1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantFold.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/IntrinsicsAArch64.h" 46 #include "llvm/IR/IntrinsicsAMDGPU.h" 47 #include "llvm/IR/IntrinsicsARM.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/KnownBits.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <cassert> 58 #include <cerrno> 59 #include <cfenv> 60 #include <cmath> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 67 //===----------------------------------------------------------------------===// 68 // Constant Folding internal helper functions 69 //===----------------------------------------------------------------------===// 70 71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 72 Constant *C, Type *SrcEltTy, 73 unsigned NumSrcElts, 74 const DataLayout &DL) { 75 // Now that we know that the input value is a vector of integers, just shift 76 // and insert them into our result. 77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 78 for (unsigned i = 0; i != NumSrcElts; ++i) { 79 Constant *Element; 80 if (DL.isLittleEndian()) 81 Element = C->getAggregateElement(NumSrcElts - i - 1); 82 else 83 Element = C->getAggregateElement(i); 84 85 if (Element && isa<UndefValue>(Element)) { 86 Result <<= BitShift; 87 continue; 88 } 89 90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 91 if (!ElementCI) 92 return ConstantExpr::getBitCast(C, DestTy); 93 94 Result <<= BitShift; 95 Result |= ElementCI->getValue().zext(Result.getBitWidth()); 96 } 97 98 return nullptr; 99 } 100 101 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 102 /// This always returns a non-null constant, but it may be a 103 /// ConstantExpr if unfoldable. 104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 106 "Invalid constantexpr bitcast!"); 107 108 // Catch the obvious splat cases. 109 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 110 return Res; 111 112 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 113 // Handle a vector->scalar integer/fp cast. 114 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 115 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 116 Type *SrcEltTy = VTy->getElementType(); 117 118 // If the vector is a vector of floating point, convert it to vector of int 119 // to simplify things. 120 if (SrcEltTy->isFloatingPointTy()) { 121 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 122 auto *SrcIVTy = FixedVectorType::get( 123 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 124 // Ask IR to do the conversion now that #elts line up. 125 C = ConstantExpr::getBitCast(C, SrcIVTy); 126 } 127 128 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 129 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 130 SrcEltTy, NumSrcElts, DL)) 131 return CE; 132 133 if (isa<IntegerType>(DestTy)) 134 return ConstantInt::get(DestTy, Result); 135 136 APFloat FP(DestTy->getFltSemantics(), Result); 137 return ConstantFP::get(DestTy->getContext(), FP); 138 } 139 } 140 141 // The code below only handles casts to vectors currently. 142 auto *DestVTy = dyn_cast<VectorType>(DestTy); 143 if (!DestVTy) 144 return ConstantExpr::getBitCast(C, DestTy); 145 146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 147 // vector so the code below can handle it uniformly. 148 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 149 Constant *Ops = C; // don't take the address of C! 150 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 151 } 152 153 // If this is a bitcast from constant vector -> vector, fold it. 154 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 155 return ConstantExpr::getBitCast(C, DestTy); 156 157 // If the element types match, IR can fold it. 158 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 159 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 160 if (NumDstElt == NumSrcElt) 161 return ConstantExpr::getBitCast(C, DestTy); 162 163 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 164 Type *DstEltTy = DestVTy->getElementType(); 165 166 // Otherwise, we're changing the number of elements in a vector, which 167 // requires endianness information to do the right thing. For example, 168 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 169 // folds to (little endian): 170 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 171 // and to (big endian): 172 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 173 174 // First thing is first. We only want to think about integer here, so if 175 // we have something in FP form, recast it as integer. 176 if (DstEltTy->isFloatingPointTy()) { 177 // Fold to an vector of integers with same size as our FP type. 178 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 179 auto *DestIVTy = FixedVectorType::get( 180 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 181 // Recursively handle this integer conversion, if possible. 182 C = FoldBitCast(C, DestIVTy, DL); 183 184 // Finally, IR can handle this now that #elts line up. 185 return ConstantExpr::getBitCast(C, DestTy); 186 } 187 188 // Okay, we know the destination is integer, if the input is FP, convert 189 // it to integer first. 190 if (SrcEltTy->isFloatingPointTy()) { 191 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 192 auto *SrcIVTy = FixedVectorType::get( 193 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 194 // Ask IR to do the conversion now that #elts line up. 195 C = ConstantExpr::getBitCast(C, SrcIVTy); 196 // If IR wasn't able to fold it, bail out. 197 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 198 !isa<ConstantDataVector>(C)) 199 return C; 200 } 201 202 // Now we know that the input and output vectors are both integer vectors 203 // of the same size, and that their #elements is not the same. Do the 204 // conversion here, which depends on whether the input or output has 205 // more elements. 206 bool isLittleEndian = DL.isLittleEndian(); 207 208 SmallVector<Constant*, 32> Result; 209 if (NumDstElt < NumSrcElt) { 210 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 211 Constant *Zero = Constant::getNullValue(DstEltTy); 212 unsigned Ratio = NumSrcElt/NumDstElt; 213 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 214 unsigned SrcElt = 0; 215 for (unsigned i = 0; i != NumDstElt; ++i) { 216 // Build each element of the result. 217 Constant *Elt = Zero; 218 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 219 for (unsigned j = 0; j != Ratio; ++j) { 220 Constant *Src = C->getAggregateElement(SrcElt++); 221 if (Src && isa<UndefValue>(Src)) 222 Src = Constant::getNullValue( 223 cast<VectorType>(C->getType())->getElementType()); 224 else 225 Src = dyn_cast_or_null<ConstantInt>(Src); 226 if (!Src) // Reject constantexpr elements. 227 return ConstantExpr::getBitCast(C, DestTy); 228 229 // Zero extend the element to the right size. 230 Src = ConstantExpr::getZExt(Src, Elt->getType()); 231 232 // Shift it to the right place, depending on endianness. 233 Src = ConstantExpr::getShl(Src, 234 ConstantInt::get(Src->getType(), ShiftAmt)); 235 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 236 237 // Mix it in. 238 Elt = ConstantExpr::getOr(Elt, Src); 239 } 240 Result.push_back(Elt); 241 } 242 return ConstantVector::get(Result); 243 } 244 245 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 246 unsigned Ratio = NumDstElt/NumSrcElt; 247 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 248 249 // Loop over each source value, expanding into multiple results. 250 for (unsigned i = 0; i != NumSrcElt; ++i) { 251 auto *Element = C->getAggregateElement(i); 252 253 if (!Element) // Reject constantexpr elements. 254 return ConstantExpr::getBitCast(C, DestTy); 255 256 if (isa<UndefValue>(Element)) { 257 // Correctly Propagate undef values. 258 Result.append(Ratio, UndefValue::get(DstEltTy)); 259 continue; 260 } 261 262 auto *Src = dyn_cast<ConstantInt>(Element); 263 if (!Src) 264 return ConstantExpr::getBitCast(C, DestTy); 265 266 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 267 for (unsigned j = 0; j != Ratio; ++j) { 268 // Shift the piece of the value into the right place, depending on 269 // endianness. 270 Constant *Elt = ConstantExpr::getLShr(Src, 271 ConstantInt::get(Src->getType(), ShiftAmt)); 272 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 273 274 // Truncate the element to an integer with the same pointer size and 275 // convert the element back to a pointer using a inttoptr. 276 if (DstEltTy->isPointerTy()) { 277 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 278 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 279 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 280 continue; 281 } 282 283 // Truncate and remember this piece. 284 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 285 } 286 } 287 288 return ConstantVector::get(Result); 289 } 290 291 } // end anonymous namespace 292 293 /// If this constant is a constant offset from a global, return the global and 294 /// the constant. Because of constantexprs, this function is recursive. 295 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 296 APInt &Offset, const DataLayout &DL, 297 DSOLocalEquivalent **DSOEquiv) { 298 if (DSOEquiv) 299 *DSOEquiv = nullptr; 300 301 // Trivial case, constant is the global. 302 if ((GV = dyn_cast<GlobalValue>(C))) { 303 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 304 Offset = APInt(BitWidth, 0); 305 return true; 306 } 307 308 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 309 if (DSOEquiv) 310 *DSOEquiv = FoundDSOEquiv; 311 GV = FoundDSOEquiv->getGlobalValue(); 312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 313 Offset = APInt(BitWidth, 0); 314 return true; 315 } 316 317 // Otherwise, if this isn't a constant expr, bail out. 318 auto *CE = dyn_cast<ConstantExpr>(C); 319 if (!CE) return false; 320 321 // Look through ptr->int and ptr->ptr casts. 322 if (CE->getOpcode() == Instruction::PtrToInt || 323 CE->getOpcode() == Instruction::BitCast) 324 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 325 DSOEquiv); 326 327 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 328 auto *GEP = dyn_cast<GEPOperator>(CE); 329 if (!GEP) 330 return false; 331 332 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 333 APInt TmpOffset(BitWidth, 0); 334 335 // If the base isn't a global+constant, we aren't either. 336 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 337 DSOEquiv)) 338 return false; 339 340 // Otherwise, add any offset that our operands provide. 341 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 342 return false; 343 344 Offset = TmpOffset; 345 return true; 346 } 347 348 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 349 const DataLayout &DL) { 350 do { 351 Type *SrcTy = C->getType(); 352 if (SrcTy == DestTy) 353 return C; 354 355 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 356 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 357 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 358 return nullptr; 359 360 // Catch the obvious splat cases (since all-zeros can coerce non-integral 361 // pointers legally). 362 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 363 return Res; 364 365 // If the type sizes are the same and a cast is legal, just directly 366 // cast the constant. 367 // But be careful not to coerce non-integral pointers illegally. 368 if (SrcSize == DestSize && 369 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 370 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 371 Instruction::CastOps Cast = Instruction::BitCast; 372 // If we are going from a pointer to int or vice versa, we spell the cast 373 // differently. 374 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 375 Cast = Instruction::IntToPtr; 376 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 377 Cast = Instruction::PtrToInt; 378 379 if (CastInst::castIsValid(Cast, C, DestTy)) 380 return ConstantExpr::getCast(Cast, C, DestTy); 381 } 382 383 // If this isn't an aggregate type, there is nothing we can do to drill down 384 // and find a bitcastable constant. 385 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 386 return nullptr; 387 388 // We're simulating a load through a pointer that was bitcast to point to 389 // a different type, so we can try to walk down through the initial 390 // elements of an aggregate to see if some part of the aggregate is 391 // castable to implement the "load" semantic model. 392 if (SrcTy->isStructTy()) { 393 // Struct types might have leading zero-length elements like [0 x i32], 394 // which are certainly not what we are looking for, so skip them. 395 unsigned Elem = 0; 396 Constant *ElemC; 397 do { 398 ElemC = C->getAggregateElement(Elem++); 399 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 400 C = ElemC; 401 } else { 402 // For non-byte-sized vector elements, the first element is not 403 // necessarily located at the vector base address. 404 if (auto *VT = dyn_cast<VectorType>(SrcTy)) 405 if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) 406 return nullptr; 407 408 C = C->getAggregateElement(0u); 409 } 410 } while (C); 411 412 return nullptr; 413 } 414 415 namespace { 416 417 /// Recursive helper to read bits out of global. C is the constant being copied 418 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 419 /// results into and BytesLeft is the number of bytes left in 420 /// the CurPtr buffer. DL is the DataLayout. 421 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 422 unsigned BytesLeft, const DataLayout &DL) { 423 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 424 "Out of range access"); 425 426 // If this element is zero or undefined, we can just return since *CurPtr is 427 // zero initialized. 428 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 429 return true; 430 431 if (auto *CI = dyn_cast<ConstantInt>(C)) { 432 if (CI->getBitWidth() > 64 || 433 (CI->getBitWidth() & 7) != 0) 434 return false; 435 436 uint64_t Val = CI->getZExtValue(); 437 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 438 439 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 440 int n = ByteOffset; 441 if (!DL.isLittleEndian()) 442 n = IntBytes - n - 1; 443 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 444 ++ByteOffset; 445 } 446 return true; 447 } 448 449 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 450 if (CFP->getType()->isDoubleTy()) { 451 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 452 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 453 } 454 if (CFP->getType()->isFloatTy()){ 455 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 456 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 457 } 458 if (CFP->getType()->isHalfTy()){ 459 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 460 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 461 } 462 return false; 463 } 464 465 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 466 const StructLayout *SL = DL.getStructLayout(CS->getType()); 467 unsigned Index = SL->getElementContainingOffset(ByteOffset); 468 uint64_t CurEltOffset = SL->getElementOffset(Index); 469 ByteOffset -= CurEltOffset; 470 471 while (true) { 472 // If the element access is to the element itself and not to tail padding, 473 // read the bytes from the element. 474 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 475 476 if (ByteOffset < EltSize && 477 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 478 BytesLeft, DL)) 479 return false; 480 481 ++Index; 482 483 // Check to see if we read from the last struct element, if so we're done. 484 if (Index == CS->getType()->getNumElements()) 485 return true; 486 487 // If we read all of the bytes we needed from this element we're done. 488 uint64_t NextEltOffset = SL->getElementOffset(Index); 489 490 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 491 return true; 492 493 // Move to the next element of the struct. 494 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 495 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 496 ByteOffset = 0; 497 CurEltOffset = NextEltOffset; 498 } 499 // not reached. 500 } 501 502 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 503 isa<ConstantDataSequential>(C)) { 504 uint64_t NumElts; 505 Type *EltTy; 506 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 507 NumElts = AT->getNumElements(); 508 EltTy = AT->getElementType(); 509 } else { 510 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 511 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 512 } 513 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 514 uint64_t Index = ByteOffset / EltSize; 515 uint64_t Offset = ByteOffset - Index * EltSize; 516 517 for (; Index != NumElts; ++Index) { 518 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 519 BytesLeft, DL)) 520 return false; 521 522 uint64_t BytesWritten = EltSize - Offset; 523 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 524 if (BytesWritten >= BytesLeft) 525 return true; 526 527 Offset = 0; 528 BytesLeft -= BytesWritten; 529 CurPtr += BytesWritten; 530 } 531 return true; 532 } 533 534 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 535 if (CE->getOpcode() == Instruction::IntToPtr && 536 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 537 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 538 BytesLeft, DL); 539 } 540 } 541 542 // Otherwise, unknown initializer type. 543 return false; 544 } 545 546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 547 int64_t Offset, const DataLayout &DL) { 548 // Bail out early. Not expect to load from scalable global variable. 549 if (isa<ScalableVectorType>(LoadTy)) 550 return nullptr; 551 552 auto *IntType = dyn_cast<IntegerType>(LoadTy); 553 554 // If this isn't an integer load we can't fold it directly. 555 if (!IntType) { 556 // If this is a non-integer load, we can try folding it as an int load and 557 // then bitcast the result. This can be useful for union cases. Note 558 // that address spaces don't matter here since we're not going to result in 559 // an actual new load. 560 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && 561 !LoadTy->isVectorTy()) 562 return nullptr; 563 564 Type *MapTy = Type::getIntNTy(C->getContext(), 565 DL.getTypeSizeInBits(LoadTy).getFixedValue()); 566 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 567 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 568 !LoadTy->isX86_AMXTy()) 569 // Materializing a zero can be done trivially without a bitcast 570 return Constant::getNullValue(LoadTy); 571 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 572 Res = FoldBitCast(Res, CastTy, DL); 573 if (LoadTy->isPtrOrPtrVectorTy()) { 574 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 575 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 576 !LoadTy->isX86_AMXTy()) 577 return Constant::getNullValue(LoadTy); 578 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 579 // Be careful not to replace a load of an addrspace value with an inttoptr here 580 return nullptr; 581 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 582 } 583 return Res; 584 } 585 return nullptr; 586 } 587 588 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 589 if (BytesLoaded > 32 || BytesLoaded == 0) 590 return nullptr; 591 592 // If we're not accessing anything in this constant, the result is undefined. 593 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 594 return PoisonValue::get(IntType); 595 596 // TODO: We should be able to support scalable types. 597 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType()); 598 if (InitializerSize.isScalable()) 599 return nullptr; 600 601 // If we're not accessing anything in this constant, the result is undefined. 602 if (Offset >= (int64_t)InitializerSize.getFixedValue()) 603 return PoisonValue::get(IntType); 604 605 unsigned char RawBytes[32] = {0}; 606 unsigned char *CurPtr = RawBytes; 607 unsigned BytesLeft = BytesLoaded; 608 609 // If we're loading off the beginning of the global, some bytes may be valid. 610 if (Offset < 0) { 611 CurPtr += -Offset; 612 BytesLeft += Offset; 613 Offset = 0; 614 } 615 616 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 617 return nullptr; 618 619 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 620 if (DL.isLittleEndian()) { 621 ResultVal = RawBytes[BytesLoaded - 1]; 622 for (unsigned i = 1; i != BytesLoaded; ++i) { 623 ResultVal <<= 8; 624 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 625 } 626 } else { 627 ResultVal = RawBytes[0]; 628 for (unsigned i = 1; i != BytesLoaded; ++i) { 629 ResultVal <<= 8; 630 ResultVal |= RawBytes[i]; 631 } 632 } 633 634 return ConstantInt::get(IntType->getContext(), ResultVal); 635 } 636 637 } // anonymous namespace 638 639 // If GV is a constant with an initializer read its representation starting 640 // at Offset and return it as a constant array of unsigned char. Otherwise 641 // return null. 642 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV, 643 uint64_t Offset) { 644 if (!GV->isConstant() || !GV->hasDefinitiveInitializer()) 645 return nullptr; 646 647 const DataLayout &DL = GV->getParent()->getDataLayout(); 648 Constant *Init = const_cast<Constant *>(GV->getInitializer()); 649 TypeSize InitSize = DL.getTypeAllocSize(Init->getType()); 650 if (InitSize < Offset) 651 return nullptr; 652 653 uint64_t NBytes = InitSize - Offset; 654 if (NBytes > UINT16_MAX) 655 // Bail for large initializers in excess of 64K to avoid allocating 656 // too much memory. 657 // Offset is assumed to be less than or equal than InitSize (this 658 // is enforced in ReadDataFromGlobal). 659 return nullptr; 660 661 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes)); 662 unsigned char *CurPtr = RawBytes.data(); 663 664 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL)) 665 return nullptr; 666 667 return ConstantDataArray::get(GV->getContext(), RawBytes); 668 } 669 670 /// If this Offset points exactly to the start of an aggregate element, return 671 /// that element, otherwise return nullptr. 672 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 673 const DataLayout &DL) { 674 if (Offset.isZero()) 675 return Base; 676 677 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 678 return nullptr; 679 680 Type *ElemTy = Base->getType(); 681 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 682 if (!Offset.isZero() || !Indices[0].isZero()) 683 return nullptr; 684 685 Constant *C = Base; 686 for (const APInt &Index : drop_begin(Indices)) { 687 if (Index.isNegative() || Index.getActiveBits() >= 32) 688 return nullptr; 689 690 C = C->getAggregateElement(Index.getZExtValue()); 691 if (!C) 692 return nullptr; 693 } 694 695 return C; 696 } 697 698 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 699 const APInt &Offset, 700 const DataLayout &DL) { 701 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 702 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 703 return Result; 704 705 // Explicitly check for out-of-bounds access, so we return poison even if the 706 // constant is a uniform value. 707 TypeSize Size = DL.getTypeAllocSize(C->getType()); 708 if (!Size.isScalable() && Offset.sge(Size.getFixedValue())) 709 return PoisonValue::get(Ty); 710 711 // Try an offset-independent fold of a uniform value. 712 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty)) 713 return Result; 714 715 // Try hard to fold loads from bitcasted strange and non-type-safe things. 716 if (Offset.getMinSignedBits() <= 64) 717 if (Constant *Result = 718 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) 719 return Result; 720 721 return nullptr; 722 } 723 724 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 725 const DataLayout &DL) { 726 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 727 } 728 729 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 730 APInt Offset, 731 const DataLayout &DL) { 732 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 733 DL, Offset, /* AllowNonInbounds */ true)); 734 735 if (auto *GV = dyn_cast<GlobalVariable>(C)) 736 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 737 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 738 Offset, DL)) 739 return Result; 740 741 // If this load comes from anywhere in a uniform constant global, the value 742 // is always the same, regardless of the loaded offset. 743 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) { 744 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 745 if (Constant *Res = 746 ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty)) 747 return Res; 748 } 749 } 750 751 return nullptr; 752 } 753 754 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 755 const DataLayout &DL) { 756 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 757 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL); 758 } 759 760 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) { 761 if (isa<PoisonValue>(C)) 762 return PoisonValue::get(Ty); 763 if (isa<UndefValue>(C)) 764 return UndefValue::get(Ty); 765 if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) 766 return Constant::getNullValue(Ty); 767 if (C->isAllOnesValue() && 768 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) 769 return Constant::getAllOnesValue(Ty); 770 return nullptr; 771 } 772 773 namespace { 774 775 /// One of Op0/Op1 is a constant expression. 776 /// Attempt to symbolically evaluate the result of a binary operator merging 777 /// these together. If target data info is available, it is provided as DL, 778 /// otherwise DL is null. 779 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 780 const DataLayout &DL) { 781 // SROA 782 783 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 784 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 785 // bits. 786 787 if (Opc == Instruction::And) { 788 KnownBits Known0 = computeKnownBits(Op0, DL); 789 KnownBits Known1 = computeKnownBits(Op1, DL); 790 if ((Known1.One | Known0.Zero).isAllOnes()) { 791 // All the bits of Op0 that the 'and' could be masking are already zero. 792 return Op0; 793 } 794 if ((Known0.One | Known1.Zero).isAllOnes()) { 795 // All the bits of Op1 that the 'and' could be masking are already zero. 796 return Op1; 797 } 798 799 Known0 &= Known1; 800 if (Known0.isConstant()) 801 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 802 } 803 804 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 805 // constant. This happens frequently when iterating over a global array. 806 if (Opc == Instruction::Sub) { 807 GlobalValue *GV1, *GV2; 808 APInt Offs1, Offs2; 809 810 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 811 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 812 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 813 814 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 815 // PtrToInt may change the bitwidth so we have convert to the right size 816 // first. 817 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 818 Offs2.zextOrTrunc(OpSize)); 819 } 820 } 821 822 return nullptr; 823 } 824 825 /// If array indices are not pointer-sized integers, explicitly cast them so 826 /// that they aren't implicitly casted by the getelementptr. 827 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 828 Type *ResultTy, std::optional<unsigned> InRangeIndex, 829 const DataLayout &DL, const TargetLibraryInfo *TLI) { 830 Type *IntIdxTy = DL.getIndexType(ResultTy); 831 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 832 833 bool Any = false; 834 SmallVector<Constant*, 32> NewIdxs; 835 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 836 if ((i == 1 || 837 !isa<StructType>(GetElementPtrInst::getIndexedType( 838 SrcElemTy, Ops.slice(1, i - 1)))) && 839 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 840 Any = true; 841 Type *NewType = Ops[i]->getType()->isVectorTy() 842 ? IntIdxTy 843 : IntIdxScalarTy; 844 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 845 true, 846 NewType, 847 true), 848 Ops[i], NewType)); 849 } else 850 NewIdxs.push_back(Ops[i]); 851 } 852 853 if (!Any) 854 return nullptr; 855 856 Constant *C = ConstantExpr::getGetElementPtr( 857 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 858 return ConstantFoldConstant(C, DL, TLI); 859 } 860 861 /// Strip the pointer casts, but preserve the address space information. 862 Constant *StripPtrCastKeepAS(Constant *Ptr) { 863 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 864 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 865 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 866 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 867 868 // Preserve the address space number of the pointer. 869 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 870 Ptr = ConstantExpr::getPointerCast( 871 Ptr, PointerType::getWithSamePointeeType(NewPtrTy, 872 OldPtrTy->getAddressSpace())); 873 } 874 return Ptr; 875 } 876 877 /// If we can symbolically evaluate the GEP constant expression, do so. 878 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 879 ArrayRef<Constant *> Ops, 880 const DataLayout &DL, 881 const TargetLibraryInfo *TLI) { 882 const GEPOperator *InnermostGEP = GEP; 883 bool InBounds = GEP->isInBounds(); 884 885 Type *SrcElemTy = GEP->getSourceElementType(); 886 Type *ResElemTy = GEP->getResultElementType(); 887 Type *ResTy = GEP->getType(); 888 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 889 return nullptr; 890 891 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 892 GEP->getInRangeIndex(), DL, TLI)) 893 return C; 894 895 Constant *Ptr = Ops[0]; 896 if (!Ptr->getType()->isPointerTy()) 897 return nullptr; 898 899 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 900 901 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 902 if (!isa<ConstantInt>(Ops[i])) 903 return nullptr; 904 905 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 906 APInt Offset = APInt( 907 BitWidth, 908 DL.getIndexedOffsetInType( 909 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1))); 910 Ptr = StripPtrCastKeepAS(Ptr); 911 912 // If this is a GEP of a GEP, fold it all into a single GEP. 913 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 914 InnermostGEP = GEP; 915 InBounds &= GEP->isInBounds(); 916 917 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); 918 919 // Do not try the incorporate the sub-GEP if some index is not a number. 920 bool AllConstantInt = true; 921 for (Value *NestedOp : NestedOps) 922 if (!isa<ConstantInt>(NestedOp)) { 923 AllConstantInt = false; 924 break; 925 } 926 if (!AllConstantInt) 927 break; 928 929 Ptr = cast<Constant>(GEP->getOperand(0)); 930 SrcElemTy = GEP->getSourceElementType(); 931 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 932 Ptr = StripPtrCastKeepAS(Ptr); 933 } 934 935 // If the base value for this address is a literal integer value, fold the 936 // getelementptr to the resulting integer value casted to the pointer type. 937 APInt BasePtr(BitWidth, 0); 938 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 939 if (CE->getOpcode() == Instruction::IntToPtr) { 940 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 941 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 942 } 943 } 944 945 auto *PTy = cast<PointerType>(Ptr->getType()); 946 if ((Ptr->isNullValue() || BasePtr != 0) && 947 !DL.isNonIntegralPointerType(PTy)) { 948 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 949 return ConstantExpr::getIntToPtr(C, ResTy); 950 } 951 952 // Otherwise form a regular getelementptr. Recompute the indices so that 953 // we eliminate over-indexing of the notional static type array bounds. 954 // This makes it easy to determine if the getelementptr is "inbounds". 955 // Also, this helps GlobalOpt do SROA on GlobalVariables. 956 957 // For GEPs of GlobalValues, use the value type even for opaque pointers. 958 // Otherwise use an i8 GEP. 959 if (auto *GV = dyn_cast<GlobalValue>(Ptr)) 960 SrcElemTy = GV->getValueType(); 961 else if (!PTy->isOpaque()) 962 SrcElemTy = PTy->getNonOpaquePointerElementType(); 963 else 964 SrcElemTy = Type::getInt8Ty(Ptr->getContext()); 965 966 if (!SrcElemTy->isSized()) 967 return nullptr; 968 969 Type *ElemTy = SrcElemTy; 970 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 971 if (Offset != 0) 972 return nullptr; 973 974 // Try to add additional zero indices to reach the desired result element 975 // type. 976 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and 977 // we'll have to insert a bitcast anyway? 978 while (ElemTy != ResElemTy) { 979 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0); 980 if (!NextTy) 981 break; 982 983 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth)); 984 ElemTy = NextTy; 985 } 986 987 SmallVector<Constant *, 32> NewIdxs; 988 for (const APInt &Index : Indices) 989 NewIdxs.push_back(ConstantInt::get( 990 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index)); 991 992 // Preserve the inrange index from the innermost GEP if possible. We must 993 // have calculated the same indices up to and including the inrange index. 994 std::optional<unsigned> InRangeIndex; 995 if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 996 if (SrcElemTy == InnermostGEP->getSourceElementType() && 997 NewIdxs.size() > *LastIRIndex) { 998 InRangeIndex = LastIRIndex; 999 for (unsigned I = 0; I <= *LastIRIndex; ++I) 1000 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 1001 return nullptr; 1002 } 1003 1004 // Create a GEP. 1005 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 1006 InBounds, InRangeIndex); 1007 assert( 1008 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && 1009 "Computed GetElementPtr has unexpected type!"); 1010 1011 // If we ended up indexing a member with a type that doesn't match 1012 // the type of what the original indices indexed, add a cast. 1013 if (C->getType() != ResTy) 1014 C = FoldBitCast(C, ResTy, DL); 1015 1016 return C; 1017 } 1018 1019 /// Attempt to constant fold an instruction with the 1020 /// specified opcode and operands. If successful, the constant result is 1021 /// returned, if not, null is returned. Note that this function can fail when 1022 /// attempting to fold instructions like loads and stores, which have no 1023 /// constant expression form. 1024 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 1025 ArrayRef<Constant *> Ops, 1026 const DataLayout &DL, 1027 const TargetLibraryInfo *TLI) { 1028 Type *DestTy = InstOrCE->getType(); 1029 1030 if (Instruction::isUnaryOp(Opcode)) 1031 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1032 1033 if (Instruction::isBinaryOp(Opcode)) { 1034 switch (Opcode) { 1035 default: 1036 break; 1037 case Instruction::FAdd: 1038 case Instruction::FSub: 1039 case Instruction::FMul: 1040 case Instruction::FDiv: 1041 case Instruction::FRem: 1042 // Handle floating point instructions separately to account for denormals 1043 // TODO: If a constant expression is being folded rather than an 1044 // instruction, denormals will not be flushed/treated as zero 1045 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) { 1046 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I); 1047 } 1048 } 1049 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1050 } 1051 1052 if (Instruction::isCast(Opcode)) 1053 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1054 1055 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1056 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1057 return C; 1058 1059 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1060 Ops.slice(1), GEP->isInBounds(), 1061 GEP->getInRangeIndex()); 1062 } 1063 1064 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) { 1065 if (CE->isCompare()) 1066 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1067 DL, TLI); 1068 return CE->getWithOperands(Ops); 1069 } 1070 1071 switch (Opcode) { 1072 default: return nullptr; 1073 case Instruction::ICmp: 1074 case Instruction::FCmp: { 1075 auto *C = cast<CmpInst>(InstOrCE); 1076 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1], 1077 DL, TLI, C); 1078 } 1079 case Instruction::Freeze: 1080 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1081 case Instruction::Call: 1082 if (auto *F = dyn_cast<Function>(Ops.back())) { 1083 const auto *Call = cast<CallBase>(InstOrCE); 1084 if (canConstantFoldCallTo(Call, F)) 1085 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1086 } 1087 return nullptr; 1088 case Instruction::Select: 1089 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1090 case Instruction::ExtractElement: 1091 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1092 case Instruction::ExtractValue: 1093 return ConstantFoldExtractValueInstruction( 1094 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1095 case Instruction::InsertElement: 1096 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1097 case Instruction::InsertValue: 1098 return ConstantFoldInsertValueInstruction( 1099 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices()); 1100 case Instruction::ShuffleVector: 1101 return ConstantExpr::getShuffleVector( 1102 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1103 case Instruction::Load: { 1104 const auto *LI = dyn_cast<LoadInst>(InstOrCE); 1105 if (LI->isVolatile()) 1106 return nullptr; 1107 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1108 } 1109 } 1110 } 1111 1112 } // end anonymous namespace 1113 1114 //===----------------------------------------------------------------------===// 1115 // Constant Folding public APIs 1116 //===----------------------------------------------------------------------===// 1117 1118 namespace { 1119 1120 Constant * 1121 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1122 const TargetLibraryInfo *TLI, 1123 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1124 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1125 return const_cast<Constant *>(C); 1126 1127 SmallVector<Constant *, 8> Ops; 1128 for (const Use &OldU : C->operands()) { 1129 Constant *OldC = cast<Constant>(&OldU); 1130 Constant *NewC = OldC; 1131 // Recursively fold the ConstantExpr's operands. If we have already folded 1132 // a ConstantExpr, we don't have to process it again. 1133 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1134 auto It = FoldedOps.find(OldC); 1135 if (It == FoldedOps.end()) { 1136 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1137 FoldedOps.insert({OldC, NewC}); 1138 } else { 1139 NewC = It->second; 1140 } 1141 } 1142 Ops.push_back(NewC); 1143 } 1144 1145 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1146 if (Constant *Res = 1147 ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI)) 1148 return Res; 1149 return const_cast<Constant *>(C); 1150 } 1151 1152 assert(isa<ConstantVector>(C)); 1153 return ConstantVector::get(Ops); 1154 } 1155 1156 } // end anonymous namespace 1157 1158 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1159 const TargetLibraryInfo *TLI) { 1160 // Handle PHI nodes quickly here... 1161 if (auto *PN = dyn_cast<PHINode>(I)) { 1162 Constant *CommonValue = nullptr; 1163 1164 SmallDenseMap<Constant *, Constant *> FoldedOps; 1165 for (Value *Incoming : PN->incoming_values()) { 1166 // If the incoming value is undef then skip it. Note that while we could 1167 // skip the value if it is equal to the phi node itself we choose not to 1168 // because that would break the rule that constant folding only applies if 1169 // all operands are constants. 1170 if (isa<UndefValue>(Incoming)) 1171 continue; 1172 // If the incoming value is not a constant, then give up. 1173 auto *C = dyn_cast<Constant>(Incoming); 1174 if (!C) 1175 return nullptr; 1176 // Fold the PHI's operands. 1177 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1178 // If the incoming value is a different constant to 1179 // the one we saw previously, then give up. 1180 if (CommonValue && C != CommonValue) 1181 return nullptr; 1182 CommonValue = C; 1183 } 1184 1185 // If we reach here, all incoming values are the same constant or undef. 1186 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1187 } 1188 1189 // Scan the operand list, checking to see if they are all constants, if so, 1190 // hand off to ConstantFoldInstOperandsImpl. 1191 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1192 return nullptr; 1193 1194 SmallDenseMap<Constant *, Constant *> FoldedOps; 1195 SmallVector<Constant *, 8> Ops; 1196 for (const Use &OpU : I->operands()) { 1197 auto *Op = cast<Constant>(&OpU); 1198 // Fold the Instruction's operands. 1199 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1200 Ops.push_back(Op); 1201 } 1202 1203 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1204 } 1205 1206 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1207 const TargetLibraryInfo *TLI) { 1208 SmallDenseMap<Constant *, Constant *> FoldedOps; 1209 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1210 } 1211 1212 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1213 ArrayRef<Constant *> Ops, 1214 const DataLayout &DL, 1215 const TargetLibraryInfo *TLI) { 1216 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1217 } 1218 1219 Constant *llvm::ConstantFoldCompareInstOperands( 1220 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, 1221 const TargetLibraryInfo *TLI, const Instruction *I) { 1222 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; 1223 // fold: icmp (inttoptr x), null -> icmp x, 0 1224 // fold: icmp null, (inttoptr x) -> icmp 0, x 1225 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1226 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1227 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1228 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1229 // 1230 // FIXME: The following comment is out of data and the DataLayout is here now. 1231 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1232 // around to know if bit truncation is happening. 1233 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1234 if (Ops1->isNullValue()) { 1235 if (CE0->getOpcode() == Instruction::IntToPtr) { 1236 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1237 // Convert the integer value to the right size to ensure we get the 1238 // proper extension or truncation. 1239 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1240 IntPtrTy, false); 1241 Constant *Null = Constant::getNullValue(C->getType()); 1242 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1243 } 1244 1245 // Only do this transformation if the int is intptrty in size, otherwise 1246 // there is a truncation or extension that we aren't modeling. 1247 if (CE0->getOpcode() == Instruction::PtrToInt) { 1248 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1249 if (CE0->getType() == IntPtrTy) { 1250 Constant *C = CE0->getOperand(0); 1251 Constant *Null = Constant::getNullValue(C->getType()); 1252 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1253 } 1254 } 1255 } 1256 1257 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1258 if (CE0->getOpcode() == CE1->getOpcode()) { 1259 if (CE0->getOpcode() == Instruction::IntToPtr) { 1260 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1261 1262 // Convert the integer value to the right size to ensure we get the 1263 // proper extension or truncation. 1264 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1265 IntPtrTy, false); 1266 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1267 IntPtrTy, false); 1268 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1269 } 1270 1271 // Only do this transformation if the int is intptrty in size, otherwise 1272 // there is a truncation or extension that we aren't modeling. 1273 if (CE0->getOpcode() == Instruction::PtrToInt) { 1274 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1275 if (CE0->getType() == IntPtrTy && 1276 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1277 return ConstantFoldCompareInstOperands( 1278 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1279 } 1280 } 1281 } 1282 } 1283 1284 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1285 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1286 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1287 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1288 Constant *LHS = ConstantFoldCompareInstOperands( 1289 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1290 Constant *RHS = ConstantFoldCompareInstOperands( 1291 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1292 unsigned OpC = 1293 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1294 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1295 } 1296 1297 // Convert pointer comparison (base+offset1) pred (base+offset2) into 1298 // offset1 pred offset2, for the case where the offset is inbounds. This 1299 // only works for equality and unsigned comparison, as inbounds permits 1300 // crossing the sign boundary. However, the offset comparison itself is 1301 // signed. 1302 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { 1303 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); 1304 APInt Offset0(IndexWidth, 0); 1305 Value *Stripped0 = 1306 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); 1307 APInt Offset1(IndexWidth, 0); 1308 Value *Stripped1 = 1309 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); 1310 if (Stripped0 == Stripped1) 1311 return ConstantExpr::getCompare( 1312 ICmpInst::getSignedPredicate(Predicate), 1313 ConstantInt::get(CE0->getContext(), Offset0), 1314 ConstantInt::get(CE0->getContext(), Offset1)); 1315 } 1316 } else if (isa<ConstantExpr>(Ops1)) { 1317 // If RHS is a constant expression, but the left side isn't, swap the 1318 // operands and try again. 1319 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1320 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1321 } 1322 1323 // Flush any denormal constant float input according to denormal handling 1324 // mode. 1325 Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false); 1326 Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false); 1327 1328 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1329 } 1330 1331 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1332 const DataLayout &DL) { 1333 assert(Instruction::isUnaryOp(Opcode)); 1334 1335 return ConstantFoldUnaryInstruction(Opcode, Op); 1336 } 1337 1338 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1339 Constant *RHS, 1340 const DataLayout &DL) { 1341 assert(Instruction::isBinaryOp(Opcode)); 1342 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1343 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1344 return C; 1345 1346 if (ConstantExpr::isDesirableBinOp(Opcode)) 1347 return ConstantExpr::get(Opcode, LHS, RHS); 1348 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 1349 } 1350 1351 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I, 1352 bool IsOutput) { 1353 if (!I || !I->getParent() || !I->getFunction()) 1354 return Operand; 1355 1356 ConstantFP *CFP = dyn_cast<ConstantFP>(Operand); 1357 if (!CFP) 1358 return Operand; 1359 1360 const APFloat &APF = CFP->getValueAPF(); 1361 Type *Ty = CFP->getType(); 1362 DenormalMode DenormMode = 1363 I->getFunction()->getDenormalMode(Ty->getFltSemantics()); 1364 DenormalMode::DenormalModeKind Mode = 1365 IsOutput ? DenormMode.Output : DenormMode.Input; 1366 switch (Mode) { 1367 default: 1368 llvm_unreachable("unknown denormal mode"); 1369 return Operand; 1370 case DenormalMode::IEEE: 1371 return Operand; 1372 case DenormalMode::PreserveSign: 1373 if (APF.isDenormal()) { 1374 return ConstantFP::get( 1375 Ty->getContext(), 1376 APFloat::getZero(Ty->getFltSemantics(), APF.isNegative())); 1377 } 1378 return Operand; 1379 case DenormalMode::PositiveZero: 1380 if (APF.isDenormal()) { 1381 return ConstantFP::get(Ty->getContext(), 1382 APFloat::getZero(Ty->getFltSemantics(), false)); 1383 } 1384 return Operand; 1385 } 1386 return Operand; 1387 } 1388 1389 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, 1390 Constant *RHS, const DataLayout &DL, 1391 const Instruction *I) { 1392 if (Instruction::isBinaryOp(Opcode)) { 1393 // Flush denormal inputs if needed. 1394 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false); 1395 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false); 1396 1397 // Calculate constant result. 1398 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL); 1399 if (!C) 1400 return nullptr; 1401 1402 // Flush denormal output if needed. 1403 return FlushFPConstant(C, I, /* IsOutput */ true); 1404 } 1405 // If instruction lacks a parent/function and the denormal mode cannot be 1406 // determined, use the default (IEEE). 1407 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL); 1408 } 1409 1410 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1411 Type *DestTy, const DataLayout &DL) { 1412 assert(Instruction::isCast(Opcode)); 1413 switch (Opcode) { 1414 default: 1415 llvm_unreachable("Missing case"); 1416 case Instruction::PtrToInt: 1417 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1418 Constant *FoldedValue = nullptr; 1419 // If the input is a inttoptr, eliminate the pair. This requires knowing 1420 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1421 if (CE->getOpcode() == Instruction::IntToPtr) { 1422 // zext/trunc the inttoptr to pointer size. 1423 FoldedValue = ConstantExpr::getIntegerCast( 1424 CE->getOperand(0), DL.getIntPtrType(CE->getType()), 1425 /*IsSigned=*/false); 1426 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1427 // If we have GEP, we can perform the following folds: 1428 // (ptrtoint (gep null, x)) -> x 1429 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1430 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1431 APInt BaseOffset(BitWidth, 0); 1432 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1433 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1434 if (Base->isNullValue()) { 1435 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1436 } else { 1437 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V 1438 if (GEP->getNumIndices() == 1 && 1439 GEP->getSourceElementType()->isIntegerTy(8)) { 1440 auto *Ptr = cast<Constant>(GEP->getPointerOperand()); 1441 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1)); 1442 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 1443 if (Sub && Sub->getType() == IntIdxTy && 1444 Sub->getOpcode() == Instruction::Sub && 1445 Sub->getOperand(0)->isNullValue()) 1446 FoldedValue = ConstantExpr::getSub( 1447 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1)); 1448 } 1449 } 1450 } 1451 if (FoldedValue) { 1452 // Do a zext or trunc to get to the ptrtoint dest size. 1453 return ConstantExpr::getIntegerCast(FoldedValue, DestTy, 1454 /*IsSigned=*/false); 1455 } 1456 } 1457 return ConstantExpr::getCast(Opcode, C, DestTy); 1458 case Instruction::IntToPtr: 1459 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1460 // the int size is >= the ptr size and the address spaces are the same. 1461 // This requires knowing the width of a pointer, so it can't be done in 1462 // ConstantExpr::getCast. 1463 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1464 if (CE->getOpcode() == Instruction::PtrToInt) { 1465 Constant *SrcPtr = CE->getOperand(0); 1466 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1467 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1468 1469 if (MidIntSize >= SrcPtrSize) { 1470 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1471 if (SrcAS == DestTy->getPointerAddressSpace()) 1472 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1473 } 1474 } 1475 } 1476 1477 return ConstantExpr::getCast(Opcode, C, DestTy); 1478 case Instruction::Trunc: 1479 case Instruction::ZExt: 1480 case Instruction::SExt: 1481 case Instruction::FPTrunc: 1482 case Instruction::FPExt: 1483 case Instruction::UIToFP: 1484 case Instruction::SIToFP: 1485 case Instruction::FPToUI: 1486 case Instruction::FPToSI: 1487 case Instruction::AddrSpaceCast: 1488 return ConstantExpr::getCast(Opcode, C, DestTy); 1489 case Instruction::BitCast: 1490 return FoldBitCast(C, DestTy, DL); 1491 } 1492 } 1493 1494 //===----------------------------------------------------------------------===// 1495 // Constant Folding for Calls 1496 // 1497 1498 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1499 if (Call->isNoBuiltin()) 1500 return false; 1501 if (Call->getFunctionType() != F->getFunctionType()) 1502 return false; 1503 switch (F->getIntrinsicID()) { 1504 // Operations that do not operate floating-point numbers and do not depend on 1505 // FP environment can be folded even in strictfp functions. 1506 case Intrinsic::bswap: 1507 case Intrinsic::ctpop: 1508 case Intrinsic::ctlz: 1509 case Intrinsic::cttz: 1510 case Intrinsic::fshl: 1511 case Intrinsic::fshr: 1512 case Intrinsic::launder_invariant_group: 1513 case Intrinsic::strip_invariant_group: 1514 case Intrinsic::masked_load: 1515 case Intrinsic::get_active_lane_mask: 1516 case Intrinsic::abs: 1517 case Intrinsic::smax: 1518 case Intrinsic::smin: 1519 case Intrinsic::umax: 1520 case Intrinsic::umin: 1521 case Intrinsic::sadd_with_overflow: 1522 case Intrinsic::uadd_with_overflow: 1523 case Intrinsic::ssub_with_overflow: 1524 case Intrinsic::usub_with_overflow: 1525 case Intrinsic::smul_with_overflow: 1526 case Intrinsic::umul_with_overflow: 1527 case Intrinsic::sadd_sat: 1528 case Intrinsic::uadd_sat: 1529 case Intrinsic::ssub_sat: 1530 case Intrinsic::usub_sat: 1531 case Intrinsic::smul_fix: 1532 case Intrinsic::smul_fix_sat: 1533 case Intrinsic::bitreverse: 1534 case Intrinsic::is_constant: 1535 case Intrinsic::vector_reduce_add: 1536 case Intrinsic::vector_reduce_mul: 1537 case Intrinsic::vector_reduce_and: 1538 case Intrinsic::vector_reduce_or: 1539 case Intrinsic::vector_reduce_xor: 1540 case Intrinsic::vector_reduce_smin: 1541 case Intrinsic::vector_reduce_smax: 1542 case Intrinsic::vector_reduce_umin: 1543 case Intrinsic::vector_reduce_umax: 1544 // Target intrinsics 1545 case Intrinsic::amdgcn_perm: 1546 case Intrinsic::arm_mve_vctp8: 1547 case Intrinsic::arm_mve_vctp16: 1548 case Intrinsic::arm_mve_vctp32: 1549 case Intrinsic::arm_mve_vctp64: 1550 case Intrinsic::aarch64_sve_convert_from_svbool: 1551 // WebAssembly float semantics are always known 1552 case Intrinsic::wasm_trunc_signed: 1553 case Intrinsic::wasm_trunc_unsigned: 1554 return true; 1555 1556 // Floating point operations cannot be folded in strictfp functions in 1557 // general case. They can be folded if FP environment is known to compiler. 1558 case Intrinsic::minnum: 1559 case Intrinsic::maxnum: 1560 case Intrinsic::minimum: 1561 case Intrinsic::maximum: 1562 case Intrinsic::log: 1563 case Intrinsic::log2: 1564 case Intrinsic::log10: 1565 case Intrinsic::exp: 1566 case Intrinsic::exp2: 1567 case Intrinsic::sqrt: 1568 case Intrinsic::sin: 1569 case Intrinsic::cos: 1570 case Intrinsic::pow: 1571 case Intrinsic::powi: 1572 case Intrinsic::fma: 1573 case Intrinsic::fmuladd: 1574 case Intrinsic::fptoui_sat: 1575 case Intrinsic::fptosi_sat: 1576 case Intrinsic::convert_from_fp16: 1577 case Intrinsic::convert_to_fp16: 1578 case Intrinsic::amdgcn_cos: 1579 case Intrinsic::amdgcn_cubeid: 1580 case Intrinsic::amdgcn_cubema: 1581 case Intrinsic::amdgcn_cubesc: 1582 case Intrinsic::amdgcn_cubetc: 1583 case Intrinsic::amdgcn_fmul_legacy: 1584 case Intrinsic::amdgcn_fma_legacy: 1585 case Intrinsic::amdgcn_fract: 1586 case Intrinsic::amdgcn_ldexp: 1587 case Intrinsic::amdgcn_sin: 1588 // The intrinsics below depend on rounding mode in MXCSR. 1589 case Intrinsic::x86_sse_cvtss2si: 1590 case Intrinsic::x86_sse_cvtss2si64: 1591 case Intrinsic::x86_sse_cvttss2si: 1592 case Intrinsic::x86_sse_cvttss2si64: 1593 case Intrinsic::x86_sse2_cvtsd2si: 1594 case Intrinsic::x86_sse2_cvtsd2si64: 1595 case Intrinsic::x86_sse2_cvttsd2si: 1596 case Intrinsic::x86_sse2_cvttsd2si64: 1597 case Intrinsic::x86_avx512_vcvtss2si32: 1598 case Intrinsic::x86_avx512_vcvtss2si64: 1599 case Intrinsic::x86_avx512_cvttss2si: 1600 case Intrinsic::x86_avx512_cvttss2si64: 1601 case Intrinsic::x86_avx512_vcvtsd2si32: 1602 case Intrinsic::x86_avx512_vcvtsd2si64: 1603 case Intrinsic::x86_avx512_cvttsd2si: 1604 case Intrinsic::x86_avx512_cvttsd2si64: 1605 case Intrinsic::x86_avx512_vcvtss2usi32: 1606 case Intrinsic::x86_avx512_vcvtss2usi64: 1607 case Intrinsic::x86_avx512_cvttss2usi: 1608 case Intrinsic::x86_avx512_cvttss2usi64: 1609 case Intrinsic::x86_avx512_vcvtsd2usi32: 1610 case Intrinsic::x86_avx512_vcvtsd2usi64: 1611 case Intrinsic::x86_avx512_cvttsd2usi: 1612 case Intrinsic::x86_avx512_cvttsd2usi64: 1613 return !Call->isStrictFP(); 1614 1615 // Sign operations are actually bitwise operations, they do not raise 1616 // exceptions even for SNANs. 1617 case Intrinsic::fabs: 1618 case Intrinsic::copysign: 1619 case Intrinsic::is_fpclass: 1620 // Non-constrained variants of rounding operations means default FP 1621 // environment, they can be folded in any case. 1622 case Intrinsic::ceil: 1623 case Intrinsic::floor: 1624 case Intrinsic::round: 1625 case Intrinsic::roundeven: 1626 case Intrinsic::trunc: 1627 case Intrinsic::nearbyint: 1628 case Intrinsic::rint: 1629 case Intrinsic::canonicalize: 1630 // Constrained intrinsics can be folded if FP environment is known 1631 // to compiler. 1632 case Intrinsic::experimental_constrained_fma: 1633 case Intrinsic::experimental_constrained_fmuladd: 1634 case Intrinsic::experimental_constrained_fadd: 1635 case Intrinsic::experimental_constrained_fsub: 1636 case Intrinsic::experimental_constrained_fmul: 1637 case Intrinsic::experimental_constrained_fdiv: 1638 case Intrinsic::experimental_constrained_frem: 1639 case Intrinsic::experimental_constrained_ceil: 1640 case Intrinsic::experimental_constrained_floor: 1641 case Intrinsic::experimental_constrained_round: 1642 case Intrinsic::experimental_constrained_roundeven: 1643 case Intrinsic::experimental_constrained_trunc: 1644 case Intrinsic::experimental_constrained_nearbyint: 1645 case Intrinsic::experimental_constrained_rint: 1646 case Intrinsic::experimental_constrained_fcmp: 1647 case Intrinsic::experimental_constrained_fcmps: 1648 return true; 1649 default: 1650 return false; 1651 case Intrinsic::not_intrinsic: break; 1652 } 1653 1654 if (!F->hasName() || Call->isStrictFP()) 1655 return false; 1656 1657 // In these cases, the check of the length is required. We don't want to 1658 // return true for a name like "cos\0blah" which strcmp would return equal to 1659 // "cos", but has length 8. 1660 StringRef Name = F->getName(); 1661 switch (Name[0]) { 1662 default: 1663 return false; 1664 case 'a': 1665 return Name == "acos" || Name == "acosf" || 1666 Name == "asin" || Name == "asinf" || 1667 Name == "atan" || Name == "atanf" || 1668 Name == "atan2" || Name == "atan2f"; 1669 case 'c': 1670 return Name == "ceil" || Name == "ceilf" || 1671 Name == "cos" || Name == "cosf" || 1672 Name == "cosh" || Name == "coshf"; 1673 case 'e': 1674 return Name == "exp" || Name == "expf" || 1675 Name == "exp2" || Name == "exp2f"; 1676 case 'f': 1677 return Name == "fabs" || Name == "fabsf" || 1678 Name == "floor" || Name == "floorf" || 1679 Name == "fmod" || Name == "fmodf"; 1680 case 'l': 1681 return Name == "log" || Name == "logf" || 1682 Name == "log2" || Name == "log2f" || 1683 Name == "log10" || Name == "log10f"; 1684 case 'n': 1685 return Name == "nearbyint" || Name == "nearbyintf"; 1686 case 'p': 1687 return Name == "pow" || Name == "powf"; 1688 case 'r': 1689 return Name == "remainder" || Name == "remainderf" || 1690 Name == "rint" || Name == "rintf" || 1691 Name == "round" || Name == "roundf"; 1692 case 's': 1693 return Name == "sin" || Name == "sinf" || 1694 Name == "sinh" || Name == "sinhf" || 1695 Name == "sqrt" || Name == "sqrtf"; 1696 case 't': 1697 return Name == "tan" || Name == "tanf" || 1698 Name == "tanh" || Name == "tanhf" || 1699 Name == "trunc" || Name == "truncf"; 1700 case '_': 1701 // Check for various function names that get used for the math functions 1702 // when the header files are preprocessed with the macro 1703 // __FINITE_MATH_ONLY__ enabled. 1704 // The '12' here is the length of the shortest name that can match. 1705 // We need to check the size before looking at Name[1] and Name[2] 1706 // so we may as well check a limit that will eliminate mismatches. 1707 if (Name.size() < 12 || Name[1] != '_') 1708 return false; 1709 switch (Name[2]) { 1710 default: 1711 return false; 1712 case 'a': 1713 return Name == "__acos_finite" || Name == "__acosf_finite" || 1714 Name == "__asin_finite" || Name == "__asinf_finite" || 1715 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1716 case 'c': 1717 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1718 case 'e': 1719 return Name == "__exp_finite" || Name == "__expf_finite" || 1720 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1721 case 'l': 1722 return Name == "__log_finite" || Name == "__logf_finite" || 1723 Name == "__log10_finite" || Name == "__log10f_finite"; 1724 case 'p': 1725 return Name == "__pow_finite" || Name == "__powf_finite"; 1726 case 's': 1727 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1728 } 1729 } 1730 } 1731 1732 namespace { 1733 1734 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1735 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1736 APFloat APF(V); 1737 bool unused; 1738 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1739 return ConstantFP::get(Ty->getContext(), APF); 1740 } 1741 if (Ty->isDoubleTy()) 1742 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1743 llvm_unreachable("Can only constant fold half/float/double"); 1744 } 1745 1746 /// Clear the floating-point exception state. 1747 inline void llvm_fenv_clearexcept() { 1748 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1749 feclearexcept(FE_ALL_EXCEPT); 1750 #endif 1751 errno = 0; 1752 } 1753 1754 /// Test if a floating-point exception was raised. 1755 inline bool llvm_fenv_testexcept() { 1756 int errno_val = errno; 1757 if (errno_val == ERANGE || errno_val == EDOM) 1758 return true; 1759 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1760 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1761 return true; 1762 #endif 1763 return false; 1764 } 1765 1766 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1767 Type *Ty) { 1768 llvm_fenv_clearexcept(); 1769 double Result = NativeFP(V.convertToDouble()); 1770 if (llvm_fenv_testexcept()) { 1771 llvm_fenv_clearexcept(); 1772 return nullptr; 1773 } 1774 1775 return GetConstantFoldFPValue(Result, Ty); 1776 } 1777 1778 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1779 const APFloat &V, const APFloat &W, Type *Ty) { 1780 llvm_fenv_clearexcept(); 1781 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1782 if (llvm_fenv_testexcept()) { 1783 llvm_fenv_clearexcept(); 1784 return nullptr; 1785 } 1786 1787 return GetConstantFoldFPValue(Result, Ty); 1788 } 1789 1790 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1791 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1792 if (!VT) 1793 return nullptr; 1794 1795 // This isn't strictly necessary, but handle the special/common case of zero: 1796 // all integer reductions of a zero input produce zero. 1797 if (isa<ConstantAggregateZero>(Op)) 1798 return ConstantInt::get(VT->getElementType(), 0); 1799 1800 // This is the same as the underlying binops - poison propagates. 1801 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1802 return PoisonValue::get(VT->getElementType()); 1803 1804 // TODO: Handle undef. 1805 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1806 return nullptr; 1807 1808 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1809 if (!EltC) 1810 return nullptr; 1811 1812 APInt Acc = EltC->getValue(); 1813 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1814 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1815 return nullptr; 1816 const APInt &X = EltC->getValue(); 1817 switch (IID) { 1818 case Intrinsic::vector_reduce_add: 1819 Acc = Acc + X; 1820 break; 1821 case Intrinsic::vector_reduce_mul: 1822 Acc = Acc * X; 1823 break; 1824 case Intrinsic::vector_reduce_and: 1825 Acc = Acc & X; 1826 break; 1827 case Intrinsic::vector_reduce_or: 1828 Acc = Acc | X; 1829 break; 1830 case Intrinsic::vector_reduce_xor: 1831 Acc = Acc ^ X; 1832 break; 1833 case Intrinsic::vector_reduce_smin: 1834 Acc = APIntOps::smin(Acc, X); 1835 break; 1836 case Intrinsic::vector_reduce_smax: 1837 Acc = APIntOps::smax(Acc, X); 1838 break; 1839 case Intrinsic::vector_reduce_umin: 1840 Acc = APIntOps::umin(Acc, X); 1841 break; 1842 case Intrinsic::vector_reduce_umax: 1843 Acc = APIntOps::umax(Acc, X); 1844 break; 1845 } 1846 } 1847 1848 return ConstantInt::get(Op->getContext(), Acc); 1849 } 1850 1851 /// Attempt to fold an SSE floating point to integer conversion of a constant 1852 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1853 /// used (toward nearest, ties to even). This matches the behavior of the 1854 /// non-truncating SSE instructions in the default rounding mode. The desired 1855 /// integer type Ty is used to select how many bits are available for the 1856 /// result. Returns null if the conversion cannot be performed, otherwise 1857 /// returns the Constant value resulting from the conversion. 1858 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1859 Type *Ty, bool IsSigned) { 1860 // All of these conversion intrinsics form an integer of at most 64bits. 1861 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1862 assert(ResultWidth <= 64 && 1863 "Can only constant fold conversions to 64 and 32 bit ints"); 1864 1865 uint64_t UIntVal; 1866 bool isExact = false; 1867 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1868 : APFloat::rmNearestTiesToEven; 1869 APFloat::opStatus status = 1870 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth, 1871 IsSigned, mode, &isExact); 1872 if (status != APFloat::opOK && 1873 (!roundTowardZero || status != APFloat::opInexact)) 1874 return nullptr; 1875 return ConstantInt::get(Ty, UIntVal, IsSigned); 1876 } 1877 1878 double getValueAsDouble(ConstantFP *Op) { 1879 Type *Ty = Op->getType(); 1880 1881 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1882 return Op->getValueAPF().convertToDouble(); 1883 1884 bool unused; 1885 APFloat APF = Op->getValueAPF(); 1886 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1887 return APF.convertToDouble(); 1888 } 1889 1890 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1891 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1892 C = &CI->getValue(); 1893 return true; 1894 } 1895 if (isa<UndefValue>(Op)) { 1896 C = nullptr; 1897 return true; 1898 } 1899 return false; 1900 } 1901 1902 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1903 /// to be folded. 1904 /// 1905 /// \param CI Constrained intrinsic call. 1906 /// \param St Exception flags raised during constant evaluation. 1907 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1908 APFloat::opStatus St) { 1909 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 1910 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1911 1912 // If the operation does not change exception status flags, it is safe 1913 // to fold. 1914 if (St == APFloat::opStatus::opOK) 1915 return true; 1916 1917 // If evaluation raised FP exception, the result can depend on rounding 1918 // mode. If the latter is unknown, folding is not possible. 1919 if (ORM && *ORM == RoundingMode::Dynamic) 1920 return false; 1921 1922 // If FP exceptions are ignored, fold the call, even if such exception is 1923 // raised. 1924 if (EB && *EB != fp::ExceptionBehavior::ebStrict) 1925 return true; 1926 1927 // Leave the calculation for runtime so that exception flags be correctly set 1928 // in hardware. 1929 return false; 1930 } 1931 1932 /// Returns the rounding mode that should be used for constant evaluation. 1933 static RoundingMode 1934 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1935 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 1936 if (!ORM || *ORM == RoundingMode::Dynamic) 1937 // Even if the rounding mode is unknown, try evaluating the operation. 1938 // If it does not raise inexact exception, rounding was not applied, 1939 // so the result is exact and does not depend on rounding mode. Whether 1940 // other FP exceptions are raised, it does not depend on rounding mode. 1941 return RoundingMode::NearestTiesToEven; 1942 return *ORM; 1943 } 1944 1945 /// Try to constant fold llvm.canonicalize for the given caller and value. 1946 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI, 1947 const APFloat &Src) { 1948 // Zero, positive and negative, is always OK to fold. 1949 if (Src.isZero()) { 1950 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros. 1951 return ConstantFP::get( 1952 CI->getContext(), 1953 APFloat::getZero(Src.getSemantics(), Src.isNegative())); 1954 } 1955 1956 if (!Ty->isIEEELikeFPTy()) 1957 return nullptr; 1958 1959 // Zero is always canonical and the sign must be preserved. 1960 // 1961 // Denorms and nans may have special encodings, but it should be OK to fold a 1962 // totally average number. 1963 if (Src.isNormal() || Src.isInfinity()) 1964 return ConstantFP::get(CI->getContext(), Src); 1965 1966 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) { 1967 DenormalMode DenormMode = 1968 CI->getFunction()->getDenormalMode(Src.getSemantics()); 1969 if (DenormMode == DenormalMode::getIEEE()) 1970 return nullptr; 1971 1972 bool IsPositive = 1973 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero || 1974 (DenormMode.Output == DenormalMode::PositiveZero && 1975 DenormMode.Input == DenormalMode::IEEE)); 1976 return ConstantFP::get(CI->getContext(), 1977 APFloat::getZero(Src.getSemantics(), !IsPositive)); 1978 } 1979 1980 return nullptr; 1981 } 1982 1983 static Constant *ConstantFoldScalarCall1(StringRef Name, 1984 Intrinsic::ID IntrinsicID, 1985 Type *Ty, 1986 ArrayRef<Constant *> Operands, 1987 const TargetLibraryInfo *TLI, 1988 const CallBase *Call) { 1989 assert(Operands.size() == 1 && "Wrong number of operands."); 1990 1991 if (IntrinsicID == Intrinsic::is_constant) { 1992 // We know we have a "Constant" argument. But we want to only 1993 // return true for manifest constants, not those that depend on 1994 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1995 if (Operands[0]->isManifestConstant()) 1996 return ConstantInt::getTrue(Ty->getContext()); 1997 return nullptr; 1998 } 1999 2000 if (isa<PoisonValue>(Operands[0])) { 2001 // TODO: All of these operations should probably propagate poison. 2002 if (IntrinsicID == Intrinsic::canonicalize) 2003 return PoisonValue::get(Ty); 2004 } 2005 2006 if (isa<UndefValue>(Operands[0])) { 2007 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 2008 // ctpop() is between 0 and bitwidth, pick 0 for undef. 2009 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 2010 if (IntrinsicID == Intrinsic::cos || 2011 IntrinsicID == Intrinsic::ctpop || 2012 IntrinsicID == Intrinsic::fptoui_sat || 2013 IntrinsicID == Intrinsic::fptosi_sat || 2014 IntrinsicID == Intrinsic::canonicalize) 2015 return Constant::getNullValue(Ty); 2016 if (IntrinsicID == Intrinsic::bswap || 2017 IntrinsicID == Intrinsic::bitreverse || 2018 IntrinsicID == Intrinsic::launder_invariant_group || 2019 IntrinsicID == Intrinsic::strip_invariant_group) 2020 return Operands[0]; 2021 } 2022 2023 if (isa<ConstantPointerNull>(Operands[0])) { 2024 // launder(null) == null == strip(null) iff in addrspace 0 2025 if (IntrinsicID == Intrinsic::launder_invariant_group || 2026 IntrinsicID == Intrinsic::strip_invariant_group) { 2027 // If instruction is not yet put in a basic block (e.g. when cloning 2028 // a function during inlining), Call's caller may not be available. 2029 // So check Call's BB first before querying Call->getCaller. 2030 const Function *Caller = 2031 Call->getParent() ? Call->getCaller() : nullptr; 2032 if (Caller && 2033 !NullPointerIsDefined( 2034 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 2035 return Operands[0]; 2036 } 2037 return nullptr; 2038 } 2039 } 2040 2041 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 2042 if (IntrinsicID == Intrinsic::convert_to_fp16) { 2043 APFloat Val(Op->getValueAPF()); 2044 2045 bool lost = false; 2046 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 2047 2048 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 2049 } 2050 2051 APFloat U = Op->getValueAPF(); 2052 2053 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 2054 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 2055 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 2056 2057 if (U.isNaN()) 2058 return nullptr; 2059 2060 unsigned Width = Ty->getIntegerBitWidth(); 2061 APSInt Int(Width, !Signed); 2062 bool IsExact = false; 2063 APFloat::opStatus Status = 2064 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2065 2066 if (Status == APFloat::opOK || Status == APFloat::opInexact) 2067 return ConstantInt::get(Ty, Int); 2068 2069 return nullptr; 2070 } 2071 2072 if (IntrinsicID == Intrinsic::fptoui_sat || 2073 IntrinsicID == Intrinsic::fptosi_sat) { 2074 // convertToInteger() already has the desired saturation semantics. 2075 APSInt Int(Ty->getIntegerBitWidth(), 2076 IntrinsicID == Intrinsic::fptoui_sat); 2077 bool IsExact; 2078 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2079 return ConstantInt::get(Ty, Int); 2080 } 2081 2082 if (IntrinsicID == Intrinsic::canonicalize) 2083 return constantFoldCanonicalize(Ty, Call, U); 2084 2085 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2086 return nullptr; 2087 2088 // Use internal versions of these intrinsics. 2089 2090 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 2091 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2092 return ConstantFP::get(Ty->getContext(), U); 2093 } 2094 2095 if (IntrinsicID == Intrinsic::round) { 2096 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2097 return ConstantFP::get(Ty->getContext(), U); 2098 } 2099 2100 if (IntrinsicID == Intrinsic::roundeven) { 2101 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2102 return ConstantFP::get(Ty->getContext(), U); 2103 } 2104 2105 if (IntrinsicID == Intrinsic::ceil) { 2106 U.roundToIntegral(APFloat::rmTowardPositive); 2107 return ConstantFP::get(Ty->getContext(), U); 2108 } 2109 2110 if (IntrinsicID == Intrinsic::floor) { 2111 U.roundToIntegral(APFloat::rmTowardNegative); 2112 return ConstantFP::get(Ty->getContext(), U); 2113 } 2114 2115 if (IntrinsicID == Intrinsic::trunc) { 2116 U.roundToIntegral(APFloat::rmTowardZero); 2117 return ConstantFP::get(Ty->getContext(), U); 2118 } 2119 2120 if (IntrinsicID == Intrinsic::fabs) { 2121 U.clearSign(); 2122 return ConstantFP::get(Ty->getContext(), U); 2123 } 2124 2125 if (IntrinsicID == Intrinsic::amdgcn_fract) { 2126 // The v_fract instruction behaves like the OpenCL spec, which defines 2127 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 2128 // there to prevent fract(-small) from returning 1.0. It returns the 2129 // largest positive floating-point number less than 1.0." 2130 APFloat FloorU(U); 2131 FloorU.roundToIntegral(APFloat::rmTowardNegative); 2132 APFloat FractU(U - FloorU); 2133 APFloat AlmostOne(U.getSemantics(), 1); 2134 AlmostOne.next(/*nextDown*/ true); 2135 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 2136 } 2137 2138 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 2139 // raise FP exceptions, unless the argument is signaling NaN. 2140 2141 std::optional<APFloat::roundingMode> RM; 2142 switch (IntrinsicID) { 2143 default: 2144 break; 2145 case Intrinsic::experimental_constrained_nearbyint: 2146 case Intrinsic::experimental_constrained_rint: { 2147 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2148 RM = CI->getRoundingMode(); 2149 if (!RM || *RM == RoundingMode::Dynamic) 2150 return nullptr; 2151 break; 2152 } 2153 case Intrinsic::experimental_constrained_round: 2154 RM = APFloat::rmNearestTiesToAway; 2155 break; 2156 case Intrinsic::experimental_constrained_ceil: 2157 RM = APFloat::rmTowardPositive; 2158 break; 2159 case Intrinsic::experimental_constrained_floor: 2160 RM = APFloat::rmTowardNegative; 2161 break; 2162 case Intrinsic::experimental_constrained_trunc: 2163 RM = APFloat::rmTowardZero; 2164 break; 2165 } 2166 if (RM) { 2167 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2168 if (U.isFinite()) { 2169 APFloat::opStatus St = U.roundToIntegral(*RM); 2170 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2171 St == APFloat::opInexact) { 2172 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2173 if (EB && *EB == fp::ebStrict) 2174 return nullptr; 2175 } 2176 } else if (U.isSignaling()) { 2177 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2178 if (EB && *EB != fp::ebIgnore) 2179 return nullptr; 2180 U = APFloat::getQNaN(U.getSemantics()); 2181 } 2182 return ConstantFP::get(Ty->getContext(), U); 2183 } 2184 2185 /// We only fold functions with finite arguments. Folding NaN and inf is 2186 /// likely to be aborted with an exception anyway, and some host libms 2187 /// have known errors raising exceptions. 2188 if (!U.isFinite()) 2189 return nullptr; 2190 2191 /// Currently APFloat versions of these functions do not exist, so we use 2192 /// the host native double versions. Float versions are not called 2193 /// directly but for all these it is true (float)(f((double)arg)) == 2194 /// f(arg). Long double not supported yet. 2195 const APFloat &APF = Op->getValueAPF(); 2196 2197 switch (IntrinsicID) { 2198 default: break; 2199 case Intrinsic::log: 2200 return ConstantFoldFP(log, APF, Ty); 2201 case Intrinsic::log2: 2202 // TODO: What about hosts that lack a C99 library? 2203 return ConstantFoldFP(log2, APF, Ty); 2204 case Intrinsic::log10: 2205 // TODO: What about hosts that lack a C99 library? 2206 return ConstantFoldFP(log10, APF, Ty); 2207 case Intrinsic::exp: 2208 return ConstantFoldFP(exp, APF, Ty); 2209 case Intrinsic::exp2: 2210 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2211 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2212 case Intrinsic::sin: 2213 return ConstantFoldFP(sin, APF, Ty); 2214 case Intrinsic::cos: 2215 return ConstantFoldFP(cos, APF, Ty); 2216 case Intrinsic::sqrt: 2217 return ConstantFoldFP(sqrt, APF, Ty); 2218 case Intrinsic::amdgcn_cos: 2219 case Intrinsic::amdgcn_sin: { 2220 double V = getValueAsDouble(Op); 2221 if (V < -256.0 || V > 256.0) 2222 // The gfx8 and gfx9 architectures handle arguments outside the range 2223 // [-256, 256] differently. This should be a rare case so bail out 2224 // rather than trying to handle the difference. 2225 return nullptr; 2226 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2227 double V4 = V * 4.0; 2228 if (V4 == floor(V4)) { 2229 // Force exact results for quarter-integer inputs. 2230 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2231 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2232 } else { 2233 if (IsCos) 2234 V = cos(V * 2.0 * numbers::pi); 2235 else 2236 V = sin(V * 2.0 * numbers::pi); 2237 } 2238 return GetConstantFoldFPValue(V, Ty); 2239 } 2240 } 2241 2242 if (!TLI) 2243 return nullptr; 2244 2245 LibFunc Func = NotLibFunc; 2246 if (!TLI->getLibFunc(Name, Func)) 2247 return nullptr; 2248 2249 switch (Func) { 2250 default: 2251 break; 2252 case LibFunc_acos: 2253 case LibFunc_acosf: 2254 case LibFunc_acos_finite: 2255 case LibFunc_acosf_finite: 2256 if (TLI->has(Func)) 2257 return ConstantFoldFP(acos, APF, Ty); 2258 break; 2259 case LibFunc_asin: 2260 case LibFunc_asinf: 2261 case LibFunc_asin_finite: 2262 case LibFunc_asinf_finite: 2263 if (TLI->has(Func)) 2264 return ConstantFoldFP(asin, APF, Ty); 2265 break; 2266 case LibFunc_atan: 2267 case LibFunc_atanf: 2268 if (TLI->has(Func)) 2269 return ConstantFoldFP(atan, APF, Ty); 2270 break; 2271 case LibFunc_ceil: 2272 case LibFunc_ceilf: 2273 if (TLI->has(Func)) { 2274 U.roundToIntegral(APFloat::rmTowardPositive); 2275 return ConstantFP::get(Ty->getContext(), U); 2276 } 2277 break; 2278 case LibFunc_cos: 2279 case LibFunc_cosf: 2280 if (TLI->has(Func)) 2281 return ConstantFoldFP(cos, APF, Ty); 2282 break; 2283 case LibFunc_cosh: 2284 case LibFunc_coshf: 2285 case LibFunc_cosh_finite: 2286 case LibFunc_coshf_finite: 2287 if (TLI->has(Func)) 2288 return ConstantFoldFP(cosh, APF, Ty); 2289 break; 2290 case LibFunc_exp: 2291 case LibFunc_expf: 2292 case LibFunc_exp_finite: 2293 case LibFunc_expf_finite: 2294 if (TLI->has(Func)) 2295 return ConstantFoldFP(exp, APF, Ty); 2296 break; 2297 case LibFunc_exp2: 2298 case LibFunc_exp2f: 2299 case LibFunc_exp2_finite: 2300 case LibFunc_exp2f_finite: 2301 if (TLI->has(Func)) 2302 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2303 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2304 break; 2305 case LibFunc_fabs: 2306 case LibFunc_fabsf: 2307 if (TLI->has(Func)) { 2308 U.clearSign(); 2309 return ConstantFP::get(Ty->getContext(), U); 2310 } 2311 break; 2312 case LibFunc_floor: 2313 case LibFunc_floorf: 2314 if (TLI->has(Func)) { 2315 U.roundToIntegral(APFloat::rmTowardNegative); 2316 return ConstantFP::get(Ty->getContext(), U); 2317 } 2318 break; 2319 case LibFunc_log: 2320 case LibFunc_logf: 2321 case LibFunc_log_finite: 2322 case LibFunc_logf_finite: 2323 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2324 return ConstantFoldFP(log, APF, Ty); 2325 break; 2326 case LibFunc_log2: 2327 case LibFunc_log2f: 2328 case LibFunc_log2_finite: 2329 case LibFunc_log2f_finite: 2330 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2331 // TODO: What about hosts that lack a C99 library? 2332 return ConstantFoldFP(log2, APF, Ty); 2333 break; 2334 case LibFunc_log10: 2335 case LibFunc_log10f: 2336 case LibFunc_log10_finite: 2337 case LibFunc_log10f_finite: 2338 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2339 // TODO: What about hosts that lack a C99 library? 2340 return ConstantFoldFP(log10, APF, Ty); 2341 break; 2342 case LibFunc_nearbyint: 2343 case LibFunc_nearbyintf: 2344 case LibFunc_rint: 2345 case LibFunc_rintf: 2346 if (TLI->has(Func)) { 2347 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2348 return ConstantFP::get(Ty->getContext(), U); 2349 } 2350 break; 2351 case LibFunc_round: 2352 case LibFunc_roundf: 2353 if (TLI->has(Func)) { 2354 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2355 return ConstantFP::get(Ty->getContext(), U); 2356 } 2357 break; 2358 case LibFunc_sin: 2359 case LibFunc_sinf: 2360 if (TLI->has(Func)) 2361 return ConstantFoldFP(sin, APF, Ty); 2362 break; 2363 case LibFunc_sinh: 2364 case LibFunc_sinhf: 2365 case LibFunc_sinh_finite: 2366 case LibFunc_sinhf_finite: 2367 if (TLI->has(Func)) 2368 return ConstantFoldFP(sinh, APF, Ty); 2369 break; 2370 case LibFunc_sqrt: 2371 case LibFunc_sqrtf: 2372 if (!APF.isNegative() && TLI->has(Func)) 2373 return ConstantFoldFP(sqrt, APF, Ty); 2374 break; 2375 case LibFunc_tan: 2376 case LibFunc_tanf: 2377 if (TLI->has(Func)) 2378 return ConstantFoldFP(tan, APF, Ty); 2379 break; 2380 case LibFunc_tanh: 2381 case LibFunc_tanhf: 2382 if (TLI->has(Func)) 2383 return ConstantFoldFP(tanh, APF, Ty); 2384 break; 2385 case LibFunc_trunc: 2386 case LibFunc_truncf: 2387 if (TLI->has(Func)) { 2388 U.roundToIntegral(APFloat::rmTowardZero); 2389 return ConstantFP::get(Ty->getContext(), U); 2390 } 2391 break; 2392 } 2393 return nullptr; 2394 } 2395 2396 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2397 switch (IntrinsicID) { 2398 case Intrinsic::bswap: 2399 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2400 case Intrinsic::ctpop: 2401 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2402 case Intrinsic::bitreverse: 2403 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2404 case Intrinsic::convert_from_fp16: { 2405 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2406 2407 bool lost = false; 2408 APFloat::opStatus status = Val.convert( 2409 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2410 2411 // Conversion is always precise. 2412 (void)status; 2413 assert(status != APFloat::opInexact && !lost && 2414 "Precision lost during fp16 constfolding"); 2415 2416 return ConstantFP::get(Ty->getContext(), Val); 2417 } 2418 default: 2419 return nullptr; 2420 } 2421 } 2422 2423 switch (IntrinsicID) { 2424 default: break; 2425 case Intrinsic::vector_reduce_add: 2426 case Intrinsic::vector_reduce_mul: 2427 case Intrinsic::vector_reduce_and: 2428 case Intrinsic::vector_reduce_or: 2429 case Intrinsic::vector_reduce_xor: 2430 case Intrinsic::vector_reduce_smin: 2431 case Intrinsic::vector_reduce_smax: 2432 case Intrinsic::vector_reduce_umin: 2433 case Intrinsic::vector_reduce_umax: 2434 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2435 return C; 2436 break; 2437 } 2438 2439 // Support ConstantVector in case we have an Undef in the top. 2440 if (isa<ConstantVector>(Operands[0]) || 2441 isa<ConstantDataVector>(Operands[0])) { 2442 auto *Op = cast<Constant>(Operands[0]); 2443 switch (IntrinsicID) { 2444 default: break; 2445 case Intrinsic::x86_sse_cvtss2si: 2446 case Intrinsic::x86_sse_cvtss2si64: 2447 case Intrinsic::x86_sse2_cvtsd2si: 2448 case Intrinsic::x86_sse2_cvtsd2si64: 2449 if (ConstantFP *FPOp = 2450 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2451 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2452 /*roundTowardZero=*/false, Ty, 2453 /*IsSigned*/true); 2454 break; 2455 case Intrinsic::x86_sse_cvttss2si: 2456 case Intrinsic::x86_sse_cvttss2si64: 2457 case Intrinsic::x86_sse2_cvttsd2si: 2458 case Intrinsic::x86_sse2_cvttsd2si64: 2459 if (ConstantFP *FPOp = 2460 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2461 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2462 /*roundTowardZero=*/true, Ty, 2463 /*IsSigned*/true); 2464 break; 2465 } 2466 } 2467 2468 return nullptr; 2469 } 2470 2471 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2, 2472 const ConstrainedFPIntrinsic *Call) { 2473 APFloat::opStatus St = APFloat::opOK; 2474 auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call); 2475 FCmpInst::Predicate Cond = FCmp->getPredicate(); 2476 if (FCmp->isSignaling()) { 2477 if (Op1.isNaN() || Op2.isNaN()) 2478 St = APFloat::opInvalidOp; 2479 } else { 2480 if (Op1.isSignaling() || Op2.isSignaling()) 2481 St = APFloat::opInvalidOp; 2482 } 2483 bool Result = FCmpInst::compare(Op1, Op2, Cond); 2484 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St)) 2485 return ConstantInt::get(Call->getType()->getScalarType(), Result); 2486 return nullptr; 2487 } 2488 2489 static Constant *ConstantFoldScalarCall2(StringRef Name, 2490 Intrinsic::ID IntrinsicID, 2491 Type *Ty, 2492 ArrayRef<Constant *> Operands, 2493 const TargetLibraryInfo *TLI, 2494 const CallBase *Call) { 2495 assert(Operands.size() == 2 && "Wrong number of operands."); 2496 2497 if (Ty->isFloatingPointTy()) { 2498 // TODO: We should have undef handling for all of the FP intrinsics that 2499 // are attempted to be folded in this function. 2500 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2501 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2502 switch (IntrinsicID) { 2503 case Intrinsic::maxnum: 2504 case Intrinsic::minnum: 2505 case Intrinsic::maximum: 2506 case Intrinsic::minimum: 2507 // If one argument is undef, return the other argument. 2508 if (IsOp0Undef) 2509 return Operands[1]; 2510 if (IsOp1Undef) 2511 return Operands[0]; 2512 break; 2513 } 2514 } 2515 2516 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2517 const APFloat &Op1V = Op1->getValueAPF(); 2518 2519 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2520 if (Op2->getType() != Op1->getType()) 2521 return nullptr; 2522 const APFloat &Op2V = Op2->getValueAPF(); 2523 2524 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2525 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2526 APFloat Res = Op1V; 2527 APFloat::opStatus St; 2528 switch (IntrinsicID) { 2529 default: 2530 return nullptr; 2531 case Intrinsic::experimental_constrained_fadd: 2532 St = Res.add(Op2V, RM); 2533 break; 2534 case Intrinsic::experimental_constrained_fsub: 2535 St = Res.subtract(Op2V, RM); 2536 break; 2537 case Intrinsic::experimental_constrained_fmul: 2538 St = Res.multiply(Op2V, RM); 2539 break; 2540 case Intrinsic::experimental_constrained_fdiv: 2541 St = Res.divide(Op2V, RM); 2542 break; 2543 case Intrinsic::experimental_constrained_frem: 2544 St = Res.mod(Op2V); 2545 break; 2546 case Intrinsic::experimental_constrained_fcmp: 2547 case Intrinsic::experimental_constrained_fcmps: 2548 return evaluateCompare(Op1V, Op2V, ConstrIntr); 2549 } 2550 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2551 St)) 2552 return ConstantFP::get(Ty->getContext(), Res); 2553 return nullptr; 2554 } 2555 2556 switch (IntrinsicID) { 2557 default: 2558 break; 2559 case Intrinsic::copysign: 2560 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2561 case Intrinsic::minnum: 2562 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2563 case Intrinsic::maxnum: 2564 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2565 case Intrinsic::minimum: 2566 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2567 case Intrinsic::maximum: 2568 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2569 } 2570 2571 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2572 return nullptr; 2573 2574 switch (IntrinsicID) { 2575 default: 2576 break; 2577 case Intrinsic::pow: 2578 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2579 case Intrinsic::amdgcn_fmul_legacy: 2580 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2581 // NaN or infinity, gives +0.0. 2582 if (Op1V.isZero() || Op2V.isZero()) 2583 return ConstantFP::getNullValue(Ty); 2584 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2585 } 2586 2587 if (!TLI) 2588 return nullptr; 2589 2590 LibFunc Func = NotLibFunc; 2591 if (!TLI->getLibFunc(Name, Func)) 2592 return nullptr; 2593 2594 switch (Func) { 2595 default: 2596 break; 2597 case LibFunc_pow: 2598 case LibFunc_powf: 2599 case LibFunc_pow_finite: 2600 case LibFunc_powf_finite: 2601 if (TLI->has(Func)) 2602 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2603 break; 2604 case LibFunc_fmod: 2605 case LibFunc_fmodf: 2606 if (TLI->has(Func)) { 2607 APFloat V = Op1->getValueAPF(); 2608 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2609 return ConstantFP::get(Ty->getContext(), V); 2610 } 2611 break; 2612 case LibFunc_remainder: 2613 case LibFunc_remainderf: 2614 if (TLI->has(Func)) { 2615 APFloat V = Op1->getValueAPF(); 2616 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2617 return ConstantFP::get(Ty->getContext(), V); 2618 } 2619 break; 2620 case LibFunc_atan2: 2621 case LibFunc_atan2f: 2622 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm 2623 // (Solaris), so we do not assume a known result for that. 2624 if (Op1V.isZero() && Op2V.isZero()) 2625 return nullptr; 2626 [[fallthrough]]; 2627 case LibFunc_atan2_finite: 2628 case LibFunc_atan2f_finite: 2629 if (TLI->has(Func)) 2630 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2631 break; 2632 } 2633 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2634 switch (IntrinsicID) { 2635 case Intrinsic::is_fpclass: { 2636 uint32_t Mask = Op2C->getZExtValue(); 2637 bool Result = 2638 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) || 2639 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) || 2640 ((Mask & fcNegInf) && Op1V.isInfinity() && Op1V.isNegative()) || 2641 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) || 2642 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) || 2643 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) || 2644 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) || 2645 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) || 2646 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) || 2647 ((Mask & fcPosInf) && Op1V.isInfinity() && !Op1V.isNegative()); 2648 return ConstantInt::get(Ty, Result); 2649 } 2650 default: 2651 break; 2652 } 2653 2654 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2655 return nullptr; 2656 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2657 return ConstantFP::get( 2658 Ty->getContext(), 2659 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2660 (int)Op2C->getZExtValue()))); 2661 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2662 return ConstantFP::get( 2663 Ty->getContext(), 2664 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2665 (int)Op2C->getZExtValue()))); 2666 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2667 return ConstantFP::get( 2668 Ty->getContext(), 2669 APFloat((double)std::pow(Op1V.convertToDouble(), 2670 (int)Op2C->getZExtValue()))); 2671 2672 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2673 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2674 // everywhere else. 2675 2676 // scalbn is equivalent to ldexp with float radix 2 2677 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2678 APFloat::rmNearestTiesToEven); 2679 return ConstantFP::get(Ty->getContext(), Result); 2680 } 2681 } 2682 return nullptr; 2683 } 2684 2685 if (Operands[0]->getType()->isIntegerTy() && 2686 Operands[1]->getType()->isIntegerTy()) { 2687 const APInt *C0, *C1; 2688 if (!getConstIntOrUndef(Operands[0], C0) || 2689 !getConstIntOrUndef(Operands[1], C1)) 2690 return nullptr; 2691 2692 switch (IntrinsicID) { 2693 default: break; 2694 case Intrinsic::smax: 2695 case Intrinsic::smin: 2696 case Intrinsic::umax: 2697 case Intrinsic::umin: 2698 // This is the same as for binary ops - poison propagates. 2699 // TODO: Poison handling should be consolidated. 2700 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2701 return PoisonValue::get(Ty); 2702 2703 if (!C0 && !C1) 2704 return UndefValue::get(Ty); 2705 if (!C0 || !C1) 2706 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); 2707 return ConstantInt::get( 2708 Ty, ICmpInst::compare(*C0, *C1, 2709 MinMaxIntrinsic::getPredicate(IntrinsicID)) 2710 ? *C0 2711 : *C1); 2712 2713 case Intrinsic::usub_with_overflow: 2714 case Intrinsic::ssub_with_overflow: 2715 // X - undef -> { 0, false } 2716 // undef - X -> { 0, false } 2717 if (!C0 || !C1) 2718 return Constant::getNullValue(Ty); 2719 [[fallthrough]]; 2720 case Intrinsic::uadd_with_overflow: 2721 case Intrinsic::sadd_with_overflow: 2722 // X + undef -> { -1, false } 2723 // undef + x -> { -1, false } 2724 if (!C0 || !C1) { 2725 return ConstantStruct::get( 2726 cast<StructType>(Ty), 2727 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2728 Constant::getNullValue(Ty->getStructElementType(1))}); 2729 } 2730 [[fallthrough]]; 2731 case Intrinsic::smul_with_overflow: 2732 case Intrinsic::umul_with_overflow: { 2733 // undef * X -> { 0, false } 2734 // X * undef -> { 0, false } 2735 if (!C0 || !C1) 2736 return Constant::getNullValue(Ty); 2737 2738 APInt Res; 2739 bool Overflow; 2740 switch (IntrinsicID) { 2741 default: llvm_unreachable("Invalid case"); 2742 case Intrinsic::sadd_with_overflow: 2743 Res = C0->sadd_ov(*C1, Overflow); 2744 break; 2745 case Intrinsic::uadd_with_overflow: 2746 Res = C0->uadd_ov(*C1, Overflow); 2747 break; 2748 case Intrinsic::ssub_with_overflow: 2749 Res = C0->ssub_ov(*C1, Overflow); 2750 break; 2751 case Intrinsic::usub_with_overflow: 2752 Res = C0->usub_ov(*C1, Overflow); 2753 break; 2754 case Intrinsic::smul_with_overflow: 2755 Res = C0->smul_ov(*C1, Overflow); 2756 break; 2757 case Intrinsic::umul_with_overflow: 2758 Res = C0->umul_ov(*C1, Overflow); 2759 break; 2760 } 2761 Constant *Ops[] = { 2762 ConstantInt::get(Ty->getContext(), Res), 2763 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2764 }; 2765 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2766 } 2767 case Intrinsic::uadd_sat: 2768 case Intrinsic::sadd_sat: 2769 // This is the same as for binary ops - poison propagates. 2770 // TODO: Poison handling should be consolidated. 2771 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2772 return PoisonValue::get(Ty); 2773 2774 if (!C0 && !C1) 2775 return UndefValue::get(Ty); 2776 if (!C0 || !C1) 2777 return Constant::getAllOnesValue(Ty); 2778 if (IntrinsicID == Intrinsic::uadd_sat) 2779 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2780 else 2781 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2782 case Intrinsic::usub_sat: 2783 case Intrinsic::ssub_sat: 2784 // This is the same as for binary ops - poison propagates. 2785 // TODO: Poison handling should be consolidated. 2786 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2787 return PoisonValue::get(Ty); 2788 2789 if (!C0 && !C1) 2790 return UndefValue::get(Ty); 2791 if (!C0 || !C1) 2792 return Constant::getNullValue(Ty); 2793 if (IntrinsicID == Intrinsic::usub_sat) 2794 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2795 else 2796 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2797 case Intrinsic::cttz: 2798 case Intrinsic::ctlz: 2799 assert(C1 && "Must be constant int"); 2800 2801 // cttz(0, 1) and ctlz(0, 1) are poison. 2802 if (C1->isOne() && (!C0 || C0->isZero())) 2803 return PoisonValue::get(Ty); 2804 if (!C0) 2805 return Constant::getNullValue(Ty); 2806 if (IntrinsicID == Intrinsic::cttz) 2807 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2808 else 2809 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2810 2811 case Intrinsic::abs: 2812 assert(C1 && "Must be constant int"); 2813 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); 2814 2815 // Undef or minimum val operand with poison min --> undef 2816 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 2817 return UndefValue::get(Ty); 2818 2819 // Undef operand with no poison min --> 0 (sign bit must be clear) 2820 if (!C0) 2821 return Constant::getNullValue(Ty); 2822 2823 return ConstantInt::get(Ty, C0->abs()); 2824 } 2825 2826 return nullptr; 2827 } 2828 2829 // Support ConstantVector in case we have an Undef in the top. 2830 if ((isa<ConstantVector>(Operands[0]) || 2831 isa<ConstantDataVector>(Operands[0])) && 2832 // Check for default rounding mode. 2833 // FIXME: Support other rounding modes? 2834 isa<ConstantInt>(Operands[1]) && 2835 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2836 auto *Op = cast<Constant>(Operands[0]); 2837 switch (IntrinsicID) { 2838 default: break; 2839 case Intrinsic::x86_avx512_vcvtss2si32: 2840 case Intrinsic::x86_avx512_vcvtss2si64: 2841 case Intrinsic::x86_avx512_vcvtsd2si32: 2842 case Intrinsic::x86_avx512_vcvtsd2si64: 2843 if (ConstantFP *FPOp = 2844 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2845 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2846 /*roundTowardZero=*/false, Ty, 2847 /*IsSigned*/true); 2848 break; 2849 case Intrinsic::x86_avx512_vcvtss2usi32: 2850 case Intrinsic::x86_avx512_vcvtss2usi64: 2851 case Intrinsic::x86_avx512_vcvtsd2usi32: 2852 case Intrinsic::x86_avx512_vcvtsd2usi64: 2853 if (ConstantFP *FPOp = 2854 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2855 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2856 /*roundTowardZero=*/false, Ty, 2857 /*IsSigned*/false); 2858 break; 2859 case Intrinsic::x86_avx512_cvttss2si: 2860 case Intrinsic::x86_avx512_cvttss2si64: 2861 case Intrinsic::x86_avx512_cvttsd2si: 2862 case Intrinsic::x86_avx512_cvttsd2si64: 2863 if (ConstantFP *FPOp = 2864 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2865 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2866 /*roundTowardZero=*/true, Ty, 2867 /*IsSigned*/true); 2868 break; 2869 case Intrinsic::x86_avx512_cvttss2usi: 2870 case Intrinsic::x86_avx512_cvttss2usi64: 2871 case Intrinsic::x86_avx512_cvttsd2usi: 2872 case Intrinsic::x86_avx512_cvttsd2usi64: 2873 if (ConstantFP *FPOp = 2874 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2875 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2876 /*roundTowardZero=*/true, Ty, 2877 /*IsSigned*/false); 2878 break; 2879 } 2880 } 2881 return nullptr; 2882 } 2883 2884 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2885 const APFloat &S0, 2886 const APFloat &S1, 2887 const APFloat &S2) { 2888 unsigned ID; 2889 const fltSemantics &Sem = S0.getSemantics(); 2890 APFloat MA(Sem), SC(Sem), TC(Sem); 2891 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2892 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2893 // S2 < 0 2894 ID = 5; 2895 SC = -S0; 2896 } else { 2897 ID = 4; 2898 SC = S0; 2899 } 2900 MA = S2; 2901 TC = -S1; 2902 } else if (abs(S1) >= abs(S0)) { 2903 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2904 // S1 < 0 2905 ID = 3; 2906 TC = -S2; 2907 } else { 2908 ID = 2; 2909 TC = S2; 2910 } 2911 MA = S1; 2912 SC = S0; 2913 } else { 2914 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2915 // S0 < 0 2916 ID = 1; 2917 SC = S2; 2918 } else { 2919 ID = 0; 2920 SC = -S2; 2921 } 2922 MA = S0; 2923 TC = -S1; 2924 } 2925 switch (IntrinsicID) { 2926 default: 2927 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2928 case Intrinsic::amdgcn_cubeid: 2929 return APFloat(Sem, ID); 2930 case Intrinsic::amdgcn_cubema: 2931 return MA + MA; 2932 case Intrinsic::amdgcn_cubesc: 2933 return SC; 2934 case Intrinsic::amdgcn_cubetc: 2935 return TC; 2936 } 2937 } 2938 2939 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 2940 Type *Ty) { 2941 const APInt *C0, *C1, *C2; 2942 if (!getConstIntOrUndef(Operands[0], C0) || 2943 !getConstIntOrUndef(Operands[1], C1) || 2944 !getConstIntOrUndef(Operands[2], C2)) 2945 return nullptr; 2946 2947 if (!C2) 2948 return UndefValue::get(Ty); 2949 2950 APInt Val(32, 0); 2951 unsigned NumUndefBytes = 0; 2952 for (unsigned I = 0; I < 32; I += 8) { 2953 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 2954 unsigned B = 0; 2955 2956 if (Sel >= 13) 2957 B = 0xff; 2958 else if (Sel == 12) 2959 B = 0x00; 2960 else { 2961 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 2962 if (!Src) 2963 ++NumUndefBytes; 2964 else if (Sel < 8) 2965 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 2966 else 2967 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 2968 } 2969 2970 Val.insertBits(B, I, 8); 2971 } 2972 2973 if (NumUndefBytes == 4) 2974 return UndefValue::get(Ty); 2975 2976 return ConstantInt::get(Ty, Val); 2977 } 2978 2979 static Constant *ConstantFoldScalarCall3(StringRef Name, 2980 Intrinsic::ID IntrinsicID, 2981 Type *Ty, 2982 ArrayRef<Constant *> Operands, 2983 const TargetLibraryInfo *TLI, 2984 const CallBase *Call) { 2985 assert(Operands.size() == 3 && "Wrong number of operands."); 2986 2987 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2988 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2989 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2990 const APFloat &C1 = Op1->getValueAPF(); 2991 const APFloat &C2 = Op2->getValueAPF(); 2992 const APFloat &C3 = Op3->getValueAPF(); 2993 2994 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2995 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2996 APFloat Res = C1; 2997 APFloat::opStatus St; 2998 switch (IntrinsicID) { 2999 default: 3000 return nullptr; 3001 case Intrinsic::experimental_constrained_fma: 3002 case Intrinsic::experimental_constrained_fmuladd: 3003 St = Res.fusedMultiplyAdd(C2, C3, RM); 3004 break; 3005 } 3006 if (mayFoldConstrained( 3007 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 3008 return ConstantFP::get(Ty->getContext(), Res); 3009 return nullptr; 3010 } 3011 3012 switch (IntrinsicID) { 3013 default: break; 3014 case Intrinsic::amdgcn_fma_legacy: { 3015 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 3016 // NaN or infinity, gives +0.0. 3017 if (C1.isZero() || C2.isZero()) { 3018 // It's tempting to just return C3 here, but that would give the 3019 // wrong result if C3 was -0.0. 3020 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 3021 } 3022 [[fallthrough]]; 3023 } 3024 case Intrinsic::fma: 3025 case Intrinsic::fmuladd: { 3026 APFloat V = C1; 3027 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 3028 return ConstantFP::get(Ty->getContext(), V); 3029 } 3030 case Intrinsic::amdgcn_cubeid: 3031 case Intrinsic::amdgcn_cubema: 3032 case Intrinsic::amdgcn_cubesc: 3033 case Intrinsic::amdgcn_cubetc: { 3034 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 3035 return ConstantFP::get(Ty->getContext(), V); 3036 } 3037 } 3038 } 3039 } 3040 } 3041 3042 if (IntrinsicID == Intrinsic::smul_fix || 3043 IntrinsicID == Intrinsic::smul_fix_sat) { 3044 // poison * C -> poison 3045 // C * poison -> poison 3046 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 3047 return PoisonValue::get(Ty); 3048 3049 const APInt *C0, *C1; 3050 if (!getConstIntOrUndef(Operands[0], C0) || 3051 !getConstIntOrUndef(Operands[1], C1)) 3052 return nullptr; 3053 3054 // undef * C -> 0 3055 // C * undef -> 0 3056 if (!C0 || !C1) 3057 return Constant::getNullValue(Ty); 3058 3059 // This code performs rounding towards negative infinity in case the result 3060 // cannot be represented exactly for the given scale. Targets that do care 3061 // about rounding should use a target hook for specifying how rounding 3062 // should be done, and provide their own folding to be consistent with 3063 // rounding. This is the same approach as used by 3064 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 3065 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 3066 unsigned Width = C0->getBitWidth(); 3067 assert(Scale < Width && "Illegal scale."); 3068 unsigned ExtendedWidth = Width * 2; 3069 APInt Product = 3070 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale); 3071 if (IntrinsicID == Intrinsic::smul_fix_sat) { 3072 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth); 3073 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth); 3074 Product = APIntOps::smin(Product, Max); 3075 Product = APIntOps::smax(Product, Min); 3076 } 3077 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 3078 } 3079 3080 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 3081 const APInt *C0, *C1, *C2; 3082 if (!getConstIntOrUndef(Operands[0], C0) || 3083 !getConstIntOrUndef(Operands[1], C1) || 3084 !getConstIntOrUndef(Operands[2], C2)) 3085 return nullptr; 3086 3087 bool IsRight = IntrinsicID == Intrinsic::fshr; 3088 if (!C2) 3089 return Operands[IsRight ? 1 : 0]; 3090 if (!C0 && !C1) 3091 return UndefValue::get(Ty); 3092 3093 // The shift amount is interpreted as modulo the bitwidth. If the shift 3094 // amount is effectively 0, avoid UB due to oversized inverse shift below. 3095 unsigned BitWidth = C2->getBitWidth(); 3096 unsigned ShAmt = C2->urem(BitWidth); 3097 if (!ShAmt) 3098 return Operands[IsRight ? 1 : 0]; 3099 3100 // (C0 << ShlAmt) | (C1 >> LshrAmt) 3101 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 3102 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 3103 if (!C0) 3104 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 3105 if (!C1) 3106 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 3107 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 3108 } 3109 3110 if (IntrinsicID == Intrinsic::amdgcn_perm) 3111 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 3112 3113 return nullptr; 3114 } 3115 3116 static Constant *ConstantFoldScalarCall(StringRef Name, 3117 Intrinsic::ID IntrinsicID, 3118 Type *Ty, 3119 ArrayRef<Constant *> Operands, 3120 const TargetLibraryInfo *TLI, 3121 const CallBase *Call) { 3122 if (Operands.size() == 1) 3123 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 3124 3125 if (Operands.size() == 2) 3126 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 3127 3128 if (Operands.size() == 3) 3129 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 3130 3131 return nullptr; 3132 } 3133 3134 static Constant *ConstantFoldFixedVectorCall( 3135 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 3136 ArrayRef<Constant *> Operands, const DataLayout &DL, 3137 const TargetLibraryInfo *TLI, const CallBase *Call) { 3138 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 3139 SmallVector<Constant *, 4> Lane(Operands.size()); 3140 Type *Ty = FVTy->getElementType(); 3141 3142 switch (IntrinsicID) { 3143 case Intrinsic::masked_load: { 3144 auto *SrcPtr = Operands[0]; 3145 auto *Mask = Operands[2]; 3146 auto *Passthru = Operands[3]; 3147 3148 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 3149 3150 SmallVector<Constant *, 32> NewElements; 3151 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3152 auto *MaskElt = Mask->getAggregateElement(I); 3153 if (!MaskElt) 3154 break; 3155 auto *PassthruElt = Passthru->getAggregateElement(I); 3156 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 3157 if (isa<UndefValue>(MaskElt)) { 3158 if (PassthruElt) 3159 NewElements.push_back(PassthruElt); 3160 else if (VecElt) 3161 NewElements.push_back(VecElt); 3162 else 3163 return nullptr; 3164 } 3165 if (MaskElt->isNullValue()) { 3166 if (!PassthruElt) 3167 return nullptr; 3168 NewElements.push_back(PassthruElt); 3169 } else if (MaskElt->isOneValue()) { 3170 if (!VecElt) 3171 return nullptr; 3172 NewElements.push_back(VecElt); 3173 } else { 3174 return nullptr; 3175 } 3176 } 3177 if (NewElements.size() != FVTy->getNumElements()) 3178 return nullptr; 3179 return ConstantVector::get(NewElements); 3180 } 3181 case Intrinsic::arm_mve_vctp8: 3182 case Intrinsic::arm_mve_vctp16: 3183 case Intrinsic::arm_mve_vctp32: 3184 case Intrinsic::arm_mve_vctp64: { 3185 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 3186 unsigned Lanes = FVTy->getNumElements(); 3187 uint64_t Limit = Op->getZExtValue(); 3188 3189 SmallVector<Constant *, 16> NCs; 3190 for (unsigned i = 0; i < Lanes; i++) { 3191 if (i < Limit) 3192 NCs.push_back(ConstantInt::getTrue(Ty)); 3193 else 3194 NCs.push_back(ConstantInt::getFalse(Ty)); 3195 } 3196 return ConstantVector::get(NCs); 3197 } 3198 return nullptr; 3199 } 3200 case Intrinsic::get_active_lane_mask: { 3201 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 3202 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 3203 if (Op0 && Op1) { 3204 unsigned Lanes = FVTy->getNumElements(); 3205 uint64_t Base = Op0->getZExtValue(); 3206 uint64_t Limit = Op1->getZExtValue(); 3207 3208 SmallVector<Constant *, 16> NCs; 3209 for (unsigned i = 0; i < Lanes; i++) { 3210 if (Base + i < Limit) 3211 NCs.push_back(ConstantInt::getTrue(Ty)); 3212 else 3213 NCs.push_back(ConstantInt::getFalse(Ty)); 3214 } 3215 return ConstantVector::get(NCs); 3216 } 3217 return nullptr; 3218 } 3219 default: 3220 break; 3221 } 3222 3223 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3224 // Gather a column of constants. 3225 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3226 // Some intrinsics use a scalar type for certain arguments. 3227 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) { 3228 Lane[J] = Operands[J]; 3229 continue; 3230 } 3231 3232 Constant *Agg = Operands[J]->getAggregateElement(I); 3233 if (!Agg) 3234 return nullptr; 3235 3236 Lane[J] = Agg; 3237 } 3238 3239 // Use the regular scalar folding to simplify this column. 3240 Constant *Folded = 3241 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3242 if (!Folded) 3243 return nullptr; 3244 Result[I] = Folded; 3245 } 3246 3247 return ConstantVector::get(Result); 3248 } 3249 3250 static Constant *ConstantFoldScalableVectorCall( 3251 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3252 ArrayRef<Constant *> Operands, const DataLayout &DL, 3253 const TargetLibraryInfo *TLI, const CallBase *Call) { 3254 switch (IntrinsicID) { 3255 case Intrinsic::aarch64_sve_convert_from_svbool: { 3256 auto *Src = dyn_cast<Constant>(Operands[0]); 3257 if (!Src || !Src->isNullValue()) 3258 break; 3259 3260 return ConstantInt::getFalse(SVTy); 3261 } 3262 default: 3263 break; 3264 } 3265 return nullptr; 3266 } 3267 3268 } // end anonymous namespace 3269 3270 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3271 ArrayRef<Constant *> Operands, 3272 const TargetLibraryInfo *TLI) { 3273 if (Call->isNoBuiltin()) 3274 return nullptr; 3275 if (!F->hasName()) 3276 return nullptr; 3277 3278 // If this is not an intrinsic and not recognized as a library call, bail out. 3279 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) { 3280 if (!TLI) 3281 return nullptr; 3282 LibFunc LibF; 3283 if (!TLI->getLibFunc(*F, LibF)) 3284 return nullptr; 3285 } 3286 3287 StringRef Name = F->getName(); 3288 Type *Ty = F->getReturnType(); 3289 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3290 return ConstantFoldFixedVectorCall( 3291 Name, F->getIntrinsicID(), FVTy, Operands, 3292 F->getParent()->getDataLayout(), TLI, Call); 3293 3294 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3295 return ConstantFoldScalableVectorCall( 3296 Name, F->getIntrinsicID(), SVTy, Operands, 3297 F->getParent()->getDataLayout(), TLI, Call); 3298 3299 // TODO: If this is a library function, we already discovered that above, 3300 // so we should pass the LibFunc, not the name (and it might be better 3301 // still to separate intrinsic handling from libcalls). 3302 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 3303 Call); 3304 } 3305 3306 bool llvm::isMathLibCallNoop(const CallBase *Call, 3307 const TargetLibraryInfo *TLI) { 3308 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3309 // (and to some extent ConstantFoldScalarCall). 3310 if (Call->isNoBuiltin() || Call->isStrictFP()) 3311 return false; 3312 Function *F = Call->getCalledFunction(); 3313 if (!F) 3314 return false; 3315 3316 LibFunc Func; 3317 if (!TLI || !TLI->getLibFunc(*F, Func)) 3318 return false; 3319 3320 if (Call->arg_size() == 1) { 3321 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3322 const APFloat &Op = OpC->getValueAPF(); 3323 switch (Func) { 3324 case LibFunc_logl: 3325 case LibFunc_log: 3326 case LibFunc_logf: 3327 case LibFunc_log2l: 3328 case LibFunc_log2: 3329 case LibFunc_log2f: 3330 case LibFunc_log10l: 3331 case LibFunc_log10: 3332 case LibFunc_log10f: 3333 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3334 3335 case LibFunc_expl: 3336 case LibFunc_exp: 3337 case LibFunc_expf: 3338 // FIXME: These boundaries are slightly conservative. 3339 if (OpC->getType()->isDoubleTy()) 3340 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3341 if (OpC->getType()->isFloatTy()) 3342 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3343 break; 3344 3345 case LibFunc_exp2l: 3346 case LibFunc_exp2: 3347 case LibFunc_exp2f: 3348 // FIXME: These boundaries are slightly conservative. 3349 if (OpC->getType()->isDoubleTy()) 3350 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3351 if (OpC->getType()->isFloatTy()) 3352 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3353 break; 3354 3355 case LibFunc_sinl: 3356 case LibFunc_sin: 3357 case LibFunc_sinf: 3358 case LibFunc_cosl: 3359 case LibFunc_cos: 3360 case LibFunc_cosf: 3361 return !Op.isInfinity(); 3362 3363 case LibFunc_tanl: 3364 case LibFunc_tan: 3365 case LibFunc_tanf: { 3366 // FIXME: Stop using the host math library. 3367 // FIXME: The computation isn't done in the right precision. 3368 Type *Ty = OpC->getType(); 3369 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3370 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3371 break; 3372 } 3373 3374 case LibFunc_atan: 3375 case LibFunc_atanf: 3376 case LibFunc_atanl: 3377 // Per POSIX, this MAY fail if Op is denormal. We choose not failing. 3378 return true; 3379 3380 3381 case LibFunc_asinl: 3382 case LibFunc_asin: 3383 case LibFunc_asinf: 3384 case LibFunc_acosl: 3385 case LibFunc_acos: 3386 case LibFunc_acosf: 3387 return !(Op < APFloat(Op.getSemantics(), "-1") || 3388 Op > APFloat(Op.getSemantics(), "1")); 3389 3390 case LibFunc_sinh: 3391 case LibFunc_cosh: 3392 case LibFunc_sinhf: 3393 case LibFunc_coshf: 3394 case LibFunc_sinhl: 3395 case LibFunc_coshl: 3396 // FIXME: These boundaries are slightly conservative. 3397 if (OpC->getType()->isDoubleTy()) 3398 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3399 if (OpC->getType()->isFloatTy()) 3400 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3401 break; 3402 3403 case LibFunc_sqrtl: 3404 case LibFunc_sqrt: 3405 case LibFunc_sqrtf: 3406 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3407 3408 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3409 // maybe others? 3410 default: 3411 break; 3412 } 3413 } 3414 } 3415 3416 if (Call->arg_size() == 2) { 3417 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3418 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3419 if (Op0C && Op1C) { 3420 const APFloat &Op0 = Op0C->getValueAPF(); 3421 const APFloat &Op1 = Op1C->getValueAPF(); 3422 3423 switch (Func) { 3424 case LibFunc_powl: 3425 case LibFunc_pow: 3426 case LibFunc_powf: { 3427 // FIXME: Stop using the host math library. 3428 // FIXME: The computation isn't done in the right precision. 3429 Type *Ty = Op0C->getType(); 3430 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3431 if (Ty == Op1C->getType()) 3432 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3433 } 3434 break; 3435 } 3436 3437 case LibFunc_fmodl: 3438 case LibFunc_fmod: 3439 case LibFunc_fmodf: 3440 case LibFunc_remainderl: 3441 case LibFunc_remainder: 3442 case LibFunc_remainderf: 3443 return Op0.isNaN() || Op1.isNaN() || 3444 (!Op0.isInfinity() && !Op1.isZero()); 3445 3446 case LibFunc_atan2: 3447 case LibFunc_atan2f: 3448 case LibFunc_atan2l: 3449 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and 3450 // GLIBC and MSVC do not appear to raise an error on those, we 3451 // cannot rely on that behavior. POSIX and C11 say that a domain error 3452 // may occur, so allow for that possibility. 3453 return !Op0.isZero() || !Op1.isZero(); 3454 3455 default: 3456 break; 3457 } 3458 } 3459 } 3460 3461 return false; 3462 } 3463 3464 void TargetFolder::anchor() {} 3465