xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <cassert>
58 #include <cerrno>
59 #include <cfenv>
60 #include <cmath>
61 #include <cstdint>
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
70 
71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72                                         Constant *C, Type *SrcEltTy,
73                                         unsigned NumSrcElts,
74                                         const DataLayout &DL) {
75   // Now that we know that the input value is a vector of integers, just shift
76   // and insert them into our result.
77   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78   for (unsigned i = 0; i != NumSrcElts; ++i) {
79     Constant *Element;
80     if (DL.isLittleEndian())
81       Element = C->getAggregateElement(NumSrcElts - i - 1);
82     else
83       Element = C->getAggregateElement(i);
84 
85     if (Element && isa<UndefValue>(Element)) {
86       Result <<= BitShift;
87       continue;
88     }
89 
90     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91     if (!ElementCI)
92       return ConstantExpr::getBitCast(C, DestTy);
93 
94     Result <<= BitShift;
95     Result |= ElementCI->getValue().zext(Result.getBitWidth());
96   }
97 
98   return nullptr;
99 }
100 
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106          "Invalid constantexpr bitcast!");
107 
108   // Catch the obvious splat cases.
109   if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
110     return Res;
111 
112   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113     // Handle a vector->scalar integer/fp cast.
114     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116       Type *SrcEltTy = VTy->getElementType();
117 
118       // If the vector is a vector of floating point, convert it to vector of int
119       // to simplify things.
120       if (SrcEltTy->isFloatingPointTy()) {
121         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122         auto *SrcIVTy = FixedVectorType::get(
123             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124         // Ask IR to do the conversion now that #elts line up.
125         C = ConstantExpr::getBitCast(C, SrcIVTy);
126       }
127 
128       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130                                                 SrcEltTy, NumSrcElts, DL))
131         return CE;
132 
133       if (isa<IntegerType>(DestTy))
134         return ConstantInt::get(DestTy, Result);
135 
136       APFloat FP(DestTy->getFltSemantics(), Result);
137       return ConstantFP::get(DestTy->getContext(), FP);
138     }
139   }
140 
141   // The code below only handles casts to vectors currently.
142   auto *DestVTy = dyn_cast<VectorType>(DestTy);
143   if (!DestVTy)
144     return ConstantExpr::getBitCast(C, DestTy);
145 
146   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147   // vector so the code below can handle it uniformly.
148   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149     Constant *Ops = C; // don't take the address of C!
150     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
151   }
152 
153   // If this is a bitcast from constant vector -> vector, fold it.
154   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155     return ConstantExpr::getBitCast(C, DestTy);
156 
157   // If the element types match, IR can fold it.
158   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160   if (NumDstElt == NumSrcElt)
161     return ConstantExpr::getBitCast(C, DestTy);
162 
163   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164   Type *DstEltTy = DestVTy->getElementType();
165 
166   // Otherwise, we're changing the number of elements in a vector, which
167   // requires endianness information to do the right thing.  For example,
168   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169   // folds to (little endian):
170   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171   // and to (big endian):
172   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
173 
174   // First thing is first.  We only want to think about integer here, so if
175   // we have something in FP form, recast it as integer.
176   if (DstEltTy->isFloatingPointTy()) {
177     // Fold to an vector of integers with same size as our FP type.
178     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179     auto *DestIVTy = FixedVectorType::get(
180         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181     // Recursively handle this integer conversion, if possible.
182     C = FoldBitCast(C, DestIVTy, DL);
183 
184     // Finally, IR can handle this now that #elts line up.
185     return ConstantExpr::getBitCast(C, DestTy);
186   }
187 
188   // Okay, we know the destination is integer, if the input is FP, convert
189   // it to integer first.
190   if (SrcEltTy->isFloatingPointTy()) {
191     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192     auto *SrcIVTy = FixedVectorType::get(
193         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194     // Ask IR to do the conversion now that #elts line up.
195     C = ConstantExpr::getBitCast(C, SrcIVTy);
196     // If IR wasn't able to fold it, bail out.
197     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
198         !isa<ConstantDataVector>(C))
199       return C;
200   }
201 
202   // Now we know that the input and output vectors are both integer vectors
203   // of the same size, and that their #elements is not the same.  Do the
204   // conversion here, which depends on whether the input or output has
205   // more elements.
206   bool isLittleEndian = DL.isLittleEndian();
207 
208   SmallVector<Constant*, 32> Result;
209   if (NumDstElt < NumSrcElt) {
210     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211     Constant *Zero = Constant::getNullValue(DstEltTy);
212     unsigned Ratio = NumSrcElt/NumDstElt;
213     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214     unsigned SrcElt = 0;
215     for (unsigned i = 0; i != NumDstElt; ++i) {
216       // Build each element of the result.
217       Constant *Elt = Zero;
218       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219       for (unsigned j = 0; j != Ratio; ++j) {
220         Constant *Src = C->getAggregateElement(SrcElt++);
221         if (Src && isa<UndefValue>(Src))
222           Src = Constant::getNullValue(
223               cast<VectorType>(C->getType())->getElementType());
224         else
225           Src = dyn_cast_or_null<ConstantInt>(Src);
226         if (!Src)  // Reject constantexpr elements.
227           return ConstantExpr::getBitCast(C, DestTy);
228 
229         // Zero extend the element to the right size.
230         Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
231                                       DL);
232         assert(Src && "Constant folding cannot fail on plain integers");
233 
234         // Shift it to the right place, depending on endianness.
235         Src = ConstantFoldBinaryOpOperands(
236             Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
237             DL);
238         assert(Src && "Constant folding cannot fail on plain integers");
239 
240         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
241 
242         // Mix it in.
243         Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
244         assert(Elt && "Constant folding cannot fail on plain integers");
245       }
246       Result.push_back(Elt);
247     }
248     return ConstantVector::get(Result);
249   }
250 
251   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
252   unsigned Ratio = NumDstElt/NumSrcElt;
253   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
254 
255   // Loop over each source value, expanding into multiple results.
256   for (unsigned i = 0; i != NumSrcElt; ++i) {
257     auto *Element = C->getAggregateElement(i);
258 
259     if (!Element) // Reject constantexpr elements.
260       return ConstantExpr::getBitCast(C, DestTy);
261 
262     if (isa<UndefValue>(Element)) {
263       // Correctly Propagate undef values.
264       Result.append(Ratio, UndefValue::get(DstEltTy));
265       continue;
266     }
267 
268     auto *Src = dyn_cast<ConstantInt>(Element);
269     if (!Src)
270       return ConstantExpr::getBitCast(C, DestTy);
271 
272     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
273     for (unsigned j = 0; j != Ratio; ++j) {
274       // Shift the piece of the value into the right place, depending on
275       // endianness.
276       APInt Elt = Src->getValue().lshr(ShiftAmt);
277       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
278 
279       // Truncate and remember this piece.
280       Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
281     }
282   }
283 
284   return ConstantVector::get(Result);
285 }
286 
287 } // end anonymous namespace
288 
289 /// If this constant is a constant offset from a global, return the global and
290 /// the constant. Because of constantexprs, this function is recursive.
291 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
292                                       APInt &Offset, const DataLayout &DL,
293                                       DSOLocalEquivalent **DSOEquiv) {
294   if (DSOEquiv)
295     *DSOEquiv = nullptr;
296 
297   // Trivial case, constant is the global.
298   if ((GV = dyn_cast<GlobalValue>(C))) {
299     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
300     Offset = APInt(BitWidth, 0);
301     return true;
302   }
303 
304   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
305     if (DSOEquiv)
306       *DSOEquiv = FoundDSOEquiv;
307     GV = FoundDSOEquiv->getGlobalValue();
308     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
309     Offset = APInt(BitWidth, 0);
310     return true;
311   }
312 
313   // Otherwise, if this isn't a constant expr, bail out.
314   auto *CE = dyn_cast<ConstantExpr>(C);
315   if (!CE) return false;
316 
317   // Look through ptr->int and ptr->ptr casts.
318   if (CE->getOpcode() == Instruction::PtrToInt ||
319       CE->getOpcode() == Instruction::BitCast)
320     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
321                                       DSOEquiv);
322 
323   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
324   auto *GEP = dyn_cast<GEPOperator>(CE);
325   if (!GEP)
326     return false;
327 
328   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
329   APInt TmpOffset(BitWidth, 0);
330 
331   // If the base isn't a global+constant, we aren't either.
332   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
333                                   DSOEquiv))
334     return false;
335 
336   // Otherwise, add any offset that our operands provide.
337   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
338     return false;
339 
340   Offset = TmpOffset;
341   return true;
342 }
343 
344 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
345                                                const DataLayout &DL) {
346   do {
347     Type *SrcTy = C->getType();
348     if (SrcTy == DestTy)
349       return C;
350 
351     TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
352     TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
353     if (!TypeSize::isKnownGE(SrcSize, DestSize))
354       return nullptr;
355 
356     // Catch the obvious splat cases (since all-zeros can coerce non-integral
357     // pointers legally).
358     if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
359       return Res;
360 
361     // If the type sizes are the same and a cast is legal, just directly
362     // cast the constant.
363     // But be careful not to coerce non-integral pointers illegally.
364     if (SrcSize == DestSize &&
365         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
366             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
367       Instruction::CastOps Cast = Instruction::BitCast;
368       // If we are going from a pointer to int or vice versa, we spell the cast
369       // differently.
370       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
371         Cast = Instruction::IntToPtr;
372       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
373         Cast = Instruction::PtrToInt;
374 
375       if (CastInst::castIsValid(Cast, C, DestTy))
376         return ConstantFoldCastOperand(Cast, C, DestTy, DL);
377     }
378 
379     // If this isn't an aggregate type, there is nothing we can do to drill down
380     // and find a bitcastable constant.
381     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
382       return nullptr;
383 
384     // We're simulating a load through a pointer that was bitcast to point to
385     // a different type, so we can try to walk down through the initial
386     // elements of an aggregate to see if some part of the aggregate is
387     // castable to implement the "load" semantic model.
388     if (SrcTy->isStructTy()) {
389       // Struct types might have leading zero-length elements like [0 x i32],
390       // which are certainly not what we are looking for, so skip them.
391       unsigned Elem = 0;
392       Constant *ElemC;
393       do {
394         ElemC = C->getAggregateElement(Elem++);
395       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
396       C = ElemC;
397     } else {
398       // For non-byte-sized vector elements, the first element is not
399       // necessarily located at the vector base address.
400       if (auto *VT = dyn_cast<VectorType>(SrcTy))
401         if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
402           return nullptr;
403 
404       C = C->getAggregateElement(0u);
405     }
406   } while (C);
407 
408   return nullptr;
409 }
410 
411 namespace {
412 
413 /// Recursive helper to read bits out of global. C is the constant being copied
414 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
415 /// results into and BytesLeft is the number of bytes left in
416 /// the CurPtr buffer. DL is the DataLayout.
417 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
418                         unsigned BytesLeft, const DataLayout &DL) {
419   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
420          "Out of range access");
421 
422   // If this element is zero or undefined, we can just return since *CurPtr is
423   // zero initialized.
424   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
425     return true;
426 
427   if (auto *CI = dyn_cast<ConstantInt>(C)) {
428     if ((CI->getBitWidth() & 7) != 0)
429       return false;
430     const APInt &Val = CI->getValue();
431     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
432 
433     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
434       unsigned n = ByteOffset;
435       if (!DL.isLittleEndian())
436         n = IntBytes - n - 1;
437       CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
438       ++ByteOffset;
439     }
440     return true;
441   }
442 
443   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
444     if (CFP->getType()->isDoubleTy()) {
445       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
446       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
447     }
448     if (CFP->getType()->isFloatTy()){
449       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
450       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
451     }
452     if (CFP->getType()->isHalfTy()){
453       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
454       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
455     }
456     return false;
457   }
458 
459   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
460     const StructLayout *SL = DL.getStructLayout(CS->getType());
461     unsigned Index = SL->getElementContainingOffset(ByteOffset);
462     uint64_t CurEltOffset = SL->getElementOffset(Index);
463     ByteOffset -= CurEltOffset;
464 
465     while (true) {
466       // If the element access is to the element itself and not to tail padding,
467       // read the bytes from the element.
468       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
469 
470       if (ByteOffset < EltSize &&
471           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
472                               BytesLeft, DL))
473         return false;
474 
475       ++Index;
476 
477       // Check to see if we read from the last struct element, if so we're done.
478       if (Index == CS->getType()->getNumElements())
479         return true;
480 
481       // If we read all of the bytes we needed from this element we're done.
482       uint64_t NextEltOffset = SL->getElementOffset(Index);
483 
484       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
485         return true;
486 
487       // Move to the next element of the struct.
488       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
489       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
490       ByteOffset = 0;
491       CurEltOffset = NextEltOffset;
492     }
493     // not reached.
494   }
495 
496   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
497       isa<ConstantDataSequential>(C)) {
498     uint64_t NumElts, EltSize;
499     Type *EltTy;
500     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
501       NumElts = AT->getNumElements();
502       EltTy = AT->getElementType();
503       EltSize = DL.getTypeAllocSize(EltTy);
504     } else {
505       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
506       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
507       // TODO: For non-byte-sized vectors, current implementation assumes there is
508       // padding to the next byte boundary between elements.
509       if (!DL.typeSizeEqualsStoreSize(EltTy))
510         return false;
511 
512       EltSize = DL.getTypeStoreSize(EltTy);
513     }
514     uint64_t Index = ByteOffset / EltSize;
515     uint64_t Offset = ByteOffset - Index * EltSize;
516 
517     for (; Index != NumElts; ++Index) {
518       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
519                               BytesLeft, DL))
520         return false;
521 
522       uint64_t BytesWritten = EltSize - Offset;
523       assert(BytesWritten <= EltSize && "Not indexing into this element?");
524       if (BytesWritten >= BytesLeft)
525         return true;
526 
527       Offset = 0;
528       BytesLeft -= BytesWritten;
529       CurPtr += BytesWritten;
530     }
531     return true;
532   }
533 
534   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
535     if (CE->getOpcode() == Instruction::IntToPtr &&
536         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
537       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
538                                 BytesLeft, DL);
539     }
540   }
541 
542   // Otherwise, unknown initializer type.
543   return false;
544 }
545 
546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
547                                        int64_t Offset, const DataLayout &DL) {
548   // Bail out early. Not expect to load from scalable global variable.
549   if (isa<ScalableVectorType>(LoadTy))
550     return nullptr;
551 
552   auto *IntType = dyn_cast<IntegerType>(LoadTy);
553 
554   // If this isn't an integer load we can't fold it directly.
555   if (!IntType) {
556     // If this is a non-integer load, we can try folding it as an int load and
557     // then bitcast the result.  This can be useful for union cases.  Note
558     // that address spaces don't matter here since we're not going to result in
559     // an actual new load.
560     if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
561         !LoadTy->isVectorTy())
562       return nullptr;
563 
564     Type *MapTy = Type::getIntNTy(C->getContext(),
565                                   DL.getTypeSizeInBits(LoadTy).getFixedValue());
566     if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
567       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
568           !LoadTy->isX86_AMXTy())
569         // Materializing a zero can be done trivially without a bitcast
570         return Constant::getNullValue(LoadTy);
571       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
572       Res = FoldBitCast(Res, CastTy, DL);
573       if (LoadTy->isPtrOrPtrVectorTy()) {
574         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
575         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
576             !LoadTy->isX86_AMXTy())
577           return Constant::getNullValue(LoadTy);
578         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
579           // Be careful not to replace a load of an addrspace value with an inttoptr here
580           return nullptr;
581         Res = ConstantExpr::getIntToPtr(Res, LoadTy);
582       }
583       return Res;
584     }
585     return nullptr;
586   }
587 
588   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
589   if (BytesLoaded > 32 || BytesLoaded == 0)
590     return nullptr;
591 
592   // If we're not accessing anything in this constant, the result is undefined.
593   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
594     return PoisonValue::get(IntType);
595 
596   // TODO: We should be able to support scalable types.
597   TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
598   if (InitializerSize.isScalable())
599     return nullptr;
600 
601   // If we're not accessing anything in this constant, the result is undefined.
602   if (Offset >= (int64_t)InitializerSize.getFixedValue())
603     return PoisonValue::get(IntType);
604 
605   unsigned char RawBytes[32] = {0};
606   unsigned char *CurPtr = RawBytes;
607   unsigned BytesLeft = BytesLoaded;
608 
609   // If we're loading off the beginning of the global, some bytes may be valid.
610   if (Offset < 0) {
611     CurPtr += -Offset;
612     BytesLeft += Offset;
613     Offset = 0;
614   }
615 
616   if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
617     return nullptr;
618 
619   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
620   if (DL.isLittleEndian()) {
621     ResultVal = RawBytes[BytesLoaded - 1];
622     for (unsigned i = 1; i != BytesLoaded; ++i) {
623       ResultVal <<= 8;
624       ResultVal |= RawBytes[BytesLoaded - 1 - i];
625     }
626   } else {
627     ResultVal = RawBytes[0];
628     for (unsigned i = 1; i != BytesLoaded; ++i) {
629       ResultVal <<= 8;
630       ResultVal |= RawBytes[i];
631     }
632   }
633 
634   return ConstantInt::get(IntType->getContext(), ResultVal);
635 }
636 
637 } // anonymous namespace
638 
639 // If GV is a constant with an initializer read its representation starting
640 // at Offset and return it as a constant array of unsigned char.  Otherwise
641 // return null.
642 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
643                                         uint64_t Offset) {
644   if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
645     return nullptr;
646 
647   const DataLayout &DL = GV->getDataLayout();
648   Constant *Init = const_cast<Constant *>(GV->getInitializer());
649   TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
650   if (InitSize < Offset)
651     return nullptr;
652 
653   uint64_t NBytes = InitSize - Offset;
654   if (NBytes > UINT16_MAX)
655     // Bail for large initializers in excess of 64K to avoid allocating
656     // too much memory.
657     // Offset is assumed to be less than or equal than InitSize (this
658     // is enforced in ReadDataFromGlobal).
659     return nullptr;
660 
661   SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
662   unsigned char *CurPtr = RawBytes.data();
663 
664   if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
665     return nullptr;
666 
667   return ConstantDataArray::get(GV->getContext(), RawBytes);
668 }
669 
670 /// If this Offset points exactly to the start of an aggregate element, return
671 /// that element, otherwise return nullptr.
672 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
673                               const DataLayout &DL) {
674   if (Offset.isZero())
675     return Base;
676 
677   if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
678     return nullptr;
679 
680   Type *ElemTy = Base->getType();
681   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
682   if (!Offset.isZero() || !Indices[0].isZero())
683     return nullptr;
684 
685   Constant *C = Base;
686   for (const APInt &Index : drop_begin(Indices)) {
687     if (Index.isNegative() || Index.getActiveBits() >= 32)
688       return nullptr;
689 
690     C = C->getAggregateElement(Index.getZExtValue());
691     if (!C)
692       return nullptr;
693   }
694 
695   return C;
696 }
697 
698 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
699                                           const APInt &Offset,
700                                           const DataLayout &DL) {
701   if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
702     if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
703       return Result;
704 
705   // Explicitly check for out-of-bounds access, so we return poison even if the
706   // constant is a uniform value.
707   TypeSize Size = DL.getTypeAllocSize(C->getType());
708   if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
709     return PoisonValue::get(Ty);
710 
711   // Try an offset-independent fold of a uniform value.
712   if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
713     return Result;
714 
715   // Try hard to fold loads from bitcasted strange and non-type-safe things.
716   if (Offset.getSignificantBits() <= 64)
717     if (Constant *Result =
718             FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
719       return Result;
720 
721   return nullptr;
722 }
723 
724 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
725                                           const DataLayout &DL) {
726   return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
727 }
728 
729 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
730                                              APInt Offset,
731                                              const DataLayout &DL) {
732   // We can only fold loads from constant globals with a definitive initializer.
733   // Check this upfront, to skip expensive offset calculations.
734   auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
735   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
736     return nullptr;
737 
738   C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
739           DL, Offset, /* AllowNonInbounds */ true));
740 
741   if (C == GV)
742     if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
743                                                      Offset, DL))
744       return Result;
745 
746   // If this load comes from anywhere in a uniform constant global, the value
747   // is always the same, regardless of the loaded offset.
748   return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
749 }
750 
751 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
752                                              const DataLayout &DL) {
753   APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
754   return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
755 }
756 
757 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty,
758                                                  const DataLayout &DL) {
759   if (isa<PoisonValue>(C))
760     return PoisonValue::get(Ty);
761   if (isa<UndefValue>(C))
762     return UndefValue::get(Ty);
763   // If padding is needed when storing C to memory, then it isn't considered as
764   // uniform.
765   if (!DL.typeSizeEqualsStoreSize(C->getType()))
766     return nullptr;
767   if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
768     return Constant::getNullValue(Ty);
769   if (C->isAllOnesValue() &&
770       (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
771     return Constant::getAllOnesValue(Ty);
772   return nullptr;
773 }
774 
775 namespace {
776 
777 /// One of Op0/Op1 is a constant expression.
778 /// Attempt to symbolically evaluate the result of a binary operator merging
779 /// these together.  If target data info is available, it is provided as DL,
780 /// otherwise DL is null.
781 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
782                                     const DataLayout &DL) {
783   // SROA
784 
785   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
786   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
787   // bits.
788 
789   if (Opc == Instruction::And) {
790     KnownBits Known0 = computeKnownBits(Op0, DL);
791     KnownBits Known1 = computeKnownBits(Op1, DL);
792     if ((Known1.One | Known0.Zero).isAllOnes()) {
793       // All the bits of Op0 that the 'and' could be masking are already zero.
794       return Op0;
795     }
796     if ((Known0.One | Known1.Zero).isAllOnes()) {
797       // All the bits of Op1 that the 'and' could be masking are already zero.
798       return Op1;
799     }
800 
801     Known0 &= Known1;
802     if (Known0.isConstant())
803       return ConstantInt::get(Op0->getType(), Known0.getConstant());
804   }
805 
806   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
807   // constant.  This happens frequently when iterating over a global array.
808   if (Opc == Instruction::Sub) {
809     GlobalValue *GV1, *GV2;
810     APInt Offs1, Offs2;
811 
812     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
813       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
814         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
815 
816         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
817         // PtrToInt may change the bitwidth so we have convert to the right size
818         // first.
819         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
820                                                 Offs2.zextOrTrunc(OpSize));
821       }
822   }
823 
824   return nullptr;
825 }
826 
827 /// If array indices are not pointer-sized integers, explicitly cast them so
828 /// that they aren't implicitly casted by the getelementptr.
829 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
830                          Type *ResultTy, GEPNoWrapFlags NW,
831                          std::optional<ConstantRange> InRange,
832                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
833   Type *IntIdxTy = DL.getIndexType(ResultTy);
834   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
835 
836   bool Any = false;
837   SmallVector<Constant*, 32> NewIdxs;
838   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
839     if ((i == 1 ||
840          !isa<StructType>(GetElementPtrInst::getIndexedType(
841              SrcElemTy, Ops.slice(1, i - 1)))) &&
842         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
843       Any = true;
844       Type *NewType =
845           Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
846       Constant *NewIdx = ConstantFoldCastOperand(
847           CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
848           DL);
849       if (!NewIdx)
850         return nullptr;
851       NewIdxs.push_back(NewIdx);
852     } else
853       NewIdxs.push_back(Ops[i]);
854   }
855 
856   if (!Any)
857     return nullptr;
858 
859   Constant *C =
860       ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
861   return ConstantFoldConstant(C, DL, TLI);
862 }
863 
864 /// If we can symbolically evaluate the GEP constant expression, do so.
865 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
866                                   ArrayRef<Constant *> Ops,
867                                   const DataLayout &DL,
868                                   const TargetLibraryInfo *TLI) {
869   Type *SrcElemTy = GEP->getSourceElementType();
870   Type *ResTy = GEP->getType();
871   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
872     return nullptr;
873 
874   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
875                                    GEP->getInRange(), DL, TLI))
876     return C;
877 
878   Constant *Ptr = Ops[0];
879   if (!Ptr->getType()->isPointerTy())
880     return nullptr;
881 
882   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
883 
884   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
885     if (!isa<ConstantInt>(Ops[i]))
886       return nullptr;
887 
888   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
889   APInt Offset = APInt(
890       BitWidth,
891       DL.getIndexedOffsetInType(
892           SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
893 
894   std::optional<ConstantRange> InRange = GEP->getInRange();
895   if (InRange)
896     InRange = InRange->sextOrTrunc(BitWidth);
897 
898   // If this is a GEP of a GEP, fold it all into a single GEP.
899   GEPNoWrapFlags NW = GEP->getNoWrapFlags();
900   bool Overflow = false;
901   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
902     NW &= GEP->getNoWrapFlags();
903 
904     SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
905 
906     // Do not try the incorporate the sub-GEP if some index is not a number.
907     bool AllConstantInt = true;
908     for (Value *NestedOp : NestedOps)
909       if (!isa<ConstantInt>(NestedOp)) {
910         AllConstantInt = false;
911         break;
912       }
913     if (!AllConstantInt)
914       break;
915 
916     // TODO: Try to intersect two inrange attributes?
917     if (!InRange) {
918       InRange = GEP->getInRange();
919       if (InRange)
920         // Adjust inrange by offset until now.
921         InRange = InRange->sextOrTrunc(BitWidth).subtract(Offset);
922     }
923 
924     Ptr = cast<Constant>(GEP->getOperand(0));
925     SrcElemTy = GEP->getSourceElementType();
926     Offset = Offset.sadd_ov(
927         APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)),
928         Overflow);
929   }
930 
931   // Preserving nusw (without inbounds) also requires that the offset
932   // additions did not overflow.
933   if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
934     NW = NW.withoutNoUnsignedSignedWrap();
935 
936   // If the base value for this address is a literal integer value, fold the
937   // getelementptr to the resulting integer value casted to the pointer type.
938   APInt BasePtr(BitWidth, 0);
939   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
940     if (CE->getOpcode() == Instruction::IntToPtr) {
941       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
942         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
943     }
944   }
945 
946   auto *PTy = cast<PointerType>(Ptr->getType());
947   if ((Ptr->isNullValue() || BasePtr != 0) &&
948       !DL.isNonIntegralPointerType(PTy)) {
949     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
950     return ConstantExpr::getIntToPtr(C, ResTy);
951   }
952 
953   // Try to infer inbounds for GEPs of globals.
954   // TODO(gep_nowrap): Also infer nuw flag.
955   if (!NW.isInBounds() && Offset.isNonNegative()) {
956     bool CanBeNull, CanBeFreed;
957     uint64_t DerefBytes =
958         Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
959     if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
960       NW |= GEPNoWrapFlags::inBounds();
961   }
962 
963   // Otherwise canonicalize this to a single ptradd.
964   LLVMContext &Ctx = Ptr->getContext();
965   return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx), Ptr,
966                                         ConstantInt::get(Ctx, Offset), NW,
967                                         InRange);
968 }
969 
970 /// Attempt to constant fold an instruction with the
971 /// specified opcode and operands.  If successful, the constant result is
972 /// returned, if not, null is returned.  Note that this function can fail when
973 /// attempting to fold instructions like loads and stores, which have no
974 /// constant expression form.
975 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
976                                        ArrayRef<Constant *> Ops,
977                                        const DataLayout &DL,
978                                        const TargetLibraryInfo *TLI,
979                                        bool AllowNonDeterministic) {
980   Type *DestTy = InstOrCE->getType();
981 
982   if (Instruction::isUnaryOp(Opcode))
983     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
984 
985   if (Instruction::isBinaryOp(Opcode)) {
986     switch (Opcode) {
987     default:
988       break;
989     case Instruction::FAdd:
990     case Instruction::FSub:
991     case Instruction::FMul:
992     case Instruction::FDiv:
993     case Instruction::FRem:
994       // Handle floating point instructions separately to account for denormals
995       // TODO: If a constant expression is being folded rather than an
996       // instruction, denormals will not be flushed/treated as zero
997       if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
998         return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
999                                           AllowNonDeterministic);
1000       }
1001     }
1002     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1003   }
1004 
1005   if (Instruction::isCast(Opcode))
1006     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1007 
1008   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1009     Type *SrcElemTy = GEP->getSourceElementType();
1010     if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy))
1011       return nullptr;
1012 
1013     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1014       return C;
1015 
1016     return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1017                                           GEP->getNoWrapFlags(),
1018                                           GEP->getInRange());
1019   }
1020 
1021   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1022     return CE->getWithOperands(Ops);
1023 
1024   switch (Opcode) {
1025   default: return nullptr;
1026   case Instruction::ICmp:
1027   case Instruction::FCmp: {
1028     auto *C = cast<CmpInst>(InstOrCE);
1029     return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1030                                            DL, TLI, C);
1031   }
1032   case Instruction::Freeze:
1033     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1034   case Instruction::Call:
1035     if (auto *F = dyn_cast<Function>(Ops.back())) {
1036       const auto *Call = cast<CallBase>(InstOrCE);
1037       if (canConstantFoldCallTo(Call, F))
1038         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1039                                 AllowNonDeterministic);
1040     }
1041     return nullptr;
1042   case Instruction::Select:
1043     return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1044   case Instruction::ExtractElement:
1045     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1046   case Instruction::ExtractValue:
1047     return ConstantFoldExtractValueInstruction(
1048         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1049   case Instruction::InsertElement:
1050     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1051   case Instruction::InsertValue:
1052     return ConstantFoldInsertValueInstruction(
1053         Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1054   case Instruction::ShuffleVector:
1055     return ConstantExpr::getShuffleVector(
1056         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1057   case Instruction::Load: {
1058     const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1059     if (LI->isVolatile())
1060       return nullptr;
1061     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1062   }
1063   }
1064 }
1065 
1066 } // end anonymous namespace
1067 
1068 //===----------------------------------------------------------------------===//
1069 // Constant Folding public APIs
1070 //===----------------------------------------------------------------------===//
1071 
1072 namespace {
1073 
1074 Constant *
1075 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1076                          const TargetLibraryInfo *TLI,
1077                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1078   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1079     return const_cast<Constant *>(C);
1080 
1081   SmallVector<Constant *, 8> Ops;
1082   for (const Use &OldU : C->operands()) {
1083     Constant *OldC = cast<Constant>(&OldU);
1084     Constant *NewC = OldC;
1085     // Recursively fold the ConstantExpr's operands. If we have already folded
1086     // a ConstantExpr, we don't have to process it again.
1087     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1088       auto It = FoldedOps.find(OldC);
1089       if (It == FoldedOps.end()) {
1090         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1091         FoldedOps.insert({OldC, NewC});
1092       } else {
1093         NewC = It->second;
1094       }
1095     }
1096     Ops.push_back(NewC);
1097   }
1098 
1099   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1100     if (Constant *Res = ConstantFoldInstOperandsImpl(
1101             CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1102       return Res;
1103     return const_cast<Constant *>(C);
1104   }
1105 
1106   assert(isa<ConstantVector>(C));
1107   return ConstantVector::get(Ops);
1108 }
1109 
1110 } // end anonymous namespace
1111 
1112 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1113                                         const TargetLibraryInfo *TLI) {
1114   // Handle PHI nodes quickly here...
1115   if (auto *PN = dyn_cast<PHINode>(I)) {
1116     Constant *CommonValue = nullptr;
1117 
1118     SmallDenseMap<Constant *, Constant *> FoldedOps;
1119     for (Value *Incoming : PN->incoming_values()) {
1120       // If the incoming value is undef then skip it.  Note that while we could
1121       // skip the value if it is equal to the phi node itself we choose not to
1122       // because that would break the rule that constant folding only applies if
1123       // all operands are constants.
1124       if (isa<UndefValue>(Incoming))
1125         continue;
1126       // If the incoming value is not a constant, then give up.
1127       auto *C = dyn_cast<Constant>(Incoming);
1128       if (!C)
1129         return nullptr;
1130       // Fold the PHI's operands.
1131       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1132       // If the incoming value is a different constant to
1133       // the one we saw previously, then give up.
1134       if (CommonValue && C != CommonValue)
1135         return nullptr;
1136       CommonValue = C;
1137     }
1138 
1139     // If we reach here, all incoming values are the same constant or undef.
1140     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1141   }
1142 
1143   // Scan the operand list, checking to see if they are all constants, if so,
1144   // hand off to ConstantFoldInstOperandsImpl.
1145   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1146     return nullptr;
1147 
1148   SmallDenseMap<Constant *, Constant *> FoldedOps;
1149   SmallVector<Constant *, 8> Ops;
1150   for (const Use &OpU : I->operands()) {
1151     auto *Op = cast<Constant>(&OpU);
1152     // Fold the Instruction's operands.
1153     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1154     Ops.push_back(Op);
1155   }
1156 
1157   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1158 }
1159 
1160 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1161                                      const TargetLibraryInfo *TLI) {
1162   SmallDenseMap<Constant *, Constant *> FoldedOps;
1163   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1164 }
1165 
1166 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1167                                          ArrayRef<Constant *> Ops,
1168                                          const DataLayout &DL,
1169                                          const TargetLibraryInfo *TLI,
1170                                          bool AllowNonDeterministic) {
1171   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1172                                       AllowNonDeterministic);
1173 }
1174 
1175 Constant *llvm::ConstantFoldCompareInstOperands(
1176     unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1177     const TargetLibraryInfo *TLI, const Instruction *I) {
1178   CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1179   // fold: icmp (inttoptr x), null         -> icmp x, 0
1180   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1181   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1182   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1183   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1184   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1185   //
1186   // FIXME: The following comment is out of data and the DataLayout is here now.
1187   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1188   // around to know if bit truncation is happening.
1189   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1190     if (Ops1->isNullValue()) {
1191       if (CE0->getOpcode() == Instruction::IntToPtr) {
1192         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1193         // Convert the integer value to the right size to ensure we get the
1194         // proper extension or truncation.
1195         if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1196                                                   /*IsSigned*/ false, DL)) {
1197           Constant *Null = Constant::getNullValue(C->getType());
1198           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1199         }
1200       }
1201 
1202       // Only do this transformation if the int is intptrty in size, otherwise
1203       // there is a truncation or extension that we aren't modeling.
1204       if (CE0->getOpcode() == Instruction::PtrToInt) {
1205         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1206         if (CE0->getType() == IntPtrTy) {
1207           Constant *C = CE0->getOperand(0);
1208           Constant *Null = Constant::getNullValue(C->getType());
1209           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1210         }
1211       }
1212     }
1213 
1214     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1215       if (CE0->getOpcode() == CE1->getOpcode()) {
1216         if (CE0->getOpcode() == Instruction::IntToPtr) {
1217           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1218 
1219           // Convert the integer value to the right size to ensure we get the
1220           // proper extension or truncation.
1221           Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1222                                                  /*IsSigned*/ false, DL);
1223           Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1224                                                  /*IsSigned*/ false, DL);
1225           if (C0 && C1)
1226             return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1227         }
1228 
1229         // Only do this transformation if the int is intptrty in size, otherwise
1230         // there is a truncation or extension that we aren't modeling.
1231         if (CE0->getOpcode() == Instruction::PtrToInt) {
1232           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1233           if (CE0->getType() == IntPtrTy &&
1234               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1235             return ConstantFoldCompareInstOperands(
1236                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1237           }
1238         }
1239       }
1240     }
1241 
1242     // Convert pointer comparison (base+offset1) pred (base+offset2) into
1243     // offset1 pred offset2, for the case where the offset is inbounds. This
1244     // only works for equality and unsigned comparison, as inbounds permits
1245     // crossing the sign boundary. However, the offset comparison itself is
1246     // signed.
1247     if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1248       unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1249       APInt Offset0(IndexWidth, 0);
1250       Value *Stripped0 =
1251           Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1252       APInt Offset1(IndexWidth, 0);
1253       Value *Stripped1 =
1254           Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1255       if (Stripped0 == Stripped1)
1256         return ConstantInt::getBool(
1257             Ops0->getContext(),
1258             ICmpInst::compare(Offset0, Offset1,
1259                               ICmpInst::getSignedPredicate(Predicate)));
1260     }
1261   } else if (isa<ConstantExpr>(Ops1)) {
1262     // If RHS is a constant expression, but the left side isn't, swap the
1263     // operands and try again.
1264     Predicate = ICmpInst::getSwappedPredicate(Predicate);
1265     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1266   }
1267 
1268   // Flush any denormal constant float input according to denormal handling
1269   // mode.
1270   Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1271   if (!Ops0)
1272     return nullptr;
1273   Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1274   if (!Ops1)
1275     return nullptr;
1276 
1277   return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1278 }
1279 
1280 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1281                                            const DataLayout &DL) {
1282   assert(Instruction::isUnaryOp(Opcode));
1283 
1284   return ConstantFoldUnaryInstruction(Opcode, Op);
1285 }
1286 
1287 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1288                                              Constant *RHS,
1289                                              const DataLayout &DL) {
1290   assert(Instruction::isBinaryOp(Opcode));
1291   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1292     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1293       return C;
1294 
1295   if (ConstantExpr::isDesirableBinOp(Opcode))
1296     return ConstantExpr::get(Opcode, LHS, RHS);
1297   return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1298 }
1299 
1300 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1301                                 bool IsOutput) {
1302   if (!I || !I->getParent() || !I->getFunction())
1303     return Operand;
1304 
1305   ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1306   if (!CFP)
1307     return Operand;
1308 
1309   const APFloat &APF = CFP->getValueAPF();
1310   // TODO: Should this canonicalize nans?
1311   if (!APF.isDenormal())
1312     return Operand;
1313 
1314   Type *Ty = CFP->getType();
1315   DenormalMode DenormMode =
1316       I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1317   DenormalMode::DenormalModeKind Mode =
1318       IsOutput ? DenormMode.Output : DenormMode.Input;
1319   switch (Mode) {
1320   default:
1321     llvm_unreachable("unknown denormal mode");
1322   case DenormalMode::Dynamic:
1323     return nullptr;
1324   case DenormalMode::IEEE:
1325     return Operand;
1326   case DenormalMode::PreserveSign:
1327     if (APF.isDenormal()) {
1328       return ConstantFP::get(
1329           Ty->getContext(),
1330           APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1331     }
1332     return Operand;
1333   case DenormalMode::PositiveZero:
1334     if (APF.isDenormal()) {
1335       return ConstantFP::get(Ty->getContext(),
1336                              APFloat::getZero(Ty->getFltSemantics(), false));
1337     }
1338     return Operand;
1339   }
1340   return Operand;
1341 }
1342 
1343 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1344                                            Constant *RHS, const DataLayout &DL,
1345                                            const Instruction *I,
1346                                            bool AllowNonDeterministic) {
1347   if (Instruction::isBinaryOp(Opcode)) {
1348     // Flush denormal inputs if needed.
1349     Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1350     if (!Op0)
1351       return nullptr;
1352     Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1353     if (!Op1)
1354       return nullptr;
1355 
1356     // If nsz or an algebraic FMF flag is set, the result of the FP operation
1357     // may change due to future optimization. Don't constant fold them if
1358     // non-deterministic results are not allowed.
1359     if (!AllowNonDeterministic)
1360       if (auto *FP = dyn_cast_or_null<FPMathOperator>(I))
1361         if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1362             FP->hasAllowContract() || FP->hasAllowReciprocal())
1363           return nullptr;
1364 
1365     // Calculate constant result.
1366     Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1367     if (!C)
1368       return nullptr;
1369 
1370     // Flush denormal output if needed.
1371     C = FlushFPConstant(C, I, /* IsOutput */ true);
1372     if (!C)
1373       return nullptr;
1374 
1375     // The precise NaN value is non-deterministic.
1376     if (!AllowNonDeterministic && C->isNaN())
1377       return nullptr;
1378 
1379     return C;
1380   }
1381   // If instruction lacks a parent/function and the denormal mode cannot be
1382   // determined, use the default (IEEE).
1383   return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1384 }
1385 
1386 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1387                                         Type *DestTy, const DataLayout &DL) {
1388   assert(Instruction::isCast(Opcode));
1389   switch (Opcode) {
1390   default:
1391     llvm_unreachable("Missing case");
1392   case Instruction::PtrToInt:
1393     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1394       Constant *FoldedValue = nullptr;
1395       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1396       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1397       if (CE->getOpcode() == Instruction::IntToPtr) {
1398         // zext/trunc the inttoptr to pointer size.
1399         FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0),
1400                                               DL.getIntPtrType(CE->getType()),
1401                                               /*IsSigned=*/false, DL);
1402       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1403         // If we have GEP, we can perform the following folds:
1404         // (ptrtoint (gep null, x)) -> x
1405         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1406         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1407         APInt BaseOffset(BitWidth, 0);
1408         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1409             DL, BaseOffset, /*AllowNonInbounds=*/true));
1410         if (Base->isNullValue()) {
1411           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1412         } else {
1413           // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1414           if (GEP->getNumIndices() == 1 &&
1415               GEP->getSourceElementType()->isIntegerTy(8)) {
1416             auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1417             auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1418             Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1419             if (Sub && Sub->getType() == IntIdxTy &&
1420                 Sub->getOpcode() == Instruction::Sub &&
1421                 Sub->getOperand(0)->isNullValue())
1422               FoldedValue = ConstantExpr::getSub(
1423                   ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1424           }
1425         }
1426       }
1427       if (FoldedValue) {
1428         // Do a zext or trunc to get to the ptrtoint dest size.
1429         return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1430                                        DL);
1431       }
1432     }
1433     break;
1434   case Instruction::IntToPtr:
1435     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1436     // the int size is >= the ptr size and the address spaces are the same.
1437     // This requires knowing the width of a pointer, so it can't be done in
1438     // ConstantExpr::getCast.
1439     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1440       if (CE->getOpcode() == Instruction::PtrToInt) {
1441         Constant *SrcPtr = CE->getOperand(0);
1442         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1443         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1444 
1445         if (MidIntSize >= SrcPtrSize) {
1446           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1447           if (SrcAS == DestTy->getPointerAddressSpace())
1448             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1449         }
1450       }
1451     }
1452     break;
1453   case Instruction::Trunc:
1454   case Instruction::ZExt:
1455   case Instruction::SExt:
1456   case Instruction::FPTrunc:
1457   case Instruction::FPExt:
1458   case Instruction::UIToFP:
1459   case Instruction::SIToFP:
1460   case Instruction::FPToUI:
1461   case Instruction::FPToSI:
1462   case Instruction::AddrSpaceCast:
1463     break;
1464   case Instruction::BitCast:
1465     return FoldBitCast(C, DestTy, DL);
1466   }
1467 
1468   if (ConstantExpr::isDesirableCastOp(Opcode))
1469     return ConstantExpr::getCast(Opcode, C, DestTy);
1470   return ConstantFoldCastInstruction(Opcode, C, DestTy);
1471 }
1472 
1473 Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy,
1474                                         bool IsSigned, const DataLayout &DL) {
1475   Type *SrcTy = C->getType();
1476   if (SrcTy == DestTy)
1477     return C;
1478   if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1479     return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1480   if (IsSigned)
1481     return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1482   return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1483 }
1484 
1485 //===----------------------------------------------------------------------===//
1486 //  Constant Folding for Calls
1487 //
1488 
1489 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1490   if (Call->isNoBuiltin())
1491     return false;
1492   if (Call->getFunctionType() != F->getFunctionType())
1493     return false;
1494   switch (F->getIntrinsicID()) {
1495   // Operations that do not operate floating-point numbers and do not depend on
1496   // FP environment can be folded even in strictfp functions.
1497   case Intrinsic::bswap:
1498   case Intrinsic::ctpop:
1499   case Intrinsic::ctlz:
1500   case Intrinsic::cttz:
1501   case Intrinsic::fshl:
1502   case Intrinsic::fshr:
1503   case Intrinsic::launder_invariant_group:
1504   case Intrinsic::strip_invariant_group:
1505   case Intrinsic::masked_load:
1506   case Intrinsic::get_active_lane_mask:
1507   case Intrinsic::abs:
1508   case Intrinsic::smax:
1509   case Intrinsic::smin:
1510   case Intrinsic::umax:
1511   case Intrinsic::umin:
1512   case Intrinsic::scmp:
1513   case Intrinsic::ucmp:
1514   case Intrinsic::sadd_with_overflow:
1515   case Intrinsic::uadd_with_overflow:
1516   case Intrinsic::ssub_with_overflow:
1517   case Intrinsic::usub_with_overflow:
1518   case Intrinsic::smul_with_overflow:
1519   case Intrinsic::umul_with_overflow:
1520   case Intrinsic::sadd_sat:
1521   case Intrinsic::uadd_sat:
1522   case Intrinsic::ssub_sat:
1523   case Intrinsic::usub_sat:
1524   case Intrinsic::smul_fix:
1525   case Intrinsic::smul_fix_sat:
1526   case Intrinsic::bitreverse:
1527   case Intrinsic::is_constant:
1528   case Intrinsic::vector_reduce_add:
1529   case Intrinsic::vector_reduce_mul:
1530   case Intrinsic::vector_reduce_and:
1531   case Intrinsic::vector_reduce_or:
1532   case Intrinsic::vector_reduce_xor:
1533   case Intrinsic::vector_reduce_smin:
1534   case Intrinsic::vector_reduce_smax:
1535   case Intrinsic::vector_reduce_umin:
1536   case Intrinsic::vector_reduce_umax:
1537   // Target intrinsics
1538   case Intrinsic::amdgcn_perm:
1539   case Intrinsic::amdgcn_wave_reduce_umin:
1540   case Intrinsic::amdgcn_wave_reduce_umax:
1541   case Intrinsic::amdgcn_s_wqm:
1542   case Intrinsic::amdgcn_s_quadmask:
1543   case Intrinsic::amdgcn_s_bitreplicate:
1544   case Intrinsic::arm_mve_vctp8:
1545   case Intrinsic::arm_mve_vctp16:
1546   case Intrinsic::arm_mve_vctp32:
1547   case Intrinsic::arm_mve_vctp64:
1548   case Intrinsic::aarch64_sve_convert_from_svbool:
1549   // WebAssembly float semantics are always known
1550   case Intrinsic::wasm_trunc_signed:
1551   case Intrinsic::wasm_trunc_unsigned:
1552     return true;
1553 
1554   // Floating point operations cannot be folded in strictfp functions in
1555   // general case. They can be folded if FP environment is known to compiler.
1556   case Intrinsic::minnum:
1557   case Intrinsic::maxnum:
1558   case Intrinsic::minimum:
1559   case Intrinsic::maximum:
1560   case Intrinsic::log:
1561   case Intrinsic::log2:
1562   case Intrinsic::log10:
1563   case Intrinsic::exp:
1564   case Intrinsic::exp2:
1565   case Intrinsic::exp10:
1566   case Intrinsic::sqrt:
1567   case Intrinsic::sin:
1568   case Intrinsic::cos:
1569   case Intrinsic::pow:
1570   case Intrinsic::powi:
1571   case Intrinsic::ldexp:
1572   case Intrinsic::fma:
1573   case Intrinsic::fmuladd:
1574   case Intrinsic::frexp:
1575   case Intrinsic::fptoui_sat:
1576   case Intrinsic::fptosi_sat:
1577   case Intrinsic::convert_from_fp16:
1578   case Intrinsic::convert_to_fp16:
1579   case Intrinsic::amdgcn_cos:
1580   case Intrinsic::amdgcn_cubeid:
1581   case Intrinsic::amdgcn_cubema:
1582   case Intrinsic::amdgcn_cubesc:
1583   case Intrinsic::amdgcn_cubetc:
1584   case Intrinsic::amdgcn_fmul_legacy:
1585   case Intrinsic::amdgcn_fma_legacy:
1586   case Intrinsic::amdgcn_fract:
1587   case Intrinsic::amdgcn_sin:
1588   // The intrinsics below depend on rounding mode in MXCSR.
1589   case Intrinsic::x86_sse_cvtss2si:
1590   case Intrinsic::x86_sse_cvtss2si64:
1591   case Intrinsic::x86_sse_cvttss2si:
1592   case Intrinsic::x86_sse_cvttss2si64:
1593   case Intrinsic::x86_sse2_cvtsd2si:
1594   case Intrinsic::x86_sse2_cvtsd2si64:
1595   case Intrinsic::x86_sse2_cvttsd2si:
1596   case Intrinsic::x86_sse2_cvttsd2si64:
1597   case Intrinsic::x86_avx512_vcvtss2si32:
1598   case Intrinsic::x86_avx512_vcvtss2si64:
1599   case Intrinsic::x86_avx512_cvttss2si:
1600   case Intrinsic::x86_avx512_cvttss2si64:
1601   case Intrinsic::x86_avx512_vcvtsd2si32:
1602   case Intrinsic::x86_avx512_vcvtsd2si64:
1603   case Intrinsic::x86_avx512_cvttsd2si:
1604   case Intrinsic::x86_avx512_cvttsd2si64:
1605   case Intrinsic::x86_avx512_vcvtss2usi32:
1606   case Intrinsic::x86_avx512_vcvtss2usi64:
1607   case Intrinsic::x86_avx512_cvttss2usi:
1608   case Intrinsic::x86_avx512_cvttss2usi64:
1609   case Intrinsic::x86_avx512_vcvtsd2usi32:
1610   case Intrinsic::x86_avx512_vcvtsd2usi64:
1611   case Intrinsic::x86_avx512_cvttsd2usi:
1612   case Intrinsic::x86_avx512_cvttsd2usi64:
1613     return !Call->isStrictFP();
1614 
1615   // Sign operations are actually bitwise operations, they do not raise
1616   // exceptions even for SNANs.
1617   case Intrinsic::fabs:
1618   case Intrinsic::copysign:
1619   case Intrinsic::is_fpclass:
1620   // Non-constrained variants of rounding operations means default FP
1621   // environment, they can be folded in any case.
1622   case Intrinsic::ceil:
1623   case Intrinsic::floor:
1624   case Intrinsic::round:
1625   case Intrinsic::roundeven:
1626   case Intrinsic::trunc:
1627   case Intrinsic::nearbyint:
1628   case Intrinsic::rint:
1629   case Intrinsic::canonicalize:
1630   // Constrained intrinsics can be folded if FP environment is known
1631   // to compiler.
1632   case Intrinsic::experimental_constrained_fma:
1633   case Intrinsic::experimental_constrained_fmuladd:
1634   case Intrinsic::experimental_constrained_fadd:
1635   case Intrinsic::experimental_constrained_fsub:
1636   case Intrinsic::experimental_constrained_fmul:
1637   case Intrinsic::experimental_constrained_fdiv:
1638   case Intrinsic::experimental_constrained_frem:
1639   case Intrinsic::experimental_constrained_ceil:
1640   case Intrinsic::experimental_constrained_floor:
1641   case Intrinsic::experimental_constrained_round:
1642   case Intrinsic::experimental_constrained_roundeven:
1643   case Intrinsic::experimental_constrained_trunc:
1644   case Intrinsic::experimental_constrained_nearbyint:
1645   case Intrinsic::experimental_constrained_rint:
1646   case Intrinsic::experimental_constrained_fcmp:
1647   case Intrinsic::experimental_constrained_fcmps:
1648     return true;
1649   default:
1650     return false;
1651   case Intrinsic::not_intrinsic: break;
1652   }
1653 
1654   if (!F->hasName() || Call->isStrictFP())
1655     return false;
1656 
1657   // In these cases, the check of the length is required.  We don't want to
1658   // return true for a name like "cos\0blah" which strcmp would return equal to
1659   // "cos", but has length 8.
1660   StringRef Name = F->getName();
1661   switch (Name[0]) {
1662   default:
1663     return false;
1664   case 'a':
1665     return Name == "acos" || Name == "acosf" ||
1666            Name == "asin" || Name == "asinf" ||
1667            Name == "atan" || Name == "atanf" ||
1668            Name == "atan2" || Name == "atan2f";
1669   case 'c':
1670     return Name == "ceil" || Name == "ceilf" ||
1671            Name == "cos" || Name == "cosf" ||
1672            Name == "cosh" || Name == "coshf";
1673   case 'e':
1674     return Name == "exp" || Name == "expf" ||
1675            Name == "exp2" || Name == "exp2f";
1676   case 'f':
1677     return Name == "fabs" || Name == "fabsf" ||
1678            Name == "floor" || Name == "floorf" ||
1679            Name == "fmod" || Name == "fmodf";
1680   case 'l':
1681     return Name == "log" || Name == "logf" || Name == "log2" ||
1682            Name == "log2f" || Name == "log10" || Name == "log10f" ||
1683            Name == "logl";
1684   case 'n':
1685     return Name == "nearbyint" || Name == "nearbyintf";
1686   case 'p':
1687     return Name == "pow" || Name == "powf";
1688   case 'r':
1689     return Name == "remainder" || Name == "remainderf" ||
1690            Name == "rint" || Name == "rintf" ||
1691            Name == "round" || Name == "roundf";
1692   case 's':
1693     return Name == "sin" || Name == "sinf" ||
1694            Name == "sinh" || Name == "sinhf" ||
1695            Name == "sqrt" || Name == "sqrtf";
1696   case 't':
1697     return Name == "tan" || Name == "tanf" ||
1698            Name == "tanh" || Name == "tanhf" ||
1699            Name == "trunc" || Name == "truncf";
1700   case '_':
1701     // Check for various function names that get used for the math functions
1702     // when the header files are preprocessed with the macro
1703     // __FINITE_MATH_ONLY__ enabled.
1704     // The '12' here is the length of the shortest name that can match.
1705     // We need to check the size before looking at Name[1] and Name[2]
1706     // so we may as well check a limit that will eliminate mismatches.
1707     if (Name.size() < 12 || Name[1] != '_')
1708       return false;
1709     switch (Name[2]) {
1710     default:
1711       return false;
1712     case 'a':
1713       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1714              Name == "__asin_finite" || Name == "__asinf_finite" ||
1715              Name == "__atan2_finite" || Name == "__atan2f_finite";
1716     case 'c':
1717       return Name == "__cosh_finite" || Name == "__coshf_finite";
1718     case 'e':
1719       return Name == "__exp_finite" || Name == "__expf_finite" ||
1720              Name == "__exp2_finite" || Name == "__exp2f_finite";
1721     case 'l':
1722       return Name == "__log_finite" || Name == "__logf_finite" ||
1723              Name == "__log10_finite" || Name == "__log10f_finite";
1724     case 'p':
1725       return Name == "__pow_finite" || Name == "__powf_finite";
1726     case 's':
1727       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1728     }
1729   }
1730 }
1731 
1732 namespace {
1733 
1734 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1735   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1736     APFloat APF(V);
1737     bool unused;
1738     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1739     return ConstantFP::get(Ty->getContext(), APF);
1740   }
1741   if (Ty->isDoubleTy())
1742     return ConstantFP::get(Ty->getContext(), APFloat(V));
1743   llvm_unreachable("Can only constant fold half/float/double");
1744 }
1745 
1746 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1747 Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
1748   if (Ty->isFP128Ty())
1749     return ConstantFP::get(Ty, V);
1750   llvm_unreachable("Can only constant fold fp128");
1751 }
1752 #endif
1753 
1754 /// Clear the floating-point exception state.
1755 inline void llvm_fenv_clearexcept() {
1756 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1757   feclearexcept(FE_ALL_EXCEPT);
1758 #endif
1759   errno = 0;
1760 }
1761 
1762 /// Test if a floating-point exception was raised.
1763 inline bool llvm_fenv_testexcept() {
1764   int errno_val = errno;
1765   if (errno_val == ERANGE || errno_val == EDOM)
1766     return true;
1767 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1768   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1769     return true;
1770 #endif
1771   return false;
1772 }
1773 
1774 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1775                          Type *Ty) {
1776   llvm_fenv_clearexcept();
1777   double Result = NativeFP(V.convertToDouble());
1778   if (llvm_fenv_testexcept()) {
1779     llvm_fenv_clearexcept();
1780     return nullptr;
1781   }
1782 
1783   return GetConstantFoldFPValue(Result, Ty);
1784 }
1785 
1786 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1787 Constant *ConstantFoldFP128(long double (*NativeFP)(long double),
1788                             const APFloat &V, Type *Ty) {
1789   llvm_fenv_clearexcept();
1790   float128 Result = NativeFP(V.convertToQuad());
1791   if (llvm_fenv_testexcept()) {
1792     llvm_fenv_clearexcept();
1793     return nullptr;
1794   }
1795 
1796   return GetConstantFoldFPValue128(Result, Ty);
1797 }
1798 #endif
1799 
1800 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1801                                const APFloat &V, const APFloat &W, Type *Ty) {
1802   llvm_fenv_clearexcept();
1803   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1804   if (llvm_fenv_testexcept()) {
1805     llvm_fenv_clearexcept();
1806     return nullptr;
1807   }
1808 
1809   return GetConstantFoldFPValue(Result, Ty);
1810 }
1811 
1812 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1813   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1814   if (!VT)
1815     return nullptr;
1816 
1817   // This isn't strictly necessary, but handle the special/common case of zero:
1818   // all integer reductions of a zero input produce zero.
1819   if (isa<ConstantAggregateZero>(Op))
1820     return ConstantInt::get(VT->getElementType(), 0);
1821 
1822   // This is the same as the underlying binops - poison propagates.
1823   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1824     return PoisonValue::get(VT->getElementType());
1825 
1826   // TODO: Handle undef.
1827   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1828     return nullptr;
1829 
1830   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1831   if (!EltC)
1832     return nullptr;
1833 
1834   APInt Acc = EltC->getValue();
1835   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1836     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1837       return nullptr;
1838     const APInt &X = EltC->getValue();
1839     switch (IID) {
1840     case Intrinsic::vector_reduce_add:
1841       Acc = Acc + X;
1842       break;
1843     case Intrinsic::vector_reduce_mul:
1844       Acc = Acc * X;
1845       break;
1846     case Intrinsic::vector_reduce_and:
1847       Acc = Acc & X;
1848       break;
1849     case Intrinsic::vector_reduce_or:
1850       Acc = Acc | X;
1851       break;
1852     case Intrinsic::vector_reduce_xor:
1853       Acc = Acc ^ X;
1854       break;
1855     case Intrinsic::vector_reduce_smin:
1856       Acc = APIntOps::smin(Acc, X);
1857       break;
1858     case Intrinsic::vector_reduce_smax:
1859       Acc = APIntOps::smax(Acc, X);
1860       break;
1861     case Intrinsic::vector_reduce_umin:
1862       Acc = APIntOps::umin(Acc, X);
1863       break;
1864     case Intrinsic::vector_reduce_umax:
1865       Acc = APIntOps::umax(Acc, X);
1866       break;
1867     }
1868   }
1869 
1870   return ConstantInt::get(Op->getContext(), Acc);
1871 }
1872 
1873 /// Attempt to fold an SSE floating point to integer conversion of a constant
1874 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1875 /// used (toward nearest, ties to even). This matches the behavior of the
1876 /// non-truncating SSE instructions in the default rounding mode. The desired
1877 /// integer type Ty is used to select how many bits are available for the
1878 /// result. Returns null if the conversion cannot be performed, otherwise
1879 /// returns the Constant value resulting from the conversion.
1880 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1881                                       Type *Ty, bool IsSigned) {
1882   // All of these conversion intrinsics form an integer of at most 64bits.
1883   unsigned ResultWidth = Ty->getIntegerBitWidth();
1884   assert(ResultWidth <= 64 &&
1885          "Can only constant fold conversions to 64 and 32 bit ints");
1886 
1887   uint64_t UIntVal;
1888   bool isExact = false;
1889   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1890                                               : APFloat::rmNearestTiesToEven;
1891   APFloat::opStatus status =
1892       Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
1893                            IsSigned, mode, &isExact);
1894   if (status != APFloat::opOK &&
1895       (!roundTowardZero || status != APFloat::opInexact))
1896     return nullptr;
1897   return ConstantInt::get(Ty, UIntVal, IsSigned);
1898 }
1899 
1900 double getValueAsDouble(ConstantFP *Op) {
1901   Type *Ty = Op->getType();
1902 
1903   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1904     return Op->getValueAPF().convertToDouble();
1905 
1906   bool unused;
1907   APFloat APF = Op->getValueAPF();
1908   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1909   return APF.convertToDouble();
1910 }
1911 
1912 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1913   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1914     C = &CI->getValue();
1915     return true;
1916   }
1917   if (isa<UndefValue>(Op)) {
1918     C = nullptr;
1919     return true;
1920   }
1921   return false;
1922 }
1923 
1924 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1925 /// to be folded.
1926 ///
1927 /// \param CI Constrained intrinsic call.
1928 /// \param St Exception flags raised during constant evaluation.
1929 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1930                                APFloat::opStatus St) {
1931   std::optional<RoundingMode> ORM = CI->getRoundingMode();
1932   std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1933 
1934   // If the operation does not change exception status flags, it is safe
1935   // to fold.
1936   if (St == APFloat::opStatus::opOK)
1937     return true;
1938 
1939   // If evaluation raised FP exception, the result can depend on rounding
1940   // mode. If the latter is unknown, folding is not possible.
1941   if (ORM && *ORM == RoundingMode::Dynamic)
1942     return false;
1943 
1944   // If FP exceptions are ignored, fold the call, even if such exception is
1945   // raised.
1946   if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1947     return true;
1948 
1949   // Leave the calculation for runtime so that exception flags be correctly set
1950   // in hardware.
1951   return false;
1952 }
1953 
1954 /// Returns the rounding mode that should be used for constant evaluation.
1955 static RoundingMode
1956 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1957   std::optional<RoundingMode> ORM = CI->getRoundingMode();
1958   if (!ORM || *ORM == RoundingMode::Dynamic)
1959     // Even if the rounding mode is unknown, try evaluating the operation.
1960     // If it does not raise inexact exception, rounding was not applied,
1961     // so the result is exact and does not depend on rounding mode. Whether
1962     // other FP exceptions are raised, it does not depend on rounding mode.
1963     return RoundingMode::NearestTiesToEven;
1964   return *ORM;
1965 }
1966 
1967 /// Try to constant fold llvm.canonicalize for the given caller and value.
1968 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
1969                                           const APFloat &Src) {
1970   // Zero, positive and negative, is always OK to fold.
1971   if (Src.isZero()) {
1972     // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1973     return ConstantFP::get(
1974         CI->getContext(),
1975         APFloat::getZero(Src.getSemantics(), Src.isNegative()));
1976   }
1977 
1978   if (!Ty->isIEEELikeFPTy())
1979     return nullptr;
1980 
1981   // Zero is always canonical and the sign must be preserved.
1982   //
1983   // Denorms and nans may have special encodings, but it should be OK to fold a
1984   // totally average number.
1985   if (Src.isNormal() || Src.isInfinity())
1986     return ConstantFP::get(CI->getContext(), Src);
1987 
1988   if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
1989     DenormalMode DenormMode =
1990         CI->getFunction()->getDenormalMode(Src.getSemantics());
1991 
1992     if (DenormMode == DenormalMode::getIEEE())
1993       return ConstantFP::get(CI->getContext(), Src);
1994 
1995     if (DenormMode.Input == DenormalMode::Dynamic)
1996       return nullptr;
1997 
1998     // If we know if either input or output is flushed, we can fold.
1999     if ((DenormMode.Input == DenormalMode::Dynamic &&
2000          DenormMode.Output == DenormalMode::IEEE) ||
2001         (DenormMode.Input == DenormalMode::IEEE &&
2002          DenormMode.Output == DenormalMode::Dynamic))
2003       return nullptr;
2004 
2005     bool IsPositive =
2006         (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2007          (DenormMode.Output == DenormalMode::PositiveZero &&
2008           DenormMode.Input == DenormalMode::IEEE));
2009 
2010     return ConstantFP::get(CI->getContext(),
2011                            APFloat::getZero(Src.getSemantics(), !IsPositive));
2012   }
2013 
2014   return nullptr;
2015 }
2016 
2017 static Constant *ConstantFoldScalarCall1(StringRef Name,
2018                                          Intrinsic::ID IntrinsicID,
2019                                          Type *Ty,
2020                                          ArrayRef<Constant *> Operands,
2021                                          const TargetLibraryInfo *TLI,
2022                                          const CallBase *Call) {
2023   assert(Operands.size() == 1 && "Wrong number of operands.");
2024 
2025   if (IntrinsicID == Intrinsic::is_constant) {
2026     // We know we have a "Constant" argument. But we want to only
2027     // return true for manifest constants, not those that depend on
2028     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2029     if (Operands[0]->isManifestConstant())
2030       return ConstantInt::getTrue(Ty->getContext());
2031     return nullptr;
2032   }
2033 
2034   if (isa<PoisonValue>(Operands[0])) {
2035     // TODO: All of these operations should probably propagate poison.
2036     if (IntrinsicID == Intrinsic::canonicalize)
2037       return PoisonValue::get(Ty);
2038   }
2039 
2040   if (isa<UndefValue>(Operands[0])) {
2041     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2042     // ctpop() is between 0 and bitwidth, pick 0 for undef.
2043     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2044     if (IntrinsicID == Intrinsic::cos ||
2045         IntrinsicID == Intrinsic::ctpop ||
2046         IntrinsicID == Intrinsic::fptoui_sat ||
2047         IntrinsicID == Intrinsic::fptosi_sat ||
2048         IntrinsicID == Intrinsic::canonicalize)
2049       return Constant::getNullValue(Ty);
2050     if (IntrinsicID == Intrinsic::bswap ||
2051         IntrinsicID == Intrinsic::bitreverse ||
2052         IntrinsicID == Intrinsic::launder_invariant_group ||
2053         IntrinsicID == Intrinsic::strip_invariant_group)
2054       return Operands[0];
2055   }
2056 
2057   if (isa<ConstantPointerNull>(Operands[0])) {
2058     // launder(null) == null == strip(null) iff in addrspace 0
2059     if (IntrinsicID == Intrinsic::launder_invariant_group ||
2060         IntrinsicID == Intrinsic::strip_invariant_group) {
2061       // If instruction is not yet put in a basic block (e.g. when cloning
2062       // a function during inlining), Call's caller may not be available.
2063       // So check Call's BB first before querying Call->getCaller.
2064       const Function *Caller =
2065           Call->getParent() ? Call->getCaller() : nullptr;
2066       if (Caller &&
2067           !NullPointerIsDefined(
2068               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2069         return Operands[0];
2070       }
2071       return nullptr;
2072     }
2073   }
2074 
2075   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2076     if (IntrinsicID == Intrinsic::convert_to_fp16) {
2077       APFloat Val(Op->getValueAPF());
2078 
2079       bool lost = false;
2080       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2081 
2082       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2083     }
2084 
2085     APFloat U = Op->getValueAPF();
2086 
2087     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2088         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2089       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2090 
2091       if (U.isNaN())
2092         return nullptr;
2093 
2094       unsigned Width = Ty->getIntegerBitWidth();
2095       APSInt Int(Width, !Signed);
2096       bool IsExact = false;
2097       APFloat::opStatus Status =
2098           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2099 
2100       if (Status == APFloat::opOK || Status == APFloat::opInexact)
2101         return ConstantInt::get(Ty, Int);
2102 
2103       return nullptr;
2104     }
2105 
2106     if (IntrinsicID == Intrinsic::fptoui_sat ||
2107         IntrinsicID == Intrinsic::fptosi_sat) {
2108       // convertToInteger() already has the desired saturation semantics.
2109       APSInt Int(Ty->getIntegerBitWidth(),
2110                  IntrinsicID == Intrinsic::fptoui_sat);
2111       bool IsExact;
2112       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2113       return ConstantInt::get(Ty, Int);
2114     }
2115 
2116     if (IntrinsicID == Intrinsic::canonicalize)
2117       return constantFoldCanonicalize(Ty, Call, U);
2118 
2119 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2120     if (Ty->isFP128Ty()) {
2121       if (IntrinsicID == Intrinsic::log) {
2122         float128 Result = logf128(Op->getValueAPF().convertToQuad());
2123         return GetConstantFoldFPValue128(Result, Ty);
2124       }
2125 
2126       LibFunc Fp128Func = NotLibFunc;
2127       if (TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2128           Fp128Func == LibFunc_logl)
2129         return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2130     }
2131 #endif
2132 
2133     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2134       return nullptr;
2135 
2136     // Use internal versions of these intrinsics.
2137 
2138     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2139       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2140       return ConstantFP::get(Ty->getContext(), U);
2141     }
2142 
2143     if (IntrinsicID == Intrinsic::round) {
2144       U.roundToIntegral(APFloat::rmNearestTiesToAway);
2145       return ConstantFP::get(Ty->getContext(), U);
2146     }
2147 
2148     if (IntrinsicID == Intrinsic::roundeven) {
2149       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2150       return ConstantFP::get(Ty->getContext(), U);
2151     }
2152 
2153     if (IntrinsicID == Intrinsic::ceil) {
2154       U.roundToIntegral(APFloat::rmTowardPositive);
2155       return ConstantFP::get(Ty->getContext(), U);
2156     }
2157 
2158     if (IntrinsicID == Intrinsic::floor) {
2159       U.roundToIntegral(APFloat::rmTowardNegative);
2160       return ConstantFP::get(Ty->getContext(), U);
2161     }
2162 
2163     if (IntrinsicID == Intrinsic::trunc) {
2164       U.roundToIntegral(APFloat::rmTowardZero);
2165       return ConstantFP::get(Ty->getContext(), U);
2166     }
2167 
2168     if (IntrinsicID == Intrinsic::fabs) {
2169       U.clearSign();
2170       return ConstantFP::get(Ty->getContext(), U);
2171     }
2172 
2173     if (IntrinsicID == Intrinsic::amdgcn_fract) {
2174       // The v_fract instruction behaves like the OpenCL spec, which defines
2175       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2176       //   there to prevent fract(-small) from returning 1.0. It returns the
2177       //   largest positive floating-point number less than 1.0."
2178       APFloat FloorU(U);
2179       FloorU.roundToIntegral(APFloat::rmTowardNegative);
2180       APFloat FractU(U - FloorU);
2181       APFloat AlmostOne(U.getSemantics(), 1);
2182       AlmostOne.next(/*nextDown*/ true);
2183       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2184     }
2185 
2186     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2187     // raise FP exceptions, unless the argument is signaling NaN.
2188 
2189     std::optional<APFloat::roundingMode> RM;
2190     switch (IntrinsicID) {
2191     default:
2192       break;
2193     case Intrinsic::experimental_constrained_nearbyint:
2194     case Intrinsic::experimental_constrained_rint: {
2195       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2196       RM = CI->getRoundingMode();
2197       if (!RM || *RM == RoundingMode::Dynamic)
2198         return nullptr;
2199       break;
2200     }
2201     case Intrinsic::experimental_constrained_round:
2202       RM = APFloat::rmNearestTiesToAway;
2203       break;
2204     case Intrinsic::experimental_constrained_ceil:
2205       RM = APFloat::rmTowardPositive;
2206       break;
2207     case Intrinsic::experimental_constrained_floor:
2208       RM = APFloat::rmTowardNegative;
2209       break;
2210     case Intrinsic::experimental_constrained_trunc:
2211       RM = APFloat::rmTowardZero;
2212       break;
2213     }
2214     if (RM) {
2215       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2216       if (U.isFinite()) {
2217         APFloat::opStatus St = U.roundToIntegral(*RM);
2218         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2219             St == APFloat::opInexact) {
2220           std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2221           if (EB && *EB == fp::ebStrict)
2222             return nullptr;
2223         }
2224       } else if (U.isSignaling()) {
2225         std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2226         if (EB && *EB != fp::ebIgnore)
2227           return nullptr;
2228         U = APFloat::getQNaN(U.getSemantics());
2229       }
2230       return ConstantFP::get(Ty->getContext(), U);
2231     }
2232 
2233     /// We only fold functions with finite arguments. Folding NaN and inf is
2234     /// likely to be aborted with an exception anyway, and some host libms
2235     /// have known errors raising exceptions.
2236     if (!U.isFinite())
2237       return nullptr;
2238 
2239     /// Currently APFloat versions of these functions do not exist, so we use
2240     /// the host native double versions.  Float versions are not called
2241     /// directly but for all these it is true (float)(f((double)arg)) ==
2242     /// f(arg).  Long double not supported yet.
2243     const APFloat &APF = Op->getValueAPF();
2244 
2245     switch (IntrinsicID) {
2246       default: break;
2247       case Intrinsic::log:
2248         return ConstantFoldFP(log, APF, Ty);
2249       case Intrinsic::log2:
2250         // TODO: What about hosts that lack a C99 library?
2251         return ConstantFoldFP(log2, APF, Ty);
2252       case Intrinsic::log10:
2253         // TODO: What about hosts that lack a C99 library?
2254         return ConstantFoldFP(log10, APF, Ty);
2255       case Intrinsic::exp:
2256         return ConstantFoldFP(exp, APF, Ty);
2257       case Intrinsic::exp2:
2258         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2259         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2260       case Intrinsic::exp10:
2261         // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2262         return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2263       case Intrinsic::sin:
2264         return ConstantFoldFP(sin, APF, Ty);
2265       case Intrinsic::cos:
2266         return ConstantFoldFP(cos, APF, Ty);
2267       case Intrinsic::sqrt:
2268         return ConstantFoldFP(sqrt, APF, Ty);
2269       case Intrinsic::amdgcn_cos:
2270       case Intrinsic::amdgcn_sin: {
2271         double V = getValueAsDouble(Op);
2272         if (V < -256.0 || V > 256.0)
2273           // The gfx8 and gfx9 architectures handle arguments outside the range
2274           // [-256, 256] differently. This should be a rare case so bail out
2275           // rather than trying to handle the difference.
2276           return nullptr;
2277         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2278         double V4 = V * 4.0;
2279         if (V4 == floor(V4)) {
2280           // Force exact results for quarter-integer inputs.
2281           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2282           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2283         } else {
2284           if (IsCos)
2285             V = cos(V * 2.0 * numbers::pi);
2286           else
2287             V = sin(V * 2.0 * numbers::pi);
2288         }
2289         return GetConstantFoldFPValue(V, Ty);
2290       }
2291     }
2292 
2293     if (!TLI)
2294       return nullptr;
2295 
2296     LibFunc Func = NotLibFunc;
2297     if (!TLI->getLibFunc(Name, Func))
2298       return nullptr;
2299 
2300     switch (Func) {
2301     default:
2302       break;
2303     case LibFunc_acos:
2304     case LibFunc_acosf:
2305     case LibFunc_acos_finite:
2306     case LibFunc_acosf_finite:
2307       if (TLI->has(Func))
2308         return ConstantFoldFP(acos, APF, Ty);
2309       break;
2310     case LibFunc_asin:
2311     case LibFunc_asinf:
2312     case LibFunc_asin_finite:
2313     case LibFunc_asinf_finite:
2314       if (TLI->has(Func))
2315         return ConstantFoldFP(asin, APF, Ty);
2316       break;
2317     case LibFunc_atan:
2318     case LibFunc_atanf:
2319       if (TLI->has(Func))
2320         return ConstantFoldFP(atan, APF, Ty);
2321       break;
2322     case LibFunc_ceil:
2323     case LibFunc_ceilf:
2324       if (TLI->has(Func)) {
2325         U.roundToIntegral(APFloat::rmTowardPositive);
2326         return ConstantFP::get(Ty->getContext(), U);
2327       }
2328       break;
2329     case LibFunc_cos:
2330     case LibFunc_cosf:
2331       if (TLI->has(Func))
2332         return ConstantFoldFP(cos, APF, Ty);
2333       break;
2334     case LibFunc_cosh:
2335     case LibFunc_coshf:
2336     case LibFunc_cosh_finite:
2337     case LibFunc_coshf_finite:
2338       if (TLI->has(Func))
2339         return ConstantFoldFP(cosh, APF, Ty);
2340       break;
2341     case LibFunc_exp:
2342     case LibFunc_expf:
2343     case LibFunc_exp_finite:
2344     case LibFunc_expf_finite:
2345       if (TLI->has(Func))
2346         return ConstantFoldFP(exp, APF, Ty);
2347       break;
2348     case LibFunc_exp2:
2349     case LibFunc_exp2f:
2350     case LibFunc_exp2_finite:
2351     case LibFunc_exp2f_finite:
2352       if (TLI->has(Func))
2353         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2354         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2355       break;
2356     case LibFunc_fabs:
2357     case LibFunc_fabsf:
2358       if (TLI->has(Func)) {
2359         U.clearSign();
2360         return ConstantFP::get(Ty->getContext(), U);
2361       }
2362       break;
2363     case LibFunc_floor:
2364     case LibFunc_floorf:
2365       if (TLI->has(Func)) {
2366         U.roundToIntegral(APFloat::rmTowardNegative);
2367         return ConstantFP::get(Ty->getContext(), U);
2368       }
2369       break;
2370     case LibFunc_log:
2371     case LibFunc_logf:
2372     case LibFunc_log_finite:
2373     case LibFunc_logf_finite:
2374       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2375         return ConstantFoldFP(log, APF, Ty);
2376       break;
2377     case LibFunc_log2:
2378     case LibFunc_log2f:
2379     case LibFunc_log2_finite:
2380     case LibFunc_log2f_finite:
2381       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2382         // TODO: What about hosts that lack a C99 library?
2383         return ConstantFoldFP(log2, APF, Ty);
2384       break;
2385     case LibFunc_log10:
2386     case LibFunc_log10f:
2387     case LibFunc_log10_finite:
2388     case LibFunc_log10f_finite:
2389       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2390         // TODO: What about hosts that lack a C99 library?
2391         return ConstantFoldFP(log10, APF, Ty);
2392       break;
2393     case LibFunc_logl:
2394       return nullptr;
2395     case LibFunc_nearbyint:
2396     case LibFunc_nearbyintf:
2397     case LibFunc_rint:
2398     case LibFunc_rintf:
2399       if (TLI->has(Func)) {
2400         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2401         return ConstantFP::get(Ty->getContext(), U);
2402       }
2403       break;
2404     case LibFunc_round:
2405     case LibFunc_roundf:
2406       if (TLI->has(Func)) {
2407         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2408         return ConstantFP::get(Ty->getContext(), U);
2409       }
2410       break;
2411     case LibFunc_sin:
2412     case LibFunc_sinf:
2413       if (TLI->has(Func))
2414         return ConstantFoldFP(sin, APF, Ty);
2415       break;
2416     case LibFunc_sinh:
2417     case LibFunc_sinhf:
2418     case LibFunc_sinh_finite:
2419     case LibFunc_sinhf_finite:
2420       if (TLI->has(Func))
2421         return ConstantFoldFP(sinh, APF, Ty);
2422       break;
2423     case LibFunc_sqrt:
2424     case LibFunc_sqrtf:
2425       if (!APF.isNegative() && TLI->has(Func))
2426         return ConstantFoldFP(sqrt, APF, Ty);
2427       break;
2428     case LibFunc_tan:
2429     case LibFunc_tanf:
2430       if (TLI->has(Func))
2431         return ConstantFoldFP(tan, APF, Ty);
2432       break;
2433     case LibFunc_tanh:
2434     case LibFunc_tanhf:
2435       if (TLI->has(Func))
2436         return ConstantFoldFP(tanh, APF, Ty);
2437       break;
2438     case LibFunc_trunc:
2439     case LibFunc_truncf:
2440       if (TLI->has(Func)) {
2441         U.roundToIntegral(APFloat::rmTowardZero);
2442         return ConstantFP::get(Ty->getContext(), U);
2443       }
2444       break;
2445     }
2446     return nullptr;
2447   }
2448 
2449   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2450     switch (IntrinsicID) {
2451     case Intrinsic::bswap:
2452       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2453     case Intrinsic::ctpop:
2454       return ConstantInt::get(Ty, Op->getValue().popcount());
2455     case Intrinsic::bitreverse:
2456       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2457     case Intrinsic::convert_from_fp16: {
2458       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2459 
2460       bool lost = false;
2461       APFloat::opStatus status = Val.convert(
2462           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2463 
2464       // Conversion is always precise.
2465       (void)status;
2466       assert(status != APFloat::opInexact && !lost &&
2467              "Precision lost during fp16 constfolding");
2468 
2469       return ConstantFP::get(Ty->getContext(), Val);
2470     }
2471 
2472     case Intrinsic::amdgcn_s_wqm: {
2473       uint64_t Val = Op->getZExtValue();
2474       Val |= (Val & 0x5555555555555555ULL) << 1 |
2475              ((Val >> 1) & 0x5555555555555555ULL);
2476       Val |= (Val & 0x3333333333333333ULL) << 2 |
2477              ((Val >> 2) & 0x3333333333333333ULL);
2478       return ConstantInt::get(Ty, Val);
2479     }
2480 
2481     case Intrinsic::amdgcn_s_quadmask: {
2482       uint64_t Val = Op->getZExtValue();
2483       uint64_t QuadMask = 0;
2484       for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
2485         if (!(Val & 0xF))
2486           continue;
2487 
2488         QuadMask |= (1ULL << I);
2489       }
2490       return ConstantInt::get(Ty, QuadMask);
2491     }
2492 
2493     case Intrinsic::amdgcn_s_bitreplicate: {
2494       uint64_t Val = Op->getZExtValue();
2495       Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
2496       Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
2497       Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
2498       Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
2499       Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
2500       Val = Val | Val << 1;
2501       return ConstantInt::get(Ty, Val);
2502     }
2503 
2504     default:
2505       return nullptr;
2506     }
2507   }
2508 
2509   switch (IntrinsicID) {
2510   default: break;
2511   case Intrinsic::vector_reduce_add:
2512   case Intrinsic::vector_reduce_mul:
2513   case Intrinsic::vector_reduce_and:
2514   case Intrinsic::vector_reduce_or:
2515   case Intrinsic::vector_reduce_xor:
2516   case Intrinsic::vector_reduce_smin:
2517   case Intrinsic::vector_reduce_smax:
2518   case Intrinsic::vector_reduce_umin:
2519   case Intrinsic::vector_reduce_umax:
2520     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2521       return C;
2522     break;
2523   }
2524 
2525   // Support ConstantVector in case we have an Undef in the top.
2526   if (isa<ConstantVector>(Operands[0]) ||
2527       isa<ConstantDataVector>(Operands[0])) {
2528     auto *Op = cast<Constant>(Operands[0]);
2529     switch (IntrinsicID) {
2530     default: break;
2531     case Intrinsic::x86_sse_cvtss2si:
2532     case Intrinsic::x86_sse_cvtss2si64:
2533     case Intrinsic::x86_sse2_cvtsd2si:
2534     case Intrinsic::x86_sse2_cvtsd2si64:
2535       if (ConstantFP *FPOp =
2536               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2537         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2538                                            /*roundTowardZero=*/false, Ty,
2539                                            /*IsSigned*/true);
2540       break;
2541     case Intrinsic::x86_sse_cvttss2si:
2542     case Intrinsic::x86_sse_cvttss2si64:
2543     case Intrinsic::x86_sse2_cvttsd2si:
2544     case Intrinsic::x86_sse2_cvttsd2si64:
2545       if (ConstantFP *FPOp =
2546               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2547         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2548                                            /*roundTowardZero=*/true, Ty,
2549                                            /*IsSigned*/true);
2550       break;
2551     }
2552   }
2553 
2554   return nullptr;
2555 }
2556 
2557 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2558                                  const ConstrainedFPIntrinsic *Call) {
2559   APFloat::opStatus St = APFloat::opOK;
2560   auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2561   FCmpInst::Predicate Cond = FCmp->getPredicate();
2562   if (FCmp->isSignaling()) {
2563     if (Op1.isNaN() || Op2.isNaN())
2564       St = APFloat::opInvalidOp;
2565   } else {
2566     if (Op1.isSignaling() || Op2.isSignaling())
2567       St = APFloat::opInvalidOp;
2568   }
2569   bool Result = FCmpInst::compare(Op1, Op2, Cond);
2570   if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2571     return ConstantInt::get(Call->getType()->getScalarType(), Result);
2572   return nullptr;
2573 }
2574 
2575 static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
2576                                       ArrayRef<Constant *> Operands,
2577                                       const TargetLibraryInfo *TLI) {
2578   if (!TLI)
2579     return nullptr;
2580 
2581   LibFunc Func = NotLibFunc;
2582   if (!TLI->getLibFunc(Name, Func))
2583     return nullptr;
2584 
2585   const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
2586   if (!Op1)
2587     return nullptr;
2588 
2589   const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
2590   if (!Op2)
2591     return nullptr;
2592 
2593   const APFloat &Op1V = Op1->getValueAPF();
2594   const APFloat &Op2V = Op2->getValueAPF();
2595 
2596   switch (Func) {
2597   default:
2598     break;
2599   case LibFunc_pow:
2600   case LibFunc_powf:
2601   case LibFunc_pow_finite:
2602   case LibFunc_powf_finite:
2603     if (TLI->has(Func))
2604       return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2605     break;
2606   case LibFunc_fmod:
2607   case LibFunc_fmodf:
2608     if (TLI->has(Func)) {
2609       APFloat V = Op1->getValueAPF();
2610       if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2611         return ConstantFP::get(Ty->getContext(), V);
2612     }
2613     break;
2614   case LibFunc_remainder:
2615   case LibFunc_remainderf:
2616     if (TLI->has(Func)) {
2617       APFloat V = Op1->getValueAPF();
2618       if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2619         return ConstantFP::get(Ty->getContext(), V);
2620     }
2621     break;
2622   case LibFunc_atan2:
2623   case LibFunc_atan2f:
2624     // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2625     // (Solaris), so we do not assume a known result for that.
2626     if (Op1V.isZero() && Op2V.isZero())
2627       return nullptr;
2628     [[fallthrough]];
2629   case LibFunc_atan2_finite:
2630   case LibFunc_atan2f_finite:
2631     if (TLI->has(Func))
2632       return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2633     break;
2634   }
2635 
2636   return nullptr;
2637 }
2638 
2639 static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
2640                                             ArrayRef<Constant *> Operands,
2641                                             const CallBase *Call) {
2642   assert(Operands.size() == 2 && "Wrong number of operands.");
2643 
2644   if (Ty->isFloatingPointTy()) {
2645     // TODO: We should have undef handling for all of the FP intrinsics that
2646     //       are attempted to be folded in this function.
2647     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2648     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2649     switch (IntrinsicID) {
2650     case Intrinsic::maxnum:
2651     case Intrinsic::minnum:
2652     case Intrinsic::maximum:
2653     case Intrinsic::minimum:
2654       // If one argument is undef, return the other argument.
2655       if (IsOp0Undef)
2656         return Operands[1];
2657       if (IsOp1Undef)
2658         return Operands[0];
2659       break;
2660     }
2661   }
2662 
2663   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2664     const APFloat &Op1V = Op1->getValueAPF();
2665 
2666     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2667       if (Op2->getType() != Op1->getType())
2668         return nullptr;
2669       const APFloat &Op2V = Op2->getValueAPF();
2670 
2671       if (const auto *ConstrIntr =
2672               dyn_cast_if_present<ConstrainedFPIntrinsic>(Call)) {
2673         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2674         APFloat Res = Op1V;
2675         APFloat::opStatus St;
2676         switch (IntrinsicID) {
2677         default:
2678           return nullptr;
2679         case Intrinsic::experimental_constrained_fadd:
2680           St = Res.add(Op2V, RM);
2681           break;
2682         case Intrinsic::experimental_constrained_fsub:
2683           St = Res.subtract(Op2V, RM);
2684           break;
2685         case Intrinsic::experimental_constrained_fmul:
2686           St = Res.multiply(Op2V, RM);
2687           break;
2688         case Intrinsic::experimental_constrained_fdiv:
2689           St = Res.divide(Op2V, RM);
2690           break;
2691         case Intrinsic::experimental_constrained_frem:
2692           St = Res.mod(Op2V);
2693           break;
2694         case Intrinsic::experimental_constrained_fcmp:
2695         case Intrinsic::experimental_constrained_fcmps:
2696           return evaluateCompare(Op1V, Op2V, ConstrIntr);
2697         }
2698         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2699                                St))
2700           return ConstantFP::get(Ty->getContext(), Res);
2701         return nullptr;
2702       }
2703 
2704       switch (IntrinsicID) {
2705       default:
2706         break;
2707       case Intrinsic::copysign:
2708         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2709       case Intrinsic::minnum:
2710         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2711       case Intrinsic::maxnum:
2712         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2713       case Intrinsic::minimum:
2714         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2715       case Intrinsic::maximum:
2716         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2717       }
2718 
2719       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2720         return nullptr;
2721 
2722       switch (IntrinsicID) {
2723       default:
2724         break;
2725       case Intrinsic::pow:
2726         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2727       case Intrinsic::amdgcn_fmul_legacy:
2728         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2729         // NaN or infinity, gives +0.0.
2730         if (Op1V.isZero() || Op2V.isZero())
2731           return ConstantFP::getZero(Ty);
2732         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2733       }
2734 
2735     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2736       switch (IntrinsicID) {
2737       case Intrinsic::ldexp: {
2738         return ConstantFP::get(
2739             Ty->getContext(),
2740             scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
2741       }
2742       case Intrinsic::is_fpclass: {
2743         FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
2744         bool Result =
2745           ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
2746           ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
2747           ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
2748           ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
2749           ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
2750           ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
2751           ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
2752           ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
2753           ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
2754           ((Mask & fcPosInf) && Op1V.isPosInfinity());
2755         return ConstantInt::get(Ty, Result);
2756       }
2757       case Intrinsic::powi: {
2758         int Exp = static_cast<int>(Op2C->getSExtValue());
2759         switch (Ty->getTypeID()) {
2760         case Type::HalfTyID:
2761         case Type::FloatTyID: {
2762           APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
2763           if (Ty->isHalfTy()) {
2764             bool Unused;
2765             Res.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
2766                         &Unused);
2767           }
2768           return ConstantFP::get(Ty->getContext(), Res);
2769         }
2770         case Type::DoubleTyID:
2771           return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
2772         default:
2773           return nullptr;
2774         }
2775       }
2776       default:
2777         break;
2778       }
2779     }
2780     return nullptr;
2781   }
2782 
2783   if (Operands[0]->getType()->isIntegerTy() &&
2784       Operands[1]->getType()->isIntegerTy()) {
2785     const APInt *C0, *C1;
2786     if (!getConstIntOrUndef(Operands[0], C0) ||
2787         !getConstIntOrUndef(Operands[1], C1))
2788       return nullptr;
2789 
2790     switch (IntrinsicID) {
2791     default: break;
2792     case Intrinsic::smax:
2793     case Intrinsic::smin:
2794     case Intrinsic::umax:
2795     case Intrinsic::umin:
2796       // This is the same as for binary ops - poison propagates.
2797       // TODO: Poison handling should be consolidated.
2798       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2799         return PoisonValue::get(Ty);
2800 
2801       if (!C0 && !C1)
2802         return UndefValue::get(Ty);
2803       if (!C0 || !C1)
2804         return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2805       return ConstantInt::get(
2806           Ty, ICmpInst::compare(*C0, *C1,
2807                                 MinMaxIntrinsic::getPredicate(IntrinsicID))
2808                   ? *C0
2809                   : *C1);
2810 
2811     case Intrinsic::scmp:
2812     case Intrinsic::ucmp:
2813       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2814         return PoisonValue::get(Ty);
2815 
2816       if (!C0 || !C1)
2817         return ConstantInt::get(Ty, 0);
2818 
2819       int Res;
2820       if (IntrinsicID == Intrinsic::scmp)
2821         Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
2822       else
2823         Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
2824       return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
2825 
2826     case Intrinsic::usub_with_overflow:
2827     case Intrinsic::ssub_with_overflow:
2828       // X - undef -> { 0, false }
2829       // undef - X -> { 0, false }
2830       if (!C0 || !C1)
2831         return Constant::getNullValue(Ty);
2832       [[fallthrough]];
2833     case Intrinsic::uadd_with_overflow:
2834     case Intrinsic::sadd_with_overflow:
2835       // X + undef -> { -1, false }
2836       // undef + x -> { -1, false }
2837       if (!C0 || !C1) {
2838         return ConstantStruct::get(
2839             cast<StructType>(Ty),
2840             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2841              Constant::getNullValue(Ty->getStructElementType(1))});
2842       }
2843       [[fallthrough]];
2844     case Intrinsic::smul_with_overflow:
2845     case Intrinsic::umul_with_overflow: {
2846       // undef * X -> { 0, false }
2847       // X * undef -> { 0, false }
2848       if (!C0 || !C1)
2849         return Constant::getNullValue(Ty);
2850 
2851       APInt Res;
2852       bool Overflow;
2853       switch (IntrinsicID) {
2854       default: llvm_unreachable("Invalid case");
2855       case Intrinsic::sadd_with_overflow:
2856         Res = C0->sadd_ov(*C1, Overflow);
2857         break;
2858       case Intrinsic::uadd_with_overflow:
2859         Res = C0->uadd_ov(*C1, Overflow);
2860         break;
2861       case Intrinsic::ssub_with_overflow:
2862         Res = C0->ssub_ov(*C1, Overflow);
2863         break;
2864       case Intrinsic::usub_with_overflow:
2865         Res = C0->usub_ov(*C1, Overflow);
2866         break;
2867       case Intrinsic::smul_with_overflow:
2868         Res = C0->smul_ov(*C1, Overflow);
2869         break;
2870       case Intrinsic::umul_with_overflow:
2871         Res = C0->umul_ov(*C1, Overflow);
2872         break;
2873       }
2874       Constant *Ops[] = {
2875         ConstantInt::get(Ty->getContext(), Res),
2876         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2877       };
2878       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2879     }
2880     case Intrinsic::uadd_sat:
2881     case Intrinsic::sadd_sat:
2882       // This is the same as for binary ops - poison propagates.
2883       // TODO: Poison handling should be consolidated.
2884       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2885         return PoisonValue::get(Ty);
2886 
2887       if (!C0 && !C1)
2888         return UndefValue::get(Ty);
2889       if (!C0 || !C1)
2890         return Constant::getAllOnesValue(Ty);
2891       if (IntrinsicID == Intrinsic::uadd_sat)
2892         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2893       else
2894         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2895     case Intrinsic::usub_sat:
2896     case Intrinsic::ssub_sat:
2897       // This is the same as for binary ops - poison propagates.
2898       // TODO: Poison handling should be consolidated.
2899       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2900         return PoisonValue::get(Ty);
2901 
2902       if (!C0 && !C1)
2903         return UndefValue::get(Ty);
2904       if (!C0 || !C1)
2905         return Constant::getNullValue(Ty);
2906       if (IntrinsicID == Intrinsic::usub_sat)
2907         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2908       else
2909         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2910     case Intrinsic::cttz:
2911     case Intrinsic::ctlz:
2912       assert(C1 && "Must be constant int");
2913 
2914       // cttz(0, 1) and ctlz(0, 1) are poison.
2915       if (C1->isOne() && (!C0 || C0->isZero()))
2916         return PoisonValue::get(Ty);
2917       if (!C0)
2918         return Constant::getNullValue(Ty);
2919       if (IntrinsicID == Intrinsic::cttz)
2920         return ConstantInt::get(Ty, C0->countr_zero());
2921       else
2922         return ConstantInt::get(Ty, C0->countl_zero());
2923 
2924     case Intrinsic::abs:
2925       assert(C1 && "Must be constant int");
2926       assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2927 
2928       // Undef or minimum val operand with poison min --> undef
2929       if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2930         return UndefValue::get(Ty);
2931 
2932       // Undef operand with no poison min --> 0 (sign bit must be clear)
2933       if (!C0)
2934         return Constant::getNullValue(Ty);
2935 
2936       return ConstantInt::get(Ty, C0->abs());
2937     case Intrinsic::amdgcn_wave_reduce_umin:
2938     case Intrinsic::amdgcn_wave_reduce_umax:
2939       return dyn_cast<Constant>(Operands[0]);
2940     }
2941 
2942     return nullptr;
2943   }
2944 
2945   // Support ConstantVector in case we have an Undef in the top.
2946   if ((isa<ConstantVector>(Operands[0]) ||
2947        isa<ConstantDataVector>(Operands[0])) &&
2948       // Check for default rounding mode.
2949       // FIXME: Support other rounding modes?
2950       isa<ConstantInt>(Operands[1]) &&
2951       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2952     auto *Op = cast<Constant>(Operands[0]);
2953     switch (IntrinsicID) {
2954     default: break;
2955     case Intrinsic::x86_avx512_vcvtss2si32:
2956     case Intrinsic::x86_avx512_vcvtss2si64:
2957     case Intrinsic::x86_avx512_vcvtsd2si32:
2958     case Intrinsic::x86_avx512_vcvtsd2si64:
2959       if (ConstantFP *FPOp =
2960               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2961         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2962                                            /*roundTowardZero=*/false, Ty,
2963                                            /*IsSigned*/true);
2964       break;
2965     case Intrinsic::x86_avx512_vcvtss2usi32:
2966     case Intrinsic::x86_avx512_vcvtss2usi64:
2967     case Intrinsic::x86_avx512_vcvtsd2usi32:
2968     case Intrinsic::x86_avx512_vcvtsd2usi64:
2969       if (ConstantFP *FPOp =
2970               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2971         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2972                                            /*roundTowardZero=*/false, Ty,
2973                                            /*IsSigned*/false);
2974       break;
2975     case Intrinsic::x86_avx512_cvttss2si:
2976     case Intrinsic::x86_avx512_cvttss2si64:
2977     case Intrinsic::x86_avx512_cvttsd2si:
2978     case Intrinsic::x86_avx512_cvttsd2si64:
2979       if (ConstantFP *FPOp =
2980               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2981         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2982                                            /*roundTowardZero=*/true, Ty,
2983                                            /*IsSigned*/true);
2984       break;
2985     case Intrinsic::x86_avx512_cvttss2usi:
2986     case Intrinsic::x86_avx512_cvttss2usi64:
2987     case Intrinsic::x86_avx512_cvttsd2usi:
2988     case Intrinsic::x86_avx512_cvttsd2usi64:
2989       if (ConstantFP *FPOp =
2990               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2991         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2992                                            /*roundTowardZero=*/true, Ty,
2993                                            /*IsSigned*/false);
2994       break;
2995     }
2996   }
2997   return nullptr;
2998 }
2999 
3000 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3001                                                const APFloat &S0,
3002                                                const APFloat &S1,
3003                                                const APFloat &S2) {
3004   unsigned ID;
3005   const fltSemantics &Sem = S0.getSemantics();
3006   APFloat MA(Sem), SC(Sem), TC(Sem);
3007   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3008     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3009       // S2 < 0
3010       ID = 5;
3011       SC = -S0;
3012     } else {
3013       ID = 4;
3014       SC = S0;
3015     }
3016     MA = S2;
3017     TC = -S1;
3018   } else if (abs(S1) >= abs(S0)) {
3019     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3020       // S1 < 0
3021       ID = 3;
3022       TC = -S2;
3023     } else {
3024       ID = 2;
3025       TC = S2;
3026     }
3027     MA = S1;
3028     SC = S0;
3029   } else {
3030     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3031       // S0 < 0
3032       ID = 1;
3033       SC = S2;
3034     } else {
3035       ID = 0;
3036       SC = -S2;
3037     }
3038     MA = S0;
3039     TC = -S1;
3040   }
3041   switch (IntrinsicID) {
3042   default:
3043     llvm_unreachable("unhandled amdgcn cube intrinsic");
3044   case Intrinsic::amdgcn_cubeid:
3045     return APFloat(Sem, ID);
3046   case Intrinsic::amdgcn_cubema:
3047     return MA + MA;
3048   case Intrinsic::amdgcn_cubesc:
3049     return SC;
3050   case Intrinsic::amdgcn_cubetc:
3051     return TC;
3052   }
3053 }
3054 
3055 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3056                                                  Type *Ty) {
3057   const APInt *C0, *C1, *C2;
3058   if (!getConstIntOrUndef(Operands[0], C0) ||
3059       !getConstIntOrUndef(Operands[1], C1) ||
3060       !getConstIntOrUndef(Operands[2], C2))
3061     return nullptr;
3062 
3063   if (!C2)
3064     return UndefValue::get(Ty);
3065 
3066   APInt Val(32, 0);
3067   unsigned NumUndefBytes = 0;
3068   for (unsigned I = 0; I < 32; I += 8) {
3069     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3070     unsigned B = 0;
3071 
3072     if (Sel >= 13)
3073       B = 0xff;
3074     else if (Sel == 12)
3075       B = 0x00;
3076     else {
3077       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3078       if (!Src)
3079         ++NumUndefBytes;
3080       else if (Sel < 8)
3081         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3082       else
3083         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3084     }
3085 
3086     Val.insertBits(B, I, 8);
3087   }
3088 
3089   if (NumUndefBytes == 4)
3090     return UndefValue::get(Ty);
3091 
3092   return ConstantInt::get(Ty, Val);
3093 }
3094 
3095 static Constant *ConstantFoldScalarCall3(StringRef Name,
3096                                          Intrinsic::ID IntrinsicID,
3097                                          Type *Ty,
3098                                          ArrayRef<Constant *> Operands,
3099                                          const TargetLibraryInfo *TLI,
3100                                          const CallBase *Call) {
3101   assert(Operands.size() == 3 && "Wrong number of operands.");
3102 
3103   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3104     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3105       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3106         const APFloat &C1 = Op1->getValueAPF();
3107         const APFloat &C2 = Op2->getValueAPF();
3108         const APFloat &C3 = Op3->getValueAPF();
3109 
3110         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3111           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3112           APFloat Res = C1;
3113           APFloat::opStatus St;
3114           switch (IntrinsicID) {
3115           default:
3116             return nullptr;
3117           case Intrinsic::experimental_constrained_fma:
3118           case Intrinsic::experimental_constrained_fmuladd:
3119             St = Res.fusedMultiplyAdd(C2, C3, RM);
3120             break;
3121           }
3122           if (mayFoldConstrained(
3123                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3124             return ConstantFP::get(Ty->getContext(), Res);
3125           return nullptr;
3126         }
3127 
3128         switch (IntrinsicID) {
3129         default: break;
3130         case Intrinsic::amdgcn_fma_legacy: {
3131           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3132           // NaN or infinity, gives +0.0.
3133           if (C1.isZero() || C2.isZero()) {
3134             // It's tempting to just return C3 here, but that would give the
3135             // wrong result if C3 was -0.0.
3136             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3137           }
3138           [[fallthrough]];
3139         }
3140         case Intrinsic::fma:
3141         case Intrinsic::fmuladd: {
3142           APFloat V = C1;
3143           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3144           return ConstantFP::get(Ty->getContext(), V);
3145         }
3146         case Intrinsic::amdgcn_cubeid:
3147         case Intrinsic::amdgcn_cubema:
3148         case Intrinsic::amdgcn_cubesc:
3149         case Intrinsic::amdgcn_cubetc: {
3150           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3151           return ConstantFP::get(Ty->getContext(), V);
3152         }
3153         }
3154       }
3155     }
3156   }
3157 
3158   if (IntrinsicID == Intrinsic::smul_fix ||
3159       IntrinsicID == Intrinsic::smul_fix_sat) {
3160     // poison * C -> poison
3161     // C * poison -> poison
3162     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3163       return PoisonValue::get(Ty);
3164 
3165     const APInt *C0, *C1;
3166     if (!getConstIntOrUndef(Operands[0], C0) ||
3167         !getConstIntOrUndef(Operands[1], C1))
3168       return nullptr;
3169 
3170     // undef * C -> 0
3171     // C * undef -> 0
3172     if (!C0 || !C1)
3173       return Constant::getNullValue(Ty);
3174 
3175     // This code performs rounding towards negative infinity in case the result
3176     // cannot be represented exactly for the given scale. Targets that do care
3177     // about rounding should use a target hook for specifying how rounding
3178     // should be done, and provide their own folding to be consistent with
3179     // rounding. This is the same approach as used by
3180     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3181     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3182     unsigned Width = C0->getBitWidth();
3183     assert(Scale < Width && "Illegal scale.");
3184     unsigned ExtendedWidth = Width * 2;
3185     APInt Product =
3186         (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3187     if (IntrinsicID == Intrinsic::smul_fix_sat) {
3188       APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3189       APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3190       Product = APIntOps::smin(Product, Max);
3191       Product = APIntOps::smax(Product, Min);
3192     }
3193     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3194   }
3195 
3196   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3197     const APInt *C0, *C1, *C2;
3198     if (!getConstIntOrUndef(Operands[0], C0) ||
3199         !getConstIntOrUndef(Operands[1], C1) ||
3200         !getConstIntOrUndef(Operands[2], C2))
3201       return nullptr;
3202 
3203     bool IsRight = IntrinsicID == Intrinsic::fshr;
3204     if (!C2)
3205       return Operands[IsRight ? 1 : 0];
3206     if (!C0 && !C1)
3207       return UndefValue::get(Ty);
3208 
3209     // The shift amount is interpreted as modulo the bitwidth. If the shift
3210     // amount is effectively 0, avoid UB due to oversized inverse shift below.
3211     unsigned BitWidth = C2->getBitWidth();
3212     unsigned ShAmt = C2->urem(BitWidth);
3213     if (!ShAmt)
3214       return Operands[IsRight ? 1 : 0];
3215 
3216     // (C0 << ShlAmt) | (C1 >> LshrAmt)
3217     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3218     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3219     if (!C0)
3220       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3221     if (!C1)
3222       return ConstantInt::get(Ty, C0->shl(ShlAmt));
3223     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3224   }
3225 
3226   if (IntrinsicID == Intrinsic::amdgcn_perm)
3227     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3228 
3229   return nullptr;
3230 }
3231 
3232 static Constant *ConstantFoldScalarCall(StringRef Name,
3233                                         Intrinsic::ID IntrinsicID,
3234                                         Type *Ty,
3235                                         ArrayRef<Constant *> Operands,
3236                                         const TargetLibraryInfo *TLI,
3237                                         const CallBase *Call) {
3238   if (Operands.size() == 1)
3239     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3240 
3241   if (Operands.size() == 2) {
3242     if (Constant *FoldedLibCall =
3243             ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
3244       return FoldedLibCall;
3245     }
3246     return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
3247   }
3248 
3249   if (Operands.size() == 3)
3250     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3251 
3252   return nullptr;
3253 }
3254 
3255 static Constant *ConstantFoldFixedVectorCall(
3256     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3257     ArrayRef<Constant *> Operands, const DataLayout &DL,
3258     const TargetLibraryInfo *TLI, const CallBase *Call) {
3259   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3260   SmallVector<Constant *, 4> Lane(Operands.size());
3261   Type *Ty = FVTy->getElementType();
3262 
3263   switch (IntrinsicID) {
3264   case Intrinsic::masked_load: {
3265     auto *SrcPtr = Operands[0];
3266     auto *Mask = Operands[2];
3267     auto *Passthru = Operands[3];
3268 
3269     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3270 
3271     SmallVector<Constant *, 32> NewElements;
3272     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3273       auto *MaskElt = Mask->getAggregateElement(I);
3274       if (!MaskElt)
3275         break;
3276       auto *PassthruElt = Passthru->getAggregateElement(I);
3277       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3278       if (isa<UndefValue>(MaskElt)) {
3279         if (PassthruElt)
3280           NewElements.push_back(PassthruElt);
3281         else if (VecElt)
3282           NewElements.push_back(VecElt);
3283         else
3284           return nullptr;
3285       }
3286       if (MaskElt->isNullValue()) {
3287         if (!PassthruElt)
3288           return nullptr;
3289         NewElements.push_back(PassthruElt);
3290       } else if (MaskElt->isOneValue()) {
3291         if (!VecElt)
3292           return nullptr;
3293         NewElements.push_back(VecElt);
3294       } else {
3295         return nullptr;
3296       }
3297     }
3298     if (NewElements.size() != FVTy->getNumElements())
3299       return nullptr;
3300     return ConstantVector::get(NewElements);
3301   }
3302   case Intrinsic::arm_mve_vctp8:
3303   case Intrinsic::arm_mve_vctp16:
3304   case Intrinsic::arm_mve_vctp32:
3305   case Intrinsic::arm_mve_vctp64: {
3306     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3307       unsigned Lanes = FVTy->getNumElements();
3308       uint64_t Limit = Op->getZExtValue();
3309 
3310       SmallVector<Constant *, 16> NCs;
3311       for (unsigned i = 0; i < Lanes; i++) {
3312         if (i < Limit)
3313           NCs.push_back(ConstantInt::getTrue(Ty));
3314         else
3315           NCs.push_back(ConstantInt::getFalse(Ty));
3316       }
3317       return ConstantVector::get(NCs);
3318     }
3319     return nullptr;
3320   }
3321   case Intrinsic::get_active_lane_mask: {
3322     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3323     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3324     if (Op0 && Op1) {
3325       unsigned Lanes = FVTy->getNumElements();
3326       uint64_t Base = Op0->getZExtValue();
3327       uint64_t Limit = Op1->getZExtValue();
3328 
3329       SmallVector<Constant *, 16> NCs;
3330       for (unsigned i = 0; i < Lanes; i++) {
3331         if (Base + i < Limit)
3332           NCs.push_back(ConstantInt::getTrue(Ty));
3333         else
3334           NCs.push_back(ConstantInt::getFalse(Ty));
3335       }
3336       return ConstantVector::get(NCs);
3337     }
3338     return nullptr;
3339   }
3340   default:
3341     break;
3342   }
3343 
3344   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3345     // Gather a column of constants.
3346     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3347       // Some intrinsics use a scalar type for certain arguments.
3348       if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3349         Lane[J] = Operands[J];
3350         continue;
3351       }
3352 
3353       Constant *Agg = Operands[J]->getAggregateElement(I);
3354       if (!Agg)
3355         return nullptr;
3356 
3357       Lane[J] = Agg;
3358     }
3359 
3360     // Use the regular scalar folding to simplify this column.
3361     Constant *Folded =
3362         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3363     if (!Folded)
3364       return nullptr;
3365     Result[I] = Folded;
3366   }
3367 
3368   return ConstantVector::get(Result);
3369 }
3370 
3371 static Constant *ConstantFoldScalableVectorCall(
3372     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3373     ArrayRef<Constant *> Operands, const DataLayout &DL,
3374     const TargetLibraryInfo *TLI, const CallBase *Call) {
3375   switch (IntrinsicID) {
3376   case Intrinsic::aarch64_sve_convert_from_svbool: {
3377     auto *Src = dyn_cast<Constant>(Operands[0]);
3378     if (!Src || !Src->isNullValue())
3379       break;
3380 
3381     return ConstantInt::getFalse(SVTy);
3382   }
3383   default:
3384     break;
3385   }
3386   return nullptr;
3387 }
3388 
3389 static std::pair<Constant *, Constant *>
3390 ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
3391   if (isa<PoisonValue>(Op))
3392     return {Op, PoisonValue::get(IntTy)};
3393 
3394   auto *ConstFP = dyn_cast<ConstantFP>(Op);
3395   if (!ConstFP)
3396     return {};
3397 
3398   const APFloat &U = ConstFP->getValueAPF();
3399   int FrexpExp;
3400   APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
3401   Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
3402 
3403   // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3404   // using undef.
3405   Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp)
3406                                            : ConstantInt::getNullValue(IntTy);
3407   return {Result0, Result1};
3408 }
3409 
3410 /// Handle intrinsics that return tuples, which may be tuples of vectors.
3411 static Constant *
3412 ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
3413                        StructType *StTy, ArrayRef<Constant *> Operands,
3414                        const DataLayout &DL, const TargetLibraryInfo *TLI,
3415                        const CallBase *Call) {
3416 
3417   switch (IntrinsicID) {
3418   case Intrinsic::frexp: {
3419     Type *Ty0 = StTy->getContainedType(0);
3420     Type *Ty1 = StTy->getContainedType(1)->getScalarType();
3421 
3422     if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
3423       SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
3424       SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
3425 
3426       for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
3427         Constant *Lane = Operands[0]->getAggregateElement(I);
3428         std::tie(Results0[I], Results1[I]) =
3429             ConstantFoldScalarFrexpCall(Lane, Ty1);
3430         if (!Results0[I])
3431           return nullptr;
3432       }
3433 
3434       return ConstantStruct::get(StTy, ConstantVector::get(Results0),
3435                                  ConstantVector::get(Results1));
3436     }
3437 
3438     auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
3439     if (!Result0)
3440       return nullptr;
3441     return ConstantStruct::get(StTy, Result0, Result1);
3442   }
3443   default:
3444     // TODO: Constant folding of vector intrinsics that fall through here does
3445     // not work (e.g. overflow intrinsics)
3446     return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
3447   }
3448 
3449   return nullptr;
3450 }
3451 
3452 } // end anonymous namespace
3453 
3454 Constant *llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS,
3455                                             Constant *RHS, Type *Ty,
3456                                             Instruction *FMFSource) {
3457   return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS},
3458                                     dyn_cast_if_present<CallBase>(FMFSource));
3459 }
3460 
3461 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3462                                  ArrayRef<Constant *> Operands,
3463                                  const TargetLibraryInfo *TLI,
3464                                  bool AllowNonDeterministic) {
3465   if (Call->isNoBuiltin())
3466     return nullptr;
3467   if (!F->hasName())
3468     return nullptr;
3469 
3470   // If this is not an intrinsic and not recognized as a library call, bail out.
3471   Intrinsic::ID IID = F->getIntrinsicID();
3472   if (IID == Intrinsic::not_intrinsic) {
3473     if (!TLI)
3474       return nullptr;
3475     LibFunc LibF;
3476     if (!TLI->getLibFunc(*F, LibF))
3477       return nullptr;
3478   }
3479 
3480   // Conservatively assume that floating-point libcalls may be
3481   // non-deterministic.
3482   Type *Ty = F->getReturnType();
3483   if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
3484     return nullptr;
3485 
3486   StringRef Name = F->getName();
3487   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3488     return ConstantFoldFixedVectorCall(
3489         Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
3490 
3491   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3492     return ConstantFoldScalableVectorCall(
3493         Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
3494 
3495   if (auto *StTy = dyn_cast<StructType>(Ty))
3496     return ConstantFoldStructCall(Name, IID, StTy, Operands,
3497                                   F->getDataLayout(), TLI, Call);
3498 
3499   // TODO: If this is a library function, we already discovered that above,
3500   //       so we should pass the LibFunc, not the name (and it might be better
3501   //       still to separate intrinsic handling from libcalls).
3502   return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
3503 }
3504 
3505 bool llvm::isMathLibCallNoop(const CallBase *Call,
3506                              const TargetLibraryInfo *TLI) {
3507   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3508   // (and to some extent ConstantFoldScalarCall).
3509   if (Call->isNoBuiltin() || Call->isStrictFP())
3510     return false;
3511   Function *F = Call->getCalledFunction();
3512   if (!F)
3513     return false;
3514 
3515   LibFunc Func;
3516   if (!TLI || !TLI->getLibFunc(*F, Func))
3517     return false;
3518 
3519   if (Call->arg_size() == 1) {
3520     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3521       const APFloat &Op = OpC->getValueAPF();
3522       switch (Func) {
3523       case LibFunc_logl:
3524       case LibFunc_log:
3525       case LibFunc_logf:
3526       case LibFunc_log2l:
3527       case LibFunc_log2:
3528       case LibFunc_log2f:
3529       case LibFunc_log10l:
3530       case LibFunc_log10:
3531       case LibFunc_log10f:
3532         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3533 
3534       case LibFunc_expl:
3535       case LibFunc_exp:
3536       case LibFunc_expf:
3537         // FIXME: These boundaries are slightly conservative.
3538         if (OpC->getType()->isDoubleTy())
3539           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3540         if (OpC->getType()->isFloatTy())
3541           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3542         break;
3543 
3544       case LibFunc_exp2l:
3545       case LibFunc_exp2:
3546       case LibFunc_exp2f:
3547         // FIXME: These boundaries are slightly conservative.
3548         if (OpC->getType()->isDoubleTy())
3549           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3550         if (OpC->getType()->isFloatTy())
3551           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3552         break;
3553 
3554       case LibFunc_sinl:
3555       case LibFunc_sin:
3556       case LibFunc_sinf:
3557       case LibFunc_cosl:
3558       case LibFunc_cos:
3559       case LibFunc_cosf:
3560         return !Op.isInfinity();
3561 
3562       case LibFunc_tanl:
3563       case LibFunc_tan:
3564       case LibFunc_tanf: {
3565         // FIXME: Stop using the host math library.
3566         // FIXME: The computation isn't done in the right precision.
3567         Type *Ty = OpC->getType();
3568         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3569           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3570         break;
3571       }
3572 
3573       case LibFunc_atan:
3574       case LibFunc_atanf:
3575       case LibFunc_atanl:
3576         // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3577         return true;
3578 
3579 
3580       case LibFunc_asinl:
3581       case LibFunc_asin:
3582       case LibFunc_asinf:
3583       case LibFunc_acosl:
3584       case LibFunc_acos:
3585       case LibFunc_acosf:
3586         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3587                  Op > APFloat(Op.getSemantics(), "1"));
3588 
3589       case LibFunc_sinh:
3590       case LibFunc_cosh:
3591       case LibFunc_sinhf:
3592       case LibFunc_coshf:
3593       case LibFunc_sinhl:
3594       case LibFunc_coshl:
3595         // FIXME: These boundaries are slightly conservative.
3596         if (OpC->getType()->isDoubleTy())
3597           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3598         if (OpC->getType()->isFloatTy())
3599           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3600         break;
3601 
3602       case LibFunc_sqrtl:
3603       case LibFunc_sqrt:
3604       case LibFunc_sqrtf:
3605         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3606 
3607       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3608       // maybe others?
3609       default:
3610         break;
3611       }
3612     }
3613   }
3614 
3615   if (Call->arg_size() == 2) {
3616     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3617     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3618     if (Op0C && Op1C) {
3619       const APFloat &Op0 = Op0C->getValueAPF();
3620       const APFloat &Op1 = Op1C->getValueAPF();
3621 
3622       switch (Func) {
3623       case LibFunc_powl:
3624       case LibFunc_pow:
3625       case LibFunc_powf: {
3626         // FIXME: Stop using the host math library.
3627         // FIXME: The computation isn't done in the right precision.
3628         Type *Ty = Op0C->getType();
3629         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3630           if (Ty == Op1C->getType())
3631             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3632         }
3633         break;
3634       }
3635 
3636       case LibFunc_fmodl:
3637       case LibFunc_fmod:
3638       case LibFunc_fmodf:
3639       case LibFunc_remainderl:
3640       case LibFunc_remainder:
3641       case LibFunc_remainderf:
3642         return Op0.isNaN() || Op1.isNaN() ||
3643                (!Op0.isInfinity() && !Op1.isZero());
3644 
3645       case LibFunc_atan2:
3646       case LibFunc_atan2f:
3647       case LibFunc_atan2l:
3648         // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3649         // GLIBC and MSVC do not appear to raise an error on those, we
3650         // cannot rely on that behavior. POSIX and C11 say that a domain error
3651         // may occur, so allow for that possibility.
3652         return !Op0.isZero() || !Op1.isZero();
3653 
3654       default:
3655         break;
3656       }
3657     }
3658   }
3659 
3660   return false;
3661 }
3662 
3663 void TargetFolder::anchor() {}
3664