1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantFold.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/IntrinsicsAArch64.h" 46 #include "llvm/IR/IntrinsicsAMDGPU.h" 47 #include "llvm/IR/IntrinsicsARM.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/KnownBits.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <cassert> 58 #include <cerrno> 59 #include <cfenv> 60 #include <cmath> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 67 //===----------------------------------------------------------------------===// 68 // Constant Folding internal helper functions 69 //===----------------------------------------------------------------------===// 70 71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 72 Constant *C, Type *SrcEltTy, 73 unsigned NumSrcElts, 74 const DataLayout &DL) { 75 // Now that we know that the input value is a vector of integers, just shift 76 // and insert them into our result. 77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 78 for (unsigned i = 0; i != NumSrcElts; ++i) { 79 Constant *Element; 80 if (DL.isLittleEndian()) 81 Element = C->getAggregateElement(NumSrcElts - i - 1); 82 else 83 Element = C->getAggregateElement(i); 84 85 if (Element && isa<UndefValue>(Element)) { 86 Result <<= BitShift; 87 continue; 88 } 89 90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 91 if (!ElementCI) 92 return ConstantExpr::getBitCast(C, DestTy); 93 94 Result <<= BitShift; 95 Result |= ElementCI->getValue().zext(Result.getBitWidth()); 96 } 97 98 return nullptr; 99 } 100 101 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 102 /// This always returns a non-null constant, but it may be a 103 /// ConstantExpr if unfoldable. 104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 106 "Invalid constantexpr bitcast!"); 107 108 // Catch the obvious splat cases. 109 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 110 return Res; 111 112 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 113 // Handle a vector->scalar integer/fp cast. 114 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 115 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 116 Type *SrcEltTy = VTy->getElementType(); 117 118 // If the vector is a vector of floating point, convert it to vector of int 119 // to simplify things. 120 if (SrcEltTy->isFloatingPointTy()) { 121 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 122 auto *SrcIVTy = FixedVectorType::get( 123 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 124 // Ask IR to do the conversion now that #elts line up. 125 C = ConstantExpr::getBitCast(C, SrcIVTy); 126 } 127 128 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 129 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 130 SrcEltTy, NumSrcElts, DL)) 131 return CE; 132 133 if (isa<IntegerType>(DestTy)) 134 return ConstantInt::get(DestTy, Result); 135 136 APFloat FP(DestTy->getFltSemantics(), Result); 137 return ConstantFP::get(DestTy->getContext(), FP); 138 } 139 } 140 141 // The code below only handles casts to vectors currently. 142 auto *DestVTy = dyn_cast<VectorType>(DestTy); 143 if (!DestVTy) 144 return ConstantExpr::getBitCast(C, DestTy); 145 146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 147 // vector so the code below can handle it uniformly. 148 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 149 Constant *Ops = C; // don't take the address of C! 150 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 151 } 152 153 // If this is a bitcast from constant vector -> vector, fold it. 154 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 155 return ConstantExpr::getBitCast(C, DestTy); 156 157 // If the element types match, IR can fold it. 158 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 159 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 160 if (NumDstElt == NumSrcElt) 161 return ConstantExpr::getBitCast(C, DestTy); 162 163 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 164 Type *DstEltTy = DestVTy->getElementType(); 165 166 // Otherwise, we're changing the number of elements in a vector, which 167 // requires endianness information to do the right thing. For example, 168 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 169 // folds to (little endian): 170 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 171 // and to (big endian): 172 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 173 174 // First thing is first. We only want to think about integer here, so if 175 // we have something in FP form, recast it as integer. 176 if (DstEltTy->isFloatingPointTy()) { 177 // Fold to an vector of integers with same size as our FP type. 178 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 179 auto *DestIVTy = FixedVectorType::get( 180 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 181 // Recursively handle this integer conversion, if possible. 182 C = FoldBitCast(C, DestIVTy, DL); 183 184 // Finally, IR can handle this now that #elts line up. 185 return ConstantExpr::getBitCast(C, DestTy); 186 } 187 188 // Okay, we know the destination is integer, if the input is FP, convert 189 // it to integer first. 190 if (SrcEltTy->isFloatingPointTy()) { 191 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 192 auto *SrcIVTy = FixedVectorType::get( 193 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 194 // Ask IR to do the conversion now that #elts line up. 195 C = ConstantExpr::getBitCast(C, SrcIVTy); 196 // If IR wasn't able to fold it, bail out. 197 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 198 !isa<ConstantDataVector>(C)) 199 return C; 200 } 201 202 // Now we know that the input and output vectors are both integer vectors 203 // of the same size, and that their #elements is not the same. Do the 204 // conversion here, which depends on whether the input or output has 205 // more elements. 206 bool isLittleEndian = DL.isLittleEndian(); 207 208 SmallVector<Constant*, 32> Result; 209 if (NumDstElt < NumSrcElt) { 210 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 211 Constant *Zero = Constant::getNullValue(DstEltTy); 212 unsigned Ratio = NumSrcElt/NumDstElt; 213 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 214 unsigned SrcElt = 0; 215 for (unsigned i = 0; i != NumDstElt; ++i) { 216 // Build each element of the result. 217 Constant *Elt = Zero; 218 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 219 for (unsigned j = 0; j != Ratio; ++j) { 220 Constant *Src = C->getAggregateElement(SrcElt++); 221 if (Src && isa<UndefValue>(Src)) 222 Src = Constant::getNullValue( 223 cast<VectorType>(C->getType())->getElementType()); 224 else 225 Src = dyn_cast_or_null<ConstantInt>(Src); 226 if (!Src) // Reject constantexpr elements. 227 return ConstantExpr::getBitCast(C, DestTy); 228 229 // Zero extend the element to the right size. 230 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(), 231 DL); 232 assert(Src && "Constant folding cannot fail on plain integers"); 233 234 // Shift it to the right place, depending on endianness. 235 Src = ConstantFoldBinaryOpOperands( 236 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt), 237 DL); 238 assert(Src && "Constant folding cannot fail on plain integers"); 239 240 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 241 242 // Mix it in. 243 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL); 244 assert(Elt && "Constant folding cannot fail on plain integers"); 245 } 246 Result.push_back(Elt); 247 } 248 return ConstantVector::get(Result); 249 } 250 251 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 252 unsigned Ratio = NumDstElt/NumSrcElt; 253 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 254 255 // Loop over each source value, expanding into multiple results. 256 for (unsigned i = 0; i != NumSrcElt; ++i) { 257 auto *Element = C->getAggregateElement(i); 258 259 if (!Element) // Reject constantexpr elements. 260 return ConstantExpr::getBitCast(C, DestTy); 261 262 if (isa<UndefValue>(Element)) { 263 // Correctly Propagate undef values. 264 Result.append(Ratio, UndefValue::get(DstEltTy)); 265 continue; 266 } 267 268 auto *Src = dyn_cast<ConstantInt>(Element); 269 if (!Src) 270 return ConstantExpr::getBitCast(C, DestTy); 271 272 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 273 for (unsigned j = 0; j != Ratio; ++j) { 274 // Shift the piece of the value into the right place, depending on 275 // endianness. 276 APInt Elt = Src->getValue().lshr(ShiftAmt); 277 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 278 279 // Truncate and remember this piece. 280 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize))); 281 } 282 } 283 284 return ConstantVector::get(Result); 285 } 286 287 } // end anonymous namespace 288 289 /// If this constant is a constant offset from a global, return the global and 290 /// the constant. Because of constantexprs, this function is recursive. 291 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 292 APInt &Offset, const DataLayout &DL, 293 DSOLocalEquivalent **DSOEquiv) { 294 if (DSOEquiv) 295 *DSOEquiv = nullptr; 296 297 // Trivial case, constant is the global. 298 if ((GV = dyn_cast<GlobalValue>(C))) { 299 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 300 Offset = APInt(BitWidth, 0); 301 return true; 302 } 303 304 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 305 if (DSOEquiv) 306 *DSOEquiv = FoundDSOEquiv; 307 GV = FoundDSOEquiv->getGlobalValue(); 308 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 309 Offset = APInt(BitWidth, 0); 310 return true; 311 } 312 313 // Otherwise, if this isn't a constant expr, bail out. 314 auto *CE = dyn_cast<ConstantExpr>(C); 315 if (!CE) return false; 316 317 // Look through ptr->int and ptr->ptr casts. 318 if (CE->getOpcode() == Instruction::PtrToInt || 319 CE->getOpcode() == Instruction::BitCast) 320 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 321 DSOEquiv); 322 323 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 324 auto *GEP = dyn_cast<GEPOperator>(CE); 325 if (!GEP) 326 return false; 327 328 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 329 APInt TmpOffset(BitWidth, 0); 330 331 // If the base isn't a global+constant, we aren't either. 332 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 333 DSOEquiv)) 334 return false; 335 336 // Otherwise, add any offset that our operands provide. 337 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 338 return false; 339 340 Offset = TmpOffset; 341 return true; 342 } 343 344 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 345 const DataLayout &DL) { 346 do { 347 Type *SrcTy = C->getType(); 348 if (SrcTy == DestTy) 349 return C; 350 351 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 352 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 353 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 354 return nullptr; 355 356 // Catch the obvious splat cases (since all-zeros can coerce non-integral 357 // pointers legally). 358 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 359 return Res; 360 361 // If the type sizes are the same and a cast is legal, just directly 362 // cast the constant. 363 // But be careful not to coerce non-integral pointers illegally. 364 if (SrcSize == DestSize && 365 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 366 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 367 Instruction::CastOps Cast = Instruction::BitCast; 368 // If we are going from a pointer to int or vice versa, we spell the cast 369 // differently. 370 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 371 Cast = Instruction::IntToPtr; 372 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 373 Cast = Instruction::PtrToInt; 374 375 if (CastInst::castIsValid(Cast, C, DestTy)) 376 return ConstantFoldCastOperand(Cast, C, DestTy, DL); 377 } 378 379 // If this isn't an aggregate type, there is nothing we can do to drill down 380 // and find a bitcastable constant. 381 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 382 return nullptr; 383 384 // We're simulating a load through a pointer that was bitcast to point to 385 // a different type, so we can try to walk down through the initial 386 // elements of an aggregate to see if some part of the aggregate is 387 // castable to implement the "load" semantic model. 388 if (SrcTy->isStructTy()) { 389 // Struct types might have leading zero-length elements like [0 x i32], 390 // which are certainly not what we are looking for, so skip them. 391 unsigned Elem = 0; 392 Constant *ElemC; 393 do { 394 ElemC = C->getAggregateElement(Elem++); 395 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 396 C = ElemC; 397 } else { 398 // For non-byte-sized vector elements, the first element is not 399 // necessarily located at the vector base address. 400 if (auto *VT = dyn_cast<VectorType>(SrcTy)) 401 if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) 402 return nullptr; 403 404 C = C->getAggregateElement(0u); 405 } 406 } while (C); 407 408 return nullptr; 409 } 410 411 namespace { 412 413 /// Recursive helper to read bits out of global. C is the constant being copied 414 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 415 /// results into and BytesLeft is the number of bytes left in 416 /// the CurPtr buffer. DL is the DataLayout. 417 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 418 unsigned BytesLeft, const DataLayout &DL) { 419 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 420 "Out of range access"); 421 422 // If this element is zero or undefined, we can just return since *CurPtr is 423 // zero initialized. 424 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 425 return true; 426 427 if (auto *CI = dyn_cast<ConstantInt>(C)) { 428 if ((CI->getBitWidth() & 7) != 0) 429 return false; 430 const APInt &Val = CI->getValue(); 431 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 432 433 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 434 unsigned n = ByteOffset; 435 if (!DL.isLittleEndian()) 436 n = IntBytes - n - 1; 437 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue(); 438 ++ByteOffset; 439 } 440 return true; 441 } 442 443 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 444 if (CFP->getType()->isDoubleTy()) { 445 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 446 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 447 } 448 if (CFP->getType()->isFloatTy()){ 449 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 450 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 451 } 452 if (CFP->getType()->isHalfTy()){ 453 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 454 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 455 } 456 return false; 457 } 458 459 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 460 const StructLayout *SL = DL.getStructLayout(CS->getType()); 461 unsigned Index = SL->getElementContainingOffset(ByteOffset); 462 uint64_t CurEltOffset = SL->getElementOffset(Index); 463 ByteOffset -= CurEltOffset; 464 465 while (true) { 466 // If the element access is to the element itself and not to tail padding, 467 // read the bytes from the element. 468 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 469 470 if (ByteOffset < EltSize && 471 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 472 BytesLeft, DL)) 473 return false; 474 475 ++Index; 476 477 // Check to see if we read from the last struct element, if so we're done. 478 if (Index == CS->getType()->getNumElements()) 479 return true; 480 481 // If we read all of the bytes we needed from this element we're done. 482 uint64_t NextEltOffset = SL->getElementOffset(Index); 483 484 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 485 return true; 486 487 // Move to the next element of the struct. 488 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 489 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 490 ByteOffset = 0; 491 CurEltOffset = NextEltOffset; 492 } 493 // not reached. 494 } 495 496 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 497 isa<ConstantDataSequential>(C)) { 498 uint64_t NumElts, EltSize; 499 Type *EltTy; 500 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 501 NumElts = AT->getNumElements(); 502 EltTy = AT->getElementType(); 503 EltSize = DL.getTypeAllocSize(EltTy); 504 } else { 505 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 506 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 507 // TODO: For non-byte-sized vectors, current implementation assumes there is 508 // padding to the next byte boundary between elements. 509 if (!DL.typeSizeEqualsStoreSize(EltTy)) 510 return false; 511 512 EltSize = DL.getTypeStoreSize(EltTy); 513 } 514 uint64_t Index = ByteOffset / EltSize; 515 uint64_t Offset = ByteOffset - Index * EltSize; 516 517 for (; Index != NumElts; ++Index) { 518 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 519 BytesLeft, DL)) 520 return false; 521 522 uint64_t BytesWritten = EltSize - Offset; 523 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 524 if (BytesWritten >= BytesLeft) 525 return true; 526 527 Offset = 0; 528 BytesLeft -= BytesWritten; 529 CurPtr += BytesWritten; 530 } 531 return true; 532 } 533 534 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 535 if (CE->getOpcode() == Instruction::IntToPtr && 536 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 537 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 538 BytesLeft, DL); 539 } 540 } 541 542 // Otherwise, unknown initializer type. 543 return false; 544 } 545 546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 547 int64_t Offset, const DataLayout &DL) { 548 // Bail out early. Not expect to load from scalable global variable. 549 if (isa<ScalableVectorType>(LoadTy)) 550 return nullptr; 551 552 auto *IntType = dyn_cast<IntegerType>(LoadTy); 553 554 // If this isn't an integer load we can't fold it directly. 555 if (!IntType) { 556 // If this is a non-integer load, we can try folding it as an int load and 557 // then bitcast the result. This can be useful for union cases. Note 558 // that address spaces don't matter here since we're not going to result in 559 // an actual new load. 560 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && 561 !LoadTy->isVectorTy()) 562 return nullptr; 563 564 Type *MapTy = Type::getIntNTy(C->getContext(), 565 DL.getTypeSizeInBits(LoadTy).getFixedValue()); 566 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 567 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 568 !LoadTy->isX86_AMXTy()) 569 // Materializing a zero can be done trivially without a bitcast 570 return Constant::getNullValue(LoadTy); 571 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 572 Res = FoldBitCast(Res, CastTy, DL); 573 if (LoadTy->isPtrOrPtrVectorTy()) { 574 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 575 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 576 !LoadTy->isX86_AMXTy()) 577 return Constant::getNullValue(LoadTy); 578 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 579 // Be careful not to replace a load of an addrspace value with an inttoptr here 580 return nullptr; 581 Res = ConstantExpr::getIntToPtr(Res, LoadTy); 582 } 583 return Res; 584 } 585 return nullptr; 586 } 587 588 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 589 if (BytesLoaded > 32 || BytesLoaded == 0) 590 return nullptr; 591 592 // If we're not accessing anything in this constant, the result is undefined. 593 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 594 return PoisonValue::get(IntType); 595 596 // TODO: We should be able to support scalable types. 597 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType()); 598 if (InitializerSize.isScalable()) 599 return nullptr; 600 601 // If we're not accessing anything in this constant, the result is undefined. 602 if (Offset >= (int64_t)InitializerSize.getFixedValue()) 603 return PoisonValue::get(IntType); 604 605 unsigned char RawBytes[32] = {0}; 606 unsigned char *CurPtr = RawBytes; 607 unsigned BytesLeft = BytesLoaded; 608 609 // If we're loading off the beginning of the global, some bytes may be valid. 610 if (Offset < 0) { 611 CurPtr += -Offset; 612 BytesLeft += Offset; 613 Offset = 0; 614 } 615 616 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 617 return nullptr; 618 619 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 620 if (DL.isLittleEndian()) { 621 ResultVal = RawBytes[BytesLoaded - 1]; 622 for (unsigned i = 1; i != BytesLoaded; ++i) { 623 ResultVal <<= 8; 624 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 625 } 626 } else { 627 ResultVal = RawBytes[0]; 628 for (unsigned i = 1; i != BytesLoaded; ++i) { 629 ResultVal <<= 8; 630 ResultVal |= RawBytes[i]; 631 } 632 } 633 634 return ConstantInt::get(IntType->getContext(), ResultVal); 635 } 636 637 } // anonymous namespace 638 639 // If GV is a constant with an initializer read its representation starting 640 // at Offset and return it as a constant array of unsigned char. Otherwise 641 // return null. 642 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV, 643 uint64_t Offset) { 644 if (!GV->isConstant() || !GV->hasDefinitiveInitializer()) 645 return nullptr; 646 647 const DataLayout &DL = GV->getParent()->getDataLayout(); 648 Constant *Init = const_cast<Constant *>(GV->getInitializer()); 649 TypeSize InitSize = DL.getTypeAllocSize(Init->getType()); 650 if (InitSize < Offset) 651 return nullptr; 652 653 uint64_t NBytes = InitSize - Offset; 654 if (NBytes > UINT16_MAX) 655 // Bail for large initializers in excess of 64K to avoid allocating 656 // too much memory. 657 // Offset is assumed to be less than or equal than InitSize (this 658 // is enforced in ReadDataFromGlobal). 659 return nullptr; 660 661 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes)); 662 unsigned char *CurPtr = RawBytes.data(); 663 664 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL)) 665 return nullptr; 666 667 return ConstantDataArray::get(GV->getContext(), RawBytes); 668 } 669 670 /// If this Offset points exactly to the start of an aggregate element, return 671 /// that element, otherwise return nullptr. 672 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 673 const DataLayout &DL) { 674 if (Offset.isZero()) 675 return Base; 676 677 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 678 return nullptr; 679 680 Type *ElemTy = Base->getType(); 681 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 682 if (!Offset.isZero() || !Indices[0].isZero()) 683 return nullptr; 684 685 Constant *C = Base; 686 for (const APInt &Index : drop_begin(Indices)) { 687 if (Index.isNegative() || Index.getActiveBits() >= 32) 688 return nullptr; 689 690 C = C->getAggregateElement(Index.getZExtValue()); 691 if (!C) 692 return nullptr; 693 } 694 695 return C; 696 } 697 698 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 699 const APInt &Offset, 700 const DataLayout &DL) { 701 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 702 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 703 return Result; 704 705 // Explicitly check for out-of-bounds access, so we return poison even if the 706 // constant is a uniform value. 707 TypeSize Size = DL.getTypeAllocSize(C->getType()); 708 if (!Size.isScalable() && Offset.sge(Size.getFixedValue())) 709 return PoisonValue::get(Ty); 710 711 // Try an offset-independent fold of a uniform value. 712 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty)) 713 return Result; 714 715 // Try hard to fold loads from bitcasted strange and non-type-safe things. 716 if (Offset.getSignificantBits() <= 64) 717 if (Constant *Result = 718 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) 719 return Result; 720 721 return nullptr; 722 } 723 724 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 725 const DataLayout &DL) { 726 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 727 } 728 729 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 730 APInt Offset, 731 const DataLayout &DL) { 732 // We can only fold loads from constant globals with a definitive initializer. 733 // Check this upfront, to skip expensive offset calculations. 734 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 735 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 736 return nullptr; 737 738 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 739 DL, Offset, /* AllowNonInbounds */ true)); 740 741 if (C == GV) 742 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 743 Offset, DL)) 744 return Result; 745 746 // If this load comes from anywhere in a uniform constant global, the value 747 // is always the same, regardless of the loaded offset. 748 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty); 749 } 750 751 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 752 const DataLayout &DL) { 753 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 754 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL); 755 } 756 757 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) { 758 if (isa<PoisonValue>(C)) 759 return PoisonValue::get(Ty); 760 if (isa<UndefValue>(C)) 761 return UndefValue::get(Ty); 762 if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) 763 return Constant::getNullValue(Ty); 764 if (C->isAllOnesValue() && 765 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) 766 return Constant::getAllOnesValue(Ty); 767 return nullptr; 768 } 769 770 namespace { 771 772 /// One of Op0/Op1 is a constant expression. 773 /// Attempt to symbolically evaluate the result of a binary operator merging 774 /// these together. If target data info is available, it is provided as DL, 775 /// otherwise DL is null. 776 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 777 const DataLayout &DL) { 778 // SROA 779 780 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 781 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 782 // bits. 783 784 if (Opc == Instruction::And) { 785 KnownBits Known0 = computeKnownBits(Op0, DL); 786 KnownBits Known1 = computeKnownBits(Op1, DL); 787 if ((Known1.One | Known0.Zero).isAllOnes()) { 788 // All the bits of Op0 that the 'and' could be masking are already zero. 789 return Op0; 790 } 791 if ((Known0.One | Known1.Zero).isAllOnes()) { 792 // All the bits of Op1 that the 'and' could be masking are already zero. 793 return Op1; 794 } 795 796 Known0 &= Known1; 797 if (Known0.isConstant()) 798 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 799 } 800 801 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 802 // constant. This happens frequently when iterating over a global array. 803 if (Opc == Instruction::Sub) { 804 GlobalValue *GV1, *GV2; 805 APInt Offs1, Offs2; 806 807 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 808 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 809 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 810 811 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 812 // PtrToInt may change the bitwidth so we have convert to the right size 813 // first. 814 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 815 Offs2.zextOrTrunc(OpSize)); 816 } 817 } 818 819 return nullptr; 820 } 821 822 /// If array indices are not pointer-sized integers, explicitly cast them so 823 /// that they aren't implicitly casted by the getelementptr. 824 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 825 Type *ResultTy, bool InBounds, 826 std::optional<unsigned> InRangeIndex, 827 const DataLayout &DL, const TargetLibraryInfo *TLI) { 828 Type *IntIdxTy = DL.getIndexType(ResultTy); 829 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 830 831 bool Any = false; 832 SmallVector<Constant*, 32> NewIdxs; 833 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 834 if ((i == 1 || 835 !isa<StructType>(GetElementPtrInst::getIndexedType( 836 SrcElemTy, Ops.slice(1, i - 1)))) && 837 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 838 Any = true; 839 Type *NewType = 840 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy; 841 Constant *NewIdx = ConstantFoldCastOperand( 842 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType, 843 DL); 844 if (!NewIdx) 845 return nullptr; 846 NewIdxs.push_back(NewIdx); 847 } else 848 NewIdxs.push_back(Ops[i]); 849 } 850 851 if (!Any) 852 return nullptr; 853 854 Constant *C = ConstantExpr::getGetElementPtr( 855 SrcElemTy, Ops[0], NewIdxs, InBounds, InRangeIndex); 856 return ConstantFoldConstant(C, DL, TLI); 857 } 858 859 /// If we can symbolically evaluate the GEP constant expression, do so. 860 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 861 ArrayRef<Constant *> Ops, 862 const DataLayout &DL, 863 const TargetLibraryInfo *TLI) { 864 const GEPOperator *InnermostGEP = GEP; 865 bool InBounds = GEP->isInBounds(); 866 867 Type *SrcElemTy = GEP->getSourceElementType(); 868 Type *ResElemTy = GEP->getResultElementType(); 869 Type *ResTy = GEP->getType(); 870 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 871 return nullptr; 872 873 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 874 GEP->isInBounds(), GEP->getInRangeIndex(), 875 DL, TLI)) 876 return C; 877 878 Constant *Ptr = Ops[0]; 879 if (!Ptr->getType()->isPointerTy()) 880 return nullptr; 881 882 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 883 884 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 885 if (!isa<ConstantInt>(Ops[i])) 886 return nullptr; 887 888 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 889 APInt Offset = APInt( 890 BitWidth, 891 DL.getIndexedOffsetInType( 892 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1))); 893 894 // If this is a GEP of a GEP, fold it all into a single GEP. 895 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 896 InnermostGEP = GEP; 897 InBounds &= GEP->isInBounds(); 898 899 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); 900 901 // Do not try the incorporate the sub-GEP if some index is not a number. 902 bool AllConstantInt = true; 903 for (Value *NestedOp : NestedOps) 904 if (!isa<ConstantInt>(NestedOp)) { 905 AllConstantInt = false; 906 break; 907 } 908 if (!AllConstantInt) 909 break; 910 911 Ptr = cast<Constant>(GEP->getOperand(0)); 912 SrcElemTy = GEP->getSourceElementType(); 913 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 914 } 915 916 // If the base value for this address is a literal integer value, fold the 917 // getelementptr to the resulting integer value casted to the pointer type. 918 APInt BasePtr(BitWidth, 0); 919 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 920 if (CE->getOpcode() == Instruction::IntToPtr) { 921 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 922 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 923 } 924 } 925 926 auto *PTy = cast<PointerType>(Ptr->getType()); 927 if ((Ptr->isNullValue() || BasePtr != 0) && 928 !DL.isNonIntegralPointerType(PTy)) { 929 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 930 return ConstantExpr::getIntToPtr(C, ResTy); 931 } 932 933 // Otherwise form a regular getelementptr. Recompute the indices so that 934 // we eliminate over-indexing of the notional static type array bounds. 935 // This makes it easy to determine if the getelementptr is "inbounds". 936 937 // For GEPs of GlobalValues, use the value type, otherwise use an i8 GEP. 938 if (auto *GV = dyn_cast<GlobalValue>(Ptr)) 939 SrcElemTy = GV->getValueType(); 940 else 941 SrcElemTy = Type::getInt8Ty(Ptr->getContext()); 942 943 if (!SrcElemTy->isSized()) 944 return nullptr; 945 946 Type *ElemTy = SrcElemTy; 947 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 948 if (Offset != 0) 949 return nullptr; 950 951 // Try to add additional zero indices to reach the desired result element 952 // type. 953 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and 954 // we'll have to insert a bitcast anyway? 955 while (ElemTy != ResElemTy) { 956 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0); 957 if (!NextTy) 958 break; 959 960 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth)); 961 ElemTy = NextTy; 962 } 963 964 SmallVector<Constant *, 32> NewIdxs; 965 for (const APInt &Index : Indices) 966 NewIdxs.push_back(ConstantInt::get( 967 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index)); 968 969 // Preserve the inrange index from the innermost GEP if possible. We must 970 // have calculated the same indices up to and including the inrange index. 971 std::optional<unsigned> InRangeIndex; 972 if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 973 if (SrcElemTy == InnermostGEP->getSourceElementType() && 974 NewIdxs.size() > *LastIRIndex) { 975 InRangeIndex = LastIRIndex; 976 for (unsigned I = 0; I <= *LastIRIndex; ++I) 977 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 978 return nullptr; 979 } 980 981 // Create a GEP. 982 return ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, InBounds, 983 InRangeIndex); 984 } 985 986 /// Attempt to constant fold an instruction with the 987 /// specified opcode and operands. If successful, the constant result is 988 /// returned, if not, null is returned. Note that this function can fail when 989 /// attempting to fold instructions like loads and stores, which have no 990 /// constant expression form. 991 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 992 ArrayRef<Constant *> Ops, 993 const DataLayout &DL, 994 const TargetLibraryInfo *TLI) { 995 Type *DestTy = InstOrCE->getType(); 996 997 if (Instruction::isUnaryOp(Opcode)) 998 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 999 1000 if (Instruction::isBinaryOp(Opcode)) { 1001 switch (Opcode) { 1002 default: 1003 break; 1004 case Instruction::FAdd: 1005 case Instruction::FSub: 1006 case Instruction::FMul: 1007 case Instruction::FDiv: 1008 case Instruction::FRem: 1009 // Handle floating point instructions separately to account for denormals 1010 // TODO: If a constant expression is being folded rather than an 1011 // instruction, denormals will not be flushed/treated as zero 1012 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) { 1013 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I); 1014 } 1015 } 1016 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1017 } 1018 1019 if (Instruction::isCast(Opcode)) 1020 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1021 1022 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1023 Type *SrcElemTy = GEP->getSourceElementType(); 1024 if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy)) 1025 return nullptr; 1026 1027 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1028 return C; 1029 1030 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1), 1031 GEP->isInBounds(), 1032 GEP->getInRangeIndex()); 1033 } 1034 1035 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) { 1036 if (CE->isCompare()) 1037 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1038 DL, TLI); 1039 return CE->getWithOperands(Ops); 1040 } 1041 1042 switch (Opcode) { 1043 default: return nullptr; 1044 case Instruction::ICmp: 1045 case Instruction::FCmp: { 1046 auto *C = cast<CmpInst>(InstOrCE); 1047 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1], 1048 DL, TLI, C); 1049 } 1050 case Instruction::Freeze: 1051 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1052 case Instruction::Call: 1053 if (auto *F = dyn_cast<Function>(Ops.back())) { 1054 const auto *Call = cast<CallBase>(InstOrCE); 1055 if (canConstantFoldCallTo(Call, F)) 1056 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1057 } 1058 return nullptr; 1059 case Instruction::Select: 1060 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]); 1061 case Instruction::ExtractElement: 1062 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1063 case Instruction::ExtractValue: 1064 return ConstantFoldExtractValueInstruction( 1065 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1066 case Instruction::InsertElement: 1067 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1068 case Instruction::InsertValue: 1069 return ConstantFoldInsertValueInstruction( 1070 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices()); 1071 case Instruction::ShuffleVector: 1072 return ConstantExpr::getShuffleVector( 1073 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1074 case Instruction::Load: { 1075 const auto *LI = dyn_cast<LoadInst>(InstOrCE); 1076 if (LI->isVolatile()) 1077 return nullptr; 1078 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1079 } 1080 } 1081 } 1082 1083 } // end anonymous namespace 1084 1085 //===----------------------------------------------------------------------===// 1086 // Constant Folding public APIs 1087 //===----------------------------------------------------------------------===// 1088 1089 namespace { 1090 1091 Constant * 1092 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1093 const TargetLibraryInfo *TLI, 1094 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1095 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1096 return const_cast<Constant *>(C); 1097 1098 SmallVector<Constant *, 8> Ops; 1099 for (const Use &OldU : C->operands()) { 1100 Constant *OldC = cast<Constant>(&OldU); 1101 Constant *NewC = OldC; 1102 // Recursively fold the ConstantExpr's operands. If we have already folded 1103 // a ConstantExpr, we don't have to process it again. 1104 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1105 auto It = FoldedOps.find(OldC); 1106 if (It == FoldedOps.end()) { 1107 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1108 FoldedOps.insert({OldC, NewC}); 1109 } else { 1110 NewC = It->second; 1111 } 1112 } 1113 Ops.push_back(NewC); 1114 } 1115 1116 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1117 if (Constant *Res = 1118 ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI)) 1119 return Res; 1120 return const_cast<Constant *>(C); 1121 } 1122 1123 assert(isa<ConstantVector>(C)); 1124 return ConstantVector::get(Ops); 1125 } 1126 1127 } // end anonymous namespace 1128 1129 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1130 const TargetLibraryInfo *TLI) { 1131 // Handle PHI nodes quickly here... 1132 if (auto *PN = dyn_cast<PHINode>(I)) { 1133 Constant *CommonValue = nullptr; 1134 1135 SmallDenseMap<Constant *, Constant *> FoldedOps; 1136 for (Value *Incoming : PN->incoming_values()) { 1137 // If the incoming value is undef then skip it. Note that while we could 1138 // skip the value if it is equal to the phi node itself we choose not to 1139 // because that would break the rule that constant folding only applies if 1140 // all operands are constants. 1141 if (isa<UndefValue>(Incoming)) 1142 continue; 1143 // If the incoming value is not a constant, then give up. 1144 auto *C = dyn_cast<Constant>(Incoming); 1145 if (!C) 1146 return nullptr; 1147 // Fold the PHI's operands. 1148 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1149 // If the incoming value is a different constant to 1150 // the one we saw previously, then give up. 1151 if (CommonValue && C != CommonValue) 1152 return nullptr; 1153 CommonValue = C; 1154 } 1155 1156 // If we reach here, all incoming values are the same constant or undef. 1157 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1158 } 1159 1160 // Scan the operand list, checking to see if they are all constants, if so, 1161 // hand off to ConstantFoldInstOperandsImpl. 1162 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1163 return nullptr; 1164 1165 SmallDenseMap<Constant *, Constant *> FoldedOps; 1166 SmallVector<Constant *, 8> Ops; 1167 for (const Use &OpU : I->operands()) { 1168 auto *Op = cast<Constant>(&OpU); 1169 // Fold the Instruction's operands. 1170 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1171 Ops.push_back(Op); 1172 } 1173 1174 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1175 } 1176 1177 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1178 const TargetLibraryInfo *TLI) { 1179 SmallDenseMap<Constant *, Constant *> FoldedOps; 1180 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1181 } 1182 1183 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1184 ArrayRef<Constant *> Ops, 1185 const DataLayout &DL, 1186 const TargetLibraryInfo *TLI) { 1187 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1188 } 1189 1190 Constant *llvm::ConstantFoldCompareInstOperands( 1191 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, 1192 const TargetLibraryInfo *TLI, const Instruction *I) { 1193 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; 1194 // fold: icmp (inttoptr x), null -> icmp x, 0 1195 // fold: icmp null, (inttoptr x) -> icmp 0, x 1196 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1197 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1198 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1199 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1200 // 1201 // FIXME: The following comment is out of data and the DataLayout is here now. 1202 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1203 // around to know if bit truncation is happening. 1204 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1205 if (Ops1->isNullValue()) { 1206 if (CE0->getOpcode() == Instruction::IntToPtr) { 1207 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1208 // Convert the integer value to the right size to ensure we get the 1209 // proper extension or truncation. 1210 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, 1211 /*IsSigned*/ false, DL)) { 1212 Constant *Null = Constant::getNullValue(C->getType()); 1213 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1214 } 1215 } 1216 1217 // Only do this transformation if the int is intptrty in size, otherwise 1218 // there is a truncation or extension that we aren't modeling. 1219 if (CE0->getOpcode() == Instruction::PtrToInt) { 1220 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1221 if (CE0->getType() == IntPtrTy) { 1222 Constant *C = CE0->getOperand(0); 1223 Constant *Null = Constant::getNullValue(C->getType()); 1224 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1225 } 1226 } 1227 } 1228 1229 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1230 if (CE0->getOpcode() == CE1->getOpcode()) { 1231 if (CE0->getOpcode() == Instruction::IntToPtr) { 1232 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1233 1234 // Convert the integer value to the right size to ensure we get the 1235 // proper extension or truncation. 1236 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, 1237 /*IsSigned*/ false, DL); 1238 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy, 1239 /*IsSigned*/ false, DL); 1240 if (C0 && C1) 1241 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1242 } 1243 1244 // Only do this transformation if the int is intptrty in size, otherwise 1245 // there is a truncation or extension that we aren't modeling. 1246 if (CE0->getOpcode() == Instruction::PtrToInt) { 1247 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1248 if (CE0->getType() == IntPtrTy && 1249 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1250 return ConstantFoldCompareInstOperands( 1251 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1252 } 1253 } 1254 } 1255 } 1256 1257 // Convert pointer comparison (base+offset1) pred (base+offset2) into 1258 // offset1 pred offset2, for the case where the offset is inbounds. This 1259 // only works for equality and unsigned comparison, as inbounds permits 1260 // crossing the sign boundary. However, the offset comparison itself is 1261 // signed. 1262 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { 1263 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); 1264 APInt Offset0(IndexWidth, 0); 1265 Value *Stripped0 = 1266 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); 1267 APInt Offset1(IndexWidth, 0); 1268 Value *Stripped1 = 1269 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); 1270 if (Stripped0 == Stripped1) 1271 return ConstantExpr::getCompare( 1272 ICmpInst::getSignedPredicate(Predicate), 1273 ConstantInt::get(CE0->getContext(), Offset0), 1274 ConstantInt::get(CE0->getContext(), Offset1)); 1275 } 1276 } else if (isa<ConstantExpr>(Ops1)) { 1277 // If RHS is a constant expression, but the left side isn't, swap the 1278 // operands and try again. 1279 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1280 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1281 } 1282 1283 // Flush any denormal constant float input according to denormal handling 1284 // mode. 1285 Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false); 1286 if (!Ops0) 1287 return nullptr; 1288 Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false); 1289 if (!Ops1) 1290 return nullptr; 1291 1292 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1293 } 1294 1295 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1296 const DataLayout &DL) { 1297 assert(Instruction::isUnaryOp(Opcode)); 1298 1299 return ConstantFoldUnaryInstruction(Opcode, Op); 1300 } 1301 1302 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1303 Constant *RHS, 1304 const DataLayout &DL) { 1305 assert(Instruction::isBinaryOp(Opcode)); 1306 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1307 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1308 return C; 1309 1310 if (ConstantExpr::isDesirableBinOp(Opcode)) 1311 return ConstantExpr::get(Opcode, LHS, RHS); 1312 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 1313 } 1314 1315 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I, 1316 bool IsOutput) { 1317 if (!I || !I->getParent() || !I->getFunction()) 1318 return Operand; 1319 1320 ConstantFP *CFP = dyn_cast<ConstantFP>(Operand); 1321 if (!CFP) 1322 return Operand; 1323 1324 const APFloat &APF = CFP->getValueAPF(); 1325 // TODO: Should this canonicalize nans? 1326 if (!APF.isDenormal()) 1327 return Operand; 1328 1329 Type *Ty = CFP->getType(); 1330 DenormalMode DenormMode = 1331 I->getFunction()->getDenormalMode(Ty->getFltSemantics()); 1332 DenormalMode::DenormalModeKind Mode = 1333 IsOutput ? DenormMode.Output : DenormMode.Input; 1334 switch (Mode) { 1335 default: 1336 llvm_unreachable("unknown denormal mode"); 1337 case DenormalMode::Dynamic: 1338 return nullptr; 1339 case DenormalMode::IEEE: 1340 return Operand; 1341 case DenormalMode::PreserveSign: 1342 if (APF.isDenormal()) { 1343 return ConstantFP::get( 1344 Ty->getContext(), 1345 APFloat::getZero(Ty->getFltSemantics(), APF.isNegative())); 1346 } 1347 return Operand; 1348 case DenormalMode::PositiveZero: 1349 if (APF.isDenormal()) { 1350 return ConstantFP::get(Ty->getContext(), 1351 APFloat::getZero(Ty->getFltSemantics(), false)); 1352 } 1353 return Operand; 1354 } 1355 return Operand; 1356 } 1357 1358 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, 1359 Constant *RHS, const DataLayout &DL, 1360 const Instruction *I) { 1361 if (Instruction::isBinaryOp(Opcode)) { 1362 // Flush denormal inputs if needed. 1363 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false); 1364 if (!Op0) 1365 return nullptr; 1366 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false); 1367 if (!Op1) 1368 return nullptr; 1369 1370 // Calculate constant result. 1371 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL); 1372 if (!C) 1373 return nullptr; 1374 1375 // Flush denormal output if needed. 1376 return FlushFPConstant(C, I, /* IsOutput */ true); 1377 } 1378 // If instruction lacks a parent/function and the denormal mode cannot be 1379 // determined, use the default (IEEE). 1380 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL); 1381 } 1382 1383 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1384 Type *DestTy, const DataLayout &DL) { 1385 assert(Instruction::isCast(Opcode)); 1386 switch (Opcode) { 1387 default: 1388 llvm_unreachable("Missing case"); 1389 case Instruction::PtrToInt: 1390 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1391 Constant *FoldedValue = nullptr; 1392 // If the input is a inttoptr, eliminate the pair. This requires knowing 1393 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1394 if (CE->getOpcode() == Instruction::IntToPtr) { 1395 // zext/trunc the inttoptr to pointer size. 1396 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), 1397 DL.getIntPtrType(CE->getType()), 1398 /*IsSigned=*/false, DL); 1399 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1400 // If we have GEP, we can perform the following folds: 1401 // (ptrtoint (gep null, x)) -> x 1402 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1403 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1404 APInt BaseOffset(BitWidth, 0); 1405 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1406 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1407 if (Base->isNullValue()) { 1408 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1409 } else { 1410 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V 1411 if (GEP->getNumIndices() == 1 && 1412 GEP->getSourceElementType()->isIntegerTy(8)) { 1413 auto *Ptr = cast<Constant>(GEP->getPointerOperand()); 1414 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1)); 1415 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 1416 if (Sub && Sub->getType() == IntIdxTy && 1417 Sub->getOpcode() == Instruction::Sub && 1418 Sub->getOperand(0)->isNullValue()) 1419 FoldedValue = ConstantExpr::getSub( 1420 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1)); 1421 } 1422 } 1423 } 1424 if (FoldedValue) { 1425 // Do a zext or trunc to get to the ptrtoint dest size. 1426 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false, 1427 DL); 1428 } 1429 } 1430 break; 1431 case Instruction::IntToPtr: 1432 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1433 // the int size is >= the ptr size and the address spaces are the same. 1434 // This requires knowing the width of a pointer, so it can't be done in 1435 // ConstantExpr::getCast. 1436 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1437 if (CE->getOpcode() == Instruction::PtrToInt) { 1438 Constant *SrcPtr = CE->getOperand(0); 1439 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1440 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1441 1442 if (MidIntSize >= SrcPtrSize) { 1443 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1444 if (SrcAS == DestTy->getPointerAddressSpace()) 1445 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1446 } 1447 } 1448 } 1449 break; 1450 case Instruction::Trunc: 1451 case Instruction::ZExt: 1452 case Instruction::SExt: 1453 case Instruction::FPTrunc: 1454 case Instruction::FPExt: 1455 case Instruction::UIToFP: 1456 case Instruction::SIToFP: 1457 case Instruction::FPToUI: 1458 case Instruction::FPToSI: 1459 case Instruction::AddrSpaceCast: 1460 break; 1461 case Instruction::BitCast: 1462 return FoldBitCast(C, DestTy, DL); 1463 } 1464 1465 if (ConstantExpr::isDesirableCastOp(Opcode)) 1466 return ConstantExpr::getCast(Opcode, C, DestTy); 1467 return ConstantFoldCastInstruction(Opcode, C, DestTy); 1468 } 1469 1470 Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy, 1471 bool IsSigned, const DataLayout &DL) { 1472 Type *SrcTy = C->getType(); 1473 if (SrcTy == DestTy) 1474 return C; 1475 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) 1476 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL); 1477 if (IsSigned) 1478 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL); 1479 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL); 1480 } 1481 1482 //===----------------------------------------------------------------------===// 1483 // Constant Folding for Calls 1484 // 1485 1486 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1487 if (Call->isNoBuiltin()) 1488 return false; 1489 if (Call->getFunctionType() != F->getFunctionType()) 1490 return false; 1491 switch (F->getIntrinsicID()) { 1492 // Operations that do not operate floating-point numbers and do not depend on 1493 // FP environment can be folded even in strictfp functions. 1494 case Intrinsic::bswap: 1495 case Intrinsic::ctpop: 1496 case Intrinsic::ctlz: 1497 case Intrinsic::cttz: 1498 case Intrinsic::fshl: 1499 case Intrinsic::fshr: 1500 case Intrinsic::launder_invariant_group: 1501 case Intrinsic::strip_invariant_group: 1502 case Intrinsic::masked_load: 1503 case Intrinsic::get_active_lane_mask: 1504 case Intrinsic::abs: 1505 case Intrinsic::smax: 1506 case Intrinsic::smin: 1507 case Intrinsic::umax: 1508 case Intrinsic::umin: 1509 case Intrinsic::sadd_with_overflow: 1510 case Intrinsic::uadd_with_overflow: 1511 case Intrinsic::ssub_with_overflow: 1512 case Intrinsic::usub_with_overflow: 1513 case Intrinsic::smul_with_overflow: 1514 case Intrinsic::umul_with_overflow: 1515 case Intrinsic::sadd_sat: 1516 case Intrinsic::uadd_sat: 1517 case Intrinsic::ssub_sat: 1518 case Intrinsic::usub_sat: 1519 case Intrinsic::smul_fix: 1520 case Intrinsic::smul_fix_sat: 1521 case Intrinsic::bitreverse: 1522 case Intrinsic::is_constant: 1523 case Intrinsic::vector_reduce_add: 1524 case Intrinsic::vector_reduce_mul: 1525 case Intrinsic::vector_reduce_and: 1526 case Intrinsic::vector_reduce_or: 1527 case Intrinsic::vector_reduce_xor: 1528 case Intrinsic::vector_reduce_smin: 1529 case Intrinsic::vector_reduce_smax: 1530 case Intrinsic::vector_reduce_umin: 1531 case Intrinsic::vector_reduce_umax: 1532 // Target intrinsics 1533 case Intrinsic::amdgcn_perm: 1534 case Intrinsic::amdgcn_wave_reduce_umin: 1535 case Intrinsic::amdgcn_wave_reduce_umax: 1536 case Intrinsic::amdgcn_s_wqm: 1537 case Intrinsic::amdgcn_s_quadmask: 1538 case Intrinsic::amdgcn_s_bitreplicate: 1539 case Intrinsic::arm_mve_vctp8: 1540 case Intrinsic::arm_mve_vctp16: 1541 case Intrinsic::arm_mve_vctp32: 1542 case Intrinsic::arm_mve_vctp64: 1543 case Intrinsic::aarch64_sve_convert_from_svbool: 1544 // WebAssembly float semantics are always known 1545 case Intrinsic::wasm_trunc_signed: 1546 case Intrinsic::wasm_trunc_unsigned: 1547 return true; 1548 1549 // Floating point operations cannot be folded in strictfp functions in 1550 // general case. They can be folded if FP environment is known to compiler. 1551 case Intrinsic::minnum: 1552 case Intrinsic::maxnum: 1553 case Intrinsic::minimum: 1554 case Intrinsic::maximum: 1555 case Intrinsic::log: 1556 case Intrinsic::log2: 1557 case Intrinsic::log10: 1558 case Intrinsic::exp: 1559 case Intrinsic::exp2: 1560 case Intrinsic::exp10: 1561 case Intrinsic::sqrt: 1562 case Intrinsic::sin: 1563 case Intrinsic::cos: 1564 case Intrinsic::pow: 1565 case Intrinsic::powi: 1566 case Intrinsic::ldexp: 1567 case Intrinsic::fma: 1568 case Intrinsic::fmuladd: 1569 case Intrinsic::frexp: 1570 case Intrinsic::fptoui_sat: 1571 case Intrinsic::fptosi_sat: 1572 case Intrinsic::convert_from_fp16: 1573 case Intrinsic::convert_to_fp16: 1574 case Intrinsic::amdgcn_cos: 1575 case Intrinsic::amdgcn_cubeid: 1576 case Intrinsic::amdgcn_cubema: 1577 case Intrinsic::amdgcn_cubesc: 1578 case Intrinsic::amdgcn_cubetc: 1579 case Intrinsic::amdgcn_fmul_legacy: 1580 case Intrinsic::amdgcn_fma_legacy: 1581 case Intrinsic::amdgcn_fract: 1582 case Intrinsic::amdgcn_sin: 1583 // The intrinsics below depend on rounding mode in MXCSR. 1584 case Intrinsic::x86_sse_cvtss2si: 1585 case Intrinsic::x86_sse_cvtss2si64: 1586 case Intrinsic::x86_sse_cvttss2si: 1587 case Intrinsic::x86_sse_cvttss2si64: 1588 case Intrinsic::x86_sse2_cvtsd2si: 1589 case Intrinsic::x86_sse2_cvtsd2si64: 1590 case Intrinsic::x86_sse2_cvttsd2si: 1591 case Intrinsic::x86_sse2_cvttsd2si64: 1592 case Intrinsic::x86_avx512_vcvtss2si32: 1593 case Intrinsic::x86_avx512_vcvtss2si64: 1594 case Intrinsic::x86_avx512_cvttss2si: 1595 case Intrinsic::x86_avx512_cvttss2si64: 1596 case Intrinsic::x86_avx512_vcvtsd2si32: 1597 case Intrinsic::x86_avx512_vcvtsd2si64: 1598 case Intrinsic::x86_avx512_cvttsd2si: 1599 case Intrinsic::x86_avx512_cvttsd2si64: 1600 case Intrinsic::x86_avx512_vcvtss2usi32: 1601 case Intrinsic::x86_avx512_vcvtss2usi64: 1602 case Intrinsic::x86_avx512_cvttss2usi: 1603 case Intrinsic::x86_avx512_cvttss2usi64: 1604 case Intrinsic::x86_avx512_vcvtsd2usi32: 1605 case Intrinsic::x86_avx512_vcvtsd2usi64: 1606 case Intrinsic::x86_avx512_cvttsd2usi: 1607 case Intrinsic::x86_avx512_cvttsd2usi64: 1608 return !Call->isStrictFP(); 1609 1610 // Sign operations are actually bitwise operations, they do not raise 1611 // exceptions even for SNANs. 1612 case Intrinsic::fabs: 1613 case Intrinsic::copysign: 1614 case Intrinsic::is_fpclass: 1615 // Non-constrained variants of rounding operations means default FP 1616 // environment, they can be folded in any case. 1617 case Intrinsic::ceil: 1618 case Intrinsic::floor: 1619 case Intrinsic::round: 1620 case Intrinsic::roundeven: 1621 case Intrinsic::trunc: 1622 case Intrinsic::nearbyint: 1623 case Intrinsic::rint: 1624 case Intrinsic::canonicalize: 1625 // Constrained intrinsics can be folded if FP environment is known 1626 // to compiler. 1627 case Intrinsic::experimental_constrained_fma: 1628 case Intrinsic::experimental_constrained_fmuladd: 1629 case Intrinsic::experimental_constrained_fadd: 1630 case Intrinsic::experimental_constrained_fsub: 1631 case Intrinsic::experimental_constrained_fmul: 1632 case Intrinsic::experimental_constrained_fdiv: 1633 case Intrinsic::experimental_constrained_frem: 1634 case Intrinsic::experimental_constrained_ceil: 1635 case Intrinsic::experimental_constrained_floor: 1636 case Intrinsic::experimental_constrained_round: 1637 case Intrinsic::experimental_constrained_roundeven: 1638 case Intrinsic::experimental_constrained_trunc: 1639 case Intrinsic::experimental_constrained_nearbyint: 1640 case Intrinsic::experimental_constrained_rint: 1641 case Intrinsic::experimental_constrained_fcmp: 1642 case Intrinsic::experimental_constrained_fcmps: 1643 return true; 1644 default: 1645 return false; 1646 case Intrinsic::not_intrinsic: break; 1647 } 1648 1649 if (!F->hasName() || Call->isStrictFP()) 1650 return false; 1651 1652 // In these cases, the check of the length is required. We don't want to 1653 // return true for a name like "cos\0blah" which strcmp would return equal to 1654 // "cos", but has length 8. 1655 StringRef Name = F->getName(); 1656 switch (Name[0]) { 1657 default: 1658 return false; 1659 case 'a': 1660 return Name == "acos" || Name == "acosf" || 1661 Name == "asin" || Name == "asinf" || 1662 Name == "atan" || Name == "atanf" || 1663 Name == "atan2" || Name == "atan2f"; 1664 case 'c': 1665 return Name == "ceil" || Name == "ceilf" || 1666 Name == "cos" || Name == "cosf" || 1667 Name == "cosh" || Name == "coshf"; 1668 case 'e': 1669 return Name == "exp" || Name == "expf" || 1670 Name == "exp2" || Name == "exp2f"; 1671 case 'f': 1672 return Name == "fabs" || Name == "fabsf" || 1673 Name == "floor" || Name == "floorf" || 1674 Name == "fmod" || Name == "fmodf"; 1675 case 'l': 1676 return Name == "log" || Name == "logf" || 1677 Name == "log2" || Name == "log2f" || 1678 Name == "log10" || Name == "log10f"; 1679 case 'n': 1680 return Name == "nearbyint" || Name == "nearbyintf"; 1681 case 'p': 1682 return Name == "pow" || Name == "powf"; 1683 case 'r': 1684 return Name == "remainder" || Name == "remainderf" || 1685 Name == "rint" || Name == "rintf" || 1686 Name == "round" || Name == "roundf"; 1687 case 's': 1688 return Name == "sin" || Name == "sinf" || 1689 Name == "sinh" || Name == "sinhf" || 1690 Name == "sqrt" || Name == "sqrtf"; 1691 case 't': 1692 return Name == "tan" || Name == "tanf" || 1693 Name == "tanh" || Name == "tanhf" || 1694 Name == "trunc" || Name == "truncf"; 1695 case '_': 1696 // Check for various function names that get used for the math functions 1697 // when the header files are preprocessed with the macro 1698 // __FINITE_MATH_ONLY__ enabled. 1699 // The '12' here is the length of the shortest name that can match. 1700 // We need to check the size before looking at Name[1] and Name[2] 1701 // so we may as well check a limit that will eliminate mismatches. 1702 if (Name.size() < 12 || Name[1] != '_') 1703 return false; 1704 switch (Name[2]) { 1705 default: 1706 return false; 1707 case 'a': 1708 return Name == "__acos_finite" || Name == "__acosf_finite" || 1709 Name == "__asin_finite" || Name == "__asinf_finite" || 1710 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1711 case 'c': 1712 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1713 case 'e': 1714 return Name == "__exp_finite" || Name == "__expf_finite" || 1715 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1716 case 'l': 1717 return Name == "__log_finite" || Name == "__logf_finite" || 1718 Name == "__log10_finite" || Name == "__log10f_finite"; 1719 case 'p': 1720 return Name == "__pow_finite" || Name == "__powf_finite"; 1721 case 's': 1722 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1723 } 1724 } 1725 } 1726 1727 namespace { 1728 1729 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1730 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1731 APFloat APF(V); 1732 bool unused; 1733 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1734 return ConstantFP::get(Ty->getContext(), APF); 1735 } 1736 if (Ty->isDoubleTy()) 1737 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1738 llvm_unreachable("Can only constant fold half/float/double"); 1739 } 1740 1741 /// Clear the floating-point exception state. 1742 inline void llvm_fenv_clearexcept() { 1743 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1744 feclearexcept(FE_ALL_EXCEPT); 1745 #endif 1746 errno = 0; 1747 } 1748 1749 /// Test if a floating-point exception was raised. 1750 inline bool llvm_fenv_testexcept() { 1751 int errno_val = errno; 1752 if (errno_val == ERANGE || errno_val == EDOM) 1753 return true; 1754 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1755 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1756 return true; 1757 #endif 1758 return false; 1759 } 1760 1761 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1762 Type *Ty) { 1763 llvm_fenv_clearexcept(); 1764 double Result = NativeFP(V.convertToDouble()); 1765 if (llvm_fenv_testexcept()) { 1766 llvm_fenv_clearexcept(); 1767 return nullptr; 1768 } 1769 1770 return GetConstantFoldFPValue(Result, Ty); 1771 } 1772 1773 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1774 const APFloat &V, const APFloat &W, Type *Ty) { 1775 llvm_fenv_clearexcept(); 1776 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1777 if (llvm_fenv_testexcept()) { 1778 llvm_fenv_clearexcept(); 1779 return nullptr; 1780 } 1781 1782 return GetConstantFoldFPValue(Result, Ty); 1783 } 1784 1785 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1786 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1787 if (!VT) 1788 return nullptr; 1789 1790 // This isn't strictly necessary, but handle the special/common case of zero: 1791 // all integer reductions of a zero input produce zero. 1792 if (isa<ConstantAggregateZero>(Op)) 1793 return ConstantInt::get(VT->getElementType(), 0); 1794 1795 // This is the same as the underlying binops - poison propagates. 1796 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1797 return PoisonValue::get(VT->getElementType()); 1798 1799 // TODO: Handle undef. 1800 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1801 return nullptr; 1802 1803 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1804 if (!EltC) 1805 return nullptr; 1806 1807 APInt Acc = EltC->getValue(); 1808 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1809 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1810 return nullptr; 1811 const APInt &X = EltC->getValue(); 1812 switch (IID) { 1813 case Intrinsic::vector_reduce_add: 1814 Acc = Acc + X; 1815 break; 1816 case Intrinsic::vector_reduce_mul: 1817 Acc = Acc * X; 1818 break; 1819 case Intrinsic::vector_reduce_and: 1820 Acc = Acc & X; 1821 break; 1822 case Intrinsic::vector_reduce_or: 1823 Acc = Acc | X; 1824 break; 1825 case Intrinsic::vector_reduce_xor: 1826 Acc = Acc ^ X; 1827 break; 1828 case Intrinsic::vector_reduce_smin: 1829 Acc = APIntOps::smin(Acc, X); 1830 break; 1831 case Intrinsic::vector_reduce_smax: 1832 Acc = APIntOps::smax(Acc, X); 1833 break; 1834 case Intrinsic::vector_reduce_umin: 1835 Acc = APIntOps::umin(Acc, X); 1836 break; 1837 case Intrinsic::vector_reduce_umax: 1838 Acc = APIntOps::umax(Acc, X); 1839 break; 1840 } 1841 } 1842 1843 return ConstantInt::get(Op->getContext(), Acc); 1844 } 1845 1846 /// Attempt to fold an SSE floating point to integer conversion of a constant 1847 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1848 /// used (toward nearest, ties to even). This matches the behavior of the 1849 /// non-truncating SSE instructions in the default rounding mode. The desired 1850 /// integer type Ty is used to select how many bits are available for the 1851 /// result. Returns null if the conversion cannot be performed, otherwise 1852 /// returns the Constant value resulting from the conversion. 1853 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1854 Type *Ty, bool IsSigned) { 1855 // All of these conversion intrinsics form an integer of at most 64bits. 1856 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1857 assert(ResultWidth <= 64 && 1858 "Can only constant fold conversions to 64 and 32 bit ints"); 1859 1860 uint64_t UIntVal; 1861 bool isExact = false; 1862 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1863 : APFloat::rmNearestTiesToEven; 1864 APFloat::opStatus status = 1865 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth, 1866 IsSigned, mode, &isExact); 1867 if (status != APFloat::opOK && 1868 (!roundTowardZero || status != APFloat::opInexact)) 1869 return nullptr; 1870 return ConstantInt::get(Ty, UIntVal, IsSigned); 1871 } 1872 1873 double getValueAsDouble(ConstantFP *Op) { 1874 Type *Ty = Op->getType(); 1875 1876 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1877 return Op->getValueAPF().convertToDouble(); 1878 1879 bool unused; 1880 APFloat APF = Op->getValueAPF(); 1881 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1882 return APF.convertToDouble(); 1883 } 1884 1885 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1886 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1887 C = &CI->getValue(); 1888 return true; 1889 } 1890 if (isa<UndefValue>(Op)) { 1891 C = nullptr; 1892 return true; 1893 } 1894 return false; 1895 } 1896 1897 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1898 /// to be folded. 1899 /// 1900 /// \param CI Constrained intrinsic call. 1901 /// \param St Exception flags raised during constant evaluation. 1902 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1903 APFloat::opStatus St) { 1904 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 1905 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1906 1907 // If the operation does not change exception status flags, it is safe 1908 // to fold. 1909 if (St == APFloat::opStatus::opOK) 1910 return true; 1911 1912 // If evaluation raised FP exception, the result can depend on rounding 1913 // mode. If the latter is unknown, folding is not possible. 1914 if (ORM && *ORM == RoundingMode::Dynamic) 1915 return false; 1916 1917 // If FP exceptions are ignored, fold the call, even if such exception is 1918 // raised. 1919 if (EB && *EB != fp::ExceptionBehavior::ebStrict) 1920 return true; 1921 1922 // Leave the calculation for runtime so that exception flags be correctly set 1923 // in hardware. 1924 return false; 1925 } 1926 1927 /// Returns the rounding mode that should be used for constant evaluation. 1928 static RoundingMode 1929 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1930 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 1931 if (!ORM || *ORM == RoundingMode::Dynamic) 1932 // Even if the rounding mode is unknown, try evaluating the operation. 1933 // If it does not raise inexact exception, rounding was not applied, 1934 // so the result is exact and does not depend on rounding mode. Whether 1935 // other FP exceptions are raised, it does not depend on rounding mode. 1936 return RoundingMode::NearestTiesToEven; 1937 return *ORM; 1938 } 1939 1940 /// Try to constant fold llvm.canonicalize for the given caller and value. 1941 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI, 1942 const APFloat &Src) { 1943 // Zero, positive and negative, is always OK to fold. 1944 if (Src.isZero()) { 1945 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros. 1946 return ConstantFP::get( 1947 CI->getContext(), 1948 APFloat::getZero(Src.getSemantics(), Src.isNegative())); 1949 } 1950 1951 if (!Ty->isIEEELikeFPTy()) 1952 return nullptr; 1953 1954 // Zero is always canonical and the sign must be preserved. 1955 // 1956 // Denorms and nans may have special encodings, but it should be OK to fold a 1957 // totally average number. 1958 if (Src.isNormal() || Src.isInfinity()) 1959 return ConstantFP::get(CI->getContext(), Src); 1960 1961 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) { 1962 DenormalMode DenormMode = 1963 CI->getFunction()->getDenormalMode(Src.getSemantics()); 1964 1965 if (DenormMode == DenormalMode::getIEEE()) 1966 return ConstantFP::get(CI->getContext(), Src); 1967 1968 if (DenormMode.Input == DenormalMode::Dynamic) 1969 return nullptr; 1970 1971 // If we know if either input or output is flushed, we can fold. 1972 if ((DenormMode.Input == DenormalMode::Dynamic && 1973 DenormMode.Output == DenormalMode::IEEE) || 1974 (DenormMode.Input == DenormalMode::IEEE && 1975 DenormMode.Output == DenormalMode::Dynamic)) 1976 return nullptr; 1977 1978 bool IsPositive = 1979 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero || 1980 (DenormMode.Output == DenormalMode::PositiveZero && 1981 DenormMode.Input == DenormalMode::IEEE)); 1982 1983 return ConstantFP::get(CI->getContext(), 1984 APFloat::getZero(Src.getSemantics(), !IsPositive)); 1985 } 1986 1987 return nullptr; 1988 } 1989 1990 static Constant *ConstantFoldScalarCall1(StringRef Name, 1991 Intrinsic::ID IntrinsicID, 1992 Type *Ty, 1993 ArrayRef<Constant *> Operands, 1994 const TargetLibraryInfo *TLI, 1995 const CallBase *Call) { 1996 assert(Operands.size() == 1 && "Wrong number of operands."); 1997 1998 if (IntrinsicID == Intrinsic::is_constant) { 1999 // We know we have a "Constant" argument. But we want to only 2000 // return true for manifest constants, not those that depend on 2001 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 2002 if (Operands[0]->isManifestConstant()) 2003 return ConstantInt::getTrue(Ty->getContext()); 2004 return nullptr; 2005 } 2006 2007 if (isa<PoisonValue>(Operands[0])) { 2008 // TODO: All of these operations should probably propagate poison. 2009 if (IntrinsicID == Intrinsic::canonicalize) 2010 return PoisonValue::get(Ty); 2011 } 2012 2013 if (isa<UndefValue>(Operands[0])) { 2014 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 2015 // ctpop() is between 0 and bitwidth, pick 0 for undef. 2016 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 2017 if (IntrinsicID == Intrinsic::cos || 2018 IntrinsicID == Intrinsic::ctpop || 2019 IntrinsicID == Intrinsic::fptoui_sat || 2020 IntrinsicID == Intrinsic::fptosi_sat || 2021 IntrinsicID == Intrinsic::canonicalize) 2022 return Constant::getNullValue(Ty); 2023 if (IntrinsicID == Intrinsic::bswap || 2024 IntrinsicID == Intrinsic::bitreverse || 2025 IntrinsicID == Intrinsic::launder_invariant_group || 2026 IntrinsicID == Intrinsic::strip_invariant_group) 2027 return Operands[0]; 2028 } 2029 2030 if (isa<ConstantPointerNull>(Operands[0])) { 2031 // launder(null) == null == strip(null) iff in addrspace 0 2032 if (IntrinsicID == Intrinsic::launder_invariant_group || 2033 IntrinsicID == Intrinsic::strip_invariant_group) { 2034 // If instruction is not yet put in a basic block (e.g. when cloning 2035 // a function during inlining), Call's caller may not be available. 2036 // So check Call's BB first before querying Call->getCaller. 2037 const Function *Caller = 2038 Call->getParent() ? Call->getCaller() : nullptr; 2039 if (Caller && 2040 !NullPointerIsDefined( 2041 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 2042 return Operands[0]; 2043 } 2044 return nullptr; 2045 } 2046 } 2047 2048 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 2049 if (IntrinsicID == Intrinsic::convert_to_fp16) { 2050 APFloat Val(Op->getValueAPF()); 2051 2052 bool lost = false; 2053 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 2054 2055 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 2056 } 2057 2058 APFloat U = Op->getValueAPF(); 2059 2060 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 2061 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 2062 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 2063 2064 if (U.isNaN()) 2065 return nullptr; 2066 2067 unsigned Width = Ty->getIntegerBitWidth(); 2068 APSInt Int(Width, !Signed); 2069 bool IsExact = false; 2070 APFloat::opStatus Status = 2071 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2072 2073 if (Status == APFloat::opOK || Status == APFloat::opInexact) 2074 return ConstantInt::get(Ty, Int); 2075 2076 return nullptr; 2077 } 2078 2079 if (IntrinsicID == Intrinsic::fptoui_sat || 2080 IntrinsicID == Intrinsic::fptosi_sat) { 2081 // convertToInteger() already has the desired saturation semantics. 2082 APSInt Int(Ty->getIntegerBitWidth(), 2083 IntrinsicID == Intrinsic::fptoui_sat); 2084 bool IsExact; 2085 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2086 return ConstantInt::get(Ty, Int); 2087 } 2088 2089 if (IntrinsicID == Intrinsic::canonicalize) 2090 return constantFoldCanonicalize(Ty, Call, U); 2091 2092 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2093 return nullptr; 2094 2095 // Use internal versions of these intrinsics. 2096 2097 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 2098 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2099 return ConstantFP::get(Ty->getContext(), U); 2100 } 2101 2102 if (IntrinsicID == Intrinsic::round) { 2103 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2104 return ConstantFP::get(Ty->getContext(), U); 2105 } 2106 2107 if (IntrinsicID == Intrinsic::roundeven) { 2108 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2109 return ConstantFP::get(Ty->getContext(), U); 2110 } 2111 2112 if (IntrinsicID == Intrinsic::ceil) { 2113 U.roundToIntegral(APFloat::rmTowardPositive); 2114 return ConstantFP::get(Ty->getContext(), U); 2115 } 2116 2117 if (IntrinsicID == Intrinsic::floor) { 2118 U.roundToIntegral(APFloat::rmTowardNegative); 2119 return ConstantFP::get(Ty->getContext(), U); 2120 } 2121 2122 if (IntrinsicID == Intrinsic::trunc) { 2123 U.roundToIntegral(APFloat::rmTowardZero); 2124 return ConstantFP::get(Ty->getContext(), U); 2125 } 2126 2127 if (IntrinsicID == Intrinsic::fabs) { 2128 U.clearSign(); 2129 return ConstantFP::get(Ty->getContext(), U); 2130 } 2131 2132 if (IntrinsicID == Intrinsic::amdgcn_fract) { 2133 // The v_fract instruction behaves like the OpenCL spec, which defines 2134 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 2135 // there to prevent fract(-small) from returning 1.0. It returns the 2136 // largest positive floating-point number less than 1.0." 2137 APFloat FloorU(U); 2138 FloorU.roundToIntegral(APFloat::rmTowardNegative); 2139 APFloat FractU(U - FloorU); 2140 APFloat AlmostOne(U.getSemantics(), 1); 2141 AlmostOne.next(/*nextDown*/ true); 2142 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 2143 } 2144 2145 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 2146 // raise FP exceptions, unless the argument is signaling NaN. 2147 2148 std::optional<APFloat::roundingMode> RM; 2149 switch (IntrinsicID) { 2150 default: 2151 break; 2152 case Intrinsic::experimental_constrained_nearbyint: 2153 case Intrinsic::experimental_constrained_rint: { 2154 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2155 RM = CI->getRoundingMode(); 2156 if (!RM || *RM == RoundingMode::Dynamic) 2157 return nullptr; 2158 break; 2159 } 2160 case Intrinsic::experimental_constrained_round: 2161 RM = APFloat::rmNearestTiesToAway; 2162 break; 2163 case Intrinsic::experimental_constrained_ceil: 2164 RM = APFloat::rmTowardPositive; 2165 break; 2166 case Intrinsic::experimental_constrained_floor: 2167 RM = APFloat::rmTowardNegative; 2168 break; 2169 case Intrinsic::experimental_constrained_trunc: 2170 RM = APFloat::rmTowardZero; 2171 break; 2172 } 2173 if (RM) { 2174 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2175 if (U.isFinite()) { 2176 APFloat::opStatus St = U.roundToIntegral(*RM); 2177 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2178 St == APFloat::opInexact) { 2179 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2180 if (EB && *EB == fp::ebStrict) 2181 return nullptr; 2182 } 2183 } else if (U.isSignaling()) { 2184 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2185 if (EB && *EB != fp::ebIgnore) 2186 return nullptr; 2187 U = APFloat::getQNaN(U.getSemantics()); 2188 } 2189 return ConstantFP::get(Ty->getContext(), U); 2190 } 2191 2192 /// We only fold functions with finite arguments. Folding NaN and inf is 2193 /// likely to be aborted with an exception anyway, and some host libms 2194 /// have known errors raising exceptions. 2195 if (!U.isFinite()) 2196 return nullptr; 2197 2198 /// Currently APFloat versions of these functions do not exist, so we use 2199 /// the host native double versions. Float versions are not called 2200 /// directly but for all these it is true (float)(f((double)arg)) == 2201 /// f(arg). Long double not supported yet. 2202 const APFloat &APF = Op->getValueAPF(); 2203 2204 switch (IntrinsicID) { 2205 default: break; 2206 case Intrinsic::log: 2207 return ConstantFoldFP(log, APF, Ty); 2208 case Intrinsic::log2: 2209 // TODO: What about hosts that lack a C99 library? 2210 return ConstantFoldFP(log2, APF, Ty); 2211 case Intrinsic::log10: 2212 // TODO: What about hosts that lack a C99 library? 2213 return ConstantFoldFP(log10, APF, Ty); 2214 case Intrinsic::exp: 2215 return ConstantFoldFP(exp, APF, Ty); 2216 case Intrinsic::exp2: 2217 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2218 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2219 case Intrinsic::exp10: 2220 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library. 2221 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty); 2222 case Intrinsic::sin: 2223 return ConstantFoldFP(sin, APF, Ty); 2224 case Intrinsic::cos: 2225 return ConstantFoldFP(cos, APF, Ty); 2226 case Intrinsic::sqrt: 2227 return ConstantFoldFP(sqrt, APF, Ty); 2228 case Intrinsic::amdgcn_cos: 2229 case Intrinsic::amdgcn_sin: { 2230 double V = getValueAsDouble(Op); 2231 if (V < -256.0 || V > 256.0) 2232 // The gfx8 and gfx9 architectures handle arguments outside the range 2233 // [-256, 256] differently. This should be a rare case so bail out 2234 // rather than trying to handle the difference. 2235 return nullptr; 2236 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2237 double V4 = V * 4.0; 2238 if (V4 == floor(V4)) { 2239 // Force exact results for quarter-integer inputs. 2240 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2241 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2242 } else { 2243 if (IsCos) 2244 V = cos(V * 2.0 * numbers::pi); 2245 else 2246 V = sin(V * 2.0 * numbers::pi); 2247 } 2248 return GetConstantFoldFPValue(V, Ty); 2249 } 2250 } 2251 2252 if (!TLI) 2253 return nullptr; 2254 2255 LibFunc Func = NotLibFunc; 2256 if (!TLI->getLibFunc(Name, Func)) 2257 return nullptr; 2258 2259 switch (Func) { 2260 default: 2261 break; 2262 case LibFunc_acos: 2263 case LibFunc_acosf: 2264 case LibFunc_acos_finite: 2265 case LibFunc_acosf_finite: 2266 if (TLI->has(Func)) 2267 return ConstantFoldFP(acos, APF, Ty); 2268 break; 2269 case LibFunc_asin: 2270 case LibFunc_asinf: 2271 case LibFunc_asin_finite: 2272 case LibFunc_asinf_finite: 2273 if (TLI->has(Func)) 2274 return ConstantFoldFP(asin, APF, Ty); 2275 break; 2276 case LibFunc_atan: 2277 case LibFunc_atanf: 2278 if (TLI->has(Func)) 2279 return ConstantFoldFP(atan, APF, Ty); 2280 break; 2281 case LibFunc_ceil: 2282 case LibFunc_ceilf: 2283 if (TLI->has(Func)) { 2284 U.roundToIntegral(APFloat::rmTowardPositive); 2285 return ConstantFP::get(Ty->getContext(), U); 2286 } 2287 break; 2288 case LibFunc_cos: 2289 case LibFunc_cosf: 2290 if (TLI->has(Func)) 2291 return ConstantFoldFP(cos, APF, Ty); 2292 break; 2293 case LibFunc_cosh: 2294 case LibFunc_coshf: 2295 case LibFunc_cosh_finite: 2296 case LibFunc_coshf_finite: 2297 if (TLI->has(Func)) 2298 return ConstantFoldFP(cosh, APF, Ty); 2299 break; 2300 case LibFunc_exp: 2301 case LibFunc_expf: 2302 case LibFunc_exp_finite: 2303 case LibFunc_expf_finite: 2304 if (TLI->has(Func)) 2305 return ConstantFoldFP(exp, APF, Ty); 2306 break; 2307 case LibFunc_exp2: 2308 case LibFunc_exp2f: 2309 case LibFunc_exp2_finite: 2310 case LibFunc_exp2f_finite: 2311 if (TLI->has(Func)) 2312 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2313 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2314 break; 2315 case LibFunc_fabs: 2316 case LibFunc_fabsf: 2317 if (TLI->has(Func)) { 2318 U.clearSign(); 2319 return ConstantFP::get(Ty->getContext(), U); 2320 } 2321 break; 2322 case LibFunc_floor: 2323 case LibFunc_floorf: 2324 if (TLI->has(Func)) { 2325 U.roundToIntegral(APFloat::rmTowardNegative); 2326 return ConstantFP::get(Ty->getContext(), U); 2327 } 2328 break; 2329 case LibFunc_log: 2330 case LibFunc_logf: 2331 case LibFunc_log_finite: 2332 case LibFunc_logf_finite: 2333 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2334 return ConstantFoldFP(log, APF, Ty); 2335 break; 2336 case LibFunc_log2: 2337 case LibFunc_log2f: 2338 case LibFunc_log2_finite: 2339 case LibFunc_log2f_finite: 2340 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2341 // TODO: What about hosts that lack a C99 library? 2342 return ConstantFoldFP(log2, APF, Ty); 2343 break; 2344 case LibFunc_log10: 2345 case LibFunc_log10f: 2346 case LibFunc_log10_finite: 2347 case LibFunc_log10f_finite: 2348 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2349 // TODO: What about hosts that lack a C99 library? 2350 return ConstantFoldFP(log10, APF, Ty); 2351 break; 2352 case LibFunc_nearbyint: 2353 case LibFunc_nearbyintf: 2354 case LibFunc_rint: 2355 case LibFunc_rintf: 2356 if (TLI->has(Func)) { 2357 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2358 return ConstantFP::get(Ty->getContext(), U); 2359 } 2360 break; 2361 case LibFunc_round: 2362 case LibFunc_roundf: 2363 if (TLI->has(Func)) { 2364 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2365 return ConstantFP::get(Ty->getContext(), U); 2366 } 2367 break; 2368 case LibFunc_sin: 2369 case LibFunc_sinf: 2370 if (TLI->has(Func)) 2371 return ConstantFoldFP(sin, APF, Ty); 2372 break; 2373 case LibFunc_sinh: 2374 case LibFunc_sinhf: 2375 case LibFunc_sinh_finite: 2376 case LibFunc_sinhf_finite: 2377 if (TLI->has(Func)) 2378 return ConstantFoldFP(sinh, APF, Ty); 2379 break; 2380 case LibFunc_sqrt: 2381 case LibFunc_sqrtf: 2382 if (!APF.isNegative() && TLI->has(Func)) 2383 return ConstantFoldFP(sqrt, APF, Ty); 2384 break; 2385 case LibFunc_tan: 2386 case LibFunc_tanf: 2387 if (TLI->has(Func)) 2388 return ConstantFoldFP(tan, APF, Ty); 2389 break; 2390 case LibFunc_tanh: 2391 case LibFunc_tanhf: 2392 if (TLI->has(Func)) 2393 return ConstantFoldFP(tanh, APF, Ty); 2394 break; 2395 case LibFunc_trunc: 2396 case LibFunc_truncf: 2397 if (TLI->has(Func)) { 2398 U.roundToIntegral(APFloat::rmTowardZero); 2399 return ConstantFP::get(Ty->getContext(), U); 2400 } 2401 break; 2402 } 2403 return nullptr; 2404 } 2405 2406 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2407 switch (IntrinsicID) { 2408 case Intrinsic::bswap: 2409 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2410 case Intrinsic::ctpop: 2411 return ConstantInt::get(Ty, Op->getValue().popcount()); 2412 case Intrinsic::bitreverse: 2413 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2414 case Intrinsic::convert_from_fp16: { 2415 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2416 2417 bool lost = false; 2418 APFloat::opStatus status = Val.convert( 2419 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2420 2421 // Conversion is always precise. 2422 (void)status; 2423 assert(status != APFloat::opInexact && !lost && 2424 "Precision lost during fp16 constfolding"); 2425 2426 return ConstantFP::get(Ty->getContext(), Val); 2427 } 2428 2429 case Intrinsic::amdgcn_s_wqm: { 2430 uint64_t Val = Op->getZExtValue(); 2431 Val |= (Val & 0x5555555555555555ULL) << 1 | 2432 ((Val >> 1) & 0x5555555555555555ULL); 2433 Val |= (Val & 0x3333333333333333ULL) << 2 | 2434 ((Val >> 2) & 0x3333333333333333ULL); 2435 return ConstantInt::get(Ty, Val); 2436 } 2437 2438 case Intrinsic::amdgcn_s_quadmask: { 2439 uint64_t Val = Op->getZExtValue(); 2440 uint64_t QuadMask = 0; 2441 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) { 2442 if (!(Val & 0xF)) 2443 continue; 2444 2445 QuadMask |= (1ULL << I); 2446 } 2447 return ConstantInt::get(Ty, QuadMask); 2448 } 2449 2450 case Intrinsic::amdgcn_s_bitreplicate: { 2451 uint64_t Val = Op->getZExtValue(); 2452 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16; 2453 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8; 2454 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4; 2455 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2; 2456 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1; 2457 Val = Val | Val << 1; 2458 return ConstantInt::get(Ty, Val); 2459 } 2460 2461 default: 2462 return nullptr; 2463 } 2464 } 2465 2466 switch (IntrinsicID) { 2467 default: break; 2468 case Intrinsic::vector_reduce_add: 2469 case Intrinsic::vector_reduce_mul: 2470 case Intrinsic::vector_reduce_and: 2471 case Intrinsic::vector_reduce_or: 2472 case Intrinsic::vector_reduce_xor: 2473 case Intrinsic::vector_reduce_smin: 2474 case Intrinsic::vector_reduce_smax: 2475 case Intrinsic::vector_reduce_umin: 2476 case Intrinsic::vector_reduce_umax: 2477 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2478 return C; 2479 break; 2480 } 2481 2482 // Support ConstantVector in case we have an Undef in the top. 2483 if (isa<ConstantVector>(Operands[0]) || 2484 isa<ConstantDataVector>(Operands[0])) { 2485 auto *Op = cast<Constant>(Operands[0]); 2486 switch (IntrinsicID) { 2487 default: break; 2488 case Intrinsic::x86_sse_cvtss2si: 2489 case Intrinsic::x86_sse_cvtss2si64: 2490 case Intrinsic::x86_sse2_cvtsd2si: 2491 case Intrinsic::x86_sse2_cvtsd2si64: 2492 if (ConstantFP *FPOp = 2493 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2494 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2495 /*roundTowardZero=*/false, Ty, 2496 /*IsSigned*/true); 2497 break; 2498 case Intrinsic::x86_sse_cvttss2si: 2499 case Intrinsic::x86_sse_cvttss2si64: 2500 case Intrinsic::x86_sse2_cvttsd2si: 2501 case Intrinsic::x86_sse2_cvttsd2si64: 2502 if (ConstantFP *FPOp = 2503 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2504 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2505 /*roundTowardZero=*/true, Ty, 2506 /*IsSigned*/true); 2507 break; 2508 } 2509 } 2510 2511 return nullptr; 2512 } 2513 2514 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2, 2515 const ConstrainedFPIntrinsic *Call) { 2516 APFloat::opStatus St = APFloat::opOK; 2517 auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call); 2518 FCmpInst::Predicate Cond = FCmp->getPredicate(); 2519 if (FCmp->isSignaling()) { 2520 if (Op1.isNaN() || Op2.isNaN()) 2521 St = APFloat::opInvalidOp; 2522 } else { 2523 if (Op1.isSignaling() || Op2.isSignaling()) 2524 St = APFloat::opInvalidOp; 2525 } 2526 bool Result = FCmpInst::compare(Op1, Op2, Cond); 2527 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St)) 2528 return ConstantInt::get(Call->getType()->getScalarType(), Result); 2529 return nullptr; 2530 } 2531 2532 static Constant *ConstantFoldScalarCall2(StringRef Name, 2533 Intrinsic::ID IntrinsicID, 2534 Type *Ty, 2535 ArrayRef<Constant *> Operands, 2536 const TargetLibraryInfo *TLI, 2537 const CallBase *Call) { 2538 assert(Operands.size() == 2 && "Wrong number of operands."); 2539 2540 if (Ty->isFloatingPointTy()) { 2541 // TODO: We should have undef handling for all of the FP intrinsics that 2542 // are attempted to be folded in this function. 2543 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2544 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2545 switch (IntrinsicID) { 2546 case Intrinsic::maxnum: 2547 case Intrinsic::minnum: 2548 case Intrinsic::maximum: 2549 case Intrinsic::minimum: 2550 // If one argument is undef, return the other argument. 2551 if (IsOp0Undef) 2552 return Operands[1]; 2553 if (IsOp1Undef) 2554 return Operands[0]; 2555 break; 2556 } 2557 } 2558 2559 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2560 const APFloat &Op1V = Op1->getValueAPF(); 2561 2562 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2563 if (Op2->getType() != Op1->getType()) 2564 return nullptr; 2565 const APFloat &Op2V = Op2->getValueAPF(); 2566 2567 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2568 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2569 APFloat Res = Op1V; 2570 APFloat::opStatus St; 2571 switch (IntrinsicID) { 2572 default: 2573 return nullptr; 2574 case Intrinsic::experimental_constrained_fadd: 2575 St = Res.add(Op2V, RM); 2576 break; 2577 case Intrinsic::experimental_constrained_fsub: 2578 St = Res.subtract(Op2V, RM); 2579 break; 2580 case Intrinsic::experimental_constrained_fmul: 2581 St = Res.multiply(Op2V, RM); 2582 break; 2583 case Intrinsic::experimental_constrained_fdiv: 2584 St = Res.divide(Op2V, RM); 2585 break; 2586 case Intrinsic::experimental_constrained_frem: 2587 St = Res.mod(Op2V); 2588 break; 2589 case Intrinsic::experimental_constrained_fcmp: 2590 case Intrinsic::experimental_constrained_fcmps: 2591 return evaluateCompare(Op1V, Op2V, ConstrIntr); 2592 } 2593 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2594 St)) 2595 return ConstantFP::get(Ty->getContext(), Res); 2596 return nullptr; 2597 } 2598 2599 switch (IntrinsicID) { 2600 default: 2601 break; 2602 case Intrinsic::copysign: 2603 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2604 case Intrinsic::minnum: 2605 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2606 case Intrinsic::maxnum: 2607 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2608 case Intrinsic::minimum: 2609 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2610 case Intrinsic::maximum: 2611 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2612 } 2613 2614 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2615 return nullptr; 2616 2617 switch (IntrinsicID) { 2618 default: 2619 break; 2620 case Intrinsic::pow: 2621 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2622 case Intrinsic::amdgcn_fmul_legacy: 2623 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2624 // NaN or infinity, gives +0.0. 2625 if (Op1V.isZero() || Op2V.isZero()) 2626 return ConstantFP::getZero(Ty); 2627 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2628 } 2629 2630 if (!TLI) 2631 return nullptr; 2632 2633 LibFunc Func = NotLibFunc; 2634 if (!TLI->getLibFunc(Name, Func)) 2635 return nullptr; 2636 2637 switch (Func) { 2638 default: 2639 break; 2640 case LibFunc_pow: 2641 case LibFunc_powf: 2642 case LibFunc_pow_finite: 2643 case LibFunc_powf_finite: 2644 if (TLI->has(Func)) 2645 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2646 break; 2647 case LibFunc_fmod: 2648 case LibFunc_fmodf: 2649 if (TLI->has(Func)) { 2650 APFloat V = Op1->getValueAPF(); 2651 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2652 return ConstantFP::get(Ty->getContext(), V); 2653 } 2654 break; 2655 case LibFunc_remainder: 2656 case LibFunc_remainderf: 2657 if (TLI->has(Func)) { 2658 APFloat V = Op1->getValueAPF(); 2659 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2660 return ConstantFP::get(Ty->getContext(), V); 2661 } 2662 break; 2663 case LibFunc_atan2: 2664 case LibFunc_atan2f: 2665 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm 2666 // (Solaris), so we do not assume a known result for that. 2667 if (Op1V.isZero() && Op2V.isZero()) 2668 return nullptr; 2669 [[fallthrough]]; 2670 case LibFunc_atan2_finite: 2671 case LibFunc_atan2f_finite: 2672 if (TLI->has(Func)) 2673 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2674 break; 2675 } 2676 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2677 switch (IntrinsicID) { 2678 case Intrinsic::ldexp: { 2679 return ConstantFP::get( 2680 Ty->getContext(), 2681 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven)); 2682 } 2683 case Intrinsic::is_fpclass: { 2684 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue()); 2685 bool Result = 2686 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) || 2687 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) || 2688 ((Mask & fcNegInf) && Op1V.isNegInfinity()) || 2689 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) || 2690 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) || 2691 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) || 2692 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) || 2693 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) || 2694 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) || 2695 ((Mask & fcPosInf) && Op1V.isPosInfinity()); 2696 return ConstantInt::get(Ty, Result); 2697 } 2698 default: 2699 break; 2700 } 2701 2702 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2703 return nullptr; 2704 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2705 return ConstantFP::get( 2706 Ty->getContext(), 2707 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2708 (int)Op2C->getZExtValue()))); 2709 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2710 return ConstantFP::get( 2711 Ty->getContext(), 2712 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2713 (int)Op2C->getZExtValue()))); 2714 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2715 return ConstantFP::get( 2716 Ty->getContext(), 2717 APFloat((double)std::pow(Op1V.convertToDouble(), 2718 (int)Op2C->getZExtValue()))); 2719 } 2720 return nullptr; 2721 } 2722 2723 if (Operands[0]->getType()->isIntegerTy() && 2724 Operands[1]->getType()->isIntegerTy()) { 2725 const APInt *C0, *C1; 2726 if (!getConstIntOrUndef(Operands[0], C0) || 2727 !getConstIntOrUndef(Operands[1], C1)) 2728 return nullptr; 2729 2730 switch (IntrinsicID) { 2731 default: break; 2732 case Intrinsic::smax: 2733 case Intrinsic::smin: 2734 case Intrinsic::umax: 2735 case Intrinsic::umin: 2736 // This is the same as for binary ops - poison propagates. 2737 // TODO: Poison handling should be consolidated. 2738 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2739 return PoisonValue::get(Ty); 2740 2741 if (!C0 && !C1) 2742 return UndefValue::get(Ty); 2743 if (!C0 || !C1) 2744 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); 2745 return ConstantInt::get( 2746 Ty, ICmpInst::compare(*C0, *C1, 2747 MinMaxIntrinsic::getPredicate(IntrinsicID)) 2748 ? *C0 2749 : *C1); 2750 2751 case Intrinsic::usub_with_overflow: 2752 case Intrinsic::ssub_with_overflow: 2753 // X - undef -> { 0, false } 2754 // undef - X -> { 0, false } 2755 if (!C0 || !C1) 2756 return Constant::getNullValue(Ty); 2757 [[fallthrough]]; 2758 case Intrinsic::uadd_with_overflow: 2759 case Intrinsic::sadd_with_overflow: 2760 // X + undef -> { -1, false } 2761 // undef + x -> { -1, false } 2762 if (!C0 || !C1) { 2763 return ConstantStruct::get( 2764 cast<StructType>(Ty), 2765 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2766 Constant::getNullValue(Ty->getStructElementType(1))}); 2767 } 2768 [[fallthrough]]; 2769 case Intrinsic::smul_with_overflow: 2770 case Intrinsic::umul_with_overflow: { 2771 // undef * X -> { 0, false } 2772 // X * undef -> { 0, false } 2773 if (!C0 || !C1) 2774 return Constant::getNullValue(Ty); 2775 2776 APInt Res; 2777 bool Overflow; 2778 switch (IntrinsicID) { 2779 default: llvm_unreachable("Invalid case"); 2780 case Intrinsic::sadd_with_overflow: 2781 Res = C0->sadd_ov(*C1, Overflow); 2782 break; 2783 case Intrinsic::uadd_with_overflow: 2784 Res = C0->uadd_ov(*C1, Overflow); 2785 break; 2786 case Intrinsic::ssub_with_overflow: 2787 Res = C0->ssub_ov(*C1, Overflow); 2788 break; 2789 case Intrinsic::usub_with_overflow: 2790 Res = C0->usub_ov(*C1, Overflow); 2791 break; 2792 case Intrinsic::smul_with_overflow: 2793 Res = C0->smul_ov(*C1, Overflow); 2794 break; 2795 case Intrinsic::umul_with_overflow: 2796 Res = C0->umul_ov(*C1, Overflow); 2797 break; 2798 } 2799 Constant *Ops[] = { 2800 ConstantInt::get(Ty->getContext(), Res), 2801 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2802 }; 2803 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2804 } 2805 case Intrinsic::uadd_sat: 2806 case Intrinsic::sadd_sat: 2807 // This is the same as for binary ops - poison propagates. 2808 // TODO: Poison handling should be consolidated. 2809 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2810 return PoisonValue::get(Ty); 2811 2812 if (!C0 && !C1) 2813 return UndefValue::get(Ty); 2814 if (!C0 || !C1) 2815 return Constant::getAllOnesValue(Ty); 2816 if (IntrinsicID == Intrinsic::uadd_sat) 2817 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2818 else 2819 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2820 case Intrinsic::usub_sat: 2821 case Intrinsic::ssub_sat: 2822 // This is the same as for binary ops - poison propagates. 2823 // TODO: Poison handling should be consolidated. 2824 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2825 return PoisonValue::get(Ty); 2826 2827 if (!C0 && !C1) 2828 return UndefValue::get(Ty); 2829 if (!C0 || !C1) 2830 return Constant::getNullValue(Ty); 2831 if (IntrinsicID == Intrinsic::usub_sat) 2832 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2833 else 2834 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2835 case Intrinsic::cttz: 2836 case Intrinsic::ctlz: 2837 assert(C1 && "Must be constant int"); 2838 2839 // cttz(0, 1) and ctlz(0, 1) are poison. 2840 if (C1->isOne() && (!C0 || C0->isZero())) 2841 return PoisonValue::get(Ty); 2842 if (!C0) 2843 return Constant::getNullValue(Ty); 2844 if (IntrinsicID == Intrinsic::cttz) 2845 return ConstantInt::get(Ty, C0->countr_zero()); 2846 else 2847 return ConstantInt::get(Ty, C0->countl_zero()); 2848 2849 case Intrinsic::abs: 2850 assert(C1 && "Must be constant int"); 2851 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); 2852 2853 // Undef or minimum val operand with poison min --> undef 2854 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 2855 return UndefValue::get(Ty); 2856 2857 // Undef operand with no poison min --> 0 (sign bit must be clear) 2858 if (!C0) 2859 return Constant::getNullValue(Ty); 2860 2861 return ConstantInt::get(Ty, C0->abs()); 2862 case Intrinsic::amdgcn_wave_reduce_umin: 2863 case Intrinsic::amdgcn_wave_reduce_umax: 2864 return dyn_cast<Constant>(Operands[0]); 2865 } 2866 2867 return nullptr; 2868 } 2869 2870 // Support ConstantVector in case we have an Undef in the top. 2871 if ((isa<ConstantVector>(Operands[0]) || 2872 isa<ConstantDataVector>(Operands[0])) && 2873 // Check for default rounding mode. 2874 // FIXME: Support other rounding modes? 2875 isa<ConstantInt>(Operands[1]) && 2876 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2877 auto *Op = cast<Constant>(Operands[0]); 2878 switch (IntrinsicID) { 2879 default: break; 2880 case Intrinsic::x86_avx512_vcvtss2si32: 2881 case Intrinsic::x86_avx512_vcvtss2si64: 2882 case Intrinsic::x86_avx512_vcvtsd2si32: 2883 case Intrinsic::x86_avx512_vcvtsd2si64: 2884 if (ConstantFP *FPOp = 2885 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2886 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2887 /*roundTowardZero=*/false, Ty, 2888 /*IsSigned*/true); 2889 break; 2890 case Intrinsic::x86_avx512_vcvtss2usi32: 2891 case Intrinsic::x86_avx512_vcvtss2usi64: 2892 case Intrinsic::x86_avx512_vcvtsd2usi32: 2893 case Intrinsic::x86_avx512_vcvtsd2usi64: 2894 if (ConstantFP *FPOp = 2895 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2896 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2897 /*roundTowardZero=*/false, Ty, 2898 /*IsSigned*/false); 2899 break; 2900 case Intrinsic::x86_avx512_cvttss2si: 2901 case Intrinsic::x86_avx512_cvttss2si64: 2902 case Intrinsic::x86_avx512_cvttsd2si: 2903 case Intrinsic::x86_avx512_cvttsd2si64: 2904 if (ConstantFP *FPOp = 2905 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2906 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2907 /*roundTowardZero=*/true, Ty, 2908 /*IsSigned*/true); 2909 break; 2910 case Intrinsic::x86_avx512_cvttss2usi: 2911 case Intrinsic::x86_avx512_cvttss2usi64: 2912 case Intrinsic::x86_avx512_cvttsd2usi: 2913 case Intrinsic::x86_avx512_cvttsd2usi64: 2914 if (ConstantFP *FPOp = 2915 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2916 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2917 /*roundTowardZero=*/true, Ty, 2918 /*IsSigned*/false); 2919 break; 2920 } 2921 } 2922 return nullptr; 2923 } 2924 2925 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2926 const APFloat &S0, 2927 const APFloat &S1, 2928 const APFloat &S2) { 2929 unsigned ID; 2930 const fltSemantics &Sem = S0.getSemantics(); 2931 APFloat MA(Sem), SC(Sem), TC(Sem); 2932 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2933 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2934 // S2 < 0 2935 ID = 5; 2936 SC = -S0; 2937 } else { 2938 ID = 4; 2939 SC = S0; 2940 } 2941 MA = S2; 2942 TC = -S1; 2943 } else if (abs(S1) >= abs(S0)) { 2944 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2945 // S1 < 0 2946 ID = 3; 2947 TC = -S2; 2948 } else { 2949 ID = 2; 2950 TC = S2; 2951 } 2952 MA = S1; 2953 SC = S0; 2954 } else { 2955 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2956 // S0 < 0 2957 ID = 1; 2958 SC = S2; 2959 } else { 2960 ID = 0; 2961 SC = -S2; 2962 } 2963 MA = S0; 2964 TC = -S1; 2965 } 2966 switch (IntrinsicID) { 2967 default: 2968 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2969 case Intrinsic::amdgcn_cubeid: 2970 return APFloat(Sem, ID); 2971 case Intrinsic::amdgcn_cubema: 2972 return MA + MA; 2973 case Intrinsic::amdgcn_cubesc: 2974 return SC; 2975 case Intrinsic::amdgcn_cubetc: 2976 return TC; 2977 } 2978 } 2979 2980 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 2981 Type *Ty) { 2982 const APInt *C0, *C1, *C2; 2983 if (!getConstIntOrUndef(Operands[0], C0) || 2984 !getConstIntOrUndef(Operands[1], C1) || 2985 !getConstIntOrUndef(Operands[2], C2)) 2986 return nullptr; 2987 2988 if (!C2) 2989 return UndefValue::get(Ty); 2990 2991 APInt Val(32, 0); 2992 unsigned NumUndefBytes = 0; 2993 for (unsigned I = 0; I < 32; I += 8) { 2994 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 2995 unsigned B = 0; 2996 2997 if (Sel >= 13) 2998 B = 0xff; 2999 else if (Sel == 12) 3000 B = 0x00; 3001 else { 3002 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 3003 if (!Src) 3004 ++NumUndefBytes; 3005 else if (Sel < 8) 3006 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 3007 else 3008 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 3009 } 3010 3011 Val.insertBits(B, I, 8); 3012 } 3013 3014 if (NumUndefBytes == 4) 3015 return UndefValue::get(Ty); 3016 3017 return ConstantInt::get(Ty, Val); 3018 } 3019 3020 static Constant *ConstantFoldScalarCall3(StringRef Name, 3021 Intrinsic::ID IntrinsicID, 3022 Type *Ty, 3023 ArrayRef<Constant *> Operands, 3024 const TargetLibraryInfo *TLI, 3025 const CallBase *Call) { 3026 assert(Operands.size() == 3 && "Wrong number of operands."); 3027 3028 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 3029 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 3030 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 3031 const APFloat &C1 = Op1->getValueAPF(); 3032 const APFloat &C2 = Op2->getValueAPF(); 3033 const APFloat &C3 = Op3->getValueAPF(); 3034 3035 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 3036 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 3037 APFloat Res = C1; 3038 APFloat::opStatus St; 3039 switch (IntrinsicID) { 3040 default: 3041 return nullptr; 3042 case Intrinsic::experimental_constrained_fma: 3043 case Intrinsic::experimental_constrained_fmuladd: 3044 St = Res.fusedMultiplyAdd(C2, C3, RM); 3045 break; 3046 } 3047 if (mayFoldConstrained( 3048 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 3049 return ConstantFP::get(Ty->getContext(), Res); 3050 return nullptr; 3051 } 3052 3053 switch (IntrinsicID) { 3054 default: break; 3055 case Intrinsic::amdgcn_fma_legacy: { 3056 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 3057 // NaN or infinity, gives +0.0. 3058 if (C1.isZero() || C2.isZero()) { 3059 // It's tempting to just return C3 here, but that would give the 3060 // wrong result if C3 was -0.0. 3061 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 3062 } 3063 [[fallthrough]]; 3064 } 3065 case Intrinsic::fma: 3066 case Intrinsic::fmuladd: { 3067 APFloat V = C1; 3068 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 3069 return ConstantFP::get(Ty->getContext(), V); 3070 } 3071 case Intrinsic::amdgcn_cubeid: 3072 case Intrinsic::amdgcn_cubema: 3073 case Intrinsic::amdgcn_cubesc: 3074 case Intrinsic::amdgcn_cubetc: { 3075 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 3076 return ConstantFP::get(Ty->getContext(), V); 3077 } 3078 } 3079 } 3080 } 3081 } 3082 3083 if (IntrinsicID == Intrinsic::smul_fix || 3084 IntrinsicID == Intrinsic::smul_fix_sat) { 3085 // poison * C -> poison 3086 // C * poison -> poison 3087 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 3088 return PoisonValue::get(Ty); 3089 3090 const APInt *C0, *C1; 3091 if (!getConstIntOrUndef(Operands[0], C0) || 3092 !getConstIntOrUndef(Operands[1], C1)) 3093 return nullptr; 3094 3095 // undef * C -> 0 3096 // C * undef -> 0 3097 if (!C0 || !C1) 3098 return Constant::getNullValue(Ty); 3099 3100 // This code performs rounding towards negative infinity in case the result 3101 // cannot be represented exactly for the given scale. Targets that do care 3102 // about rounding should use a target hook for specifying how rounding 3103 // should be done, and provide their own folding to be consistent with 3104 // rounding. This is the same approach as used by 3105 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 3106 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 3107 unsigned Width = C0->getBitWidth(); 3108 assert(Scale < Width && "Illegal scale."); 3109 unsigned ExtendedWidth = Width * 2; 3110 APInt Product = 3111 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale); 3112 if (IntrinsicID == Intrinsic::smul_fix_sat) { 3113 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth); 3114 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth); 3115 Product = APIntOps::smin(Product, Max); 3116 Product = APIntOps::smax(Product, Min); 3117 } 3118 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 3119 } 3120 3121 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 3122 const APInt *C0, *C1, *C2; 3123 if (!getConstIntOrUndef(Operands[0], C0) || 3124 !getConstIntOrUndef(Operands[1], C1) || 3125 !getConstIntOrUndef(Operands[2], C2)) 3126 return nullptr; 3127 3128 bool IsRight = IntrinsicID == Intrinsic::fshr; 3129 if (!C2) 3130 return Operands[IsRight ? 1 : 0]; 3131 if (!C0 && !C1) 3132 return UndefValue::get(Ty); 3133 3134 // The shift amount is interpreted as modulo the bitwidth. If the shift 3135 // amount is effectively 0, avoid UB due to oversized inverse shift below. 3136 unsigned BitWidth = C2->getBitWidth(); 3137 unsigned ShAmt = C2->urem(BitWidth); 3138 if (!ShAmt) 3139 return Operands[IsRight ? 1 : 0]; 3140 3141 // (C0 << ShlAmt) | (C1 >> LshrAmt) 3142 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 3143 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 3144 if (!C0) 3145 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 3146 if (!C1) 3147 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 3148 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 3149 } 3150 3151 if (IntrinsicID == Intrinsic::amdgcn_perm) 3152 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 3153 3154 return nullptr; 3155 } 3156 3157 static Constant *ConstantFoldScalarCall(StringRef Name, 3158 Intrinsic::ID IntrinsicID, 3159 Type *Ty, 3160 ArrayRef<Constant *> Operands, 3161 const TargetLibraryInfo *TLI, 3162 const CallBase *Call) { 3163 if (Operands.size() == 1) 3164 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 3165 3166 if (Operands.size() == 2) 3167 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 3168 3169 if (Operands.size() == 3) 3170 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 3171 3172 return nullptr; 3173 } 3174 3175 static Constant *ConstantFoldFixedVectorCall( 3176 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 3177 ArrayRef<Constant *> Operands, const DataLayout &DL, 3178 const TargetLibraryInfo *TLI, const CallBase *Call) { 3179 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 3180 SmallVector<Constant *, 4> Lane(Operands.size()); 3181 Type *Ty = FVTy->getElementType(); 3182 3183 switch (IntrinsicID) { 3184 case Intrinsic::masked_load: { 3185 auto *SrcPtr = Operands[0]; 3186 auto *Mask = Operands[2]; 3187 auto *Passthru = Operands[3]; 3188 3189 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 3190 3191 SmallVector<Constant *, 32> NewElements; 3192 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3193 auto *MaskElt = Mask->getAggregateElement(I); 3194 if (!MaskElt) 3195 break; 3196 auto *PassthruElt = Passthru->getAggregateElement(I); 3197 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 3198 if (isa<UndefValue>(MaskElt)) { 3199 if (PassthruElt) 3200 NewElements.push_back(PassthruElt); 3201 else if (VecElt) 3202 NewElements.push_back(VecElt); 3203 else 3204 return nullptr; 3205 } 3206 if (MaskElt->isNullValue()) { 3207 if (!PassthruElt) 3208 return nullptr; 3209 NewElements.push_back(PassthruElt); 3210 } else if (MaskElt->isOneValue()) { 3211 if (!VecElt) 3212 return nullptr; 3213 NewElements.push_back(VecElt); 3214 } else { 3215 return nullptr; 3216 } 3217 } 3218 if (NewElements.size() != FVTy->getNumElements()) 3219 return nullptr; 3220 return ConstantVector::get(NewElements); 3221 } 3222 case Intrinsic::arm_mve_vctp8: 3223 case Intrinsic::arm_mve_vctp16: 3224 case Intrinsic::arm_mve_vctp32: 3225 case Intrinsic::arm_mve_vctp64: { 3226 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 3227 unsigned Lanes = FVTy->getNumElements(); 3228 uint64_t Limit = Op->getZExtValue(); 3229 3230 SmallVector<Constant *, 16> NCs; 3231 for (unsigned i = 0; i < Lanes; i++) { 3232 if (i < Limit) 3233 NCs.push_back(ConstantInt::getTrue(Ty)); 3234 else 3235 NCs.push_back(ConstantInt::getFalse(Ty)); 3236 } 3237 return ConstantVector::get(NCs); 3238 } 3239 return nullptr; 3240 } 3241 case Intrinsic::get_active_lane_mask: { 3242 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 3243 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 3244 if (Op0 && Op1) { 3245 unsigned Lanes = FVTy->getNumElements(); 3246 uint64_t Base = Op0->getZExtValue(); 3247 uint64_t Limit = Op1->getZExtValue(); 3248 3249 SmallVector<Constant *, 16> NCs; 3250 for (unsigned i = 0; i < Lanes; i++) { 3251 if (Base + i < Limit) 3252 NCs.push_back(ConstantInt::getTrue(Ty)); 3253 else 3254 NCs.push_back(ConstantInt::getFalse(Ty)); 3255 } 3256 return ConstantVector::get(NCs); 3257 } 3258 return nullptr; 3259 } 3260 default: 3261 break; 3262 } 3263 3264 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3265 // Gather a column of constants. 3266 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3267 // Some intrinsics use a scalar type for certain arguments. 3268 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) { 3269 Lane[J] = Operands[J]; 3270 continue; 3271 } 3272 3273 Constant *Agg = Operands[J]->getAggregateElement(I); 3274 if (!Agg) 3275 return nullptr; 3276 3277 Lane[J] = Agg; 3278 } 3279 3280 // Use the regular scalar folding to simplify this column. 3281 Constant *Folded = 3282 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3283 if (!Folded) 3284 return nullptr; 3285 Result[I] = Folded; 3286 } 3287 3288 return ConstantVector::get(Result); 3289 } 3290 3291 static Constant *ConstantFoldScalableVectorCall( 3292 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3293 ArrayRef<Constant *> Operands, const DataLayout &DL, 3294 const TargetLibraryInfo *TLI, const CallBase *Call) { 3295 switch (IntrinsicID) { 3296 case Intrinsic::aarch64_sve_convert_from_svbool: { 3297 auto *Src = dyn_cast<Constant>(Operands[0]); 3298 if (!Src || !Src->isNullValue()) 3299 break; 3300 3301 return ConstantInt::getFalse(SVTy); 3302 } 3303 default: 3304 break; 3305 } 3306 return nullptr; 3307 } 3308 3309 static std::pair<Constant *, Constant *> 3310 ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) { 3311 if (isa<PoisonValue>(Op)) 3312 return {Op, PoisonValue::get(IntTy)}; 3313 3314 auto *ConstFP = dyn_cast<ConstantFP>(Op); 3315 if (!ConstFP) 3316 return {}; 3317 3318 const APFloat &U = ConstFP->getValueAPF(); 3319 int FrexpExp; 3320 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven); 3321 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant); 3322 3323 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid 3324 // using undef. 3325 Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp) 3326 : ConstantInt::getNullValue(IntTy); 3327 return {Result0, Result1}; 3328 } 3329 3330 /// Handle intrinsics that return tuples, which may be tuples of vectors. 3331 static Constant * 3332 ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID, 3333 StructType *StTy, ArrayRef<Constant *> Operands, 3334 const DataLayout &DL, const TargetLibraryInfo *TLI, 3335 const CallBase *Call) { 3336 3337 switch (IntrinsicID) { 3338 case Intrinsic::frexp: { 3339 Type *Ty0 = StTy->getContainedType(0); 3340 Type *Ty1 = StTy->getContainedType(1)->getScalarType(); 3341 3342 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) { 3343 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements()); 3344 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements()); 3345 3346 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) { 3347 Constant *Lane = Operands[0]->getAggregateElement(I); 3348 std::tie(Results0[I], Results1[I]) = 3349 ConstantFoldScalarFrexpCall(Lane, Ty1); 3350 if (!Results0[I]) 3351 return nullptr; 3352 } 3353 3354 return ConstantStruct::get(StTy, ConstantVector::get(Results0), 3355 ConstantVector::get(Results1)); 3356 } 3357 3358 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1); 3359 if (!Result0) 3360 return nullptr; 3361 return ConstantStruct::get(StTy, Result0, Result1); 3362 } 3363 default: 3364 // TODO: Constant folding of vector intrinsics that fall through here does 3365 // not work (e.g. overflow intrinsics) 3366 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call); 3367 } 3368 3369 return nullptr; 3370 } 3371 3372 } // end anonymous namespace 3373 3374 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3375 ArrayRef<Constant *> Operands, 3376 const TargetLibraryInfo *TLI) { 3377 if (Call->isNoBuiltin()) 3378 return nullptr; 3379 if (!F->hasName()) 3380 return nullptr; 3381 3382 // If this is not an intrinsic and not recognized as a library call, bail out. 3383 Intrinsic::ID IID = F->getIntrinsicID(); 3384 if (IID == Intrinsic::not_intrinsic) { 3385 if (!TLI) 3386 return nullptr; 3387 LibFunc LibF; 3388 if (!TLI->getLibFunc(*F, LibF)) 3389 return nullptr; 3390 } 3391 3392 StringRef Name = F->getName(); 3393 Type *Ty = F->getReturnType(); 3394 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3395 return ConstantFoldFixedVectorCall( 3396 Name, IID, FVTy, Operands, F->getParent()->getDataLayout(), TLI, Call); 3397 3398 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3399 return ConstantFoldScalableVectorCall( 3400 Name, IID, SVTy, Operands, F->getParent()->getDataLayout(), TLI, Call); 3401 3402 if (auto *StTy = dyn_cast<StructType>(Ty)) 3403 return ConstantFoldStructCall(Name, IID, StTy, Operands, 3404 F->getParent()->getDataLayout(), TLI, Call); 3405 3406 // TODO: If this is a library function, we already discovered that above, 3407 // so we should pass the LibFunc, not the name (and it might be better 3408 // still to separate intrinsic handling from libcalls). 3409 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call); 3410 } 3411 3412 bool llvm::isMathLibCallNoop(const CallBase *Call, 3413 const TargetLibraryInfo *TLI) { 3414 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3415 // (and to some extent ConstantFoldScalarCall). 3416 if (Call->isNoBuiltin() || Call->isStrictFP()) 3417 return false; 3418 Function *F = Call->getCalledFunction(); 3419 if (!F) 3420 return false; 3421 3422 LibFunc Func; 3423 if (!TLI || !TLI->getLibFunc(*F, Func)) 3424 return false; 3425 3426 if (Call->arg_size() == 1) { 3427 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3428 const APFloat &Op = OpC->getValueAPF(); 3429 switch (Func) { 3430 case LibFunc_logl: 3431 case LibFunc_log: 3432 case LibFunc_logf: 3433 case LibFunc_log2l: 3434 case LibFunc_log2: 3435 case LibFunc_log2f: 3436 case LibFunc_log10l: 3437 case LibFunc_log10: 3438 case LibFunc_log10f: 3439 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3440 3441 case LibFunc_expl: 3442 case LibFunc_exp: 3443 case LibFunc_expf: 3444 // FIXME: These boundaries are slightly conservative. 3445 if (OpC->getType()->isDoubleTy()) 3446 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3447 if (OpC->getType()->isFloatTy()) 3448 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3449 break; 3450 3451 case LibFunc_exp2l: 3452 case LibFunc_exp2: 3453 case LibFunc_exp2f: 3454 // FIXME: These boundaries are slightly conservative. 3455 if (OpC->getType()->isDoubleTy()) 3456 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3457 if (OpC->getType()->isFloatTy()) 3458 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3459 break; 3460 3461 case LibFunc_sinl: 3462 case LibFunc_sin: 3463 case LibFunc_sinf: 3464 case LibFunc_cosl: 3465 case LibFunc_cos: 3466 case LibFunc_cosf: 3467 return !Op.isInfinity(); 3468 3469 case LibFunc_tanl: 3470 case LibFunc_tan: 3471 case LibFunc_tanf: { 3472 // FIXME: Stop using the host math library. 3473 // FIXME: The computation isn't done in the right precision. 3474 Type *Ty = OpC->getType(); 3475 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3476 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3477 break; 3478 } 3479 3480 case LibFunc_atan: 3481 case LibFunc_atanf: 3482 case LibFunc_atanl: 3483 // Per POSIX, this MAY fail if Op is denormal. We choose not failing. 3484 return true; 3485 3486 3487 case LibFunc_asinl: 3488 case LibFunc_asin: 3489 case LibFunc_asinf: 3490 case LibFunc_acosl: 3491 case LibFunc_acos: 3492 case LibFunc_acosf: 3493 return !(Op < APFloat(Op.getSemantics(), "-1") || 3494 Op > APFloat(Op.getSemantics(), "1")); 3495 3496 case LibFunc_sinh: 3497 case LibFunc_cosh: 3498 case LibFunc_sinhf: 3499 case LibFunc_coshf: 3500 case LibFunc_sinhl: 3501 case LibFunc_coshl: 3502 // FIXME: These boundaries are slightly conservative. 3503 if (OpC->getType()->isDoubleTy()) 3504 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3505 if (OpC->getType()->isFloatTy()) 3506 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3507 break; 3508 3509 case LibFunc_sqrtl: 3510 case LibFunc_sqrt: 3511 case LibFunc_sqrtf: 3512 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3513 3514 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3515 // maybe others? 3516 default: 3517 break; 3518 } 3519 } 3520 } 3521 3522 if (Call->arg_size() == 2) { 3523 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3524 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3525 if (Op0C && Op1C) { 3526 const APFloat &Op0 = Op0C->getValueAPF(); 3527 const APFloat &Op1 = Op1C->getValueAPF(); 3528 3529 switch (Func) { 3530 case LibFunc_powl: 3531 case LibFunc_pow: 3532 case LibFunc_powf: { 3533 // FIXME: Stop using the host math library. 3534 // FIXME: The computation isn't done in the right precision. 3535 Type *Ty = Op0C->getType(); 3536 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3537 if (Ty == Op1C->getType()) 3538 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3539 } 3540 break; 3541 } 3542 3543 case LibFunc_fmodl: 3544 case LibFunc_fmod: 3545 case LibFunc_fmodf: 3546 case LibFunc_remainderl: 3547 case LibFunc_remainder: 3548 case LibFunc_remainderf: 3549 return Op0.isNaN() || Op1.isNaN() || 3550 (!Op0.isInfinity() && !Op1.isZero()); 3551 3552 case LibFunc_atan2: 3553 case LibFunc_atan2f: 3554 case LibFunc_atan2l: 3555 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and 3556 // GLIBC and MSVC do not appear to raise an error on those, we 3557 // cannot rely on that behavior. POSIX and C11 say that a domain error 3558 // may occur, so allow for that possibility. 3559 return !Op0.isZero() || !Op1.isZero(); 3560 3561 default: 3562 break; 3563 } 3564 } 3565 } 3566 3567 return false; 3568 } 3569 3570 void TargetFolder::anchor() {} 3571