_log2:
1895     case LibFunc_log2f:
1896     case LibFunc_log2_finite:
1897     case LibFunc_log2f_finite:
1898       if (V > 0.0 && TLI->has(Func))
1899         // TODO: What about hosts that lack a C99 library?
1900         return ConstantFoldFP(Log2, V, Ty);
1901       break;
1902     case LibFunc_log10:
1903     case LibFunc_log10f:
1904     case LibFunc_log10_finite:
1905     case LibFunc_log10f_finite:
1906       if (V > 0.0 && TLI->has(Func))
1907         // TODO: What about hosts that lack a C99 library?
1908         return ConstantFoldFP(log10, V, Ty);
1909       break;
1910     case LibFunc_nearbyint:
1911     case LibFunc_nearbyintf:
1912     case LibFunc_rint:
1913     case LibFunc_rintf:
1914       if (TLI->has(Func)) {
1915         U.roundToIntegral(APFloat::rmNearestTiesToEven);
1916         return ConstantFP::get(Ty->getContext(), U);
1917       }
1918       break;
1919     case LibFunc_round:
1920     case LibFunc_roundf:
1921       if (TLI->has(Func)) {
1922         U.roundToIntegral(APFloat::rmNearestTiesToAway);
1923         return ConstantFP::get(Ty->getContext(), U);
1924       }
1925       break;
1926     case LibFunc_sin:
1927     case LibFunc_sinf:
1928       if (TLI->has(Func))
1929         return ConstantFoldFP(sin, V, Ty);
1930       break;
1931     case LibFunc_sinh:
1932     case LibFunc_sinhf:
1933     case LibFunc_sinh_finite:
1934     case LibFunc_sinhf_finite:
1935       if (TLI->has(Func))
1936         return ConstantFoldFP(sinh, V, Ty);
1937       break;
1938     case LibFunc_sqrt:
1939     case LibFunc_sqrtf:
1940       if (V >= 0.0 && TLI->has(Func))
1941         return ConstantFoldFP(sqrt, V, Ty);
1942       break;
1943     case LibFunc_tan:
1944     case LibFunc_tanf:
1945       if (TLI->has(Func))
1946         return ConstantFoldFP(tan, V, Ty);
1947       break;
1948     case LibFunc_tanh:
1949     case LibFunc_tanhf:
1950       if (TLI->has(Func))
1951         return ConstantFoldFP(tanh, V, Ty);
1952       break;
1953     case LibFunc_trunc:
1954     case LibFunc_truncf:
1955       if (TLI->has(Func)) {
1956         U.roundToIntegral(APFloat::rmTowardZero);
1957         return ConstantFP::get(Ty->getContext(), U);
1958       }
1959       break;
1960     }
1961     return nullptr;
1962   }
1963 
1964   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
1965     switch (IntrinsicID) {
1966     case Intrinsic::bswap:
1967       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1968     case Intrinsic::ctpop:
1969       return ConstantInt::get(Ty, Op->getValue().countPopulation());
1970     case Intrinsic::bitreverse:
1971       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
1972     case Intrinsic::convert_from_fp16: {
1973       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
1974 
1975       bool lost = false;
1976       APFloat::opStatus status = Val.convert(
1977           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
1978 
1979       // Conversion is always precise.
1980       (void)status;
1981       assert(status == APFloat::opOK && !lost &&
1982              "Precision lost during fp16 constfolding");
1983 
1984       return ConstantFP::get(Ty->getContext(), Val);
1985     }
1986     default:
1987       return nullptr;
1988     }
1989   }
1990 
1991   // Support ConstantVector in case we have an Undef in the top.
1992   if (isa<ConstantVector>(Operands[0]) ||
1993       isa<ConstantDataVector>(Operands[0])) {
1994     auto *Op = cast<Constant>(Operands[0]);
1995     switch (IntrinsicID) {
1996     default: break;
1997     case Intrinsic::x86_sse_cvtss2si:
1998     case Intrinsic::x86_sse_cvtss2si64:
1999     case Intrinsic::x86_sse2_cvtsd2si:
2000     case Intrinsic::x86_sse2_cvtsd2si64:
2001       if (ConstantFP *FPOp =
2002               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2003         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2004                                            /*roundTowardZero=*/false, Ty,
2005                                            /*IsSigned*/true);
2006       break;
2007     case Intrinsic::x86_sse_cvttss2si:
2008     case Intrinsic::x86_sse_cvttss2si64:
2009     case Intrinsic::x86_sse2_cvttsd2si:
2010     case Intrinsic::x86_sse2_cvttsd2si64:
2011       if (ConstantFP *FPOp =
2012               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2013         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2014                                            /*roundTowardZero=*/true, Ty,
2015                                            /*IsSigned*/true);
2016       break;
2017     }
2018   }
2019 
2020   return nullptr;
2021 }
2022 
2023 static Constant *ConstantFoldScalarCall2(StringRef Name,
2024                                          Intrinsic::ID IntrinsicID,
2025                                          Type *Ty,
2026                                          ArrayRef<Constant *> Operands,
2027                                          const TargetLibraryInfo *TLI,
2028                                          const CallBase *Call) {
2029   assert(Operands.size() == 2 && "Wrong number of operands.");
2030 
2031   if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2032     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2033       return nullptr;
2034     double Op1V = getValueAsDouble(Op1);
2035 
2036     if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2037       if (Op2->getType() != Op1->getType())
2038         return nullptr;
2039 
2040       double Op2V = getValueAsDouble(Op2);
2041       if (IntrinsicID == Intrinsic::pow) {
2042         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2043       }
2044       if (IntrinsicID == Intrinsic::copysign) {
2045         APFloat V1 = Op1->getValueAPF();
2046         const APFloat &V2 = Op2->getValueAPF();
2047         V1.copySign(V2);
2048         return ConstantFP::get(Ty->getContext(), V1);
2049       }
2050 
2051       if (IntrinsicID == Intrinsic::minnum) {
2052         const APFloat &C1 = Op1->getValueAPF();
2053         const APFloat &C2 = Op2->getValueAPF();
2054         return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
2055       }
2056 
2057       if (IntrinsicID == Intrinsic::maxnum) {
2058         const APFloat &C1 = Op1->getValueAPF();
2059         const APFloat &C2 = Op2->getValueAPF();
2060         return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
2061       }
2062 
2063       if (IntrinsicID == Intrinsic::minimum) {
2064         const APFloat &C1 = Op1->getValueAPF();
2065         const APFloat &C2 = Op2->getValueAPF();
2066         return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
2067       }
2068 
2069       if (IntrinsicID == Intrinsic::maximum) {
2070         const APFloat &C1 = Op1->getValueAPF();
2071         const APFloat &C2 = Op2->getValueAPF();
2072         return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
2073       }
2074 
2075       if (!TLI)
2076         return nullptr;
2077 
2078       LibFunc Func = NotLibFunc;
2079       TLI->getLibFunc(Name, Func);
2080       switch (Func) {
2081       default:
2082         break;
2083       case LibFunc_pow:
2084       case LibFunc_powf:
2085       case LibFunc_pow_finite:
2086       case LibFunc_powf_finite:
2087         if (TLI->has(Func))
2088           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2089         break;
2090       case LibFunc_fmod:
2091       case LibFunc_fmodf:
2092         if (TLI->has(Func)) {
2093           APFloat V = Op1->getValueAPF();
2094           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2095             return ConstantFP::get(Ty->getContext(), V);
2096         }
2097         break;
2098       case LibFunc_atan2:
2099       case LibFunc_atan2f:
2100       case LibFunc_atan2_finite:
2101       case LibFunc_atan2f_finite:
2102         if (TLI->has(Func))
2103           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2104         break;
2105       }
2106     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2107       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2108         return ConstantFP::get(Ty->getContext(),
2109                                APFloat((float)std::pow((float)Op1V,
2110                                                (int)Op2C->getZExtValue())));
2111       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2112         return ConstantFP::get(Ty->getContext(),
2113                                APFloat((float)std::pow((float)Op1V,
2114                                                (int)Op2C->getZExtValue())));
2115       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2116         return ConstantFP::get(Ty->getContext(),
2117                                APFloat((double)std::pow((double)Op1V,
2118                                                  (int)Op2C->getZExtValue())));
2119     }
2120     return nullptr;
2121   }
2122 
2123   if (Operands[0]->getType()->isIntegerTy() &&
2124       Operands[1]->getType()->isIntegerTy()) {
2125     const APInt *C0, *C1;
2126     if (!getConstIntOrUndef(Operands[0], C0) ||
2127         !getConstIntOrUndef(Operands[1], C1))
2128       return nullptr;
2129 
2130     switch (IntrinsicID) {
2131     default: break;
2132     case Intrinsic::usub_with_overflow:
2133     case Intrinsic::ssub_with_overflow:
2134     case Intrinsic::uadd_with_overflow:
2135     case Intrinsic::sadd_with_overflow:
2136       // X - undef -> { undef, false }
2137       // undef - X -> { undef, false }
2138       // X + undef -> { undef, false }
2139       // undef + x -> { undef, false }
2140       if (!C0 || !C1) {
2141         return ConstantStruct::get(
2142             cast<StructType>(Ty),
2143             {UndefValue::get(Ty->getStructElementType(0)),
2144              Constant::getNullValue(Ty->getStructElementType(1))});
2145       }
2146       LLVM_FALLTHROUGH;
2147     case Intrinsic::smul_with_overflow:
2148     case Intrinsic::umul_with_overflow: {
2149       // undef * X -> { 0, false }
2150       // X * undef -> { 0, false }
2151       if (!C0 || !C1)
2152         return Constant::getNullValue(Ty);
2153 
2154       APInt Res;
2155       bool Overflow;
2156       switch (IntrinsicID) {
2157       default: llvm_unreachable("Invalid case");
2158       case Intrinsic::sadd_with_overflow:
2159         Res = C0->sadd_ov(*C1, Overflow);
2160         break;
2161       case Intrinsic::uadd_with_overflow:
2162         Res = C0->uadd_ov(*C1, Overflow);
2163         break;
2164       case Intrinsic::ssub_with_overflow:
2165         Res = C0->ssub_ov(*C1, Overflow);
2166         break;
2167       case Intrinsic::usub_with_overflow:
2168         Res = C0->usub_ov(*C1, Overflow);
2169         break;
2170       case Intrinsic::smul_with_overflow:
2171         Res = C0->smul_ov(*C1, Overflow);
2172         break;
2173       case Intrinsic::umul_with_overflow:
2174         Res = C0->umul_ov(*C1, Overflow);
2175         break;
2176       }
2177       Constant *Ops[] = {
2178         ConstantInt::get(Ty->getContext(), Res),
2179         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2180       };
2181       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2182     }
2183     case Intrinsic::uadd_sat:
2184     case Intrinsic::sadd_sat:
2185       if (!C0 && !C1)
2186         return UndefValue::get(Ty);
2187       if (!C0 || !C1)
2188         return Constant::getAllOnesValue(Ty);
2189       if (IntrinsicID == Intrinsic::uadd_sat)
2190         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2191       else
2192         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2193     case Intrinsic::usub_sat:
2194     case Intrinsic::ssub_sat:
2195       if (!C0 && !C1)
2196         return UndefValue::get(Ty);
2197       if (!C0 || !C1)
2198         return Constant::getNullValue(Ty);
2199       if (IntrinsicID == Intrinsic::usub_sat)
2200         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2201       else
2202         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2203     case Intrinsic::cttz:
2204     case Intrinsic::ctlz:
2205       assert(C1 && "Must be constant int");
2206 
2207       // cttz(0, 1) and ctlz(0, 1) are undef.
2208       if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2209         return UndefValue::get(Ty);
2210       if (!C0)
2211         return Constant::getNullValue(Ty);
2212       if (IntrinsicID == Intrinsic::cttz)
2213         return ConstantInt::get(Ty, C0->countTrailingZeros());
2214       else
2215         return ConstantInt::get(Ty, C0->countLeadingZeros());
2216     }
2217 
2218     return nullptr;
2219   }
2220 
2221   // Support ConstantVector in case we have an Undef in the top.
2222   if ((isa<ConstantVector>(Operands[0]) ||
2223        isa<ConstantDataVector>(Operands[0])) &&
2224       // Check for default rounding mode.
2225       // FIXME: Support other rounding modes?
2226       isa<ConstantInt>(Operands[1]) &&
2227       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2228     auto *Op = cast<Constant>(Operands[0]);
2229     switch (IntrinsicID) {
2230     default: break;
2231     case Intrinsic::x86_avx512_vcvtss2si32:
2232     case Intrinsic::x86_avx512_vcvtss2si64:
2233     case Intrinsic::x86_avx512_vcvtsd2si32:
2234     case Intrinsic::x86_avx512_vcvtsd2si64:
2235       if (ConstantFP *FPOp =
2236               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2237         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2238                                            /*roundTowardZero=*/false, Ty,
2239                                            /*IsSigned*/true);
2240       break;
2241     case Intrinsic::x86_avx512_vcvtss2usi32:
2242     case Intrinsic::x86_avx512_vcvtss2usi64:
2243     case Intrinsic::x86_avx512_vcvtsd2usi32:
2244     case Intrinsic::x86_avx512_vcvtsd2usi64:
2245       if (ConstantFP *FPOp =
2246               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2247         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2248                                            /*roundTowardZero=*/false, Ty,
2249                                            /*IsSigned*/false);
2250       break;
2251     case Intrinsic::x86_avx512_cvttss2si:
2252     case Intrinsic::x86_avx512_cvttss2si64:
2253     case Intrinsic::x86_avx512_cvttsd2si:
2254     case Intrinsic::x86_avx512_cvttsd2si64:
2255       if (ConstantFP *FPOp =
2256               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2257         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2258                                            /*roundTowardZero=*/true, Ty,
2259                                            /*IsSigned*/true);
2260       break;
2261     case Intrinsic::x86_avx512_cvttss2usi:
2262     case Intrinsic::x86_avx512_cvttss2usi64:
2263     case Intrinsic::x86_avx512_cvttsd2usi:
2264     case Intrinsic::x86_avx512_cvttsd2usi64:
2265       if (ConstantFP *FPOp =
2266               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2267         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2268                                            /*roundTowardZero=*/true, Ty,
2269                                            /*IsSigned*/false);
2270       break;
2271     }
2272   }
2273   return nullptr;
2274 }
2275 
2276 static Constant *ConstantFoldScalarCall3(StringRef Name,
2277                                          Intrinsic::ID IntrinsicID,
2278                                          Type *Ty,
2279                                          ArrayRef<Constant *> Operands,
2280                                          const TargetLibraryInfo *TLI,
2281                                          const CallBase *Call) {
2282   assert(Operands.size() == 3 && "Wrong number of operands.");
2283 
2284   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2285     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2286       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2287         switch (IntrinsicID) {
2288         default: break;
2289         case Intrinsic::fma:
2290         case Intrinsic::fmuladd: {
2291           APFloat V = Op1->getValueAPF();
2292           V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
2293                              APFloat::rmNearestTiesToEven);
2294           return ConstantFP::get(Ty->getContext(), V);
2295         }
2296         }
2297       }
2298     }
2299   }
2300 
2301   if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
2302     if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
2303       if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
2304         switch (IntrinsicID) {
2305         default: break;
2306         case Intrinsic::smul_fix:
2307         case Intrinsic::smul_fix_sat: {
2308           // This code performs rounding towards negative infinity in case the
2309           // result cannot be represented exactly for the given scale. Targets
2310           // that do care about rounding should use a target hook for specifying
2311           // how rounding should be done, and provide their own folding to be
2312           // consistent with rounding. This is the same approach as used by
2313           // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2314           APInt Lhs = Op1->getValue();
2315           APInt Rhs = Op2->getValue();
2316           unsigned Scale = Op3->getValue().getZExtValue();
2317           unsigned Width = Lhs.getBitWidth();
2318           assert(Scale < Width && "Illegal scale.");
2319           unsigned ExtendedWidth = Width * 2;
2320           APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
2321                            Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
2322           if (IntrinsicID == Intrinsic::smul_fix_sat) {
2323             APInt MaxValue =
2324               APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2325             APInt MinValue =
2326               APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2327             Product = APIntOps::smin(Product, MaxValue);
2328             Product = APIntOps::smax(Product, MinValue);
2329           }
2330           return ConstantInt::get(Ty->getContext(),
2331                                   Product.sextOrTrunc(Width));
2332         }
2333         }
2334       }
2335     }
2336   }
2337 
2338   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2339     const APInt *C0, *C1, *C2;
2340     if (!getConstIntOrUndef(Operands[0], C0) ||
2341         !getConstIntOrUndef(Operands[1], C1) ||
2342         !getConstIntOrUndef(Operands[2], C2))
2343       return nullptr;
2344 
2345     bool IsRight = IntrinsicID == Intrinsic::fshr;
2346     if (!C2)
2347       return Operands[IsRight ? 1 : 0];
2348     if (!C0 && !C1)
2349       return UndefValue::get(Ty);
2350 
2351     // The shift amount is interpreted as modulo the bitwidth. If the shift
2352     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2353     unsigned BitWidth = C2->getBitWidth();
2354     unsigned ShAmt = C2->urem(BitWidth);
2355     if (!ShAmt)
2356       return Operands[IsRight ? 1 : 0];
2357 
2358     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2359     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2360     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2361     if (!C0)
2362       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2363     if (!C1)
2364       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2365     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2366   }
2367 
2368   return nullptr;
2369 }
2370 
2371 static Constant *ConstantFoldScalarCall(StringRef Name,
2372                                         Intrinsic::ID IntrinsicID,
2373                                         Type *Ty,
2374                                         ArrayRef<Constant *> Operands,
2375                                         const TargetLibraryInfo *TLI,
2376                                         const CallBase *Call) {
2377   if (Operands.size() == 1)
2378     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2379 
2380   if (Operands.size() == 2)
2381     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2382 
2383   if (Operands.size() == 3)
2384     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2385 
2386   return nullptr;
2387 }
2388 
2389 static Constant *ConstantFoldVectorCall(StringRef Name,
2390                                         Intrinsic::ID IntrinsicID,
2391                                         VectorType *VTy,
2392                                         ArrayRef<Constant *> Operands,
2393                                         const DataLayout &DL,
2394                                         const TargetLibraryInfo *TLI,
2395                                         const CallBase *Call) {
2396   SmallVector<Constant *, 4> Result(VTy->getNumElements());
2397   SmallVector<Constant *, 4> Lane(Operands.size());
2398   Type *Ty = VTy->getElementType();
2399 
2400   if (IntrinsicID == Intrinsic::masked_load) {
2401     auto *SrcPtr = Operands[0];
2402     auto *Mask = Operands[2];
2403     auto *Passthru = Operands[3];
2404 
2405     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
2406 
2407     SmallVector<Constant *, 32> NewElements;
2408     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2409       auto *MaskElt = Mask->getAggregateElement(I);
2410       if (!MaskElt)
2411         break;
2412       auto *PassthruElt = Passthru->getAggregateElement(I);
2413       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2414       if (isa<UndefValue>(MaskElt)) {
2415         if (PassthruElt)
2416           NewElements.push_back(PassthruElt);
2417         else if (VecElt)
2418           NewElements.push_back(VecElt);
2419         else
2420           return nullptr;
2421       }
2422       if (MaskElt->isNullValue()) {
2423         if (!PassthruElt)
2424           return nullptr;
2425         NewElements.push_back(PassthruElt);
2426       } else if (MaskElt->isOneValue()) {
2427         if (!VecElt)
2428           return nullptr;
2429         NewElements.push_back(VecElt);
2430       } else {
2431         return nullptr;
2432       }
2433     }
2434     if (NewElements.size() != VTy->getNumElements())
2435       return nullptr;
2436     return ConstantVector::get(NewElements);
2437   }
2438 
2439   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2440     // Gather a column of constants.
2441     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
2442       // Some intrinsics use a scalar type for certain arguments.
2443       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
2444         Lane[J] = Operands[J];
2445         continue;
2446       }
2447 
2448       Constant *Agg = Operands[J]->getAggregateElement(I);
2449       if (!Agg)
2450         return nullptr;
2451 
2452       Lane[J] = Agg;
2453     }
2454 
2455     // Use the regular scalar folding to simplify this column.
2456     Constant *Folded =
2457         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
2458     if (!Folded)
2459       return nullptr;
2460     Result[I] = Folded;
2461   }
2462 
2463   return ConstantVector::get(Result);
2464 }
2465 
2466 } // end anonymous namespace
2467 
2468 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
2469                                  ArrayRef<Constant *> Operands,
2470                                  const TargetLibraryInfo *TLI) {
2471   if (Call->isNoBuiltin() || Call->isStrictFP())
2472     return nullptr;
2473   if (!F->hasName())
2474     return nullptr;
2475   StringRef Name = F->getName();
2476 
2477   Type *Ty = F->getReturnType();
2478 
2479   if (auto *VTy = dyn_cast<VectorType>(Ty))
2480     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
2481                                   F->getParent()->getDataLayout(), TLI, Call);
2482 
2483   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
2484                                 Call);
2485 }
2486 
2487 bool llvm::isMathLibCallNoop(const CallBase *Call,
2488                              const TargetLibraryInfo *TLI) {
2489   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2490   // (and to some extent ConstantFoldScalarCall).
2491   if (Call->isNoBuiltin() || Call->isStrictFP())
2492     return false;
2493   Function *F = Call->getCalledFunction();
2494   if (!F)
2495     return false;
2496 
2497   LibFunc Func;
2498   if (!TLI || !TLI->getLibFunc(*F, Func))
2499     return false;
2500 
2501   if (Call->getNumArgOperands() == 1) {
2502     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
2503       const APFloat &Op = OpC->getValueAPF();
2504       switch (Func) {
2505       case LibFunc_logl:
2506       case LibFunc_log:
2507       case LibFunc_logf:
2508       case LibFunc_log2l:
2509       case LibFunc_log2:
2510       case LibFunc_log2f:
2511       case LibFunc_log10l:
2512       case LibFunc_log10:
2513       case LibFunc_log10f:
2514         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
2515 
2516       case LibFunc_expl:
2517       case LibFunc_exp:
2518       case LibFunc_expf:
2519         // FIXME: These boundaries are slightly conservative.
2520         if (OpC->getType()->isDoubleTy())
2521           return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
2522                  Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan;
2523         if (OpC->getType()->isFloatTy())
2524           return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan &&
2525                  Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
2526         break;
2527 
2528       case LibFunc_exp2l:
2529       case LibFunc_exp2:
2530       case LibFunc_exp2f:
2531         // FIXME: These boundaries are slightly conservative.
2532         if (OpC->getType()->isDoubleTy())
2533           return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
2534                  Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan;
2535         if (OpC->getType()->isFloatTy())
2536           return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan &&
2537                  Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
2538         break;
2539 
2540       case LibFunc_sinl:
2541       case LibFunc_sin:
2542       case LibFunc_sinf:
2543       case LibFunc_cosl:
2544       case LibFunc_cos:
2545       case LibFunc_cosf:
2546         return !Op.isInfinity();
2547 
2548       case LibFunc_tanl:
2549       case LibFunc_tan:
2550       case LibFunc_tanf: {
2551         // FIXME: Stop using the host math library.
2552         // FIXME: The computation isn't done in the right precision.
2553         Type *Ty = OpC->getType();
2554         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2555           double OpV = getValueAsDouble(OpC);
2556           return ConstantFoldFP(tan, OpV, Ty) != nullptr;
2557         }
2558         break;
2559       }
2560 
2561       case LibFunc_asinl:
2562       case LibFunc_asin:
2563       case LibFunc_asinf:
2564       case LibFunc_acosl:
2565       case LibFunc_acos:
2566       case LibFunc_acosf:
2567         return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
2568                    APFloat::cmpLessThan &&
2569                Op.compare(APFloat(Op.getSemantics(), "1")) !=
2570                    APFloat::cmpGreaterThan;
2571 
2572       case LibFunc_sinh:
2573       case LibFunc_cosh:
2574       case LibFunc_sinhf:
2575       case LibFunc_coshf:
2576       case LibFunc_sinhl:
2577       case LibFunc_coshl:
2578         // FIXME: These boundaries are slightly conservative.
2579         if (OpC->getType()->isDoubleTy())
2580           return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
2581                  Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan;
2582         if (OpC->getType()->isFloatTy())
2583           return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan &&
2584                  Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
2585         break;
2586 
2587       case LibFunc_sqrtl:
2588       case LibFunc_sqrt:
2589       case LibFunc_sqrtf:
2590         return Op.isNaN() || Op.isZero() || !Op.isNegative();
2591 
2592       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2593       // maybe others?
2594       default:
2595         break;
2596       }
2597     }
2598   }
2599 
2600   if (Call->getNumArgOperands() == 2) {
2601     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
2602     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
2603     if (Op0C && Op1C) {
2604       const APFloat &Op0 = Op0C->getValueAPF();
2605       const APFloat &Op1 = Op1C->getValueAPF();
2606 
2607       switch (Func) {
2608       case LibFunc_powl:
2609       case LibFunc_pow:
2610       case LibFunc_powf: {
2611         // FIXME: Stop using the host math library.
2612         // FIXME: The computation isn't done in the right precision.
2613         Type *Ty = Op0C->getType();
2614         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2615           if (Ty == Op1C->getType()) {
2616             double Op0V = getValueAsDouble(Op0C);
2617             double Op1V = getValueAsDouble(Op1C);
2618             return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
2619           }
2620         }
2621         break;
2622       }
2623 
2624       case LibFunc_fmodl:
2625       case LibFunc_fmod:
2626       case LibFunc_fmodf:
2627         return Op0.isNaN() || Op1.isNaN() ||
2628                (!Op0.isInfinity() && !Op1.isZero());
2629 
2630       default:
2631         break;
2632       }
2633     }
2634   }
2635 
2636   return false;
2637 }
2638