xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/IntrinsicsAMDGPU.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MathExtras.h"
56 #include <cassert>
57 #include <cerrno>
58 #include <cfenv>
59 #include <cmath>
60 #include <cstddef>
61 #include <cstdint>
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
70 
71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72                                         Constant *C, Type *SrcEltTy,
73                                         unsigned NumSrcElts,
74                                         const DataLayout &DL) {
75   // Now that we know that the input value is a vector of integers, just shift
76   // and insert them into our result.
77   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78   for (unsigned i = 0; i != NumSrcElts; ++i) {
79     Constant *Element;
80     if (DL.isLittleEndian())
81       Element = C->getAggregateElement(NumSrcElts - i - 1);
82     else
83       Element = C->getAggregateElement(i);
84 
85     if (Element && isa<UndefValue>(Element)) {
86       Result <<= BitShift;
87       continue;
88     }
89 
90     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91     if (!ElementCI)
92       return ConstantExpr::getBitCast(C, DestTy);
93 
94     Result <<= BitShift;
95     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
96   }
97 
98   return nullptr;
99 }
100 
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106          "Invalid constantexpr bitcast!");
107 
108   // Catch the obvious splat cases.
109   if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
110     return Constant::getNullValue(DestTy);
111   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
112       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
113     return Constant::getAllOnesValue(DestTy);
114 
115   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
116     // Handle a vector->scalar integer/fp cast.
117     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
118       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
119       Type *SrcEltTy = VTy->getElementType();
120 
121       // If the vector is a vector of floating point, convert it to vector of int
122       // to simplify things.
123       if (SrcEltTy->isFloatingPointTy()) {
124         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
125         auto *SrcIVTy = FixedVectorType::get(
126             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
127         // Ask IR to do the conversion now that #elts line up.
128         C = ConstantExpr::getBitCast(C, SrcIVTy);
129       }
130 
131       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
132       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
133                                                 SrcEltTy, NumSrcElts, DL))
134         return CE;
135 
136       if (isa<IntegerType>(DestTy))
137         return ConstantInt::get(DestTy, Result);
138 
139       APFloat FP(DestTy->getFltSemantics(), Result);
140       return ConstantFP::get(DestTy->getContext(), FP);
141     }
142   }
143 
144   // The code below only handles casts to vectors currently.
145   auto *DestVTy = dyn_cast<VectorType>(DestTy);
146   if (!DestVTy)
147     return ConstantExpr::getBitCast(C, DestTy);
148 
149   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
150   // vector so the code below can handle it uniformly.
151   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
152     Constant *Ops = C; // don't take the address of C!
153     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
154   }
155 
156   // If this is a bitcast from constant vector -> vector, fold it.
157   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
158     return ConstantExpr::getBitCast(C, DestTy);
159 
160   // If the element types match, IR can fold it.
161   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
162   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
163   if (NumDstElt == NumSrcElt)
164     return ConstantExpr::getBitCast(C, DestTy);
165 
166   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
167   Type *DstEltTy = DestVTy->getElementType();
168 
169   // Otherwise, we're changing the number of elements in a vector, which
170   // requires endianness information to do the right thing.  For example,
171   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
172   // folds to (little endian):
173   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
174   // and to (big endian):
175   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
176 
177   // First thing is first.  We only want to think about integer here, so if
178   // we have something in FP form, recast it as integer.
179   if (DstEltTy->isFloatingPointTy()) {
180     // Fold to an vector of integers with same size as our FP type.
181     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
182     auto *DestIVTy = FixedVectorType::get(
183         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
184     // Recursively handle this integer conversion, if possible.
185     C = FoldBitCast(C, DestIVTy, DL);
186 
187     // Finally, IR can handle this now that #elts line up.
188     return ConstantExpr::getBitCast(C, DestTy);
189   }
190 
191   // Okay, we know the destination is integer, if the input is FP, convert
192   // it to integer first.
193   if (SrcEltTy->isFloatingPointTy()) {
194     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
195     auto *SrcIVTy = FixedVectorType::get(
196         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
197     // Ask IR to do the conversion now that #elts line up.
198     C = ConstantExpr::getBitCast(C, SrcIVTy);
199     // If IR wasn't able to fold it, bail out.
200     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
201         !isa<ConstantDataVector>(C))
202       return C;
203   }
204 
205   // Now we know that the input and output vectors are both integer vectors
206   // of the same size, and that their #elements is not the same.  Do the
207   // conversion here, which depends on whether the input or output has
208   // more elements.
209   bool isLittleEndian = DL.isLittleEndian();
210 
211   SmallVector<Constant*, 32> Result;
212   if (NumDstElt < NumSrcElt) {
213     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
214     Constant *Zero = Constant::getNullValue(DstEltTy);
215     unsigned Ratio = NumSrcElt/NumDstElt;
216     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
217     unsigned SrcElt = 0;
218     for (unsigned i = 0; i != NumDstElt; ++i) {
219       // Build each element of the result.
220       Constant *Elt = Zero;
221       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
222       for (unsigned j = 0; j != Ratio; ++j) {
223         Constant *Src = C->getAggregateElement(SrcElt++);
224         if (Src && isa<UndefValue>(Src))
225           Src = Constant::getNullValue(
226               cast<VectorType>(C->getType())->getElementType());
227         else
228           Src = dyn_cast_or_null<ConstantInt>(Src);
229         if (!Src)  // Reject constantexpr elements.
230           return ConstantExpr::getBitCast(C, DestTy);
231 
232         // Zero extend the element to the right size.
233         Src = ConstantExpr::getZExt(Src, Elt->getType());
234 
235         // Shift it to the right place, depending on endianness.
236         Src = ConstantExpr::getShl(Src,
237                                    ConstantInt::get(Src->getType(), ShiftAmt));
238         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
239 
240         // Mix it in.
241         Elt = ConstantExpr::getOr(Elt, Src);
242       }
243       Result.push_back(Elt);
244     }
245     return ConstantVector::get(Result);
246   }
247 
248   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
249   unsigned Ratio = NumDstElt/NumSrcElt;
250   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
251 
252   // Loop over each source value, expanding into multiple results.
253   for (unsigned i = 0; i != NumSrcElt; ++i) {
254     auto *Element = C->getAggregateElement(i);
255 
256     if (!Element) // Reject constantexpr elements.
257       return ConstantExpr::getBitCast(C, DestTy);
258 
259     if (isa<UndefValue>(Element)) {
260       // Correctly Propagate undef values.
261       Result.append(Ratio, UndefValue::get(DstEltTy));
262       continue;
263     }
264 
265     auto *Src = dyn_cast<ConstantInt>(Element);
266     if (!Src)
267       return ConstantExpr::getBitCast(C, DestTy);
268 
269     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
270     for (unsigned j = 0; j != Ratio; ++j) {
271       // Shift the piece of the value into the right place, depending on
272       // endianness.
273       Constant *Elt = ConstantExpr::getLShr(Src,
274                                   ConstantInt::get(Src->getType(), ShiftAmt));
275       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
276 
277       // Truncate the element to an integer with the same pointer size and
278       // convert the element back to a pointer using a inttoptr.
279       if (DstEltTy->isPointerTy()) {
280         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
281         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
282         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
283         continue;
284       }
285 
286       // Truncate and remember this piece.
287       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
288     }
289   }
290 
291   return ConstantVector::get(Result);
292 }
293 
294 } // end anonymous namespace
295 
296 /// If this constant is a constant offset from a global, return the global and
297 /// the constant. Because of constantexprs, this function is recursive.
298 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
299                                       APInt &Offset, const DataLayout &DL,
300                                       DSOLocalEquivalent **DSOEquiv) {
301   if (DSOEquiv)
302     *DSOEquiv = nullptr;
303 
304   // Trivial case, constant is the global.
305   if ((GV = dyn_cast<GlobalValue>(C))) {
306     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
307     Offset = APInt(BitWidth, 0);
308     return true;
309   }
310 
311   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
312     if (DSOEquiv)
313       *DSOEquiv = FoundDSOEquiv;
314     GV = FoundDSOEquiv->getGlobalValue();
315     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
316     Offset = APInt(BitWidth, 0);
317     return true;
318   }
319 
320   // Otherwise, if this isn't a constant expr, bail out.
321   auto *CE = dyn_cast<ConstantExpr>(C);
322   if (!CE) return false;
323 
324   // Look through ptr->int and ptr->ptr casts.
325   if (CE->getOpcode() == Instruction::PtrToInt ||
326       CE->getOpcode() == Instruction::BitCast)
327     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
328                                       DSOEquiv);
329 
330   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
331   auto *GEP = dyn_cast<GEPOperator>(CE);
332   if (!GEP)
333     return false;
334 
335   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
336   APInt TmpOffset(BitWidth, 0);
337 
338   // If the base isn't a global+constant, we aren't either.
339   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
340                                   DSOEquiv))
341     return false;
342 
343   // Otherwise, add any offset that our operands provide.
344   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
345     return false;
346 
347   Offset = TmpOffset;
348   return true;
349 }
350 
351 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
352                                          const DataLayout &DL) {
353   do {
354     Type *SrcTy = C->getType();
355     TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
356     TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
357     if (!TypeSize::isKnownGE(SrcSize, DestSize))
358       return nullptr;
359 
360     // Catch the obvious splat cases (since all-zeros can coerce non-integral
361     // pointers legally).
362     if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
363       return Constant::getNullValue(DestTy);
364     if (C->isAllOnesValue() &&
365         (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
366          DestTy->isVectorTy()) &&
367         !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() &&
368         !DestTy->isPtrOrPtrVectorTy())
369       // Get ones when the input is trivial, but
370       // only for supported types inside getAllOnesValue.
371       return Constant::getAllOnesValue(DestTy);
372 
373     // If the type sizes are the same and a cast is legal, just directly
374     // cast the constant.
375     // But be careful not to coerce non-integral pointers illegally.
376     if (SrcSize == DestSize &&
377         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
378             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
379       Instruction::CastOps Cast = Instruction::BitCast;
380       // If we are going from a pointer to int or vice versa, we spell the cast
381       // differently.
382       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
383         Cast = Instruction::IntToPtr;
384       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
385         Cast = Instruction::PtrToInt;
386 
387       if (CastInst::castIsValid(Cast, C, DestTy))
388         return ConstantExpr::getCast(Cast, C, DestTy);
389     }
390 
391     // If this isn't an aggregate type, there is nothing we can do to drill down
392     // and find a bitcastable constant.
393     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
394       return nullptr;
395 
396     // We're simulating a load through a pointer that was bitcast to point to
397     // a different type, so we can try to walk down through the initial
398     // elements of an aggregate to see if some part of the aggregate is
399     // castable to implement the "load" semantic model.
400     if (SrcTy->isStructTy()) {
401       // Struct types might have leading zero-length elements like [0 x i32],
402       // which are certainly not what we are looking for, so skip them.
403       unsigned Elem = 0;
404       Constant *ElemC;
405       do {
406         ElemC = C->getAggregateElement(Elem++);
407       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
408       C = ElemC;
409     } else {
410       C = C->getAggregateElement(0u);
411     }
412   } while (C);
413 
414   return nullptr;
415 }
416 
417 namespace {
418 
419 /// Recursive helper to read bits out of global. C is the constant being copied
420 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
421 /// results into and BytesLeft is the number of bytes left in
422 /// the CurPtr buffer. DL is the DataLayout.
423 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
424                         unsigned BytesLeft, const DataLayout &DL) {
425   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
426          "Out of range access");
427 
428   // If this element is zero or undefined, we can just return since *CurPtr is
429   // zero initialized.
430   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
431     return true;
432 
433   if (auto *CI = dyn_cast<ConstantInt>(C)) {
434     if (CI->getBitWidth() > 64 ||
435         (CI->getBitWidth() & 7) != 0)
436       return false;
437 
438     uint64_t Val = CI->getZExtValue();
439     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
440 
441     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
442       int n = ByteOffset;
443       if (!DL.isLittleEndian())
444         n = IntBytes - n - 1;
445       CurPtr[i] = (unsigned char)(Val >> (n * 8));
446       ++ByteOffset;
447     }
448     return true;
449   }
450 
451   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
452     if (CFP->getType()->isDoubleTy()) {
453       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
454       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
455     }
456     if (CFP->getType()->isFloatTy()){
457       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
458       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
459     }
460     if (CFP->getType()->isHalfTy()){
461       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
462       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
463     }
464     return false;
465   }
466 
467   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
468     const StructLayout *SL = DL.getStructLayout(CS->getType());
469     unsigned Index = SL->getElementContainingOffset(ByteOffset);
470     uint64_t CurEltOffset = SL->getElementOffset(Index);
471     ByteOffset -= CurEltOffset;
472 
473     while (true) {
474       // If the element access is to the element itself and not to tail padding,
475       // read the bytes from the element.
476       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
477 
478       if (ByteOffset < EltSize &&
479           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
480                               BytesLeft, DL))
481         return false;
482 
483       ++Index;
484 
485       // Check to see if we read from the last struct element, if so we're done.
486       if (Index == CS->getType()->getNumElements())
487         return true;
488 
489       // If we read all of the bytes we needed from this element we're done.
490       uint64_t NextEltOffset = SL->getElementOffset(Index);
491 
492       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
493         return true;
494 
495       // Move to the next element of the struct.
496       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
497       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
498       ByteOffset = 0;
499       CurEltOffset = NextEltOffset;
500     }
501     // not reached.
502   }
503 
504   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
505       isa<ConstantDataSequential>(C)) {
506     uint64_t NumElts;
507     Type *EltTy;
508     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
509       NumElts = AT->getNumElements();
510       EltTy = AT->getElementType();
511     } else {
512       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
513       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
514     }
515     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
516     uint64_t Index = ByteOffset / EltSize;
517     uint64_t Offset = ByteOffset - Index * EltSize;
518 
519     for (; Index != NumElts; ++Index) {
520       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
521                               BytesLeft, DL))
522         return false;
523 
524       uint64_t BytesWritten = EltSize - Offset;
525       assert(BytesWritten <= EltSize && "Not indexing into this element?");
526       if (BytesWritten >= BytesLeft)
527         return true;
528 
529       Offset = 0;
530       BytesLeft -= BytesWritten;
531       CurPtr += BytesWritten;
532     }
533     return true;
534   }
535 
536   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
537     if (CE->getOpcode() == Instruction::IntToPtr &&
538         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
539       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
540                                 BytesLeft, DL);
541     }
542   }
543 
544   // Otherwise, unknown initializer type.
545   return false;
546 }
547 
548 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
549                                        int64_t Offset, const DataLayout &DL) {
550   // Bail out early. Not expect to load from scalable global variable.
551   if (isa<ScalableVectorType>(LoadTy))
552     return nullptr;
553 
554   auto *IntType = dyn_cast<IntegerType>(LoadTy);
555 
556   // If this isn't an integer load we can't fold it directly.
557   if (!IntType) {
558     // If this is a float/double load, we can try folding it as an int32/64 load
559     // and then bitcast the result.  This can be useful for union cases.  Note
560     // that address spaces don't matter here since we're not going to result in
561     // an actual new load.
562     Type *MapTy;
563     if (LoadTy->isHalfTy())
564       MapTy = Type::getInt16Ty(C->getContext());
565     else if (LoadTy->isFloatTy())
566       MapTy = Type::getInt32Ty(C->getContext());
567     else if (LoadTy->isDoubleTy())
568       MapTy = Type::getInt64Ty(C->getContext());
569     else if (LoadTy->isVectorTy()) {
570       MapTy = PointerType::getIntNTy(
571           C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
572     } else
573       return nullptr;
574 
575     if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
576       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
577           !LoadTy->isX86_AMXTy())
578         // Materializing a zero can be done trivially without a bitcast
579         return Constant::getNullValue(LoadTy);
580       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
581       Res = FoldBitCast(Res, CastTy, DL);
582       if (LoadTy->isPtrOrPtrVectorTy()) {
583         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
584         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
585             !LoadTy->isX86_AMXTy())
586           return Constant::getNullValue(LoadTy);
587         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
588           // Be careful not to replace a load of an addrspace value with an inttoptr here
589           return nullptr;
590         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
591       }
592       return Res;
593     }
594     return nullptr;
595   }
596 
597   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
598   if (BytesLoaded > 32 || BytesLoaded == 0)
599     return nullptr;
600 
601   int64_t InitializerSize = DL.getTypeAllocSize(C->getType()).getFixedSize();
602 
603   // If we're not accessing anything in this constant, the result is undefined.
604   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
605     return UndefValue::get(IntType);
606 
607   // If we're not accessing anything in this constant, the result is undefined.
608   if (Offset >= InitializerSize)
609     return UndefValue::get(IntType);
610 
611   unsigned char RawBytes[32] = {0};
612   unsigned char *CurPtr = RawBytes;
613   unsigned BytesLeft = BytesLoaded;
614 
615   // If we're loading off the beginning of the global, some bytes may be valid.
616   if (Offset < 0) {
617     CurPtr += -Offset;
618     BytesLeft += Offset;
619     Offset = 0;
620   }
621 
622   if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
623     return nullptr;
624 
625   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
626   if (DL.isLittleEndian()) {
627     ResultVal = RawBytes[BytesLoaded - 1];
628     for (unsigned i = 1; i != BytesLoaded; ++i) {
629       ResultVal <<= 8;
630       ResultVal |= RawBytes[BytesLoaded - 1 - i];
631     }
632   } else {
633     ResultVal = RawBytes[0];
634     for (unsigned i = 1; i != BytesLoaded; ++i) {
635       ResultVal <<= 8;
636       ResultVal |= RawBytes[i];
637     }
638   }
639 
640   return ConstantInt::get(IntType->getContext(), ResultVal);
641 }
642 
643 /// If this Offset points exactly to the start of an aggregate element, return
644 /// that element, otherwise return nullptr.
645 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
646                               const DataLayout &DL) {
647   if (Offset.isZero())
648     return Base;
649 
650   if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
651     return nullptr;
652 
653   Type *ElemTy = Base->getType();
654   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
655   if (!Offset.isZero() || !Indices[0].isZero())
656     return nullptr;
657 
658   Constant *C = Base;
659   for (const APInt &Index : drop_begin(Indices)) {
660     if (Index.isNegative() || Index.getActiveBits() >= 32)
661       return nullptr;
662 
663     C = C->getAggregateElement(Index.getZExtValue());
664     if (!C)
665       return nullptr;
666   }
667 
668   return C;
669 }
670 
671 } // end anonymous namespace
672 
673 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
674                                           const APInt &Offset,
675                                           const DataLayout &DL) {
676   if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
677     if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
678       return Result;
679 
680   // Try hard to fold loads from bitcasted strange and non-type-safe things.
681   if (Offset.getMinSignedBits() <= 64)
682     return FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL);
683 
684   return nullptr;
685 }
686 
687 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
688                                           const DataLayout &DL) {
689   return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
690 }
691 
692 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
693                                              APInt Offset,
694                                              const DataLayout &DL) {
695   C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
696           DL, Offset, /* AllowNonInbounds */ true));
697 
698   if (auto *GV = dyn_cast<GlobalVariable>(C))
699     if (GV->isConstant() && GV->hasDefinitiveInitializer())
700       if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
701                                                        Offset, DL))
702         return Result;
703 
704   // If this load comes from anywhere in a constant global, and if the global
705   // is all undef or zero, we know what it loads.
706   if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
707     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
708       if (GV->getInitializer()->isNullValue())
709         return Constant::getNullValue(Ty);
710       if (isa<UndefValue>(GV->getInitializer()))
711         return UndefValue::get(Ty);
712     }
713   }
714 
715   return nullptr;
716 }
717 
718 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
719                                              const DataLayout &DL) {
720   APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
721   return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
722 }
723 
724 namespace {
725 
726 /// One of Op0/Op1 is a constant expression.
727 /// Attempt to symbolically evaluate the result of a binary operator merging
728 /// these together.  If target data info is available, it is provided as DL,
729 /// otherwise DL is null.
730 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
731                                     const DataLayout &DL) {
732   // SROA
733 
734   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
735   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
736   // bits.
737 
738   if (Opc == Instruction::And) {
739     KnownBits Known0 = computeKnownBits(Op0, DL);
740     KnownBits Known1 = computeKnownBits(Op1, DL);
741     if ((Known1.One | Known0.Zero).isAllOnes()) {
742       // All the bits of Op0 that the 'and' could be masking are already zero.
743       return Op0;
744     }
745     if ((Known0.One | Known1.Zero).isAllOnes()) {
746       // All the bits of Op1 that the 'and' could be masking are already zero.
747       return Op1;
748     }
749 
750     Known0 &= Known1;
751     if (Known0.isConstant())
752       return ConstantInt::get(Op0->getType(), Known0.getConstant());
753   }
754 
755   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
756   // constant.  This happens frequently when iterating over a global array.
757   if (Opc == Instruction::Sub) {
758     GlobalValue *GV1, *GV2;
759     APInt Offs1, Offs2;
760 
761     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
762       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
763         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
764 
765         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
766         // PtrToInt may change the bitwidth so we have convert to the right size
767         // first.
768         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
769                                                 Offs2.zextOrTrunc(OpSize));
770       }
771   }
772 
773   return nullptr;
774 }
775 
776 /// If array indices are not pointer-sized integers, explicitly cast them so
777 /// that they aren't implicitly casted by the getelementptr.
778 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
779                          Type *ResultTy, Optional<unsigned> InRangeIndex,
780                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
781   Type *IntIdxTy = DL.getIndexType(ResultTy);
782   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
783 
784   bool Any = false;
785   SmallVector<Constant*, 32> NewIdxs;
786   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
787     if ((i == 1 ||
788          !isa<StructType>(GetElementPtrInst::getIndexedType(
789              SrcElemTy, Ops.slice(1, i - 1)))) &&
790         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
791       Any = true;
792       Type *NewType = Ops[i]->getType()->isVectorTy()
793                           ? IntIdxTy
794                           : IntIdxScalarTy;
795       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
796                                                                       true,
797                                                                       NewType,
798                                                                       true),
799                                               Ops[i], NewType));
800     } else
801       NewIdxs.push_back(Ops[i]);
802   }
803 
804   if (!Any)
805     return nullptr;
806 
807   Constant *C = ConstantExpr::getGetElementPtr(
808       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
809   return ConstantFoldConstant(C, DL, TLI);
810 }
811 
812 /// Strip the pointer casts, but preserve the address space information.
813 Constant *StripPtrCastKeepAS(Constant *Ptr) {
814   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
815   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
816   Ptr = cast<Constant>(Ptr->stripPointerCasts());
817   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
818 
819   // Preserve the address space number of the pointer.
820   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
821     Ptr = ConstantExpr::getPointerCast(
822         Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
823                                                  OldPtrTy->getAddressSpace()));
824   }
825   return Ptr;
826 }
827 
828 /// If we can symbolically evaluate the GEP constant expression, do so.
829 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
830                                   ArrayRef<Constant *> Ops,
831                                   const DataLayout &DL,
832                                   const TargetLibraryInfo *TLI) {
833   const GEPOperator *InnermostGEP = GEP;
834   bool InBounds = GEP->isInBounds();
835 
836   Type *SrcElemTy = GEP->getSourceElementType();
837   Type *ResElemTy = GEP->getResultElementType();
838   Type *ResTy = GEP->getType();
839   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
840     return nullptr;
841 
842   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
843                                    GEP->getInRangeIndex(), DL, TLI))
844     return C;
845 
846   Constant *Ptr = Ops[0];
847   if (!Ptr->getType()->isPointerTy())
848     return nullptr;
849 
850   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
851 
852   // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
853   // "inttoptr (sub (ptrtoint Ptr), V)"
854   if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
855     auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
856     assert((!CE || CE->getType() == IntIdxTy) &&
857            "CastGEPIndices didn't canonicalize index types!");
858     if (CE && CE->getOpcode() == Instruction::Sub &&
859         CE->getOperand(0)->isNullValue()) {
860       Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
861       Res = ConstantExpr::getSub(Res, CE->getOperand(1));
862       Res = ConstantExpr::getIntToPtr(Res, ResTy);
863       return ConstantFoldConstant(Res, DL, TLI);
864     }
865   }
866 
867   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
868     if (!isa<ConstantInt>(Ops[i]))
869       return nullptr;
870 
871   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
872   APInt Offset =
873       APInt(BitWidth,
874             DL.getIndexedOffsetInType(
875                 SrcElemTy,
876                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
877   Ptr = StripPtrCastKeepAS(Ptr);
878 
879   // If this is a GEP of a GEP, fold it all into a single GEP.
880   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
881     InnermostGEP = GEP;
882     InBounds &= GEP->isInBounds();
883 
884     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
885 
886     // Do not try the incorporate the sub-GEP if some index is not a number.
887     bool AllConstantInt = true;
888     for (Value *NestedOp : NestedOps)
889       if (!isa<ConstantInt>(NestedOp)) {
890         AllConstantInt = false;
891         break;
892       }
893     if (!AllConstantInt)
894       break;
895 
896     Ptr = cast<Constant>(GEP->getOperand(0));
897     SrcElemTy = GEP->getSourceElementType();
898     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
899     Ptr = StripPtrCastKeepAS(Ptr);
900   }
901 
902   // If the base value for this address is a literal integer value, fold the
903   // getelementptr to the resulting integer value casted to the pointer type.
904   APInt BasePtr(BitWidth, 0);
905   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
906     if (CE->getOpcode() == Instruction::IntToPtr) {
907       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
908         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
909     }
910   }
911 
912   auto *PTy = cast<PointerType>(Ptr->getType());
913   if ((Ptr->isNullValue() || BasePtr != 0) &&
914       !DL.isNonIntegralPointerType(PTy)) {
915     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
916     return ConstantExpr::getIntToPtr(C, ResTy);
917   }
918 
919   // Otherwise form a regular getelementptr. Recompute the indices so that
920   // we eliminate over-indexing of the notional static type array bounds.
921   // This makes it easy to determine if the getelementptr is "inbounds".
922   // Also, this helps GlobalOpt do SROA on GlobalVariables.
923 
924   // For GEPs of GlobalValues, use the value type even for opaque pointers.
925   // Otherwise use an i8 GEP.
926   if (auto *GV = dyn_cast<GlobalValue>(Ptr))
927     SrcElemTy = GV->getValueType();
928   else if (!PTy->isOpaque())
929     SrcElemTy = PTy->getElementType();
930   else
931     SrcElemTy = Type::getInt8Ty(Ptr->getContext());
932 
933   if (!SrcElemTy->isSized())
934     return nullptr;
935 
936   Type *ElemTy = SrcElemTy;
937   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
938   if (Offset != 0)
939     return nullptr;
940 
941   // Try to add additional zero indices to reach the desired result element
942   // type.
943   // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
944   // we'll have to insert a bitcast anyway?
945   while (ElemTy != ResElemTy) {
946     Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
947     if (!NextTy)
948       break;
949 
950     Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
951     ElemTy = NextTy;
952   }
953 
954   SmallVector<Constant *, 32> NewIdxs;
955   for (const APInt &Index : Indices)
956     NewIdxs.push_back(ConstantInt::get(
957         Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
958 
959   // Preserve the inrange index from the innermost GEP if possible. We must
960   // have calculated the same indices up to and including the inrange index.
961   Optional<unsigned> InRangeIndex;
962   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
963     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
964         NewIdxs.size() > *LastIRIndex) {
965       InRangeIndex = LastIRIndex;
966       for (unsigned I = 0; I <= *LastIRIndex; ++I)
967         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
968           return nullptr;
969     }
970 
971   // Create a GEP.
972   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
973                                                InBounds, InRangeIndex);
974   assert(
975       cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
976       "Computed GetElementPtr has unexpected type!");
977 
978   // If we ended up indexing a member with a type that doesn't match
979   // the type of what the original indices indexed, add a cast.
980   if (C->getType() != ResTy)
981     C = FoldBitCast(C, ResTy, DL);
982 
983   return C;
984 }
985 
986 /// Attempt to constant fold an instruction with the
987 /// specified opcode and operands.  If successful, the constant result is
988 /// returned, if not, null is returned.  Note that this function can fail when
989 /// attempting to fold instructions like loads and stores, which have no
990 /// constant expression form.
991 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
992                                        ArrayRef<Constant *> Ops,
993                                        const DataLayout &DL,
994                                        const TargetLibraryInfo *TLI) {
995   Type *DestTy = InstOrCE->getType();
996 
997   if (Instruction::isUnaryOp(Opcode))
998     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
999 
1000   if (Instruction::isBinaryOp(Opcode))
1001     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1002 
1003   if (Instruction::isCast(Opcode))
1004     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1005 
1006   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1007     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1008       return C;
1009 
1010     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1011                                           Ops.slice(1), GEP->isInBounds(),
1012                                           GEP->getInRangeIndex());
1013   }
1014 
1015   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1016     return CE->getWithOperands(Ops);
1017 
1018   switch (Opcode) {
1019   default: return nullptr;
1020   case Instruction::ICmp:
1021   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1022   case Instruction::Freeze:
1023     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1024   case Instruction::Call:
1025     if (auto *F = dyn_cast<Function>(Ops.back())) {
1026       const auto *Call = cast<CallBase>(InstOrCE);
1027       if (canConstantFoldCallTo(Call, F))
1028         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1029     }
1030     return nullptr;
1031   case Instruction::Select:
1032     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1033   case Instruction::ExtractElement:
1034     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1035   case Instruction::ExtractValue:
1036     return ConstantExpr::getExtractValue(
1037         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1038   case Instruction::InsertElement:
1039     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1040   case Instruction::ShuffleVector:
1041     return ConstantExpr::getShuffleVector(
1042         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1043   }
1044 }
1045 
1046 } // end anonymous namespace
1047 
1048 //===----------------------------------------------------------------------===//
1049 // Constant Folding public APIs
1050 //===----------------------------------------------------------------------===//
1051 
1052 namespace {
1053 
1054 Constant *
1055 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1056                          const TargetLibraryInfo *TLI,
1057                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1058   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1059     return const_cast<Constant *>(C);
1060 
1061   SmallVector<Constant *, 8> Ops;
1062   for (const Use &OldU : C->operands()) {
1063     Constant *OldC = cast<Constant>(&OldU);
1064     Constant *NewC = OldC;
1065     // Recursively fold the ConstantExpr's operands. If we have already folded
1066     // a ConstantExpr, we don't have to process it again.
1067     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1068       auto It = FoldedOps.find(OldC);
1069       if (It == FoldedOps.end()) {
1070         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1071         FoldedOps.insert({OldC, NewC});
1072       } else {
1073         NewC = It->second;
1074       }
1075     }
1076     Ops.push_back(NewC);
1077   }
1078 
1079   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1080     if (CE->isCompare())
1081       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1082                                              DL, TLI);
1083 
1084     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1085   }
1086 
1087   assert(isa<ConstantVector>(C));
1088   return ConstantVector::get(Ops);
1089 }
1090 
1091 } // end anonymous namespace
1092 
1093 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1094                                         const TargetLibraryInfo *TLI) {
1095   // Handle PHI nodes quickly here...
1096   if (auto *PN = dyn_cast<PHINode>(I)) {
1097     Constant *CommonValue = nullptr;
1098 
1099     SmallDenseMap<Constant *, Constant *> FoldedOps;
1100     for (Value *Incoming : PN->incoming_values()) {
1101       // If the incoming value is undef then skip it.  Note that while we could
1102       // skip the value if it is equal to the phi node itself we choose not to
1103       // because that would break the rule that constant folding only applies if
1104       // all operands are constants.
1105       if (isa<UndefValue>(Incoming))
1106         continue;
1107       // If the incoming value is not a constant, then give up.
1108       auto *C = dyn_cast<Constant>(Incoming);
1109       if (!C)
1110         return nullptr;
1111       // Fold the PHI's operands.
1112       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1113       // If the incoming value is a different constant to
1114       // the one we saw previously, then give up.
1115       if (CommonValue && C != CommonValue)
1116         return nullptr;
1117       CommonValue = C;
1118     }
1119 
1120     // If we reach here, all incoming values are the same constant or undef.
1121     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1122   }
1123 
1124   // Scan the operand list, checking to see if they are all constants, if so,
1125   // hand off to ConstantFoldInstOperandsImpl.
1126   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1127     return nullptr;
1128 
1129   SmallDenseMap<Constant *, Constant *> FoldedOps;
1130   SmallVector<Constant *, 8> Ops;
1131   for (const Use &OpU : I->operands()) {
1132     auto *Op = cast<Constant>(&OpU);
1133     // Fold the Instruction's operands.
1134     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1135     Ops.push_back(Op);
1136   }
1137 
1138   if (const auto *CI = dyn_cast<CmpInst>(I))
1139     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1140                                            DL, TLI);
1141 
1142   if (const auto *LI = dyn_cast<LoadInst>(I)) {
1143     if (LI->isVolatile())
1144       return nullptr;
1145     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1146   }
1147 
1148   if (auto *IVI = dyn_cast<InsertValueInst>(I))
1149     return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices());
1150 
1151   if (auto *EVI = dyn_cast<ExtractValueInst>(I))
1152     return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices());
1153 
1154   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1155 }
1156 
1157 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1158                                      const TargetLibraryInfo *TLI) {
1159   SmallDenseMap<Constant *, Constant *> FoldedOps;
1160   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1161 }
1162 
1163 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1164                                          ArrayRef<Constant *> Ops,
1165                                          const DataLayout &DL,
1166                                          const TargetLibraryInfo *TLI) {
1167   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1168 }
1169 
1170 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1171                                                 Constant *Ops0, Constant *Ops1,
1172                                                 const DataLayout &DL,
1173                                                 const TargetLibraryInfo *TLI) {
1174   // fold: icmp (inttoptr x), null         -> icmp x, 0
1175   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1176   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1177   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1178   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1179   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1180   //
1181   // FIXME: The following comment is out of data and the DataLayout is here now.
1182   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1183   // around to know if bit truncation is happening.
1184   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1185     if (Ops1->isNullValue()) {
1186       if (CE0->getOpcode() == Instruction::IntToPtr) {
1187         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1188         // Convert the integer value to the right size to ensure we get the
1189         // proper extension or truncation.
1190         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1191                                                    IntPtrTy, false);
1192         Constant *Null = Constant::getNullValue(C->getType());
1193         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1194       }
1195 
1196       // Only do this transformation if the int is intptrty in size, otherwise
1197       // there is a truncation or extension that we aren't modeling.
1198       if (CE0->getOpcode() == Instruction::PtrToInt) {
1199         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1200         if (CE0->getType() == IntPtrTy) {
1201           Constant *C = CE0->getOperand(0);
1202           Constant *Null = Constant::getNullValue(C->getType());
1203           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1204         }
1205       }
1206     }
1207 
1208     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1209       if (CE0->getOpcode() == CE1->getOpcode()) {
1210         if (CE0->getOpcode() == Instruction::IntToPtr) {
1211           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1212 
1213           // Convert the integer value to the right size to ensure we get the
1214           // proper extension or truncation.
1215           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1216                                                       IntPtrTy, false);
1217           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1218                                                       IntPtrTy, false);
1219           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1220         }
1221 
1222         // Only do this transformation if the int is intptrty in size, otherwise
1223         // there is a truncation or extension that we aren't modeling.
1224         if (CE0->getOpcode() == Instruction::PtrToInt) {
1225           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1226           if (CE0->getType() == IntPtrTy &&
1227               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1228             return ConstantFoldCompareInstOperands(
1229                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1230           }
1231         }
1232       }
1233     }
1234 
1235     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1236     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1237     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1238         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1239       Constant *LHS = ConstantFoldCompareInstOperands(
1240           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1241       Constant *RHS = ConstantFoldCompareInstOperands(
1242           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1243       unsigned OpC =
1244         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1245       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1246     }
1247   } else if (isa<ConstantExpr>(Ops1)) {
1248     // If RHS is a constant expression, but the left side isn't, swap the
1249     // operands and try again.
1250     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1251     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1252   }
1253 
1254   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1255 }
1256 
1257 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1258                                            const DataLayout &DL) {
1259   assert(Instruction::isUnaryOp(Opcode));
1260 
1261   return ConstantExpr::get(Opcode, Op);
1262 }
1263 
1264 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1265                                              Constant *RHS,
1266                                              const DataLayout &DL) {
1267   assert(Instruction::isBinaryOp(Opcode));
1268   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1269     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1270       return C;
1271 
1272   return ConstantExpr::get(Opcode, LHS, RHS);
1273 }
1274 
1275 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1276                                         Type *DestTy, const DataLayout &DL) {
1277   assert(Instruction::isCast(Opcode));
1278   switch (Opcode) {
1279   default:
1280     llvm_unreachable("Missing case");
1281   case Instruction::PtrToInt:
1282     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1283       Constant *FoldedValue = nullptr;
1284       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1285       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1286       if (CE->getOpcode() == Instruction::IntToPtr) {
1287         // zext/trunc the inttoptr to pointer size.
1288         FoldedValue = ConstantExpr::getIntegerCast(
1289             CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1290             /*IsSigned=*/false);
1291       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1292         // If we have GEP, we can perform the following folds:
1293         // (ptrtoint (gep null, x)) -> x
1294         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1295         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1296         APInt BaseOffset(BitWidth, 0);
1297         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1298             DL, BaseOffset, /*AllowNonInbounds=*/true));
1299         if (Base->isNullValue()) {
1300           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1301         }
1302       }
1303       if (FoldedValue) {
1304         // Do a zext or trunc to get to the ptrtoint dest size.
1305         return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1306                                             /*IsSigned=*/false);
1307       }
1308     }
1309     return ConstantExpr::getCast(Opcode, C, DestTy);
1310   case Instruction::IntToPtr:
1311     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1312     // the int size is >= the ptr size and the address spaces are the same.
1313     // This requires knowing the width of a pointer, so it can't be done in
1314     // ConstantExpr::getCast.
1315     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1316       if (CE->getOpcode() == Instruction::PtrToInt) {
1317         Constant *SrcPtr = CE->getOperand(0);
1318         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1319         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1320 
1321         if (MidIntSize >= SrcPtrSize) {
1322           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1323           if (SrcAS == DestTy->getPointerAddressSpace())
1324             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1325         }
1326       }
1327     }
1328 
1329     return ConstantExpr::getCast(Opcode, C, DestTy);
1330   case Instruction::Trunc:
1331   case Instruction::ZExt:
1332   case Instruction::SExt:
1333   case Instruction::FPTrunc:
1334   case Instruction::FPExt:
1335   case Instruction::UIToFP:
1336   case Instruction::SIToFP:
1337   case Instruction::FPToUI:
1338   case Instruction::FPToSI:
1339   case Instruction::AddrSpaceCast:
1340       return ConstantExpr::getCast(Opcode, C, DestTy);
1341   case Instruction::BitCast:
1342     return FoldBitCast(C, DestTy, DL);
1343   }
1344 }
1345 
1346 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1347                                                        ConstantExpr *CE,
1348                                                        Type *Ty,
1349                                                        const DataLayout &DL) {
1350   if (!CE->getOperand(1)->isNullValue())
1351     return nullptr;  // Do not allow stepping over the value!
1352 
1353   // Loop over all of the operands, tracking down which value we are
1354   // addressing.
1355   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1356     C = C->getAggregateElement(CE->getOperand(i));
1357     if (!C)
1358       return nullptr;
1359   }
1360   return ConstantFoldLoadThroughBitcast(C, Ty, DL);
1361 }
1362 
1363 //===----------------------------------------------------------------------===//
1364 //  Constant Folding for Calls
1365 //
1366 
1367 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1368   if (Call->isNoBuiltin())
1369     return false;
1370   switch (F->getIntrinsicID()) {
1371   // Operations that do not operate floating-point numbers and do not depend on
1372   // FP environment can be folded even in strictfp functions.
1373   case Intrinsic::bswap:
1374   case Intrinsic::ctpop:
1375   case Intrinsic::ctlz:
1376   case Intrinsic::cttz:
1377   case Intrinsic::fshl:
1378   case Intrinsic::fshr:
1379   case Intrinsic::launder_invariant_group:
1380   case Intrinsic::strip_invariant_group:
1381   case Intrinsic::masked_load:
1382   case Intrinsic::get_active_lane_mask:
1383   case Intrinsic::abs:
1384   case Intrinsic::smax:
1385   case Intrinsic::smin:
1386   case Intrinsic::umax:
1387   case Intrinsic::umin:
1388   case Intrinsic::sadd_with_overflow:
1389   case Intrinsic::uadd_with_overflow:
1390   case Intrinsic::ssub_with_overflow:
1391   case Intrinsic::usub_with_overflow:
1392   case Intrinsic::smul_with_overflow:
1393   case Intrinsic::umul_with_overflow:
1394   case Intrinsic::sadd_sat:
1395   case Intrinsic::uadd_sat:
1396   case Intrinsic::ssub_sat:
1397   case Intrinsic::usub_sat:
1398   case Intrinsic::smul_fix:
1399   case Intrinsic::smul_fix_sat:
1400   case Intrinsic::bitreverse:
1401   case Intrinsic::is_constant:
1402   case Intrinsic::vector_reduce_add:
1403   case Intrinsic::vector_reduce_mul:
1404   case Intrinsic::vector_reduce_and:
1405   case Intrinsic::vector_reduce_or:
1406   case Intrinsic::vector_reduce_xor:
1407   case Intrinsic::vector_reduce_smin:
1408   case Intrinsic::vector_reduce_smax:
1409   case Intrinsic::vector_reduce_umin:
1410   case Intrinsic::vector_reduce_umax:
1411   // Target intrinsics
1412   case Intrinsic::amdgcn_perm:
1413   case Intrinsic::arm_mve_vctp8:
1414   case Intrinsic::arm_mve_vctp16:
1415   case Intrinsic::arm_mve_vctp32:
1416   case Intrinsic::arm_mve_vctp64:
1417   case Intrinsic::aarch64_sve_convert_from_svbool:
1418   // WebAssembly float semantics are always known
1419   case Intrinsic::wasm_trunc_signed:
1420   case Intrinsic::wasm_trunc_unsigned:
1421     return true;
1422 
1423   // Floating point operations cannot be folded in strictfp functions in
1424   // general case. They can be folded if FP environment is known to compiler.
1425   case Intrinsic::minnum:
1426   case Intrinsic::maxnum:
1427   case Intrinsic::minimum:
1428   case Intrinsic::maximum:
1429   case Intrinsic::log:
1430   case Intrinsic::log2:
1431   case Intrinsic::log10:
1432   case Intrinsic::exp:
1433   case Intrinsic::exp2:
1434   case Intrinsic::sqrt:
1435   case Intrinsic::sin:
1436   case Intrinsic::cos:
1437   case Intrinsic::pow:
1438   case Intrinsic::powi:
1439   case Intrinsic::fma:
1440   case Intrinsic::fmuladd:
1441   case Intrinsic::fptoui_sat:
1442   case Intrinsic::fptosi_sat:
1443   case Intrinsic::convert_from_fp16:
1444   case Intrinsic::convert_to_fp16:
1445   case Intrinsic::amdgcn_cos:
1446   case Intrinsic::amdgcn_cubeid:
1447   case Intrinsic::amdgcn_cubema:
1448   case Intrinsic::amdgcn_cubesc:
1449   case Intrinsic::amdgcn_cubetc:
1450   case Intrinsic::amdgcn_fmul_legacy:
1451   case Intrinsic::amdgcn_fma_legacy:
1452   case Intrinsic::amdgcn_fract:
1453   case Intrinsic::amdgcn_ldexp:
1454   case Intrinsic::amdgcn_sin:
1455   // The intrinsics below depend on rounding mode in MXCSR.
1456   case Intrinsic::x86_sse_cvtss2si:
1457   case Intrinsic::x86_sse_cvtss2si64:
1458   case Intrinsic::x86_sse_cvttss2si:
1459   case Intrinsic::x86_sse_cvttss2si64:
1460   case Intrinsic::x86_sse2_cvtsd2si:
1461   case Intrinsic::x86_sse2_cvtsd2si64:
1462   case Intrinsic::x86_sse2_cvttsd2si:
1463   case Intrinsic::x86_sse2_cvttsd2si64:
1464   case Intrinsic::x86_avx512_vcvtss2si32:
1465   case Intrinsic::x86_avx512_vcvtss2si64:
1466   case Intrinsic::x86_avx512_cvttss2si:
1467   case Intrinsic::x86_avx512_cvttss2si64:
1468   case Intrinsic::x86_avx512_vcvtsd2si32:
1469   case Intrinsic::x86_avx512_vcvtsd2si64:
1470   case Intrinsic::x86_avx512_cvttsd2si:
1471   case Intrinsic::x86_avx512_cvttsd2si64:
1472   case Intrinsic::x86_avx512_vcvtss2usi32:
1473   case Intrinsic::x86_avx512_vcvtss2usi64:
1474   case Intrinsic::x86_avx512_cvttss2usi:
1475   case Intrinsic::x86_avx512_cvttss2usi64:
1476   case Intrinsic::x86_avx512_vcvtsd2usi32:
1477   case Intrinsic::x86_avx512_vcvtsd2usi64:
1478   case Intrinsic::x86_avx512_cvttsd2usi:
1479   case Intrinsic::x86_avx512_cvttsd2usi64:
1480     return !Call->isStrictFP();
1481 
1482   // Sign operations are actually bitwise operations, they do not raise
1483   // exceptions even for SNANs.
1484   case Intrinsic::fabs:
1485   case Intrinsic::copysign:
1486   // Non-constrained variants of rounding operations means default FP
1487   // environment, they can be folded in any case.
1488   case Intrinsic::ceil:
1489   case Intrinsic::floor:
1490   case Intrinsic::round:
1491   case Intrinsic::roundeven:
1492   case Intrinsic::trunc:
1493   case Intrinsic::nearbyint:
1494   case Intrinsic::rint:
1495   // Constrained intrinsics can be folded if FP environment is known
1496   // to compiler.
1497   case Intrinsic::experimental_constrained_fma:
1498   case Intrinsic::experimental_constrained_fmuladd:
1499   case Intrinsic::experimental_constrained_fadd:
1500   case Intrinsic::experimental_constrained_fsub:
1501   case Intrinsic::experimental_constrained_fmul:
1502   case Intrinsic::experimental_constrained_fdiv:
1503   case Intrinsic::experimental_constrained_frem:
1504   case Intrinsic::experimental_constrained_ceil:
1505   case Intrinsic::experimental_constrained_floor:
1506   case Intrinsic::experimental_constrained_round:
1507   case Intrinsic::experimental_constrained_roundeven:
1508   case Intrinsic::experimental_constrained_trunc:
1509   case Intrinsic::experimental_constrained_nearbyint:
1510   case Intrinsic::experimental_constrained_rint:
1511     return true;
1512   default:
1513     return false;
1514   case Intrinsic::not_intrinsic: break;
1515   }
1516 
1517   if (!F->hasName() || Call->isStrictFP())
1518     return false;
1519 
1520   // In these cases, the check of the length is required.  We don't want to
1521   // return true for a name like "cos\0blah" which strcmp would return equal to
1522   // "cos", but has length 8.
1523   StringRef Name = F->getName();
1524   switch (Name[0]) {
1525   default:
1526     return false;
1527   case 'a':
1528     return Name == "acos" || Name == "acosf" ||
1529            Name == "asin" || Name == "asinf" ||
1530            Name == "atan" || Name == "atanf" ||
1531            Name == "atan2" || Name == "atan2f";
1532   case 'c':
1533     return Name == "ceil" || Name == "ceilf" ||
1534            Name == "cos" || Name == "cosf" ||
1535            Name == "cosh" || Name == "coshf";
1536   case 'e':
1537     return Name == "exp" || Name == "expf" ||
1538            Name == "exp2" || Name == "exp2f";
1539   case 'f':
1540     return Name == "fabs" || Name == "fabsf" ||
1541            Name == "floor" || Name == "floorf" ||
1542            Name == "fmod" || Name == "fmodf";
1543   case 'l':
1544     return Name == "log" || Name == "logf" ||
1545            Name == "log2" || Name == "log2f" ||
1546            Name == "log10" || Name == "log10f";
1547   case 'n':
1548     return Name == "nearbyint" || Name == "nearbyintf";
1549   case 'p':
1550     return Name == "pow" || Name == "powf";
1551   case 'r':
1552     return Name == "remainder" || Name == "remainderf" ||
1553            Name == "rint" || Name == "rintf" ||
1554            Name == "round" || Name == "roundf";
1555   case 's':
1556     return Name == "sin" || Name == "sinf" ||
1557            Name == "sinh" || Name == "sinhf" ||
1558            Name == "sqrt" || Name == "sqrtf";
1559   case 't':
1560     return Name == "tan" || Name == "tanf" ||
1561            Name == "tanh" || Name == "tanhf" ||
1562            Name == "trunc" || Name == "truncf";
1563   case '_':
1564     // Check for various function names that get used for the math functions
1565     // when the header files are preprocessed with the macro
1566     // __FINITE_MATH_ONLY__ enabled.
1567     // The '12' here is the length of the shortest name that can match.
1568     // We need to check the size before looking at Name[1] and Name[2]
1569     // so we may as well check a limit that will eliminate mismatches.
1570     if (Name.size() < 12 || Name[1] != '_')
1571       return false;
1572     switch (Name[2]) {
1573     default:
1574       return false;
1575     case 'a':
1576       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1577              Name == "__asin_finite" || Name == "__asinf_finite" ||
1578              Name == "__atan2_finite" || Name == "__atan2f_finite";
1579     case 'c':
1580       return Name == "__cosh_finite" || Name == "__coshf_finite";
1581     case 'e':
1582       return Name == "__exp_finite" || Name == "__expf_finite" ||
1583              Name == "__exp2_finite" || Name == "__exp2f_finite";
1584     case 'l':
1585       return Name == "__log_finite" || Name == "__logf_finite" ||
1586              Name == "__log10_finite" || Name == "__log10f_finite";
1587     case 'p':
1588       return Name == "__pow_finite" || Name == "__powf_finite";
1589     case 's':
1590       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1591     }
1592   }
1593 }
1594 
1595 namespace {
1596 
1597 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1598   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1599     APFloat APF(V);
1600     bool unused;
1601     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1602     return ConstantFP::get(Ty->getContext(), APF);
1603   }
1604   if (Ty->isDoubleTy())
1605     return ConstantFP::get(Ty->getContext(), APFloat(V));
1606   llvm_unreachable("Can only constant fold half/float/double");
1607 }
1608 
1609 /// Clear the floating-point exception state.
1610 inline void llvm_fenv_clearexcept() {
1611 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1612   feclearexcept(FE_ALL_EXCEPT);
1613 #endif
1614   errno = 0;
1615 }
1616 
1617 /// Test if a floating-point exception was raised.
1618 inline bool llvm_fenv_testexcept() {
1619   int errno_val = errno;
1620   if (errno_val == ERANGE || errno_val == EDOM)
1621     return true;
1622 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1623   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1624     return true;
1625 #endif
1626   return false;
1627 }
1628 
1629 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1630                          Type *Ty) {
1631   llvm_fenv_clearexcept();
1632   double Result = NativeFP(V.convertToDouble());
1633   if (llvm_fenv_testexcept()) {
1634     llvm_fenv_clearexcept();
1635     return nullptr;
1636   }
1637 
1638   return GetConstantFoldFPValue(Result, Ty);
1639 }
1640 
1641 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1642                                const APFloat &V, const APFloat &W, Type *Ty) {
1643   llvm_fenv_clearexcept();
1644   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1645   if (llvm_fenv_testexcept()) {
1646     llvm_fenv_clearexcept();
1647     return nullptr;
1648   }
1649 
1650   return GetConstantFoldFPValue(Result, Ty);
1651 }
1652 
1653 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1654   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1655   if (!VT)
1656     return nullptr;
1657 
1658   // This isn't strictly necessary, but handle the special/common case of zero:
1659   // all integer reductions of a zero input produce zero.
1660   if (isa<ConstantAggregateZero>(Op))
1661     return ConstantInt::get(VT->getElementType(), 0);
1662 
1663   // This is the same as the underlying binops - poison propagates.
1664   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1665     return PoisonValue::get(VT->getElementType());
1666 
1667   // TODO: Handle undef.
1668   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1669     return nullptr;
1670 
1671   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1672   if (!EltC)
1673     return nullptr;
1674 
1675   APInt Acc = EltC->getValue();
1676   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1677     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1678       return nullptr;
1679     const APInt &X = EltC->getValue();
1680     switch (IID) {
1681     case Intrinsic::vector_reduce_add:
1682       Acc = Acc + X;
1683       break;
1684     case Intrinsic::vector_reduce_mul:
1685       Acc = Acc * X;
1686       break;
1687     case Intrinsic::vector_reduce_and:
1688       Acc = Acc & X;
1689       break;
1690     case Intrinsic::vector_reduce_or:
1691       Acc = Acc | X;
1692       break;
1693     case Intrinsic::vector_reduce_xor:
1694       Acc = Acc ^ X;
1695       break;
1696     case Intrinsic::vector_reduce_smin:
1697       Acc = APIntOps::smin(Acc, X);
1698       break;
1699     case Intrinsic::vector_reduce_smax:
1700       Acc = APIntOps::smax(Acc, X);
1701       break;
1702     case Intrinsic::vector_reduce_umin:
1703       Acc = APIntOps::umin(Acc, X);
1704       break;
1705     case Intrinsic::vector_reduce_umax:
1706       Acc = APIntOps::umax(Acc, X);
1707       break;
1708     }
1709   }
1710 
1711   return ConstantInt::get(Op->getContext(), Acc);
1712 }
1713 
1714 /// Attempt to fold an SSE floating point to integer conversion of a constant
1715 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1716 /// used (toward nearest, ties to even). This matches the behavior of the
1717 /// non-truncating SSE instructions in the default rounding mode. The desired
1718 /// integer type Ty is used to select how many bits are available for the
1719 /// result. Returns null if the conversion cannot be performed, otherwise
1720 /// returns the Constant value resulting from the conversion.
1721 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1722                                       Type *Ty, bool IsSigned) {
1723   // All of these conversion intrinsics form an integer of at most 64bits.
1724   unsigned ResultWidth = Ty->getIntegerBitWidth();
1725   assert(ResultWidth <= 64 &&
1726          "Can only constant fold conversions to 64 and 32 bit ints");
1727 
1728   uint64_t UIntVal;
1729   bool isExact = false;
1730   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1731                                               : APFloat::rmNearestTiesToEven;
1732   APFloat::opStatus status =
1733       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1734                            IsSigned, mode, &isExact);
1735   if (status != APFloat::opOK &&
1736       (!roundTowardZero || status != APFloat::opInexact))
1737     return nullptr;
1738   return ConstantInt::get(Ty, UIntVal, IsSigned);
1739 }
1740 
1741 double getValueAsDouble(ConstantFP *Op) {
1742   Type *Ty = Op->getType();
1743 
1744   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1745     return Op->getValueAPF().convertToDouble();
1746 
1747   bool unused;
1748   APFloat APF = Op->getValueAPF();
1749   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1750   return APF.convertToDouble();
1751 }
1752 
1753 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1754   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1755     C = &CI->getValue();
1756     return true;
1757   }
1758   if (isa<UndefValue>(Op)) {
1759     C = nullptr;
1760     return true;
1761   }
1762   return false;
1763 }
1764 
1765 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1766 /// to be folded.
1767 ///
1768 /// \param CI Constrained intrinsic call.
1769 /// \param St Exception flags raised during constant evaluation.
1770 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1771                                APFloat::opStatus St) {
1772   Optional<RoundingMode> ORM = CI->getRoundingMode();
1773   Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1774 
1775   // If the operation does not change exception status flags, it is safe
1776   // to fold.
1777   if (St == APFloat::opStatus::opOK) {
1778     // When FP exceptions are not ignored, intrinsic call will not be
1779     // eliminated, because it is considered as having side effect. But we
1780     // know that its evaluation does not raise exceptions, so side effect
1781     // is absent. To allow removing the call, mark it as not accessing memory.
1782     if (EB && *EB != fp::ExceptionBehavior::ebIgnore)
1783       CI->addFnAttr(Attribute::ReadNone);
1784     return true;
1785   }
1786 
1787   // If evaluation raised FP exception, the result can depend on rounding
1788   // mode. If the latter is unknown, folding is not possible.
1789   if (!ORM || *ORM == RoundingMode::Dynamic)
1790     return false;
1791 
1792   // If FP exceptions are ignored, fold the call, even if such exception is
1793   // raised.
1794   if (!EB || *EB != fp::ExceptionBehavior::ebStrict)
1795     return true;
1796 
1797   // Leave the calculation for runtime so that exception flags be correctly set
1798   // in hardware.
1799   return false;
1800 }
1801 
1802 /// Returns the rounding mode that should be used for constant evaluation.
1803 static RoundingMode
1804 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1805   Optional<RoundingMode> ORM = CI->getRoundingMode();
1806   if (!ORM || *ORM == RoundingMode::Dynamic)
1807     // Even if the rounding mode is unknown, try evaluating the operation.
1808     // If it does not raise inexact exception, rounding was not applied,
1809     // so the result is exact and does not depend on rounding mode. Whether
1810     // other FP exceptions are raised, it does not depend on rounding mode.
1811     return RoundingMode::NearestTiesToEven;
1812   return *ORM;
1813 }
1814 
1815 static Constant *ConstantFoldScalarCall1(StringRef Name,
1816                                          Intrinsic::ID IntrinsicID,
1817                                          Type *Ty,
1818                                          ArrayRef<Constant *> Operands,
1819                                          const TargetLibraryInfo *TLI,
1820                                          const CallBase *Call) {
1821   assert(Operands.size() == 1 && "Wrong number of operands.");
1822 
1823   if (IntrinsicID == Intrinsic::is_constant) {
1824     // We know we have a "Constant" argument. But we want to only
1825     // return true for manifest constants, not those that depend on
1826     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1827     if (Operands[0]->isManifestConstant())
1828       return ConstantInt::getTrue(Ty->getContext());
1829     return nullptr;
1830   }
1831   if (isa<UndefValue>(Operands[0])) {
1832     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1833     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1834     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
1835     if (IntrinsicID == Intrinsic::cos ||
1836         IntrinsicID == Intrinsic::ctpop ||
1837         IntrinsicID == Intrinsic::fptoui_sat ||
1838         IntrinsicID == Intrinsic::fptosi_sat)
1839       return Constant::getNullValue(Ty);
1840     if (IntrinsicID == Intrinsic::bswap ||
1841         IntrinsicID == Intrinsic::bitreverse ||
1842         IntrinsicID == Intrinsic::launder_invariant_group ||
1843         IntrinsicID == Intrinsic::strip_invariant_group)
1844       return Operands[0];
1845   }
1846 
1847   if (isa<ConstantPointerNull>(Operands[0])) {
1848     // launder(null) == null == strip(null) iff in addrspace 0
1849     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1850         IntrinsicID == Intrinsic::strip_invariant_group) {
1851       // If instruction is not yet put in a basic block (e.g. when cloning
1852       // a function during inlining), Call's caller may not be available.
1853       // So check Call's BB first before querying Call->getCaller.
1854       const Function *Caller =
1855           Call->getParent() ? Call->getCaller() : nullptr;
1856       if (Caller &&
1857           !NullPointerIsDefined(
1858               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1859         return Operands[0];
1860       }
1861       return nullptr;
1862     }
1863   }
1864 
1865   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1866     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1867       APFloat Val(Op->getValueAPF());
1868 
1869       bool lost = false;
1870       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1871 
1872       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1873     }
1874 
1875     APFloat U = Op->getValueAPF();
1876 
1877     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
1878         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
1879       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
1880 
1881       if (U.isNaN())
1882         return nullptr;
1883 
1884       unsigned Width = Ty->getIntegerBitWidth();
1885       APSInt Int(Width, !Signed);
1886       bool IsExact = false;
1887       APFloat::opStatus Status =
1888           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1889 
1890       if (Status == APFloat::opOK || Status == APFloat::opInexact)
1891         return ConstantInt::get(Ty, Int);
1892 
1893       return nullptr;
1894     }
1895 
1896     if (IntrinsicID == Intrinsic::fptoui_sat ||
1897         IntrinsicID == Intrinsic::fptosi_sat) {
1898       // convertToInteger() already has the desired saturation semantics.
1899       APSInt Int(Ty->getIntegerBitWidth(),
1900                  IntrinsicID == Intrinsic::fptoui_sat);
1901       bool IsExact;
1902       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1903       return ConstantInt::get(Ty, Int);
1904     }
1905 
1906     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1907       return nullptr;
1908 
1909     // Use internal versions of these intrinsics.
1910 
1911     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1912       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1913       return ConstantFP::get(Ty->getContext(), U);
1914     }
1915 
1916     if (IntrinsicID == Intrinsic::round) {
1917       U.roundToIntegral(APFloat::rmNearestTiesToAway);
1918       return ConstantFP::get(Ty->getContext(), U);
1919     }
1920 
1921     if (IntrinsicID == Intrinsic::roundeven) {
1922       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1923       return ConstantFP::get(Ty->getContext(), U);
1924     }
1925 
1926     if (IntrinsicID == Intrinsic::ceil) {
1927       U.roundToIntegral(APFloat::rmTowardPositive);
1928       return ConstantFP::get(Ty->getContext(), U);
1929     }
1930 
1931     if (IntrinsicID == Intrinsic::floor) {
1932       U.roundToIntegral(APFloat::rmTowardNegative);
1933       return ConstantFP::get(Ty->getContext(), U);
1934     }
1935 
1936     if (IntrinsicID == Intrinsic::trunc) {
1937       U.roundToIntegral(APFloat::rmTowardZero);
1938       return ConstantFP::get(Ty->getContext(), U);
1939     }
1940 
1941     if (IntrinsicID == Intrinsic::fabs) {
1942       U.clearSign();
1943       return ConstantFP::get(Ty->getContext(), U);
1944     }
1945 
1946     if (IntrinsicID == Intrinsic::amdgcn_fract) {
1947       // The v_fract instruction behaves like the OpenCL spec, which defines
1948       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
1949       //   there to prevent fract(-small) from returning 1.0. It returns the
1950       //   largest positive floating-point number less than 1.0."
1951       APFloat FloorU(U);
1952       FloorU.roundToIntegral(APFloat::rmTowardNegative);
1953       APFloat FractU(U - FloorU);
1954       APFloat AlmostOne(U.getSemantics(), 1);
1955       AlmostOne.next(/*nextDown*/ true);
1956       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
1957     }
1958 
1959     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
1960     // raise FP exceptions, unless the argument is signaling NaN.
1961 
1962     Optional<APFloat::roundingMode> RM;
1963     switch (IntrinsicID) {
1964     default:
1965       break;
1966     case Intrinsic::experimental_constrained_nearbyint:
1967     case Intrinsic::experimental_constrained_rint: {
1968       auto CI = cast<ConstrainedFPIntrinsic>(Call);
1969       RM = CI->getRoundingMode();
1970       if (!RM || RM.getValue() == RoundingMode::Dynamic)
1971         return nullptr;
1972       break;
1973     }
1974     case Intrinsic::experimental_constrained_round:
1975       RM = APFloat::rmNearestTiesToAway;
1976       break;
1977     case Intrinsic::experimental_constrained_ceil:
1978       RM = APFloat::rmTowardPositive;
1979       break;
1980     case Intrinsic::experimental_constrained_floor:
1981       RM = APFloat::rmTowardNegative;
1982       break;
1983     case Intrinsic::experimental_constrained_trunc:
1984       RM = APFloat::rmTowardZero;
1985       break;
1986     }
1987     if (RM) {
1988       auto CI = cast<ConstrainedFPIntrinsic>(Call);
1989       if (U.isFinite()) {
1990         APFloat::opStatus St = U.roundToIntegral(*RM);
1991         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
1992             St == APFloat::opInexact) {
1993           Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1994           if (EB && *EB == fp::ebStrict)
1995             return nullptr;
1996         }
1997       } else if (U.isSignaling()) {
1998         Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1999         if (EB && *EB != fp::ebIgnore)
2000           return nullptr;
2001         U = APFloat::getQNaN(U.getSemantics());
2002       }
2003       return ConstantFP::get(Ty->getContext(), U);
2004     }
2005 
2006     /// We only fold functions with finite arguments. Folding NaN and inf is
2007     /// likely to be aborted with an exception anyway, and some host libms
2008     /// have known errors raising exceptions.
2009     if (!U.isFinite())
2010       return nullptr;
2011 
2012     /// Currently APFloat versions of these functions do not exist, so we use
2013     /// the host native double versions.  Float versions are not called
2014     /// directly but for all these it is true (float)(f((double)arg)) ==
2015     /// f(arg).  Long double not supported yet.
2016     const APFloat &APF = Op->getValueAPF();
2017 
2018     switch (IntrinsicID) {
2019       default: break;
2020       case Intrinsic::log:
2021         return ConstantFoldFP(log, APF, Ty);
2022       case Intrinsic::log2:
2023         // TODO: What about hosts that lack a C99 library?
2024         return ConstantFoldFP(Log2, APF, Ty);
2025       case Intrinsic::log10:
2026         // TODO: What about hosts that lack a C99 library?
2027         return ConstantFoldFP(log10, APF, Ty);
2028       case Intrinsic::exp:
2029         return ConstantFoldFP(exp, APF, Ty);
2030       case Intrinsic::exp2:
2031         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2032         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2033       case Intrinsic::sin:
2034         return ConstantFoldFP(sin, APF, Ty);
2035       case Intrinsic::cos:
2036         return ConstantFoldFP(cos, APF, Ty);
2037       case Intrinsic::sqrt:
2038         return ConstantFoldFP(sqrt, APF, Ty);
2039       case Intrinsic::amdgcn_cos:
2040       case Intrinsic::amdgcn_sin: {
2041         double V = getValueAsDouble(Op);
2042         if (V < -256.0 || V > 256.0)
2043           // The gfx8 and gfx9 architectures handle arguments outside the range
2044           // [-256, 256] differently. This should be a rare case so bail out
2045           // rather than trying to handle the difference.
2046           return nullptr;
2047         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2048         double V4 = V * 4.0;
2049         if (V4 == floor(V4)) {
2050           // Force exact results for quarter-integer inputs.
2051           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2052           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2053         } else {
2054           if (IsCos)
2055             V = cos(V * 2.0 * numbers::pi);
2056           else
2057             V = sin(V * 2.0 * numbers::pi);
2058         }
2059         return GetConstantFoldFPValue(V, Ty);
2060       }
2061     }
2062 
2063     if (!TLI)
2064       return nullptr;
2065 
2066     LibFunc Func = NotLibFunc;
2067     if (!TLI->getLibFunc(Name, Func))
2068       return nullptr;
2069 
2070     switch (Func) {
2071     default:
2072       break;
2073     case LibFunc_acos:
2074     case LibFunc_acosf:
2075     case LibFunc_acos_finite:
2076     case LibFunc_acosf_finite:
2077       if (TLI->has(Func))
2078         return ConstantFoldFP(acos, APF, Ty);
2079       break;
2080     case LibFunc_asin:
2081     case LibFunc_asinf:
2082     case LibFunc_asin_finite:
2083     case LibFunc_asinf_finite:
2084       if (TLI->has(Func))
2085         return ConstantFoldFP(asin, APF, Ty);
2086       break;
2087     case LibFunc_atan:
2088     case LibFunc_atanf:
2089       if (TLI->has(Func))
2090         return ConstantFoldFP(atan, APF, Ty);
2091       break;
2092     case LibFunc_ceil:
2093     case LibFunc_ceilf:
2094       if (TLI->has(Func)) {
2095         U.roundToIntegral(APFloat::rmTowardPositive);
2096         return ConstantFP::get(Ty->getContext(), U);
2097       }
2098       break;
2099     case LibFunc_cos:
2100     case LibFunc_cosf:
2101       if (TLI->has(Func))
2102         return ConstantFoldFP(cos, APF, Ty);
2103       break;
2104     case LibFunc_cosh:
2105     case LibFunc_coshf:
2106     case LibFunc_cosh_finite:
2107     case LibFunc_coshf_finite:
2108       if (TLI->has(Func))
2109         return ConstantFoldFP(cosh, APF, Ty);
2110       break;
2111     case LibFunc_exp:
2112     case LibFunc_expf:
2113     case LibFunc_exp_finite:
2114     case LibFunc_expf_finite:
2115       if (TLI->has(Func))
2116         return ConstantFoldFP(exp, APF, Ty);
2117       break;
2118     case LibFunc_exp2:
2119     case LibFunc_exp2f:
2120     case LibFunc_exp2_finite:
2121     case LibFunc_exp2f_finite:
2122       if (TLI->has(Func))
2123         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2124         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2125       break;
2126     case LibFunc_fabs:
2127     case LibFunc_fabsf:
2128       if (TLI->has(Func)) {
2129         U.clearSign();
2130         return ConstantFP::get(Ty->getContext(), U);
2131       }
2132       break;
2133     case LibFunc_floor:
2134     case LibFunc_floorf:
2135       if (TLI->has(Func)) {
2136         U.roundToIntegral(APFloat::rmTowardNegative);
2137         return ConstantFP::get(Ty->getContext(), U);
2138       }
2139       break;
2140     case LibFunc_log:
2141     case LibFunc_logf:
2142     case LibFunc_log_finite:
2143     case LibFunc_logf_finite:
2144       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2145         return ConstantFoldFP(log, APF, Ty);
2146       break;
2147     case LibFunc_log2:
2148     case LibFunc_log2f:
2149     case LibFunc_log2_finite:
2150     case LibFunc_log2f_finite:
2151       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2152         // TODO: What about hosts that lack a C99 library?
2153         return ConstantFoldFP(Log2, APF, Ty);
2154       break;
2155     case LibFunc_log10:
2156     case LibFunc_log10f:
2157     case LibFunc_log10_finite:
2158     case LibFunc_log10f_finite:
2159       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2160         // TODO: What about hosts that lack a C99 library?
2161         return ConstantFoldFP(log10, APF, Ty);
2162       break;
2163     case LibFunc_nearbyint:
2164     case LibFunc_nearbyintf:
2165     case LibFunc_rint:
2166     case LibFunc_rintf:
2167       if (TLI->has(Func)) {
2168         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2169         return ConstantFP::get(Ty->getContext(), U);
2170       }
2171       break;
2172     case LibFunc_round:
2173     case LibFunc_roundf:
2174       if (TLI->has(Func)) {
2175         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2176         return ConstantFP::get(Ty->getContext(), U);
2177       }
2178       break;
2179     case LibFunc_sin:
2180     case LibFunc_sinf:
2181       if (TLI->has(Func))
2182         return ConstantFoldFP(sin, APF, Ty);
2183       break;
2184     case LibFunc_sinh:
2185     case LibFunc_sinhf:
2186     case LibFunc_sinh_finite:
2187     case LibFunc_sinhf_finite:
2188       if (TLI->has(Func))
2189         return ConstantFoldFP(sinh, APF, Ty);
2190       break;
2191     case LibFunc_sqrt:
2192     case LibFunc_sqrtf:
2193       if (!APF.isNegative() && TLI->has(Func))
2194         return ConstantFoldFP(sqrt, APF, Ty);
2195       break;
2196     case LibFunc_tan:
2197     case LibFunc_tanf:
2198       if (TLI->has(Func))
2199         return ConstantFoldFP(tan, APF, Ty);
2200       break;
2201     case LibFunc_tanh:
2202     case LibFunc_tanhf:
2203       if (TLI->has(Func))
2204         return ConstantFoldFP(tanh, APF, Ty);
2205       break;
2206     case LibFunc_trunc:
2207     case LibFunc_truncf:
2208       if (TLI->has(Func)) {
2209         U.roundToIntegral(APFloat::rmTowardZero);
2210         return ConstantFP::get(Ty->getContext(), U);
2211       }
2212       break;
2213     }
2214     return nullptr;
2215   }
2216 
2217   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2218     switch (IntrinsicID) {
2219     case Intrinsic::bswap:
2220       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2221     case Intrinsic::ctpop:
2222       return ConstantInt::get(Ty, Op->getValue().countPopulation());
2223     case Intrinsic::bitreverse:
2224       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2225     case Intrinsic::convert_from_fp16: {
2226       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2227 
2228       bool lost = false;
2229       APFloat::opStatus status = Val.convert(
2230           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2231 
2232       // Conversion is always precise.
2233       (void)status;
2234       assert(status == APFloat::opOK && !lost &&
2235              "Precision lost during fp16 constfolding");
2236 
2237       return ConstantFP::get(Ty->getContext(), Val);
2238     }
2239     default:
2240       return nullptr;
2241     }
2242   }
2243 
2244   switch (IntrinsicID) {
2245   default: break;
2246   case Intrinsic::vector_reduce_add:
2247   case Intrinsic::vector_reduce_mul:
2248   case Intrinsic::vector_reduce_and:
2249   case Intrinsic::vector_reduce_or:
2250   case Intrinsic::vector_reduce_xor:
2251   case Intrinsic::vector_reduce_smin:
2252   case Intrinsic::vector_reduce_smax:
2253   case Intrinsic::vector_reduce_umin:
2254   case Intrinsic::vector_reduce_umax:
2255     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2256       return C;
2257     break;
2258   }
2259 
2260   // Support ConstantVector in case we have an Undef in the top.
2261   if (isa<ConstantVector>(Operands[0]) ||
2262       isa<ConstantDataVector>(Operands[0])) {
2263     auto *Op = cast<Constant>(Operands[0]);
2264     switch (IntrinsicID) {
2265     default: break;
2266     case Intrinsic::x86_sse_cvtss2si:
2267     case Intrinsic::x86_sse_cvtss2si64:
2268     case Intrinsic::x86_sse2_cvtsd2si:
2269     case Intrinsic::x86_sse2_cvtsd2si64:
2270       if (ConstantFP *FPOp =
2271               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2272         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2273                                            /*roundTowardZero=*/false, Ty,
2274                                            /*IsSigned*/true);
2275       break;
2276     case Intrinsic::x86_sse_cvttss2si:
2277     case Intrinsic::x86_sse_cvttss2si64:
2278     case Intrinsic::x86_sse2_cvttsd2si:
2279     case Intrinsic::x86_sse2_cvttsd2si64:
2280       if (ConstantFP *FPOp =
2281               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2282         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2283                                            /*roundTowardZero=*/true, Ty,
2284                                            /*IsSigned*/true);
2285       break;
2286     }
2287   }
2288 
2289   return nullptr;
2290 }
2291 
2292 static Constant *ConstantFoldScalarCall2(StringRef Name,
2293                                          Intrinsic::ID IntrinsicID,
2294                                          Type *Ty,
2295                                          ArrayRef<Constant *> Operands,
2296                                          const TargetLibraryInfo *TLI,
2297                                          const CallBase *Call) {
2298   assert(Operands.size() == 2 && "Wrong number of operands.");
2299 
2300   if (Ty->isFloatingPointTy()) {
2301     // TODO: We should have undef handling for all of the FP intrinsics that
2302     //       are attempted to be folded in this function.
2303     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2304     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2305     switch (IntrinsicID) {
2306     case Intrinsic::maxnum:
2307     case Intrinsic::minnum:
2308     case Intrinsic::maximum:
2309     case Intrinsic::minimum:
2310       // If one argument is undef, return the other argument.
2311       if (IsOp0Undef)
2312         return Operands[1];
2313       if (IsOp1Undef)
2314         return Operands[0];
2315       break;
2316     }
2317   }
2318 
2319   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2320     if (!Ty->isFloatingPointTy())
2321       return nullptr;
2322     const APFloat &Op1V = Op1->getValueAPF();
2323 
2324     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2325       if (Op2->getType() != Op1->getType())
2326         return nullptr;
2327       const APFloat &Op2V = Op2->getValueAPF();
2328 
2329       if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2330         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2331         APFloat Res = Op1V;
2332         APFloat::opStatus St;
2333         switch (IntrinsicID) {
2334         default:
2335           return nullptr;
2336         case Intrinsic::experimental_constrained_fadd:
2337           St = Res.add(Op2V, RM);
2338           break;
2339         case Intrinsic::experimental_constrained_fsub:
2340           St = Res.subtract(Op2V, RM);
2341           break;
2342         case Intrinsic::experimental_constrained_fmul:
2343           St = Res.multiply(Op2V, RM);
2344           break;
2345         case Intrinsic::experimental_constrained_fdiv:
2346           St = Res.divide(Op2V, RM);
2347           break;
2348         case Intrinsic::experimental_constrained_frem:
2349           St = Res.mod(Op2V);
2350           break;
2351         }
2352         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2353                                St))
2354           return ConstantFP::get(Ty->getContext(), Res);
2355         return nullptr;
2356       }
2357 
2358       switch (IntrinsicID) {
2359       default:
2360         break;
2361       case Intrinsic::copysign:
2362         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2363       case Intrinsic::minnum:
2364         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2365       case Intrinsic::maxnum:
2366         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2367       case Intrinsic::minimum:
2368         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2369       case Intrinsic::maximum:
2370         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2371       }
2372 
2373       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2374         return nullptr;
2375 
2376       switch (IntrinsicID) {
2377       default:
2378         break;
2379       case Intrinsic::pow:
2380         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2381       case Intrinsic::amdgcn_fmul_legacy:
2382         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2383         // NaN or infinity, gives +0.0.
2384         if (Op1V.isZero() || Op2V.isZero())
2385           return ConstantFP::getNullValue(Ty);
2386         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2387       }
2388 
2389       if (!TLI)
2390         return nullptr;
2391 
2392       LibFunc Func = NotLibFunc;
2393       if (!TLI->getLibFunc(Name, Func))
2394         return nullptr;
2395 
2396       switch (Func) {
2397       default:
2398         break;
2399       case LibFunc_pow:
2400       case LibFunc_powf:
2401       case LibFunc_pow_finite:
2402       case LibFunc_powf_finite:
2403         if (TLI->has(Func))
2404           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2405         break;
2406       case LibFunc_fmod:
2407       case LibFunc_fmodf:
2408         if (TLI->has(Func)) {
2409           APFloat V = Op1->getValueAPF();
2410           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2411             return ConstantFP::get(Ty->getContext(), V);
2412         }
2413         break;
2414       case LibFunc_remainder:
2415       case LibFunc_remainderf:
2416         if (TLI->has(Func)) {
2417           APFloat V = Op1->getValueAPF();
2418           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2419             return ConstantFP::get(Ty->getContext(), V);
2420         }
2421         break;
2422       case LibFunc_atan2:
2423       case LibFunc_atan2f:
2424       case LibFunc_atan2_finite:
2425       case LibFunc_atan2f_finite:
2426         if (TLI->has(Func))
2427           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2428         break;
2429       }
2430     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2431       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2432         return nullptr;
2433       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2434         return ConstantFP::get(
2435             Ty->getContext(),
2436             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2437                                     (int)Op2C->getZExtValue())));
2438       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2439         return ConstantFP::get(
2440             Ty->getContext(),
2441             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2442                                     (int)Op2C->getZExtValue())));
2443       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2444         return ConstantFP::get(
2445             Ty->getContext(),
2446             APFloat((double)std::pow(Op1V.convertToDouble(),
2447                                      (int)Op2C->getZExtValue())));
2448 
2449       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2450         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2451         // everywhere else.
2452 
2453         // scalbn is equivalent to ldexp with float radix 2
2454         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2455                                 APFloat::rmNearestTiesToEven);
2456         return ConstantFP::get(Ty->getContext(), Result);
2457       }
2458     }
2459     return nullptr;
2460   }
2461 
2462   if (Operands[0]->getType()->isIntegerTy() &&
2463       Operands[1]->getType()->isIntegerTy()) {
2464     const APInt *C0, *C1;
2465     if (!getConstIntOrUndef(Operands[0], C0) ||
2466         !getConstIntOrUndef(Operands[1], C1))
2467       return nullptr;
2468 
2469     unsigned BitWidth = Ty->getScalarSizeInBits();
2470     switch (IntrinsicID) {
2471     default: break;
2472     case Intrinsic::smax:
2473       if (!C0 && !C1)
2474         return UndefValue::get(Ty);
2475       if (!C0 || !C1)
2476         return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
2477       return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1);
2478 
2479     case Intrinsic::smin:
2480       if (!C0 && !C1)
2481         return UndefValue::get(Ty);
2482       if (!C0 || !C1)
2483         return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth));
2484       return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1);
2485 
2486     case Intrinsic::umax:
2487       if (!C0 && !C1)
2488         return UndefValue::get(Ty);
2489       if (!C0 || !C1)
2490         return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth));
2491       return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1);
2492 
2493     case Intrinsic::umin:
2494       if (!C0 && !C1)
2495         return UndefValue::get(Ty);
2496       if (!C0 || !C1)
2497         return ConstantInt::get(Ty, APInt::getMinValue(BitWidth));
2498       return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1);
2499 
2500     case Intrinsic::usub_with_overflow:
2501     case Intrinsic::ssub_with_overflow:
2502       // X - undef -> { 0, false }
2503       // undef - X -> { 0, false }
2504       if (!C0 || !C1)
2505         return Constant::getNullValue(Ty);
2506       LLVM_FALLTHROUGH;
2507     case Intrinsic::uadd_with_overflow:
2508     case Intrinsic::sadd_with_overflow:
2509       // X + undef -> { -1, false }
2510       // undef + x -> { -1, false }
2511       if (!C0 || !C1) {
2512         return ConstantStruct::get(
2513             cast<StructType>(Ty),
2514             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2515              Constant::getNullValue(Ty->getStructElementType(1))});
2516       }
2517       LLVM_FALLTHROUGH;
2518     case Intrinsic::smul_with_overflow:
2519     case Intrinsic::umul_with_overflow: {
2520       // undef * X -> { 0, false }
2521       // X * undef -> { 0, false }
2522       if (!C0 || !C1)
2523         return Constant::getNullValue(Ty);
2524 
2525       APInt Res;
2526       bool Overflow;
2527       switch (IntrinsicID) {
2528       default: llvm_unreachable("Invalid case");
2529       case Intrinsic::sadd_with_overflow:
2530         Res = C0->sadd_ov(*C1, Overflow);
2531         break;
2532       case Intrinsic::uadd_with_overflow:
2533         Res = C0->uadd_ov(*C1, Overflow);
2534         break;
2535       case Intrinsic::ssub_with_overflow:
2536         Res = C0->ssub_ov(*C1, Overflow);
2537         break;
2538       case Intrinsic::usub_with_overflow:
2539         Res = C0->usub_ov(*C1, Overflow);
2540         break;
2541       case Intrinsic::smul_with_overflow:
2542         Res = C0->smul_ov(*C1, Overflow);
2543         break;
2544       case Intrinsic::umul_with_overflow:
2545         Res = C0->umul_ov(*C1, Overflow);
2546         break;
2547       }
2548       Constant *Ops[] = {
2549         ConstantInt::get(Ty->getContext(), Res),
2550         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2551       };
2552       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2553     }
2554     case Intrinsic::uadd_sat:
2555     case Intrinsic::sadd_sat:
2556       if (!C0 && !C1)
2557         return UndefValue::get(Ty);
2558       if (!C0 || !C1)
2559         return Constant::getAllOnesValue(Ty);
2560       if (IntrinsicID == Intrinsic::uadd_sat)
2561         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2562       else
2563         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2564     case Intrinsic::usub_sat:
2565     case Intrinsic::ssub_sat:
2566       if (!C0 && !C1)
2567         return UndefValue::get(Ty);
2568       if (!C0 || !C1)
2569         return Constant::getNullValue(Ty);
2570       if (IntrinsicID == Intrinsic::usub_sat)
2571         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2572       else
2573         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2574     case Intrinsic::cttz:
2575     case Intrinsic::ctlz:
2576       assert(C1 && "Must be constant int");
2577 
2578       // cttz(0, 1) and ctlz(0, 1) are undef.
2579       if (C1->isOne() && (!C0 || C0->isZero()))
2580         return UndefValue::get(Ty);
2581       if (!C0)
2582         return Constant::getNullValue(Ty);
2583       if (IntrinsicID == Intrinsic::cttz)
2584         return ConstantInt::get(Ty, C0->countTrailingZeros());
2585       else
2586         return ConstantInt::get(Ty, C0->countLeadingZeros());
2587 
2588     case Intrinsic::abs:
2589       // Undef or minimum val operand with poison min --> undef
2590       assert(C1 && "Must be constant int");
2591       if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2592         return UndefValue::get(Ty);
2593 
2594       // Undef operand with no poison min --> 0 (sign bit must be clear)
2595       if (C1->isZero() && !C0)
2596         return Constant::getNullValue(Ty);
2597 
2598       return ConstantInt::get(Ty, C0->abs());
2599     }
2600 
2601     return nullptr;
2602   }
2603 
2604   // Support ConstantVector in case we have an Undef in the top.
2605   if ((isa<ConstantVector>(Operands[0]) ||
2606        isa<ConstantDataVector>(Operands[0])) &&
2607       // Check for default rounding mode.
2608       // FIXME: Support other rounding modes?
2609       isa<ConstantInt>(Operands[1]) &&
2610       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2611     auto *Op = cast<Constant>(Operands[0]);
2612     switch (IntrinsicID) {
2613     default: break;
2614     case Intrinsic::x86_avx512_vcvtss2si32:
2615     case Intrinsic::x86_avx512_vcvtss2si64:
2616     case Intrinsic::x86_avx512_vcvtsd2si32:
2617     case Intrinsic::x86_avx512_vcvtsd2si64:
2618       if (ConstantFP *FPOp =
2619               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2620         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2621                                            /*roundTowardZero=*/false, Ty,
2622                                            /*IsSigned*/true);
2623       break;
2624     case Intrinsic::x86_avx512_vcvtss2usi32:
2625     case Intrinsic::x86_avx512_vcvtss2usi64:
2626     case Intrinsic::x86_avx512_vcvtsd2usi32:
2627     case Intrinsic::x86_avx512_vcvtsd2usi64:
2628       if (ConstantFP *FPOp =
2629               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2630         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2631                                            /*roundTowardZero=*/false, Ty,
2632                                            /*IsSigned*/false);
2633       break;
2634     case Intrinsic::x86_avx512_cvttss2si:
2635     case Intrinsic::x86_avx512_cvttss2si64:
2636     case Intrinsic::x86_avx512_cvttsd2si:
2637     case Intrinsic::x86_avx512_cvttsd2si64:
2638       if (ConstantFP *FPOp =
2639               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2640         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2641                                            /*roundTowardZero=*/true, Ty,
2642                                            /*IsSigned*/true);
2643       break;
2644     case Intrinsic::x86_avx512_cvttss2usi:
2645     case Intrinsic::x86_avx512_cvttss2usi64:
2646     case Intrinsic::x86_avx512_cvttsd2usi:
2647     case Intrinsic::x86_avx512_cvttsd2usi64:
2648       if (ConstantFP *FPOp =
2649               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2650         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2651                                            /*roundTowardZero=*/true, Ty,
2652                                            /*IsSigned*/false);
2653       break;
2654     }
2655   }
2656   return nullptr;
2657 }
2658 
2659 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2660                                                const APFloat &S0,
2661                                                const APFloat &S1,
2662                                                const APFloat &S2) {
2663   unsigned ID;
2664   const fltSemantics &Sem = S0.getSemantics();
2665   APFloat MA(Sem), SC(Sem), TC(Sem);
2666   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2667     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2668       // S2 < 0
2669       ID = 5;
2670       SC = -S0;
2671     } else {
2672       ID = 4;
2673       SC = S0;
2674     }
2675     MA = S2;
2676     TC = -S1;
2677   } else if (abs(S1) >= abs(S0)) {
2678     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2679       // S1 < 0
2680       ID = 3;
2681       TC = -S2;
2682     } else {
2683       ID = 2;
2684       TC = S2;
2685     }
2686     MA = S1;
2687     SC = S0;
2688   } else {
2689     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2690       // S0 < 0
2691       ID = 1;
2692       SC = S2;
2693     } else {
2694       ID = 0;
2695       SC = -S2;
2696     }
2697     MA = S0;
2698     TC = -S1;
2699   }
2700   switch (IntrinsicID) {
2701   default:
2702     llvm_unreachable("unhandled amdgcn cube intrinsic");
2703   case Intrinsic::amdgcn_cubeid:
2704     return APFloat(Sem, ID);
2705   case Intrinsic::amdgcn_cubema:
2706     return MA + MA;
2707   case Intrinsic::amdgcn_cubesc:
2708     return SC;
2709   case Intrinsic::amdgcn_cubetc:
2710     return TC;
2711   }
2712 }
2713 
2714 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2715                                                  Type *Ty) {
2716   const APInt *C0, *C1, *C2;
2717   if (!getConstIntOrUndef(Operands[0], C0) ||
2718       !getConstIntOrUndef(Operands[1], C1) ||
2719       !getConstIntOrUndef(Operands[2], C2))
2720     return nullptr;
2721 
2722   if (!C2)
2723     return UndefValue::get(Ty);
2724 
2725   APInt Val(32, 0);
2726   unsigned NumUndefBytes = 0;
2727   for (unsigned I = 0; I < 32; I += 8) {
2728     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2729     unsigned B = 0;
2730 
2731     if (Sel >= 13)
2732       B = 0xff;
2733     else if (Sel == 12)
2734       B = 0x00;
2735     else {
2736       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2737       if (!Src)
2738         ++NumUndefBytes;
2739       else if (Sel < 8)
2740         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2741       else
2742         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2743     }
2744 
2745     Val.insertBits(B, I, 8);
2746   }
2747 
2748   if (NumUndefBytes == 4)
2749     return UndefValue::get(Ty);
2750 
2751   return ConstantInt::get(Ty, Val);
2752 }
2753 
2754 static Constant *ConstantFoldScalarCall3(StringRef Name,
2755                                          Intrinsic::ID IntrinsicID,
2756                                          Type *Ty,
2757                                          ArrayRef<Constant *> Operands,
2758                                          const TargetLibraryInfo *TLI,
2759                                          const CallBase *Call) {
2760   assert(Operands.size() == 3 && "Wrong number of operands.");
2761 
2762   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2763     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2764       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2765         const APFloat &C1 = Op1->getValueAPF();
2766         const APFloat &C2 = Op2->getValueAPF();
2767         const APFloat &C3 = Op3->getValueAPF();
2768 
2769         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2770           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2771           APFloat Res = C1;
2772           APFloat::opStatus St;
2773           switch (IntrinsicID) {
2774           default:
2775             return nullptr;
2776           case Intrinsic::experimental_constrained_fma:
2777           case Intrinsic::experimental_constrained_fmuladd:
2778             St = Res.fusedMultiplyAdd(C2, C3, RM);
2779             break;
2780           }
2781           if (mayFoldConstrained(
2782                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
2783             return ConstantFP::get(Ty->getContext(), Res);
2784           return nullptr;
2785         }
2786 
2787         switch (IntrinsicID) {
2788         default: break;
2789         case Intrinsic::amdgcn_fma_legacy: {
2790           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2791           // NaN or infinity, gives +0.0.
2792           if (C1.isZero() || C2.isZero()) {
2793             // It's tempting to just return C3 here, but that would give the
2794             // wrong result if C3 was -0.0.
2795             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
2796           }
2797           LLVM_FALLTHROUGH;
2798         }
2799         case Intrinsic::fma:
2800         case Intrinsic::fmuladd: {
2801           APFloat V = C1;
2802           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
2803           return ConstantFP::get(Ty->getContext(), V);
2804         }
2805         case Intrinsic::amdgcn_cubeid:
2806         case Intrinsic::amdgcn_cubema:
2807         case Intrinsic::amdgcn_cubesc:
2808         case Intrinsic::amdgcn_cubetc: {
2809           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
2810           return ConstantFP::get(Ty->getContext(), V);
2811         }
2812         }
2813       }
2814     }
2815   }
2816 
2817   if (IntrinsicID == Intrinsic::smul_fix ||
2818       IntrinsicID == Intrinsic::smul_fix_sat) {
2819     // poison * C -> poison
2820     // C * poison -> poison
2821     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2822       return PoisonValue::get(Ty);
2823 
2824     const APInt *C0, *C1;
2825     if (!getConstIntOrUndef(Operands[0], C0) ||
2826         !getConstIntOrUndef(Operands[1], C1))
2827       return nullptr;
2828 
2829     // undef * C -> 0
2830     // C * undef -> 0
2831     if (!C0 || !C1)
2832       return Constant::getNullValue(Ty);
2833 
2834     // This code performs rounding towards negative infinity in case the result
2835     // cannot be represented exactly for the given scale. Targets that do care
2836     // about rounding should use a target hook for specifying how rounding
2837     // should be done, and provide their own folding to be consistent with
2838     // rounding. This is the same approach as used by
2839     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2840     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
2841     unsigned Width = C0->getBitWidth();
2842     assert(Scale < Width && "Illegal scale.");
2843     unsigned ExtendedWidth = Width * 2;
2844     APInt Product = (C0->sextOrSelf(ExtendedWidth) *
2845                      C1->sextOrSelf(ExtendedWidth)).ashr(Scale);
2846     if (IntrinsicID == Intrinsic::smul_fix_sat) {
2847       APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2848       APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2849       Product = APIntOps::smin(Product, Max);
2850       Product = APIntOps::smax(Product, Min);
2851     }
2852     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
2853   }
2854 
2855   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2856     const APInt *C0, *C1, *C2;
2857     if (!getConstIntOrUndef(Operands[0], C0) ||
2858         !getConstIntOrUndef(Operands[1], C1) ||
2859         !getConstIntOrUndef(Operands[2], C2))
2860       return nullptr;
2861 
2862     bool IsRight = IntrinsicID == Intrinsic::fshr;
2863     if (!C2)
2864       return Operands[IsRight ? 1 : 0];
2865     if (!C0 && !C1)
2866       return UndefValue::get(Ty);
2867 
2868     // The shift amount is interpreted as modulo the bitwidth. If the shift
2869     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2870     unsigned BitWidth = C2->getBitWidth();
2871     unsigned ShAmt = C2->urem(BitWidth);
2872     if (!ShAmt)
2873       return Operands[IsRight ? 1 : 0];
2874 
2875     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2876     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2877     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2878     if (!C0)
2879       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2880     if (!C1)
2881       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2882     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2883   }
2884 
2885   if (IntrinsicID == Intrinsic::amdgcn_perm)
2886     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
2887 
2888   return nullptr;
2889 }
2890 
2891 static Constant *ConstantFoldScalarCall(StringRef Name,
2892                                         Intrinsic::ID IntrinsicID,
2893                                         Type *Ty,
2894                                         ArrayRef<Constant *> Operands,
2895                                         const TargetLibraryInfo *TLI,
2896                                         const CallBase *Call) {
2897   if (Operands.size() == 1)
2898     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2899 
2900   if (Operands.size() == 2)
2901     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2902 
2903   if (Operands.size() == 3)
2904     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2905 
2906   return nullptr;
2907 }
2908 
2909 static Constant *ConstantFoldFixedVectorCall(
2910     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
2911     ArrayRef<Constant *> Operands, const DataLayout &DL,
2912     const TargetLibraryInfo *TLI, const CallBase *Call) {
2913   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
2914   SmallVector<Constant *, 4> Lane(Operands.size());
2915   Type *Ty = FVTy->getElementType();
2916 
2917   switch (IntrinsicID) {
2918   case Intrinsic::masked_load: {
2919     auto *SrcPtr = Operands[0];
2920     auto *Mask = Operands[2];
2921     auto *Passthru = Operands[3];
2922 
2923     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
2924 
2925     SmallVector<Constant *, 32> NewElements;
2926     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
2927       auto *MaskElt = Mask->getAggregateElement(I);
2928       if (!MaskElt)
2929         break;
2930       auto *PassthruElt = Passthru->getAggregateElement(I);
2931       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2932       if (isa<UndefValue>(MaskElt)) {
2933         if (PassthruElt)
2934           NewElements.push_back(PassthruElt);
2935         else if (VecElt)
2936           NewElements.push_back(VecElt);
2937         else
2938           return nullptr;
2939       }
2940       if (MaskElt->isNullValue()) {
2941         if (!PassthruElt)
2942           return nullptr;
2943         NewElements.push_back(PassthruElt);
2944       } else if (MaskElt->isOneValue()) {
2945         if (!VecElt)
2946           return nullptr;
2947         NewElements.push_back(VecElt);
2948       } else {
2949         return nullptr;
2950       }
2951     }
2952     if (NewElements.size() != FVTy->getNumElements())
2953       return nullptr;
2954     return ConstantVector::get(NewElements);
2955   }
2956   case Intrinsic::arm_mve_vctp8:
2957   case Intrinsic::arm_mve_vctp16:
2958   case Intrinsic::arm_mve_vctp32:
2959   case Intrinsic::arm_mve_vctp64: {
2960     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2961       unsigned Lanes = FVTy->getNumElements();
2962       uint64_t Limit = Op->getZExtValue();
2963       // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make
2964       // sure we get the limit right in that case and set all relevant lanes.
2965       if (IntrinsicID == Intrinsic::arm_mve_vctp64)
2966         Limit *= 2;
2967 
2968       SmallVector<Constant *, 16> NCs;
2969       for (unsigned i = 0; i < Lanes; i++) {
2970         if (i < Limit)
2971           NCs.push_back(ConstantInt::getTrue(Ty));
2972         else
2973           NCs.push_back(ConstantInt::getFalse(Ty));
2974       }
2975       return ConstantVector::get(NCs);
2976     }
2977     break;
2978   }
2979   case Intrinsic::get_active_lane_mask: {
2980     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
2981     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
2982     if (Op0 && Op1) {
2983       unsigned Lanes = FVTy->getNumElements();
2984       uint64_t Base = Op0->getZExtValue();
2985       uint64_t Limit = Op1->getZExtValue();
2986 
2987       SmallVector<Constant *, 16> NCs;
2988       for (unsigned i = 0; i < Lanes; i++) {
2989         if (Base + i < Limit)
2990           NCs.push_back(ConstantInt::getTrue(Ty));
2991         else
2992           NCs.push_back(ConstantInt::getFalse(Ty));
2993       }
2994       return ConstantVector::get(NCs);
2995     }
2996     break;
2997   }
2998   default:
2999     break;
3000   }
3001 
3002   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3003     // Gather a column of constants.
3004     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3005       // Some intrinsics use a scalar type for certain arguments.
3006       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
3007         Lane[J] = Operands[J];
3008         continue;
3009       }
3010 
3011       Constant *Agg = Operands[J]->getAggregateElement(I);
3012       if (!Agg)
3013         return nullptr;
3014 
3015       Lane[J] = Agg;
3016     }
3017 
3018     // Use the regular scalar folding to simplify this column.
3019     Constant *Folded =
3020         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3021     if (!Folded)
3022       return nullptr;
3023     Result[I] = Folded;
3024   }
3025 
3026   return ConstantVector::get(Result);
3027 }
3028 
3029 static Constant *ConstantFoldScalableVectorCall(
3030     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3031     ArrayRef<Constant *> Operands, const DataLayout &DL,
3032     const TargetLibraryInfo *TLI, const CallBase *Call) {
3033   switch (IntrinsicID) {
3034   case Intrinsic::aarch64_sve_convert_from_svbool: {
3035     auto *Src = dyn_cast<Constant>(Operands[0]);
3036     if (!Src || !Src->isNullValue())
3037       break;
3038 
3039     return ConstantInt::getFalse(SVTy);
3040   }
3041   default:
3042     break;
3043   }
3044   return nullptr;
3045 }
3046 
3047 } // end anonymous namespace
3048 
3049 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3050                                  ArrayRef<Constant *> Operands,
3051                                  const TargetLibraryInfo *TLI) {
3052   if (Call->isNoBuiltin())
3053     return nullptr;
3054   if (!F->hasName())
3055     return nullptr;
3056 
3057   // If this is not an intrinsic and not recognized as a library call, bail out.
3058   if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3059     if (!TLI)
3060       return nullptr;
3061     LibFunc LibF;
3062     if (!TLI->getLibFunc(*F, LibF))
3063       return nullptr;
3064   }
3065 
3066   StringRef Name = F->getName();
3067   Type *Ty = F->getReturnType();
3068   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3069     return ConstantFoldFixedVectorCall(
3070         Name, F->getIntrinsicID(), FVTy, Operands,
3071         F->getParent()->getDataLayout(), TLI, Call);
3072 
3073   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3074     return ConstantFoldScalableVectorCall(
3075         Name, F->getIntrinsicID(), SVTy, Operands,
3076         F->getParent()->getDataLayout(), TLI, Call);
3077 
3078   // TODO: If this is a library function, we already discovered that above,
3079   //       so we should pass the LibFunc, not the name (and it might be better
3080   //       still to separate intrinsic handling from libcalls).
3081   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3082                                 Call);
3083 }
3084 
3085 bool llvm::isMathLibCallNoop(const CallBase *Call,
3086                              const TargetLibraryInfo *TLI) {
3087   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3088   // (and to some extent ConstantFoldScalarCall).
3089   if (Call->isNoBuiltin() || Call->isStrictFP())
3090     return false;
3091   Function *F = Call->getCalledFunction();
3092   if (!F)
3093     return false;
3094 
3095   LibFunc Func;
3096   if (!TLI || !TLI->getLibFunc(*F, Func))
3097     return false;
3098 
3099   if (Call->arg_size() == 1) {
3100     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3101       const APFloat &Op = OpC->getValueAPF();
3102       switch (Func) {
3103       case LibFunc_logl:
3104       case LibFunc_log:
3105       case LibFunc_logf:
3106       case LibFunc_log2l:
3107       case LibFunc_log2:
3108       case LibFunc_log2f:
3109       case LibFunc_log10l:
3110       case LibFunc_log10:
3111       case LibFunc_log10f:
3112         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3113 
3114       case LibFunc_expl:
3115       case LibFunc_exp:
3116       case LibFunc_expf:
3117         // FIXME: These boundaries are slightly conservative.
3118         if (OpC->getType()->isDoubleTy())
3119           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3120         if (OpC->getType()->isFloatTy())
3121           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3122         break;
3123 
3124       case LibFunc_exp2l:
3125       case LibFunc_exp2:
3126       case LibFunc_exp2f:
3127         // FIXME: These boundaries are slightly conservative.
3128         if (OpC->getType()->isDoubleTy())
3129           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3130         if (OpC->getType()->isFloatTy())
3131           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3132         break;
3133 
3134       case LibFunc_sinl:
3135       case LibFunc_sin:
3136       case LibFunc_sinf:
3137       case LibFunc_cosl:
3138       case LibFunc_cos:
3139       case LibFunc_cosf:
3140         return !Op.isInfinity();
3141 
3142       case LibFunc_tanl:
3143       case LibFunc_tan:
3144       case LibFunc_tanf: {
3145         // FIXME: Stop using the host math library.
3146         // FIXME: The computation isn't done in the right precision.
3147         Type *Ty = OpC->getType();
3148         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3149           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3150         break;
3151       }
3152 
3153       case LibFunc_asinl:
3154       case LibFunc_asin:
3155       case LibFunc_asinf:
3156       case LibFunc_acosl:
3157       case LibFunc_acos:
3158       case LibFunc_acosf:
3159         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3160                  Op > APFloat(Op.getSemantics(), "1"));
3161 
3162       case LibFunc_sinh:
3163       case LibFunc_cosh:
3164       case LibFunc_sinhf:
3165       case LibFunc_coshf:
3166       case LibFunc_sinhl:
3167       case LibFunc_coshl:
3168         // FIXME: These boundaries are slightly conservative.
3169         if (OpC->getType()->isDoubleTy())
3170           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3171         if (OpC->getType()->isFloatTy())
3172           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3173         break;
3174 
3175       case LibFunc_sqrtl:
3176       case LibFunc_sqrt:
3177       case LibFunc_sqrtf:
3178         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3179 
3180       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3181       // maybe others?
3182       default:
3183         break;
3184       }
3185     }
3186   }
3187 
3188   if (Call->arg_size() == 2) {
3189     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3190     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3191     if (Op0C && Op1C) {
3192       const APFloat &Op0 = Op0C->getValueAPF();
3193       const APFloat &Op1 = Op1C->getValueAPF();
3194 
3195       switch (Func) {
3196       case LibFunc_powl:
3197       case LibFunc_pow:
3198       case LibFunc_powf: {
3199         // FIXME: Stop using the host math library.
3200         // FIXME: The computation isn't done in the right precision.
3201         Type *Ty = Op0C->getType();
3202         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3203           if (Ty == Op1C->getType())
3204             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3205         }
3206         break;
3207       }
3208 
3209       case LibFunc_fmodl:
3210       case LibFunc_fmod:
3211       case LibFunc_fmodf:
3212       case LibFunc_remainderl:
3213       case LibFunc_remainder:
3214       case LibFunc_remainderf:
3215         return Op0.isNaN() || Op1.isNaN() ||
3216                (!Op0.isInfinity() && !Op1.isZero());
3217 
3218       default:
3219         break;
3220       }
3221     }
3222   }
3223 
3224   return false;
3225 }
3226 
3227 void TargetFolder::anchor() {}
3228