xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp (revision 7029da5c36f2d3cf6bb6c81bf551229f416399e8)
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/Config/config.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/KnownBits.h"
46 #include "llvm/Support/MathExtras.h"
47 #include <cassert>
48 #include <cerrno>
49 #include <cfenv>
50 #include <cmath>
51 #include <cstddef>
52 #include <cstdint>
53 
54 using namespace llvm;
55 
56 namespace {
57 
58 //===----------------------------------------------------------------------===//
59 // Constant Folding internal helper functions
60 //===----------------------------------------------------------------------===//
61 
62 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
63                                         Constant *C, Type *SrcEltTy,
64                                         unsigned NumSrcElts,
65                                         const DataLayout &DL) {
66   // Now that we know that the input value is a vector of integers, just shift
67   // and insert them into our result.
68   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
69   for (unsigned i = 0; i != NumSrcElts; ++i) {
70     Constant *Element;
71     if (DL.isLittleEndian())
72       Element = C->getAggregateElement(NumSrcElts - i - 1);
73     else
74       Element = C->getAggregateElement(i);
75 
76     if (Element && isa<UndefValue>(Element)) {
77       Result <<= BitShift;
78       continue;
79     }
80 
81     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
82     if (!ElementCI)
83       return ConstantExpr::getBitCast(C, DestTy);
84 
85     Result <<= BitShift;
86     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
87   }
88 
89   return nullptr;
90 }
91 
92 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
93 /// This always returns a non-null constant, but it may be a
94 /// ConstantExpr if unfoldable.
95 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
96   // Catch the obvious splat cases.
97   if (C->isNullValue() && !DestTy->isX86_MMXTy())
98     return Constant::getNullValue(DestTy);
99   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
100       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
101     return Constant::getAllOnesValue(DestTy);
102 
103   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
104     // Handle a vector->scalar integer/fp cast.
105     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
106       unsigned NumSrcElts = VTy->getNumElements();
107       Type *SrcEltTy = VTy->getElementType();
108 
109       // If the vector is a vector of floating point, convert it to vector of int
110       // to simplify things.
111       if (SrcEltTy->isFloatingPointTy()) {
112         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
113         Type *SrcIVTy =
114           VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
115         // Ask IR to do the conversion now that #elts line up.
116         C = ConstantExpr::getBitCast(C, SrcIVTy);
117       }
118 
119       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
120       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
121                                                 SrcEltTy, NumSrcElts, DL))
122         return CE;
123 
124       if (isa<IntegerType>(DestTy))
125         return ConstantInt::get(DestTy, Result);
126 
127       APFloat FP(DestTy->getFltSemantics(), Result);
128       return ConstantFP::get(DestTy->getContext(), FP);
129     }
130   }
131 
132   // The code below only handles casts to vectors currently.
133   auto *DestVTy = dyn_cast<VectorType>(DestTy);
134   if (!DestVTy)
135     return ConstantExpr::getBitCast(C, DestTy);
136 
137   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
138   // vector so the code below can handle it uniformly.
139   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
140     Constant *Ops = C; // don't take the address of C!
141     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
142   }
143 
144   // If this is a bitcast from constant vector -> vector, fold it.
145   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
146     return ConstantExpr::getBitCast(C, DestTy);
147 
148   // If the element types match, IR can fold it.
149   unsigned NumDstElt = DestVTy->getNumElements();
150   unsigned NumSrcElt = C->getType()->getVectorNumElements();
151   if (NumDstElt == NumSrcElt)
152     return ConstantExpr::getBitCast(C, DestTy);
153 
154   Type *SrcEltTy = C->getType()->getVectorElementType();
155   Type *DstEltTy = DestVTy->getElementType();
156 
157   // Otherwise, we're changing the number of elements in a vector, which
158   // requires endianness information to do the right thing.  For example,
159   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
160   // folds to (little endian):
161   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
162   // and to (big endian):
163   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
164 
165   // First thing is first.  We only want to think about integer here, so if
166   // we have something in FP form, recast it as integer.
167   if (DstEltTy->isFloatingPointTy()) {
168     // Fold to an vector of integers with same size as our FP type.
169     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
170     Type *DestIVTy =
171       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
172     // Recursively handle this integer conversion, if possible.
173     C = FoldBitCast(C, DestIVTy, DL);
174 
175     // Finally, IR can handle this now that #elts line up.
176     return ConstantExpr::getBitCast(C, DestTy);
177   }
178 
179   // Okay, we know the destination is integer, if the input is FP, convert
180   // it to integer first.
181   if (SrcEltTy->isFloatingPointTy()) {
182     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
183     Type *SrcIVTy =
184       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
185     // Ask IR to do the conversion now that #elts line up.
186     C = ConstantExpr::getBitCast(C, SrcIVTy);
187     // If IR wasn't able to fold it, bail out.
188     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
189         !isa<ConstantDataVector>(C))
190       return C;
191   }
192 
193   // Now we know that the input and output vectors are both integer vectors
194   // of the same size, and that their #elements is not the same.  Do the
195   // conversion here, which depends on whether the input or output has
196   // more elements.
197   bool isLittleEndian = DL.isLittleEndian();
198 
199   SmallVector<Constant*, 32> Result;
200   if (NumDstElt < NumSrcElt) {
201     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
202     Constant *Zero = Constant::getNullValue(DstEltTy);
203     unsigned Ratio = NumSrcElt/NumDstElt;
204     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
205     unsigned SrcElt = 0;
206     for (unsigned i = 0; i != NumDstElt; ++i) {
207       // Build each element of the result.
208       Constant *Elt = Zero;
209       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
210       for (unsigned j = 0; j != Ratio; ++j) {
211         Constant *Src = C->getAggregateElement(SrcElt++);
212         if (Src && isa<UndefValue>(Src))
213           Src = Constant::getNullValue(C->getType()->getVectorElementType());
214         else
215           Src = dyn_cast_or_null<ConstantInt>(Src);
216         if (!Src)  // Reject constantexpr elements.
217           return ConstantExpr::getBitCast(C, DestTy);
218 
219         // Zero extend the element to the right size.
220         Src = ConstantExpr::getZExt(Src, Elt->getType());
221 
222         // Shift it to the right place, depending on endianness.
223         Src = ConstantExpr::getShl(Src,
224                                    ConstantInt::get(Src->getType(), ShiftAmt));
225         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
226 
227         // Mix it in.
228         Elt = ConstantExpr::getOr(Elt, Src);
229       }
230       Result.push_back(Elt);
231     }
232     return ConstantVector::get(Result);
233   }
234 
235   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
236   unsigned Ratio = NumDstElt/NumSrcElt;
237   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
238 
239   // Loop over each source value, expanding into multiple results.
240   for (unsigned i = 0; i != NumSrcElt; ++i) {
241     auto *Element = C->getAggregateElement(i);
242 
243     if (!Element) // Reject constantexpr elements.
244       return ConstantExpr::getBitCast(C, DestTy);
245 
246     if (isa<UndefValue>(Element)) {
247       // Correctly Propagate undef values.
248       Result.append(Ratio, UndefValue::get(DstEltTy));
249       continue;
250     }
251 
252     auto *Src = dyn_cast<ConstantInt>(Element);
253     if (!Src)
254       return ConstantExpr::getBitCast(C, DestTy);
255 
256     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
257     for (unsigned j = 0; j != Ratio; ++j) {
258       // Shift the piece of the value into the right place, depending on
259       // endianness.
260       Constant *Elt = ConstantExpr::getLShr(Src,
261                                   ConstantInt::get(Src->getType(), ShiftAmt));
262       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
263 
264       // Truncate the element to an integer with the same pointer size and
265       // convert the element back to a pointer using a inttoptr.
266       if (DstEltTy->isPointerTy()) {
267         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
268         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
269         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
270         continue;
271       }
272 
273       // Truncate and remember this piece.
274       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
275     }
276   }
277 
278   return ConstantVector::get(Result);
279 }
280 
281 } // end anonymous namespace
282 
283 /// If this constant is a constant offset from a global, return the global and
284 /// the constant. Because of constantexprs, this function is recursive.
285 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
286                                       APInt &Offset, const DataLayout &DL) {
287   // Trivial case, constant is the global.
288   if ((GV = dyn_cast<GlobalValue>(C))) {
289     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
290     Offset = APInt(BitWidth, 0);
291     return true;
292   }
293 
294   // Otherwise, if this isn't a constant expr, bail out.
295   auto *CE = dyn_cast<ConstantExpr>(C);
296   if (!CE) return false;
297 
298   // Look through ptr->int and ptr->ptr casts.
299   if (CE->getOpcode() == Instruction::PtrToInt ||
300       CE->getOpcode() == Instruction::BitCast)
301     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
302 
303   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
304   auto *GEP = dyn_cast<GEPOperator>(CE);
305   if (!GEP)
306     return false;
307 
308   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
309   APInt TmpOffset(BitWidth, 0);
310 
311   // If the base isn't a global+constant, we aren't either.
312   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
313     return false;
314 
315   // Otherwise, add any offset that our operands provide.
316   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
317     return false;
318 
319   Offset = TmpOffset;
320   return true;
321 }
322 
323 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
324                                          const DataLayout &DL) {
325   do {
326     Type *SrcTy = C->getType();
327 
328     // If the type sizes are the same and a cast is legal, just directly
329     // cast the constant.
330     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
331       Instruction::CastOps Cast = Instruction::BitCast;
332       // If we are going from a pointer to int or vice versa, we spell the cast
333       // differently.
334       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
335         Cast = Instruction::IntToPtr;
336       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
337         Cast = Instruction::PtrToInt;
338 
339       if (CastInst::castIsValid(Cast, C, DestTy))
340         return ConstantExpr::getCast(Cast, C, DestTy);
341     }
342 
343     // If this isn't an aggregate type, there is nothing we can do to drill down
344     // and find a bitcastable constant.
345     if (!SrcTy->isAggregateType())
346       return nullptr;
347 
348     // We're simulating a load through a pointer that was bitcast to point to
349     // a different type, so we can try to walk down through the initial
350     // elements of an aggregate to see if some part of the aggregate is
351     // castable to implement the "load" semantic model.
352     if (SrcTy->isStructTy()) {
353       // Struct types might have leading zero-length elements like [0 x i32],
354       // which are certainly not what we are looking for, so skip them.
355       unsigned Elem = 0;
356       Constant *ElemC;
357       do {
358         ElemC = C->getAggregateElement(Elem++);
359       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0);
360       C = ElemC;
361     } else {
362       C = C->getAggregateElement(0u);
363     }
364   } while (C);
365 
366   return nullptr;
367 }
368 
369 namespace {
370 
371 /// Recursive helper to read bits out of global. C is the constant being copied
372 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
373 /// results into and BytesLeft is the number of bytes left in
374 /// the CurPtr buffer. DL is the DataLayout.
375 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
376                         unsigned BytesLeft, const DataLayout &DL) {
377   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
378          "Out of range access");
379 
380   // If this element is zero or undefined, we can just return since *CurPtr is
381   // zero initialized.
382   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
383     return true;
384 
385   if (auto *CI = dyn_cast<ConstantInt>(C)) {
386     if (CI->getBitWidth() > 64 ||
387         (CI->getBitWidth() & 7) != 0)
388       return false;
389 
390     uint64_t Val = CI->getZExtValue();
391     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
392 
393     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
394       int n = ByteOffset;
395       if (!DL.isLittleEndian())
396         n = IntBytes - n - 1;
397       CurPtr[i] = (unsigned char)(Val >> (n * 8));
398       ++ByteOffset;
399     }
400     return true;
401   }
402 
403   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
404     if (CFP->getType()->isDoubleTy()) {
405       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
406       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
407     }
408     if (CFP->getType()->isFloatTy()){
409       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
410       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
411     }
412     if (CFP->getType()->isHalfTy()){
413       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
414       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
415     }
416     return false;
417   }
418 
419   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
420     const StructLayout *SL = DL.getStructLayout(CS->getType());
421     unsigned Index = SL->getElementContainingOffset(ByteOffset);
422     uint64_t CurEltOffset = SL->getElementOffset(Index);
423     ByteOffset -= CurEltOffset;
424 
425     while (true) {
426       // If the element access is to the element itself and not to tail padding,
427       // read the bytes from the element.
428       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
429 
430       if (ByteOffset < EltSize &&
431           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
432                               BytesLeft, DL))
433         return false;
434 
435       ++Index;
436 
437       // Check to see if we read from the last struct element, if so we're done.
438       if (Index == CS->getType()->getNumElements())
439         return true;
440 
441       // If we read all of the bytes we needed from this element we're done.
442       uint64_t NextEltOffset = SL->getElementOffset(Index);
443 
444       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
445         return true;
446 
447       // Move to the next element of the struct.
448       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
449       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
450       ByteOffset = 0;
451       CurEltOffset = NextEltOffset;
452     }
453     // not reached.
454   }
455 
456   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
457       isa<ConstantDataSequential>(C)) {
458     Type *EltTy = C->getType()->getSequentialElementType();
459     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
460     uint64_t Index = ByteOffset / EltSize;
461     uint64_t Offset = ByteOffset - Index * EltSize;
462     uint64_t NumElts;
463     if (auto *AT = dyn_cast<ArrayType>(C->getType()))
464       NumElts = AT->getNumElements();
465     else
466       NumElts = C->getType()->getVectorNumElements();
467 
468     for (; Index != NumElts; ++Index) {
469       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
470                               BytesLeft, DL))
471         return false;
472 
473       uint64_t BytesWritten = EltSize - Offset;
474       assert(BytesWritten <= EltSize && "Not indexing into this element?");
475       if (BytesWritten >= BytesLeft)
476         return true;
477 
478       Offset = 0;
479       BytesLeft -= BytesWritten;
480       CurPtr += BytesWritten;
481     }
482     return true;
483   }
484 
485   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
486     if (CE->getOpcode() == Instruction::IntToPtr &&
487         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
488       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
489                                 BytesLeft, DL);
490     }
491   }
492 
493   // Otherwise, unknown initializer type.
494   return false;
495 }
496 
497 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
498                                           const DataLayout &DL) {
499   auto *PTy = cast<PointerType>(C->getType());
500   auto *IntType = dyn_cast<IntegerType>(LoadTy);
501 
502   // If this isn't an integer load we can't fold it directly.
503   if (!IntType) {
504     unsigned AS = PTy->getAddressSpace();
505 
506     // If this is a float/double load, we can try folding it as an int32/64 load
507     // and then bitcast the result.  This can be useful for union cases.  Note
508     // that address spaces don't matter here since we're not going to result in
509     // an actual new load.
510     Type *MapTy;
511     if (LoadTy->isHalfTy())
512       MapTy = Type::getInt16Ty(C->getContext());
513     else if (LoadTy->isFloatTy())
514       MapTy = Type::getInt32Ty(C->getContext());
515     else if (LoadTy->isDoubleTy())
516       MapTy = Type::getInt64Ty(C->getContext());
517     else if (LoadTy->isVectorTy()) {
518       MapTy = PointerType::getIntNTy(C->getContext(),
519                                      DL.getTypeSizeInBits(LoadTy));
520     } else
521       return nullptr;
522 
523     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
524     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL))
525       return FoldBitCast(Res, LoadTy, DL);
526     return nullptr;
527   }
528 
529   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
530   if (BytesLoaded > 32 || BytesLoaded == 0)
531     return nullptr;
532 
533   GlobalValue *GVal;
534   APInt OffsetAI;
535   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
536     return nullptr;
537 
538   auto *GV = dyn_cast<GlobalVariable>(GVal);
539   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
540       !GV->getInitializer()->getType()->isSized())
541     return nullptr;
542 
543   int64_t Offset = OffsetAI.getSExtValue();
544   int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());
545 
546   // If we're not accessing anything in this constant, the result is undefined.
547   if (Offset + BytesLoaded <= 0)
548     return UndefValue::get(IntType);
549 
550   // If we're not accessing anything in this constant, the result is undefined.
551   if (Offset >= InitializerSize)
552     return UndefValue::get(IntType);
553 
554   unsigned char RawBytes[32] = {0};
555   unsigned char *CurPtr = RawBytes;
556   unsigned BytesLeft = BytesLoaded;
557 
558   // If we're loading off the beginning of the global, some bytes may be valid.
559   if (Offset < 0) {
560     CurPtr += -Offset;
561     BytesLeft += Offset;
562     Offset = 0;
563   }
564 
565   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
566     return nullptr;
567 
568   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
569   if (DL.isLittleEndian()) {
570     ResultVal = RawBytes[BytesLoaded - 1];
571     for (unsigned i = 1; i != BytesLoaded; ++i) {
572       ResultVal <<= 8;
573       ResultVal |= RawBytes[BytesLoaded - 1 - i];
574     }
575   } else {
576     ResultVal = RawBytes[0];
577     for (unsigned i = 1; i != BytesLoaded; ++i) {
578       ResultVal <<= 8;
579       ResultVal |= RawBytes[i];
580     }
581   }
582 
583   return ConstantInt::get(IntType->getContext(), ResultVal);
584 }
585 
586 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
587                                              const DataLayout &DL) {
588   auto *SrcPtr = CE->getOperand(0);
589   auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
590   if (!SrcPtrTy)
591     return nullptr;
592   Type *SrcTy = SrcPtrTy->getPointerElementType();
593 
594   Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
595   if (!C)
596     return nullptr;
597 
598   return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
599 }
600 
601 } // end anonymous namespace
602 
603 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
604                                              const DataLayout &DL) {
605   // First, try the easy cases:
606   if (auto *GV = dyn_cast<GlobalVariable>(C))
607     if (GV->isConstant() && GV->hasDefinitiveInitializer())
608       return GV->getInitializer();
609 
610   if (auto *GA = dyn_cast<GlobalAlias>(C))
611     if (GA->getAliasee() && !GA->isInterposable())
612       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
613 
614   // If the loaded value isn't a constant expr, we can't handle it.
615   auto *CE = dyn_cast<ConstantExpr>(C);
616   if (!CE)
617     return nullptr;
618 
619   if (CE->getOpcode() == Instruction::GetElementPtr) {
620     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
621       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
622         if (Constant *V =
623              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
624           return V;
625       }
626     }
627   }
628 
629   if (CE->getOpcode() == Instruction::BitCast)
630     if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
631       return LoadedC;
632 
633   // Instead of loading constant c string, use corresponding integer value
634   // directly if string length is small enough.
635   StringRef Str;
636   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
637     size_t StrLen = Str.size();
638     unsigned NumBits = Ty->getPrimitiveSizeInBits();
639     // Replace load with immediate integer if the result is an integer or fp
640     // value.
641     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
642         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
643       APInt StrVal(NumBits, 0);
644       APInt SingleChar(NumBits, 0);
645       if (DL.isLittleEndian()) {
646         for (unsigned char C : reverse(Str.bytes())) {
647           SingleChar = static_cast<uint64_t>(C);
648           StrVal = (StrVal << 8) | SingleChar;
649         }
650       } else {
651         for (unsigned char C : Str.bytes()) {
652           SingleChar = static_cast<uint64_t>(C);
653           StrVal = (StrVal << 8) | SingleChar;
654         }
655         // Append NULL at the end.
656         SingleChar = 0;
657         StrVal = (StrVal << 8) | SingleChar;
658       }
659 
660       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
661       if (Ty->isFloatingPointTy())
662         Res = ConstantExpr::getBitCast(Res, Ty);
663       return Res;
664     }
665   }
666 
667   // If this load comes from anywhere in a constant global, and if the global
668   // is all undef or zero, we know what it loads.
669   if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
670     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
671       if (GV->getInitializer()->isNullValue())
672         return Constant::getNullValue(Ty);
673       if (isa<UndefValue>(GV->getInitializer()))
674         return UndefValue::get(Ty);
675     }
676   }
677 
678   // Try hard to fold loads from bitcasted strange and non-type-safe things.
679   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
680 }
681 
682 namespace {
683 
684 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
685   if (LI->isVolatile()) return nullptr;
686 
687   if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
688     return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
689 
690   return nullptr;
691 }
692 
693 /// One of Op0/Op1 is a constant expression.
694 /// Attempt to symbolically evaluate the result of a binary operator merging
695 /// these together.  If target data info is available, it is provided as DL,
696 /// otherwise DL is null.
697 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
698                                     const DataLayout &DL) {
699   // SROA
700 
701   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
702   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
703   // bits.
704 
705   if (Opc == Instruction::And) {
706     KnownBits Known0 = computeKnownBits(Op0, DL);
707     KnownBits Known1 = computeKnownBits(Op1, DL);
708     if ((Known1.One | Known0.Zero).isAllOnesValue()) {
709       // All the bits of Op0 that the 'and' could be masking are already zero.
710       return Op0;
711     }
712     if ((Known0.One | Known1.Zero).isAllOnesValue()) {
713       // All the bits of Op1 that the 'and' could be masking are already zero.
714       return Op1;
715     }
716 
717     Known0.Zero |= Known1.Zero;
718     Known0.One &= Known1.One;
719     if (Known0.isConstant())
720       return ConstantInt::get(Op0->getType(), Known0.getConstant());
721   }
722 
723   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
724   // constant.  This happens frequently when iterating over a global array.
725   if (Opc == Instruction::Sub) {
726     GlobalValue *GV1, *GV2;
727     APInt Offs1, Offs2;
728 
729     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
730       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
731         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
732 
733         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
734         // PtrToInt may change the bitwidth so we have convert to the right size
735         // first.
736         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
737                                                 Offs2.zextOrTrunc(OpSize));
738       }
739   }
740 
741   return nullptr;
742 }
743 
744 /// If array indices are not pointer-sized integers, explicitly cast them so
745 /// that they aren't implicitly casted by the getelementptr.
746 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
747                          Type *ResultTy, Optional<unsigned> InRangeIndex,
748                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
749   Type *IntPtrTy = DL.getIntPtrType(ResultTy);
750   Type *IntPtrScalarTy = IntPtrTy->getScalarType();
751 
752   bool Any = false;
753   SmallVector<Constant*, 32> NewIdxs;
754   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
755     if ((i == 1 ||
756          !isa<StructType>(GetElementPtrInst::getIndexedType(
757              SrcElemTy, Ops.slice(1, i - 1)))) &&
758         Ops[i]->getType()->getScalarType() != IntPtrScalarTy) {
759       Any = true;
760       Type *NewType = Ops[i]->getType()->isVectorTy()
761                           ? IntPtrTy
762                           : IntPtrTy->getScalarType();
763       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
764                                                                       true,
765                                                                       NewType,
766                                                                       true),
767                                               Ops[i], NewType));
768     } else
769       NewIdxs.push_back(Ops[i]);
770   }
771 
772   if (!Any)
773     return nullptr;
774 
775   Constant *C = ConstantExpr::getGetElementPtr(
776       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
777   if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
778     C = Folded;
779 
780   return C;
781 }
782 
783 /// Strip the pointer casts, but preserve the address space information.
784 Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) {
785   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
786   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
787   Ptr = Ptr->stripPointerCasts();
788   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
789 
790   ElemTy = NewPtrTy->getPointerElementType();
791 
792   // Preserve the address space number of the pointer.
793   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
794     NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
795     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
796   }
797   return Ptr;
798 }
799 
800 /// If we can symbolically evaluate the GEP constant expression, do so.
801 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
802                                   ArrayRef<Constant *> Ops,
803                                   const DataLayout &DL,
804                                   const TargetLibraryInfo *TLI) {
805   const GEPOperator *InnermostGEP = GEP;
806   bool InBounds = GEP->isInBounds();
807 
808   Type *SrcElemTy = GEP->getSourceElementType();
809   Type *ResElemTy = GEP->getResultElementType();
810   Type *ResTy = GEP->getType();
811   if (!SrcElemTy->isSized())
812     return nullptr;
813 
814   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
815                                    GEP->getInRangeIndex(), DL, TLI))
816     return C;
817 
818   Constant *Ptr = Ops[0];
819   if (!Ptr->getType()->isPointerTy())
820     return nullptr;
821 
822   Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
823 
824   // If this is a constant expr gep that is effectively computing an
825   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
826   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
827       if (!isa<ConstantInt>(Ops[i])) {
828 
829         // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
830         // "inttoptr (sub (ptrtoint Ptr), V)"
831         if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
832           auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
833           assert((!CE || CE->getType() == IntPtrTy) &&
834                  "CastGEPIndices didn't canonicalize index types!");
835           if (CE && CE->getOpcode() == Instruction::Sub &&
836               CE->getOperand(0)->isNullValue()) {
837             Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
838             Res = ConstantExpr::getSub(Res, CE->getOperand(1));
839             Res = ConstantExpr::getIntToPtr(Res, ResTy);
840             if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
841               Res = FoldedRes;
842             return Res;
843           }
844         }
845         return nullptr;
846       }
847 
848   unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
849   APInt Offset =
850       APInt(BitWidth,
851             DL.getIndexedOffsetInType(
852                 SrcElemTy,
853                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
854   Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
855 
856   // If this is a GEP of a GEP, fold it all into a single GEP.
857   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
858     InnermostGEP = GEP;
859     InBounds &= GEP->isInBounds();
860 
861     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
862 
863     // Do not try the incorporate the sub-GEP if some index is not a number.
864     bool AllConstantInt = true;
865     for (Value *NestedOp : NestedOps)
866       if (!isa<ConstantInt>(NestedOp)) {
867         AllConstantInt = false;
868         break;
869       }
870     if (!AllConstantInt)
871       break;
872 
873     Ptr = cast<Constant>(GEP->getOperand(0));
874     SrcElemTy = GEP->getSourceElementType();
875     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
876     Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
877   }
878 
879   // If the base value for this address is a literal integer value, fold the
880   // getelementptr to the resulting integer value casted to the pointer type.
881   APInt BasePtr(BitWidth, 0);
882   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
883     if (CE->getOpcode() == Instruction::IntToPtr) {
884       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
885         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
886     }
887   }
888 
889   auto *PTy = cast<PointerType>(Ptr->getType());
890   if ((Ptr->isNullValue() || BasePtr != 0) &&
891       !DL.isNonIntegralPointerType(PTy)) {
892     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
893     return ConstantExpr::getIntToPtr(C, ResTy);
894   }
895 
896   // Otherwise form a regular getelementptr. Recompute the indices so that
897   // we eliminate over-indexing of the notional static type array bounds.
898   // This makes it easy to determine if the getelementptr is "inbounds".
899   // Also, this helps GlobalOpt do SROA on GlobalVariables.
900   Type *Ty = PTy;
901   SmallVector<Constant *, 32> NewIdxs;
902 
903   do {
904     if (!Ty->isStructTy()) {
905       if (Ty->isPointerTy()) {
906         // The only pointer indexing we'll do is on the first index of the GEP.
907         if (!NewIdxs.empty())
908           break;
909 
910         Ty = SrcElemTy;
911 
912         // Only handle pointers to sized types, not pointers to functions.
913         if (!Ty->isSized())
914           return nullptr;
915       } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
916         Ty = ATy->getElementType();
917       } else {
918         // We've reached some non-indexable type.
919         break;
920       }
921 
922       // Determine which element of the array the offset points into.
923       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
924       if (ElemSize == 0) {
925         // The element size is 0. This may be [0 x Ty]*, so just use a zero
926         // index for this level and proceed to the next level to see if it can
927         // accommodate the offset.
928         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
929       } else {
930         // The element size is non-zero divide the offset by the element
931         // size (rounding down), to compute the index at this level.
932         bool Overflow;
933         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
934         if (Overflow)
935           break;
936         Offset -= NewIdx * ElemSize;
937         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
938       }
939     } else {
940       auto *STy = cast<StructType>(Ty);
941       // If we end up with an offset that isn't valid for this struct type, we
942       // can't re-form this GEP in a regular form, so bail out. The pointer
943       // operand likely went through casts that are necessary to make the GEP
944       // sensible.
945       const StructLayout &SL = *DL.getStructLayout(STy);
946       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
947         break;
948 
949       // Determine which field of the struct the offset points into. The
950       // getZExtValue is fine as we've already ensured that the offset is
951       // within the range representable by the StructLayout API.
952       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
953       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
954                                          ElIdx));
955       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
956       Ty = STy->getTypeAtIndex(ElIdx);
957     }
958   } while (Ty != ResElemTy);
959 
960   // If we haven't used up the entire offset by descending the static
961   // type, then the offset is pointing into the middle of an indivisible
962   // member, so we can't simplify it.
963   if (Offset != 0)
964     return nullptr;
965 
966   // Preserve the inrange index from the innermost GEP if possible. We must
967   // have calculated the same indices up to and including the inrange index.
968   Optional<unsigned> InRangeIndex;
969   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
970     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
971         NewIdxs.size() > *LastIRIndex) {
972       InRangeIndex = LastIRIndex;
973       for (unsigned I = 0; I <= *LastIRIndex; ++I)
974         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
975           return nullptr;
976     }
977 
978   // Create a GEP.
979   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
980                                                InBounds, InRangeIndex);
981   assert(C->getType()->getPointerElementType() == Ty &&
982          "Computed GetElementPtr has unexpected type!");
983 
984   // If we ended up indexing a member with a type that doesn't match
985   // the type of what the original indices indexed, add a cast.
986   if (Ty != ResElemTy)
987     C = FoldBitCast(C, ResTy, DL);
988 
989   return C;
990 }
991 
992 /// Attempt to constant fold an instruction with the
993 /// specified opcode and operands.  If successful, the constant result is
994 /// returned, if not, null is returned.  Note that this function can fail when
995 /// attempting to fold instructions like loads and stores, which have no
996 /// constant expression form.
997 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
998                                        ArrayRef<Constant *> Ops,
999                                        const DataLayout &DL,
1000                                        const TargetLibraryInfo *TLI) {
1001   Type *DestTy = InstOrCE->getType();
1002 
1003   if (Instruction::isUnaryOp(Opcode))
1004     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1005 
1006   if (Instruction::isBinaryOp(Opcode))
1007     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1008 
1009   if (Instruction::isCast(Opcode))
1010     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1011 
1012   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1013     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1014       return C;
1015 
1016     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1017                                           Ops.slice(1), GEP->isInBounds(),
1018                                           GEP->getInRangeIndex());
1019   }
1020 
1021   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1022     return CE->getWithOperands(Ops);
1023 
1024   switch (Opcode) {
1025   default: return nullptr;
1026   case Instruction::ICmp:
1027   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1028   case Instruction::Call:
1029     if (auto *F = dyn_cast<Function>(Ops.back())) {
1030       const auto *Call = cast<CallBase>(InstOrCE);
1031       if (canConstantFoldCallTo(Call, F))
1032         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1033     }
1034     return nullptr;
1035   case Instruction::Select:
1036     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1037   case Instruction::ExtractElement:
1038     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1039   case Instruction::ExtractValue:
1040     return ConstantExpr::getExtractValue(
1041         Ops[0], dyn_cast<ExtractValueInst>(InstOrCE)->getIndices());
1042   case Instruction::InsertElement:
1043     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1044   case Instruction::ShuffleVector:
1045     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1046   }
1047 }
1048 
1049 } // end anonymous namespace
1050 
1051 //===----------------------------------------------------------------------===//
1052 // Constant Folding public APIs
1053 //===----------------------------------------------------------------------===//
1054 
1055 namespace {
1056 
1057 Constant *
1058 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1059                          const TargetLibraryInfo *TLI,
1060                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1061   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1062     return nullptr;
1063 
1064   SmallVector<Constant *, 8> Ops;
1065   for (const Use &NewU : C->operands()) {
1066     auto *NewC = cast<Constant>(&NewU);
1067     // Recursively fold the ConstantExpr's operands. If we have already folded
1068     // a ConstantExpr, we don't have to process it again.
1069     if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
1070       auto It = FoldedOps.find(NewC);
1071       if (It == FoldedOps.end()) {
1072         if (auto *FoldedC =
1073                 ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
1074           FoldedOps.insert({NewC, FoldedC});
1075           NewC = FoldedC;
1076         } else {
1077           FoldedOps.insert({NewC, NewC});
1078         }
1079       } else {
1080         NewC = It->second;
1081       }
1082     }
1083     Ops.push_back(NewC);
1084   }
1085 
1086   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1087     if (CE->isCompare())
1088       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1089                                              DL, TLI);
1090 
1091     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1092   }
1093 
1094   assert(isa<ConstantVector>(C));
1095   return ConstantVector::get(Ops);
1096 }
1097 
1098 } // end anonymous namespace
1099 
1100 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1101                                         const TargetLibraryInfo *TLI) {
1102   // Handle PHI nodes quickly here...
1103   if (auto *PN = dyn_cast<PHINode>(I)) {
1104     Constant *CommonValue = nullptr;
1105 
1106     SmallDenseMap<Constant *, Constant *> FoldedOps;
1107     for (Value *Incoming : PN->incoming_values()) {
1108       // If the incoming value is undef then skip it.  Note that while we could
1109       // skip the value if it is equal to the phi node itself we choose not to
1110       // because that would break the rule that constant folding only applies if
1111       // all operands are constants.
1112       if (isa<UndefValue>(Incoming))
1113         continue;
1114       // If the incoming value is not a constant, then give up.
1115       auto *C = dyn_cast<Constant>(Incoming);
1116       if (!C)
1117         return nullptr;
1118       // Fold the PHI's operands.
1119       if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
1120         C = FoldedC;
1121       // If the incoming value is a different constant to
1122       // the one we saw previously, then give up.
1123       if (CommonValue && C != CommonValue)
1124         return nullptr;
1125       CommonValue = C;
1126     }
1127 
1128     // If we reach here, all incoming values are the same constant or undef.
1129     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1130   }
1131 
1132   // Scan the operand list, checking to see if they are all constants, if so,
1133   // hand off to ConstantFoldInstOperandsImpl.
1134   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1135     return nullptr;
1136 
1137   SmallDenseMap<Constant *, Constant *> FoldedOps;
1138   SmallVector<Constant *, 8> Ops;
1139   for (const Use &OpU : I->operands()) {
1140     auto *Op = cast<Constant>(&OpU);
1141     // Fold the Instruction's operands.
1142     if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
1143       Op = FoldedOp;
1144 
1145     Ops.push_back(Op);
1146   }
1147 
1148   if (const auto *CI = dyn_cast<CmpInst>(I))
1149     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1150                                            DL, TLI);
1151 
1152   if (const auto *LI = dyn_cast<LoadInst>(I))
1153     return ConstantFoldLoadInst(LI, DL);
1154 
1155   if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
1156     return ConstantExpr::getInsertValue(
1157                                 cast<Constant>(IVI->getAggregateOperand()),
1158                                 cast<Constant>(IVI->getInsertedValueOperand()),
1159                                 IVI->getIndices());
1160   }
1161 
1162   if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
1163     return ConstantExpr::getExtractValue(
1164                                     cast<Constant>(EVI->getAggregateOperand()),
1165                                     EVI->getIndices());
1166   }
1167 
1168   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1169 }
1170 
1171 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1172                                      const TargetLibraryInfo *TLI) {
1173   SmallDenseMap<Constant *, Constant *> FoldedOps;
1174   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1175 }
1176 
1177 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1178                                          ArrayRef<Constant *> Ops,
1179                                          const DataLayout &DL,
1180                                          const TargetLibraryInfo *TLI) {
1181   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1182 }
1183 
1184 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1185                                                 Constant *Ops0, Constant *Ops1,
1186                                                 const DataLayout &DL,
1187                                                 const TargetLibraryInfo *TLI) {
1188   // fold: icmp (inttoptr x), null         -> icmp x, 0
1189   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1190   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1191   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1192   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1193   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1194   //
1195   // FIXME: The following comment is out of data and the DataLayout is here now.
1196   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1197   // around to know if bit truncation is happening.
1198   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1199     if (Ops1->isNullValue()) {
1200       if (CE0->getOpcode() == Instruction::IntToPtr) {
1201         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1202         // Convert the integer value to the right size to ensure we get the
1203         // proper extension or truncation.
1204         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1205                                                    IntPtrTy, false);
1206         Constant *Null = Constant::getNullValue(C->getType());
1207         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1208       }
1209 
1210       // Only do this transformation if the int is intptrty in size, otherwise
1211       // there is a truncation or extension that we aren't modeling.
1212       if (CE0->getOpcode() == Instruction::PtrToInt) {
1213         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1214         if (CE0->getType() == IntPtrTy) {
1215           Constant *C = CE0->getOperand(0);
1216           Constant *Null = Constant::getNullValue(C->getType());
1217           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1218         }
1219       }
1220     }
1221 
1222     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1223       if (CE0->getOpcode() == CE1->getOpcode()) {
1224         if (CE0->getOpcode() == Instruction::IntToPtr) {
1225           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1226 
1227           // Convert the integer value to the right size to ensure we get the
1228           // proper extension or truncation.
1229           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1230                                                       IntPtrTy, false);
1231           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1232                                                       IntPtrTy, false);
1233           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1234         }
1235 
1236         // Only do this transformation if the int is intptrty in size, otherwise
1237         // there is a truncation or extension that we aren't modeling.
1238         if (CE0->getOpcode() == Instruction::PtrToInt) {
1239           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1240           if (CE0->getType() == IntPtrTy &&
1241               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1242             return ConstantFoldCompareInstOperands(
1243                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1244           }
1245         }
1246       }
1247     }
1248 
1249     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1250     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1251     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1252         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1253       Constant *LHS = ConstantFoldCompareInstOperands(
1254           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1255       Constant *RHS = ConstantFoldCompareInstOperands(
1256           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1257       unsigned OpC =
1258         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1259       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1260     }
1261   } else if (isa<ConstantExpr>(Ops1)) {
1262     // If RHS is a constant expression, but the left side isn't, swap the
1263     // operands and try again.
1264     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1265     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1266   }
1267 
1268   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1269 }
1270 
1271 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1272                                            const DataLayout &DL) {
1273   assert(Instruction::isUnaryOp(Opcode));
1274 
1275   return ConstantExpr::get(Opcode, Op);
1276 }
1277 
1278 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1279                                              Constant *RHS,
1280                                              const DataLayout &DL) {
1281   assert(Instruction::isBinaryOp(Opcode));
1282   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1283     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1284       return C;
1285 
1286   return ConstantExpr::get(Opcode, LHS, RHS);
1287 }
1288 
1289 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1290                                         Type *DestTy, const DataLayout &DL) {
1291   assert(Instruction::isCast(Opcode));
1292   switch (Opcode) {
1293   default:
1294     llvm_unreachable("Missing case");
1295   case Instruction::PtrToInt:
1296     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1297     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1298     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1299       if (CE->getOpcode() == Instruction::IntToPtr) {
1300         Constant *Input = CE->getOperand(0);
1301         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1302         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1303         if (PtrWidth < InWidth) {
1304           Constant *Mask =
1305             ConstantInt::get(CE->getContext(),
1306                              APInt::getLowBitsSet(InWidth, PtrWidth));
1307           Input = ConstantExpr::getAnd(Input, Mask);
1308         }
1309         // Do a zext or trunc to get to the dest size.
1310         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1311       }
1312     }
1313     return ConstantExpr::getCast(Opcode, C, DestTy);
1314   case Instruction::IntToPtr:
1315     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1316     // the int size is >= the ptr size and the address spaces are the same.
1317     // This requires knowing the width of a pointer, so it can't be done in
1318     // ConstantExpr::getCast.
1319     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1320       if (CE->getOpcode() == Instruction::PtrToInt) {
1321         Constant *SrcPtr = CE->getOperand(0);
1322         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1323         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1324 
1325         if (MidIntSize >= SrcPtrSize) {
1326           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1327           if (SrcAS == DestTy->getPointerAddressSpace())
1328             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1329         }
1330       }
1331     }
1332 
1333     return ConstantExpr::getCast(Opcode, C, DestTy);
1334   case Instruction::Trunc:
1335   case Instruction::ZExt:
1336   case Instruction::SExt:
1337   case Instruction::FPTrunc:
1338   case Instruction::FPExt:
1339   case Instruction::UIToFP:
1340   case Instruction::SIToFP:
1341   case Instruction::FPToUI:
1342   case Instruction::FPToSI:
1343   case Instruction::AddrSpaceCast:
1344       return ConstantExpr::getCast(Opcode, C, DestTy);
1345   case Instruction::BitCast:
1346     return FoldBitCast(C, DestTy, DL);
1347   }
1348 }
1349 
1350 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1351                                                        ConstantExpr *CE) {
1352   if (!CE->getOperand(1)->isNullValue())
1353     return nullptr;  // Do not allow stepping over the value!
1354 
1355   // Loop over all of the operands, tracking down which value we are
1356   // addressing.
1357   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1358     C = C->getAggregateElement(CE->getOperand(i));
1359     if (!C)
1360       return nullptr;
1361   }
1362   return C;
1363 }
1364 
1365 Constant *
1366 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1367                                         ArrayRef<Constant *> Indices) {
1368   // Loop over all of the operands, tracking down which value we are
1369   // addressing.
1370   for (Constant *Index : Indices) {
1371     C = C->getAggregateElement(Index);
1372     if (!C)
1373       return nullptr;
1374   }
1375   return C;
1376 }
1377 
1378 //===----------------------------------------------------------------------===//
1379 //  Constant Folding for Calls
1380 //
1381 
1382 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1383   if (Call->isNoBuiltin() || Call->isStrictFP())
1384     return false;
1385   switch (F->getIntrinsicID()) {
1386   case Intrinsic::fabs:
1387   case Intrinsic::minnum:
1388   case Intrinsic::maxnum:
1389   case Intrinsic::minimum:
1390   case Intrinsic::maximum:
1391   case Intrinsic::log:
1392   case Intrinsic::log2:
1393   case Intrinsic::log10:
1394   case Intrinsic::exp:
1395   case Intrinsic::exp2:
1396   case Intrinsic::floor:
1397   case Intrinsic::ceil:
1398   case Intrinsic::sqrt:
1399   case Intrinsic::sin:
1400   case Intrinsic::cos:
1401   case Intrinsic::trunc:
1402   case Intrinsic::rint:
1403   case Intrinsic::nearbyint:
1404   case Intrinsic::pow:
1405   case Intrinsic::powi:
1406   case Intrinsic::bswap:
1407   case Intrinsic::ctpop:
1408   case Intrinsic::ctlz:
1409   case Intrinsic::cttz:
1410   case Intrinsic::fshl:
1411   case Intrinsic::fshr:
1412   case Intrinsic::fma:
1413   case Intrinsic::fmuladd:
1414   case Intrinsic::copysign:
1415   case Intrinsic::launder_invariant_group:
1416   case Intrinsic::strip_invariant_group:
1417   case Intrinsic::round:
1418   case Intrinsic::masked_load:
1419   case Intrinsic::sadd_with_overflow:
1420   case Intrinsic::uadd_with_overflow:
1421   case Intrinsic::ssub_with_overflow:
1422   case Intrinsic::usub_with_overflow:
1423   case Intrinsic::smul_with_overflow:
1424   case Intrinsic::umul_with_overflow:
1425   case Intrinsic::sadd_sat:
1426   case Intrinsic::uadd_sat:
1427   case Intrinsic::ssub_sat:
1428   case Intrinsic::usub_sat:
1429   case Intrinsic::smul_fix:
1430   case Intrinsic::smul_fix_sat:
1431   case Intrinsic::convert_from_fp16:
1432   case Intrinsic::convert_to_fp16:
1433   case Intrinsic::bitreverse:
1434   case Intrinsic::x86_sse_cvtss2si:
1435   case Intrinsic::x86_sse_cvtss2si64:
1436   case Intrinsic::x86_sse_cvttss2si:
1437   case Intrinsic::x86_sse_cvttss2si64:
1438   case Intrinsic::x86_sse2_cvtsd2si:
1439   case Intrinsic::x86_sse2_cvtsd2si64:
1440   case Intrinsic::x86_sse2_cvttsd2si:
1441   case Intrinsic::x86_sse2_cvttsd2si64:
1442   case Intrinsic::x86_avx512_vcvtss2si32:
1443   case Intrinsic::x86_avx512_vcvtss2si64:
1444   case Intrinsic::x86_avx512_cvttss2si:
1445   case Intrinsic::x86_avx512_cvttss2si64:
1446   case Intrinsic::x86_avx512_vcvtsd2si32:
1447   case Intrinsic::x86_avx512_vcvtsd2si64:
1448   case Intrinsic::x86_avx512_cvttsd2si:
1449   case Intrinsic::x86_avx512_cvttsd2si64:
1450   case Intrinsic::x86_avx512_vcvtss2usi32:
1451   case Intrinsic::x86_avx512_vcvtss2usi64:
1452   case Intrinsic::x86_avx512_cvttss2usi:
1453   case Intrinsic::x86_avx512_cvttss2usi64:
1454   case Intrinsic::x86_avx512_vcvtsd2usi32:
1455   case Intrinsic::x86_avx512_vcvtsd2usi64:
1456   case Intrinsic::x86_avx512_cvttsd2usi:
1457   case Intrinsic::x86_avx512_cvttsd2usi64:
1458   case Intrinsic::is_constant:
1459     return true;
1460   default:
1461     return false;
1462   case Intrinsic::not_intrinsic: break;
1463   }
1464 
1465   if (!F->hasName())
1466     return false;
1467   StringRef Name = F->getName();
1468 
1469   // In these cases, the check of the length is required.  We don't want to
1470   // return true for a name like "cos\0blah" which strcmp would return equal to
1471   // "cos", but has length 8.
1472   switch (Name[0]) {
1473   default:
1474     return false;
1475   case 'a':
1476     return Name == "acos" || Name == "asin" || Name == "atan" ||
1477            Name == "atan2" || Name == "acosf" || Name == "asinf" ||
1478            Name == "atanf" || Name == "atan2f";
1479   case 'c':
1480     return Name == "ceil" || Name == "cos" || Name == "cosh" ||
1481            Name == "ceilf" || Name == "cosf" || Name == "coshf";
1482   case 'e':
1483     return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
1484   case 'f':
1485     return Name == "fabs" || Name == "floor" || Name == "fmod" ||
1486            Name == "fabsf" || Name == "floorf" || Name == "fmodf";
1487   case 'l':
1488     return Name == "log" || Name == "log10" || Name == "logf" ||
1489            Name == "log10f";
1490   case 'p':
1491     return Name == "pow" || Name == "powf";
1492   case 'r':
1493     return Name == "round" || Name == "roundf";
1494   case 's':
1495     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1496            Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
1497   case 't':
1498     return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
1499   case '_':
1500 
1501     // Check for various function names that get used for the math functions
1502     // when the header files are preprocessed with the macro
1503     // __FINITE_MATH_ONLY__ enabled.
1504     // The '12' here is the length of the shortest name that can match.
1505     // We need to check the size before looking at Name[1] and Name[2]
1506     // so we may as well check a limit that will eliminate mismatches.
1507     if (Name.size() < 12 || Name[1] != '_')
1508       return false;
1509     switch (Name[2]) {
1510     default:
1511       return false;
1512     case 'a':
1513       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1514              Name == "__asin_finite" || Name == "__asinf_finite" ||
1515              Name == "__atan2_finite" || Name == "__atan2f_finite";
1516     case 'c':
1517       return Name == "__cosh_finite" || Name == "__coshf_finite";
1518     case 'e':
1519       return Name == "__exp_finite" || Name == "__expf_finite" ||
1520              Name == "__exp2_finite" || Name == "__exp2f_finite";
1521     case 'l':
1522       return Name == "__log_finite" || Name == "__logf_finite" ||
1523              Name == "__log10_finite" || Name == "__log10f_finite";
1524     case 'p':
1525       return Name == "__pow_finite" || Name == "__powf_finite";
1526     case 's':
1527       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1528     }
1529   }
1530 }
1531 
1532 namespace {
1533 
1534 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1535   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1536     APFloat APF(V);
1537     bool unused;
1538     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1539     return ConstantFP::get(Ty->getContext(), APF);
1540   }
1541   if (Ty->isDoubleTy())
1542     return ConstantFP::get(Ty->getContext(), APFloat(V));
1543   llvm_unreachable("Can only constant fold half/float/double");
1544 }
1545 
1546 /// Clear the floating-point exception state.
1547 inline void llvm_fenv_clearexcept() {
1548 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1549   feclearexcept(FE_ALL_EXCEPT);
1550 #endif
1551   errno = 0;
1552 }
1553 
1554 /// Test if a floating-point exception was raised.
1555 inline bool llvm_fenv_testexcept() {
1556   int errno_val = errno;
1557   if (errno_val == ERANGE || errno_val == EDOM)
1558     return true;
1559 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1560   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1561     return true;
1562 #endif
1563   return false;
1564 }
1565 
1566 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
1567   llvm_fenv_clearexcept();
1568   V = NativeFP(V);
1569   if (llvm_fenv_testexcept()) {
1570     llvm_fenv_clearexcept();
1571     return nullptr;
1572   }
1573 
1574   return GetConstantFoldFPValue(V, Ty);
1575 }
1576 
1577 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
1578                                double W, Type *Ty) {
1579   llvm_fenv_clearexcept();
1580   V = NativeFP(V, W);
1581   if (llvm_fenv_testexcept()) {
1582     llvm_fenv_clearexcept();
1583     return nullptr;
1584   }
1585 
1586   return GetConstantFoldFPValue(V, Ty);
1587 }
1588 
1589 /// Attempt to fold an SSE floating point to integer conversion of a constant
1590 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1591 /// used (toward nearest, ties to even). This matches the behavior of the
1592 /// non-truncating SSE instructions in the default rounding mode. The desired
1593 /// integer type Ty is used to select how many bits are available for the
1594 /// result. Returns null if the conversion cannot be performed, otherwise
1595 /// returns the Constant value resulting from the conversion.
1596 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1597                                       Type *Ty, bool IsSigned) {
1598   // All of these conversion intrinsics form an integer of at most 64bits.
1599   unsigned ResultWidth = Ty->getIntegerBitWidth();
1600   assert(ResultWidth <= 64 &&
1601          "Can only constant fold conversions to 64 and 32 bit ints");
1602 
1603   uint64_t UIntVal;
1604   bool isExact = false;
1605   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1606                                               : APFloat::rmNearestTiesToEven;
1607   APFloat::opStatus status =
1608       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1609                            IsSigned, mode, &isExact);
1610   if (status != APFloat::opOK &&
1611       (!roundTowardZero || status != APFloat::opInexact))
1612     return nullptr;
1613   return ConstantInt::get(Ty, UIntVal, IsSigned);
1614 }
1615 
1616 double getValueAsDouble(ConstantFP *Op) {
1617   Type *Ty = Op->getType();
1618 
1619   if (Ty->isFloatTy())
1620     return Op->getValueAPF().convertToFloat();
1621 
1622   if (Ty->isDoubleTy())
1623     return Op->getValueAPF().convertToDouble();
1624 
1625   bool unused;
1626   APFloat APF = Op->getValueAPF();
1627   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1628   return APF.convertToDouble();
1629 }
1630 
1631 static bool isManifestConstant(const Constant *c) {
1632   if (isa<ConstantData>(c)) {
1633     return true;
1634   } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
1635     for (const Value *subc : c->operand_values()) {
1636       if (!isManifestConstant(cast<Constant>(subc)))
1637         return false;
1638     }
1639     return true;
1640   }
1641   return false;
1642 }
1643 
1644 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1645   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1646     C = &CI->getValue();
1647     return true;
1648   }
1649   if (isa<UndefValue>(Op)) {
1650     C = nullptr;
1651     return true;
1652   }
1653   return false;
1654 }
1655 
1656 static Constant *ConstantFoldScalarCall1(StringRef Name,
1657                                          Intrinsic::ID IntrinsicID,
1658                                          Type *Ty,
1659                                          ArrayRef<Constant *> Operands,
1660                                          const TargetLibraryInfo *TLI,
1661                                          const CallBase *Call) {
1662   assert(Operands.size() == 1 && "Wrong number of operands.");
1663 
1664   if (IntrinsicID == Intrinsic::is_constant) {
1665     // We know we have a "Constant" argument. But we want to only
1666     // return true for manifest constants, not those that depend on
1667     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1668     if (isManifestConstant(Operands[0]))
1669       return ConstantInt::getTrue(Ty->getContext());
1670     return nullptr;
1671   }
1672   if (isa<UndefValue>(Operands[0])) {
1673     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1674     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1675     if (IntrinsicID == Intrinsic::cos ||
1676         IntrinsicID == Intrinsic::ctpop)
1677       return Constant::getNullValue(Ty);
1678     if (IntrinsicID == Intrinsic::bswap ||
1679         IntrinsicID == Intrinsic::bitreverse ||
1680         IntrinsicID == Intrinsic::launder_invariant_group ||
1681         IntrinsicID == Intrinsic::strip_invariant_group)
1682       return Operands[0];
1683   }
1684 
1685   if (isa<ConstantPointerNull>(Operands[0])) {
1686     // launder(null) == null == strip(null) iff in addrspace 0
1687     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1688         IntrinsicID == Intrinsic::strip_invariant_group) {
1689       // If instruction is not yet put in a basic block (e.g. when cloning
1690       // a function during inlining), Call's caller may not be available.
1691       // So check Call's BB first before querying Call->getCaller.
1692       const Function *Caller =
1693           Call->getParent() ? Call->getCaller() : nullptr;
1694       if (Caller &&
1695           !NullPointerIsDefined(
1696               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1697         return Operands[0];
1698       }
1699       return nullptr;
1700     }
1701   }
1702 
1703   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1704     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1705       APFloat Val(Op->getValueAPF());
1706 
1707       bool lost = false;
1708       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1709 
1710       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1711     }
1712 
1713     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1714       return nullptr;
1715 
1716     if (IntrinsicID == Intrinsic::round) {
1717       APFloat V = Op->getValueAPF();
1718       V.roundToIntegral(APFloat::rmNearestTiesToAway);
1719       return ConstantFP::get(Ty->getContext(), V);
1720     }
1721 
1722     if (IntrinsicID == Intrinsic::floor) {
1723       APFloat V = Op->getValueAPF();
1724       V.roundToIntegral(APFloat::rmTowardNegative);
1725       return ConstantFP::get(Ty->getContext(), V);
1726     }
1727 
1728     if (IntrinsicID == Intrinsic::ceil) {
1729       APFloat V = Op->getValueAPF();
1730       V.roundToIntegral(APFloat::rmTowardPositive);
1731       return ConstantFP::get(Ty->getContext(), V);
1732     }
1733 
1734     if (IntrinsicID == Intrinsic::trunc) {
1735       APFloat V = Op->getValueAPF();
1736       V.roundToIntegral(APFloat::rmTowardZero);
1737       return ConstantFP::get(Ty->getContext(), V);
1738     }
1739 
1740     if (IntrinsicID == Intrinsic::rint) {
1741       APFloat V = Op->getValueAPF();
1742       V.roundToIntegral(APFloat::rmNearestTiesToEven);
1743       return ConstantFP::get(Ty->getContext(), V);
1744     }
1745 
1746     if (IntrinsicID == Intrinsic::nearbyint) {
1747       APFloat V = Op->getValueAPF();
1748       V.roundToIntegral(APFloat::rmNearestTiesToEven);
1749       return ConstantFP::get(Ty->getContext(), V);
1750     }
1751 
1752     /// We only fold functions with finite arguments. Folding NaN and inf is
1753     /// likely to be aborted with an exception anyway, and some host libms
1754     /// have known errors raising exceptions.
1755     if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1756       return nullptr;
1757 
1758     /// Currently APFloat versions of these functions do not exist, so we use
1759     /// the host native double versions.  Float versions are not called
1760     /// directly but for all these it is true (float)(f((double)arg)) ==
1761     /// f(arg).  Long double not supported yet.
1762     double V = getValueAsDouble(Op);
1763 
1764     switch (IntrinsicID) {
1765       default: break;
1766       case Intrinsic::fabs:
1767         return ConstantFoldFP(fabs, V, Ty);
1768       case Intrinsic::log2:
1769         return ConstantFoldFP(Log2, V, Ty);
1770       case Intrinsic::log:
1771         return ConstantFoldFP(log, V, Ty);
1772       case Intrinsic::log10:
1773         return ConstantFoldFP(log10, V, Ty);
1774       case Intrinsic::exp:
1775         return ConstantFoldFP(exp, V, Ty);
1776       case Intrinsic::exp2:
1777         return ConstantFoldFP(exp2, V, Ty);
1778       case Intrinsic::sin:
1779         return ConstantFoldFP(sin, V, Ty);
1780       case Intrinsic::cos:
1781         return ConstantFoldFP(cos, V, Ty);
1782       case Intrinsic::sqrt:
1783         return ConstantFoldFP(sqrt, V, Ty);
1784     }
1785 
1786     if (!TLI)
1787       return nullptr;
1788 
1789     char NameKeyChar = Name[0];
1790     if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_')
1791       NameKeyChar = Name[2];
1792 
1793     switch (NameKeyChar) {
1794     case 'a':
1795       if ((Name == "acos" && TLI->has(LibFunc_acos)) ||
1796           (Name == "acosf" && TLI->has(LibFunc_acosf)) ||
1797           (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) ||
1798           (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite)))
1799         return ConstantFoldFP(acos, V, Ty);
1800       else if ((Name == "asin" && TLI->has(LibFunc_asin)) ||
1801                (Name == "asinf" && TLI->has(LibFunc_asinf)) ||
1802                (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) ||
1803                (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite)))
1804         return ConstantFoldFP(asin, V, Ty);
1805       else if ((Name == "atan" && TLI->has(LibFunc_atan)) ||
1806                (Name == "atanf" && TLI->has(LibFunc_atanf)))
1807         return ConstantFoldFP(atan, V, Ty);
1808       break;
1809     case 'c':
1810       if ((Name == "ceil" && TLI->has(LibFunc_ceil)) ||
1811           (Name == "ceilf" && TLI->has(LibFunc_ceilf)))
1812         return ConstantFoldFP(ceil, V, Ty);
1813       else if ((Name == "cos" && TLI->has(LibFunc_cos)) ||
1814                (Name == "cosf" && TLI->has(LibFunc_cosf)))
1815         return ConstantFoldFP(cos, V, Ty);
1816       else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) ||
1817                (Name == "coshf" && TLI->has(LibFunc_coshf)) ||
1818                (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) ||
1819                (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite)))
1820         return ConstantFoldFP(cosh, V, Ty);
1821       break;
1822     case 'e':
1823       if ((Name == "exp" && TLI->has(LibFunc_exp)) ||
1824           (Name == "expf" && TLI->has(LibFunc_expf)) ||
1825           (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) ||
1826           (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite)))
1827         return ConstantFoldFP(exp, V, Ty);
1828       if ((Name == "exp2" && TLI->has(LibFunc_exp2)) ||
1829           (Name == "exp2f" && TLI->has(LibFunc_exp2f)) ||
1830           (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) ||
1831           (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite)))
1832         // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1833         // C99 library.
1834         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1835       break;
1836     case 'f':
1837       if ((Name == "fabs" && TLI->has(LibFunc_fabs)) ||
1838           (Name == "fabsf" && TLI->has(LibFunc_fabsf)))
1839         return ConstantFoldFP(fabs, V, Ty);
1840       else if ((Name == "floor" && TLI->has(LibFunc_floor)) ||
1841                (Name == "floorf" && TLI->has(LibFunc_floorf)))
1842         return ConstantFoldFP(floor, V, Ty);
1843       break;
1844     case 'l':
1845       if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) ||
1846           (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) ||
1847           (Name == "__log_finite" && V > 0 &&
1848             TLI->has(LibFunc_log_finite)) ||
1849           (Name == "__logf_finite" && V > 0 &&
1850             TLI->has(LibFunc_logf_finite)))
1851         return ConstantFoldFP(log, V, Ty);
1852       else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) ||
1853                (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) ||
1854                (Name == "__log10_finite" && V > 0 &&
1855                  TLI->has(LibFunc_log10_finite)) ||
1856                (Name == "__log10f_finite" && V > 0 &&
1857                  TLI->has(LibFunc_log10f_finite)))
1858         return ConstantFoldFP(log10, V, Ty);
1859       break;
1860     case 'r':
1861       if ((Name == "round" && TLI->has(LibFunc_round)) ||
1862           (Name == "roundf" && TLI->has(LibFunc_roundf)))
1863         return ConstantFoldFP(round, V, Ty);
1864       break;
1865     case 's':
1866       if ((Name == "sin" && TLI->has(LibFunc_sin)) ||
1867           (Name == "sinf" && TLI->has(LibFunc_sinf)))
1868         return ConstantFoldFP(sin, V, Ty);
1869       else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) ||
1870                (Name == "sinhf" && TLI->has(LibFunc_sinhf)) ||
1871                (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) ||
1872                (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite)))
1873         return ConstantFoldFP(sinh, V, Ty);
1874       else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) ||
1875                (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf)))
1876         return ConstantFoldFP(sqrt, V, Ty);
1877       break;
1878     case 't':
1879       if ((Name == "tan" && TLI->has(LibFunc_tan)) ||
1880           (Name == "tanf" && TLI->has(LibFunc_tanf)))
1881         return ConstantFoldFP(tan, V, Ty);
1882       else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) ||
1883                (Name == "tanhf" && TLI->has(LibFunc_tanhf)))
1884         return ConstantFoldFP(tanh, V, Ty);
1885       break;
1886     default:
1887       break;
1888     }
1889     return nullptr;
1890   }
1891 
1892   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
1893     switch (IntrinsicID) {
1894     case Intrinsic::bswap:
1895       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1896     case Intrinsic::ctpop:
1897       return ConstantInt::get(Ty, Op->getValue().countPopulation());
1898     case Intrinsic::bitreverse:
1899       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
1900     case Intrinsic::convert_from_fp16: {
1901       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
1902 
1903       bool lost = false;
1904       APFloat::opStatus status = Val.convert(
1905           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
1906 
1907       // Conversion is always precise.
1908       (void)status;
1909       assert(status == APFloat::opOK && !lost &&
1910              "Precision lost during fp16 constfolding");
1911 
1912       return ConstantFP::get(Ty->getContext(), Val);
1913     }
1914     default:
1915       return nullptr;
1916     }
1917   }
1918 
1919   // Support ConstantVector in case we have an Undef in the top.
1920   if (isa<ConstantVector>(Operands[0]) ||
1921       isa<ConstantDataVector>(Operands[0])) {
1922     auto *Op = cast<Constant>(Operands[0]);
1923     switch (IntrinsicID) {
1924     default: break;
1925     case Intrinsic::x86_sse_cvtss2si:
1926     case Intrinsic::x86_sse_cvtss2si64:
1927     case Intrinsic::x86_sse2_cvtsd2si:
1928     case Intrinsic::x86_sse2_cvtsd2si64:
1929       if (ConstantFP *FPOp =
1930               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1931         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
1932                                            /*roundTowardZero=*/false, Ty,
1933                                            /*IsSigned*/true);
1934       break;
1935     case Intrinsic::x86_sse_cvttss2si:
1936     case Intrinsic::x86_sse_cvttss2si64:
1937     case Intrinsic::x86_sse2_cvttsd2si:
1938     case Intrinsic::x86_sse2_cvttsd2si64:
1939       if (ConstantFP *FPOp =
1940               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1941         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
1942                                            /*roundTowardZero=*/true, Ty,
1943                                            /*IsSigned*/true);
1944       break;
1945     }
1946   }
1947 
1948   return nullptr;
1949 }
1950 
1951 static Constant *ConstantFoldScalarCall2(StringRef Name,
1952                                          Intrinsic::ID IntrinsicID,
1953                                          Type *Ty,
1954                                          ArrayRef<Constant *> Operands,
1955                                          const TargetLibraryInfo *TLI,
1956                                          const CallBase *Call) {
1957   assert(Operands.size() == 2 && "Wrong number of operands.");
1958 
1959   if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1960     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1961       return nullptr;
1962     double Op1V = getValueAsDouble(Op1);
1963 
1964     if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1965       if (Op2->getType() != Op1->getType())
1966         return nullptr;
1967 
1968       double Op2V = getValueAsDouble(Op2);
1969       if (IntrinsicID == Intrinsic::pow) {
1970         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1971       }
1972       if (IntrinsicID == Intrinsic::copysign) {
1973         APFloat V1 = Op1->getValueAPF();
1974         const APFloat &V2 = Op2->getValueAPF();
1975         V1.copySign(V2);
1976         return ConstantFP::get(Ty->getContext(), V1);
1977       }
1978 
1979       if (IntrinsicID == Intrinsic::minnum) {
1980         const APFloat &C1 = Op1->getValueAPF();
1981         const APFloat &C2 = Op2->getValueAPF();
1982         return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
1983       }
1984 
1985       if (IntrinsicID == Intrinsic::maxnum) {
1986         const APFloat &C1 = Op1->getValueAPF();
1987         const APFloat &C2 = Op2->getValueAPF();
1988         return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
1989       }
1990 
1991       if (IntrinsicID == Intrinsic::minimum) {
1992         const APFloat &C1 = Op1->getValueAPF();
1993         const APFloat &C2 = Op2->getValueAPF();
1994         return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
1995       }
1996 
1997       if (IntrinsicID == Intrinsic::maximum) {
1998         const APFloat &C1 = Op1->getValueAPF();
1999         const APFloat &C2 = Op2->getValueAPF();
2000         return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
2001       }
2002 
2003       if (!TLI)
2004         return nullptr;
2005       if ((Name == "pow" && TLI->has(LibFunc_pow)) ||
2006           (Name == "powf" && TLI->has(LibFunc_powf)) ||
2007           (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) ||
2008           (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite)))
2009         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2010       if ((Name == "fmod" && TLI->has(LibFunc_fmod)) ||
2011           (Name == "fmodf" && TLI->has(LibFunc_fmodf)))
2012         return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
2013       if ((Name == "atan2" && TLI->has(LibFunc_atan2)) ||
2014           (Name == "atan2f" && TLI->has(LibFunc_atan2f)) ||
2015           (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) ||
2016           (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite)))
2017         return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2018     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2019       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2020         return ConstantFP::get(Ty->getContext(),
2021                                APFloat((float)std::pow((float)Op1V,
2022                                                (int)Op2C->getZExtValue())));
2023       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2024         return ConstantFP::get(Ty->getContext(),
2025                                APFloat((float)std::pow((float)Op1V,
2026                                                (int)Op2C->getZExtValue())));
2027       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2028         return ConstantFP::get(Ty->getContext(),
2029                                APFloat((double)std::pow((double)Op1V,
2030                                                  (int)Op2C->getZExtValue())));
2031     }
2032     return nullptr;
2033   }
2034 
2035   if (Operands[0]->getType()->isIntegerTy() &&
2036       Operands[1]->getType()->isIntegerTy()) {
2037     const APInt *C0, *C1;
2038     if (!getConstIntOrUndef(Operands[0], C0) ||
2039         !getConstIntOrUndef(Operands[1], C1))
2040       return nullptr;
2041 
2042     switch (IntrinsicID) {
2043     default: break;
2044     case Intrinsic::smul_with_overflow:
2045     case Intrinsic::umul_with_overflow:
2046       // Even if both operands are undef, we cannot fold muls to undef
2047       // in the general case. For example, on i2 there are no inputs
2048       // that would produce { i2 -1, i1 true } as the result.
2049       if (!C0 || !C1)
2050         return Constant::getNullValue(Ty);
2051       LLVM_FALLTHROUGH;
2052     case Intrinsic::sadd_with_overflow:
2053     case Intrinsic::uadd_with_overflow:
2054     case Intrinsic::ssub_with_overflow:
2055     case Intrinsic::usub_with_overflow: {
2056       if (!C0 || !C1)
2057         return UndefValue::get(Ty);
2058 
2059       APInt Res;
2060       bool Overflow;
2061       switch (IntrinsicID) {
2062       default: llvm_unreachable("Invalid case");
2063       case Intrinsic::sadd_with_overflow:
2064         Res = C0->sadd_ov(*C1, Overflow);
2065         break;
2066       case Intrinsic::uadd_with_overflow:
2067         Res = C0->uadd_ov(*C1, Overflow);
2068         break;
2069       case Intrinsic::ssub_with_overflow:
2070         Res = C0->ssub_ov(*C1, Overflow);
2071         break;
2072       case Intrinsic::usub_with_overflow:
2073         Res = C0->usub_ov(*C1, Overflow);
2074         break;
2075       case Intrinsic::smul_with_overflow:
2076         Res = C0->smul_ov(*C1, Overflow);
2077         break;
2078       case Intrinsic::umul_with_overflow:
2079         Res = C0->umul_ov(*C1, Overflow);
2080         break;
2081       }
2082       Constant *Ops[] = {
2083         ConstantInt::get(Ty->getContext(), Res),
2084         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2085       };
2086       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2087     }
2088     case Intrinsic::uadd_sat:
2089     case Intrinsic::sadd_sat:
2090       if (!C0 && !C1)
2091         return UndefValue::get(Ty);
2092       if (!C0 || !C1)
2093         return Constant::getAllOnesValue(Ty);
2094       if (IntrinsicID == Intrinsic::uadd_sat)
2095         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2096       else
2097         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2098     case Intrinsic::usub_sat:
2099     case Intrinsic::ssub_sat:
2100       if (!C0 && !C1)
2101         return UndefValue::get(Ty);
2102       if (!C0 || !C1)
2103         return Constant::getNullValue(Ty);
2104       if (IntrinsicID == Intrinsic::usub_sat)
2105         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2106       else
2107         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2108     case Intrinsic::cttz:
2109     case Intrinsic::ctlz:
2110       assert(C1 && "Must be constant int");
2111 
2112       // cttz(0, 1) and ctlz(0, 1) are undef.
2113       if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2114         return UndefValue::get(Ty);
2115       if (!C0)
2116         return Constant::getNullValue(Ty);
2117       if (IntrinsicID == Intrinsic::cttz)
2118         return ConstantInt::get(Ty, C0->countTrailingZeros());
2119       else
2120         return ConstantInt::get(Ty, C0->countLeadingZeros());
2121     }
2122 
2123     return nullptr;
2124   }
2125 
2126   // Support ConstantVector in case we have an Undef in the top.
2127   if ((isa<ConstantVector>(Operands[0]) ||
2128        isa<ConstantDataVector>(Operands[0])) &&
2129       // Check for default rounding mode.
2130       // FIXME: Support other rounding modes?
2131       isa<ConstantInt>(Operands[1]) &&
2132       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2133     auto *Op = cast<Constant>(Operands[0]);
2134     switch (IntrinsicID) {
2135     default: break;
2136     case Intrinsic::x86_avx512_vcvtss2si32:
2137     case Intrinsic::x86_avx512_vcvtss2si64:
2138     case Intrinsic::x86_avx512_vcvtsd2si32:
2139     case Intrinsic::x86_avx512_vcvtsd2si64:
2140       if (ConstantFP *FPOp =
2141               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2142         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2143                                            /*roundTowardZero=*/false, Ty,
2144                                            /*IsSigned*/true);
2145       break;
2146     case Intrinsic::x86_avx512_vcvtss2usi32:
2147     case Intrinsic::x86_avx512_vcvtss2usi64:
2148     case Intrinsic::x86_avx512_vcvtsd2usi32:
2149     case Intrinsic::x86_avx512_vcvtsd2usi64:
2150       if (ConstantFP *FPOp =
2151               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2152         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2153                                            /*roundTowardZero=*/false, Ty,
2154                                            /*IsSigned*/false);
2155       break;
2156     case Intrinsic::x86_avx512_cvttss2si:
2157     case Intrinsic::x86_avx512_cvttss2si64:
2158     case Intrinsic::x86_avx512_cvttsd2si:
2159     case Intrinsic::x86_avx512_cvttsd2si64:
2160       if (ConstantFP *FPOp =
2161               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2162         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2163                                            /*roundTowardZero=*/true, Ty,
2164                                            /*IsSigned*/true);
2165       break;
2166     case Intrinsic::x86_avx512_cvttss2usi:
2167     case Intrinsic::x86_avx512_cvttss2usi64:
2168     case Intrinsic::x86_avx512_cvttsd2usi:
2169     case Intrinsic::x86_avx512_cvttsd2usi64:
2170       if (ConstantFP *FPOp =
2171               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2172         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2173                                            /*roundTowardZero=*/true, Ty,
2174                                            /*IsSigned*/false);
2175       break;
2176     }
2177   }
2178   return nullptr;
2179 }
2180 
2181 static Constant *ConstantFoldScalarCall3(StringRef Name,
2182                                          Intrinsic::ID IntrinsicID,
2183                                          Type *Ty,
2184                                          ArrayRef<Constant *> Operands,
2185                                          const TargetLibraryInfo *TLI,
2186                                          const CallBase *Call) {
2187   assert(Operands.size() == 3 && "Wrong number of operands.");
2188 
2189   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2190     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2191       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2192         switch (IntrinsicID) {
2193         default: break;
2194         case Intrinsic::fma:
2195         case Intrinsic::fmuladd: {
2196           APFloat V = Op1->getValueAPF();
2197           APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
2198                                                    Op3->getValueAPF(),
2199                                                    APFloat::rmNearestTiesToEven);
2200           if (s != APFloat::opInvalidOp)
2201             return ConstantFP::get(Ty->getContext(), V);
2202 
2203           return nullptr;
2204         }
2205         }
2206       }
2207     }
2208   }
2209 
2210   if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
2211     if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
2212       if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
2213         switch (IntrinsicID) {
2214         default: break;
2215         case Intrinsic::smul_fix:
2216         case Intrinsic::smul_fix_sat: {
2217           // This code performs rounding towards negative infinity in case the
2218           // result cannot be represented exactly for the given scale. Targets
2219           // that do care about rounding should use a target hook for specifying
2220           // how rounding should be done, and provide their own folding to be
2221           // consistent with rounding. This is the same approach as used by
2222           // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2223           APInt Lhs = Op1->getValue();
2224           APInt Rhs = Op2->getValue();
2225           unsigned Scale = Op3->getValue().getZExtValue();
2226           unsigned Width = Lhs.getBitWidth();
2227           assert(Scale < Width && "Illegal scale.");
2228           unsigned ExtendedWidth = Width * 2;
2229           APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
2230                            Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
2231           if (IntrinsicID == Intrinsic::smul_fix_sat) {
2232             APInt MaxValue =
2233               APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2234             APInt MinValue =
2235               APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2236             Product = APIntOps::smin(Product, MaxValue);
2237             Product = APIntOps::smax(Product, MinValue);
2238           }
2239           return ConstantInt::get(Ty->getContext(),
2240                                   Product.sextOrTrunc(Width));
2241         }
2242         }
2243       }
2244     }
2245   }
2246 
2247   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2248     const APInt *C0, *C1, *C2;
2249     if (!getConstIntOrUndef(Operands[0], C0) ||
2250         !getConstIntOrUndef(Operands[1], C1) ||
2251         !getConstIntOrUndef(Operands[2], C2))
2252       return nullptr;
2253 
2254     bool IsRight = IntrinsicID == Intrinsic::fshr;
2255     if (!C2)
2256       return Operands[IsRight ? 1 : 0];
2257     if (!C0 && !C1)
2258       return UndefValue::get(Ty);
2259 
2260     // The shift amount is interpreted as modulo the bitwidth. If the shift
2261     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2262     unsigned BitWidth = C2->getBitWidth();
2263     unsigned ShAmt = C2->urem(BitWidth);
2264     if (!ShAmt)
2265       return Operands[IsRight ? 1 : 0];
2266 
2267     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2268     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2269     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2270     if (!C0)
2271       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2272     if (!C1)
2273       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2274     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2275   }
2276 
2277   return nullptr;
2278 }
2279 
2280 static Constant *ConstantFoldScalarCall(StringRef Name,
2281                                         Intrinsic::ID IntrinsicID,
2282                                         Type *Ty,
2283                                         ArrayRef<Constant *> Operands,
2284                                         const TargetLibraryInfo *TLI,
2285                                         const CallBase *Call) {
2286   if (Operands.size() == 1)
2287     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2288 
2289   if (Operands.size() == 2)
2290     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2291 
2292   if (Operands.size() == 3)
2293     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2294 
2295   return nullptr;
2296 }
2297 
2298 static Constant *ConstantFoldVectorCall(StringRef Name,
2299                                         Intrinsic::ID IntrinsicID,
2300                                         VectorType *VTy,
2301                                         ArrayRef<Constant *> Operands,
2302                                         const DataLayout &DL,
2303                                         const TargetLibraryInfo *TLI,
2304                                         const CallBase *Call) {
2305   SmallVector<Constant *, 4> Result(VTy->getNumElements());
2306   SmallVector<Constant *, 4> Lane(Operands.size());
2307   Type *Ty = VTy->getElementType();
2308 
2309   if (IntrinsicID == Intrinsic::masked_load) {
2310     auto *SrcPtr = Operands[0];
2311     auto *Mask = Operands[2];
2312     auto *Passthru = Operands[3];
2313 
2314     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
2315 
2316     SmallVector<Constant *, 32> NewElements;
2317     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2318       auto *MaskElt = Mask->getAggregateElement(I);
2319       if (!MaskElt)
2320         break;
2321       auto *PassthruElt = Passthru->getAggregateElement(I);
2322       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2323       if (isa<UndefValue>(MaskElt)) {
2324         if (PassthruElt)
2325           NewElements.push_back(PassthruElt);
2326         else if (VecElt)
2327           NewElements.push_back(VecElt);
2328         else
2329           return nullptr;
2330       }
2331       if (MaskElt->isNullValue()) {
2332         if (!PassthruElt)
2333           return nullptr;
2334         NewElements.push_back(PassthruElt);
2335       } else if (MaskElt->isOneValue()) {
2336         if (!VecElt)
2337           return nullptr;
2338         NewElements.push_back(VecElt);
2339       } else {
2340         return nullptr;
2341       }
2342     }
2343     if (NewElements.size() != VTy->getNumElements())
2344       return nullptr;
2345     return ConstantVector::get(NewElements);
2346   }
2347 
2348   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2349     // Gather a column of constants.
2350     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
2351       // Some intrinsics use a scalar type for certain arguments.
2352       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
2353         Lane[J] = Operands[J];
2354         continue;
2355       }
2356 
2357       Constant *Agg = Operands[J]->getAggregateElement(I);
2358       if (!Agg)
2359         return nullptr;
2360 
2361       Lane[J] = Agg;
2362     }
2363 
2364     // Use the regular scalar folding to simplify this column.
2365     Constant *Folded =
2366         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
2367     if (!Folded)
2368       return nullptr;
2369     Result[I] = Folded;
2370   }
2371 
2372   return ConstantVector::get(Result);
2373 }
2374 
2375 } // end anonymous namespace
2376 
2377 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
2378                                  ArrayRef<Constant *> Operands,
2379                                  const TargetLibraryInfo *TLI) {
2380   if (Call->isNoBuiltin() || Call->isStrictFP())
2381     return nullptr;
2382   if (!F->hasName())
2383     return nullptr;
2384   StringRef Name = F->getName();
2385 
2386   Type *Ty = F->getReturnType();
2387 
2388   if (auto *VTy = dyn_cast<VectorType>(Ty))
2389     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
2390                                   F->getParent()->getDataLayout(), TLI, Call);
2391 
2392   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
2393                                 Call);
2394 }
2395 
2396 bool llvm::isMathLibCallNoop(const CallBase *Call,
2397                              const TargetLibraryInfo *TLI) {
2398   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2399   // (and to some extent ConstantFoldScalarCall).
2400   if (Call->isNoBuiltin() || Call->isStrictFP())
2401     return false;
2402   Function *F = Call->getCalledFunction();
2403   if (!F)
2404     return false;
2405 
2406   LibFunc Func;
2407   if (!TLI || !TLI->getLibFunc(*F, Func))
2408     return false;
2409 
2410   if (Call->getNumArgOperands() == 1) {
2411     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
2412       const APFloat &Op = OpC->getValueAPF();
2413       switch (Func) {
2414       case LibFunc_logl:
2415       case LibFunc_log:
2416       case LibFunc_logf:
2417       case LibFunc_log2l:
2418       case LibFunc_log2:
2419       case LibFunc_log2f:
2420       case LibFunc_log10l:
2421       case LibFunc_log10:
2422       case LibFunc_log10f:
2423         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
2424 
2425       case LibFunc_expl:
2426       case LibFunc_exp:
2427       case LibFunc_expf:
2428         // FIXME: These boundaries are slightly conservative.
2429         if (OpC->getType()->isDoubleTy())
2430           return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
2431                  Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan;
2432         if (OpC->getType()->isFloatTy())
2433           return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan &&
2434                  Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
2435         break;
2436 
2437       case LibFunc_exp2l:
2438       case LibFunc_exp2:
2439       case LibFunc_exp2f:
2440         // FIXME: These boundaries are slightly conservative.
2441         if (OpC->getType()->isDoubleTy())
2442           return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
2443                  Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan;
2444         if (OpC->getType()->isFloatTy())
2445           return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan &&
2446                  Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
2447         break;
2448 
2449       case LibFunc_sinl:
2450       case LibFunc_sin:
2451       case LibFunc_sinf:
2452       case LibFunc_cosl:
2453       case LibFunc_cos:
2454       case LibFunc_cosf:
2455         return !Op.isInfinity();
2456 
2457       case LibFunc_tanl:
2458       case LibFunc_tan:
2459       case LibFunc_tanf: {
2460         // FIXME: Stop using the host math library.
2461         // FIXME: The computation isn't done in the right precision.
2462         Type *Ty = OpC->getType();
2463         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2464           double OpV = getValueAsDouble(OpC);
2465           return ConstantFoldFP(tan, OpV, Ty) != nullptr;
2466         }
2467         break;
2468       }
2469 
2470       case LibFunc_asinl:
2471       case LibFunc_asin:
2472       case LibFunc_asinf:
2473       case LibFunc_acosl:
2474       case LibFunc_acos:
2475       case LibFunc_acosf:
2476         return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
2477                    APFloat::cmpLessThan &&
2478                Op.compare(APFloat(Op.getSemantics(), "1")) !=
2479                    APFloat::cmpGreaterThan;
2480 
2481       case LibFunc_sinh:
2482       case LibFunc_cosh:
2483       case LibFunc_sinhf:
2484       case LibFunc_coshf:
2485       case LibFunc_sinhl:
2486       case LibFunc_coshl:
2487         // FIXME: These boundaries are slightly conservative.
2488         if (OpC->getType()->isDoubleTy())
2489           return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
2490                  Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan;
2491         if (OpC->getType()->isFloatTy())
2492           return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan &&
2493                  Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
2494         break;
2495 
2496       case LibFunc_sqrtl:
2497       case LibFunc_sqrt:
2498       case LibFunc_sqrtf:
2499         return Op.isNaN() || Op.isZero() || !Op.isNegative();
2500 
2501       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2502       // maybe others?
2503       default:
2504         break;
2505       }
2506     }
2507   }
2508 
2509   if (Call->getNumArgOperands() == 2) {
2510     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
2511     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
2512     if (Op0C && Op1C) {
2513       const APFloat &Op0 = Op0C->getValueAPF();
2514       const APFloat &Op1 = Op1C->getValueAPF();
2515 
2516       switch (Func) {
2517       case LibFunc_powl:
2518       case LibFunc_pow:
2519       case LibFunc_powf: {
2520         // FIXME: Stop using the host math library.
2521         // FIXME: The computation isn't done in the right precision.
2522         Type *Ty = Op0C->getType();
2523         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2524           if (Ty == Op1C->getType()) {
2525             double Op0V = getValueAsDouble(Op0C);
2526             double Op1V = getValueAsDouble(Op1C);
2527             return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
2528           }
2529         }
2530         break;
2531       }
2532 
2533       case LibFunc_fmodl:
2534       case LibFunc_fmod:
2535       case LibFunc_fmodf:
2536         return Op0.isNaN() || Op1.isNaN() ||
2537                (!Op0.isInfinity() && !Op1.isZero());
2538 
2539       default:
2540         break;
2541       }
2542     }
2543   }
2544 
2545   return false;
2546 }
2547