xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <cassert>
58 #include <cerrno>
59 #include <cfenv>
60 #include <cmath>
61 #include <cstdint>
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
70 
71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72                                         Constant *C, Type *SrcEltTy,
73                                         unsigned NumSrcElts,
74                                         const DataLayout &DL) {
75   // Now that we know that the input value is a vector of integers, just shift
76   // and insert them into our result.
77   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78   for (unsigned i = 0; i != NumSrcElts; ++i) {
79     Constant *Element;
80     if (DL.isLittleEndian())
81       Element = C->getAggregateElement(NumSrcElts - i - 1);
82     else
83       Element = C->getAggregateElement(i);
84 
85     if (Element && isa<UndefValue>(Element)) {
86       Result <<= BitShift;
87       continue;
88     }
89 
90     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91     if (!ElementCI)
92       return ConstantExpr::getBitCast(C, DestTy);
93 
94     Result <<= BitShift;
95     Result |= ElementCI->getValue().zext(Result.getBitWidth());
96   }
97 
98   return nullptr;
99 }
100 
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106          "Invalid constantexpr bitcast!");
107 
108   // Catch the obvious splat cases.
109   if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
110     return Res;
111 
112   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113     // Handle a vector->scalar integer/fp cast.
114     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116       Type *SrcEltTy = VTy->getElementType();
117 
118       // If the vector is a vector of floating point, convert it to vector of int
119       // to simplify things.
120       if (SrcEltTy->isFloatingPointTy()) {
121         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122         auto *SrcIVTy = FixedVectorType::get(
123             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124         // Ask IR to do the conversion now that #elts line up.
125         C = ConstantExpr::getBitCast(C, SrcIVTy);
126       }
127 
128       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130                                                 SrcEltTy, NumSrcElts, DL))
131         return CE;
132 
133       if (isa<IntegerType>(DestTy))
134         return ConstantInt::get(DestTy, Result);
135 
136       APFloat FP(DestTy->getFltSemantics(), Result);
137       return ConstantFP::get(DestTy->getContext(), FP);
138     }
139   }
140 
141   // The code below only handles casts to vectors currently.
142   auto *DestVTy = dyn_cast<VectorType>(DestTy);
143   if (!DestVTy)
144     return ConstantExpr::getBitCast(C, DestTy);
145 
146   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147   // vector so the code below can handle it uniformly.
148   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149     Constant *Ops = C; // don't take the address of C!
150     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
151   }
152 
153   // If this is a bitcast from constant vector -> vector, fold it.
154   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155     return ConstantExpr::getBitCast(C, DestTy);
156 
157   // If the element types match, IR can fold it.
158   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160   if (NumDstElt == NumSrcElt)
161     return ConstantExpr::getBitCast(C, DestTy);
162 
163   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164   Type *DstEltTy = DestVTy->getElementType();
165 
166   // Otherwise, we're changing the number of elements in a vector, which
167   // requires endianness information to do the right thing.  For example,
168   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169   // folds to (little endian):
170   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171   // and to (big endian):
172   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
173 
174   // First thing is first.  We only want to think about integer here, so if
175   // we have something in FP form, recast it as integer.
176   if (DstEltTy->isFloatingPointTy()) {
177     // Fold to an vector of integers with same size as our FP type.
178     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179     auto *DestIVTy = FixedVectorType::get(
180         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181     // Recursively handle this integer conversion, if possible.
182     C = FoldBitCast(C, DestIVTy, DL);
183 
184     // Finally, IR can handle this now that #elts line up.
185     return ConstantExpr::getBitCast(C, DestTy);
186   }
187 
188   // Okay, we know the destination is integer, if the input is FP, convert
189   // it to integer first.
190   if (SrcEltTy->isFloatingPointTy()) {
191     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192     auto *SrcIVTy = FixedVectorType::get(
193         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194     // Ask IR to do the conversion now that #elts line up.
195     C = ConstantExpr::getBitCast(C, SrcIVTy);
196     // If IR wasn't able to fold it, bail out.
197     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
198         !isa<ConstantDataVector>(C))
199       return C;
200   }
201 
202   // Now we know that the input and output vectors are both integer vectors
203   // of the same size, and that their #elements is not the same.  Do the
204   // conversion here, which depends on whether the input or output has
205   // more elements.
206   bool isLittleEndian = DL.isLittleEndian();
207 
208   SmallVector<Constant*, 32> Result;
209   if (NumDstElt < NumSrcElt) {
210     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211     Constant *Zero = Constant::getNullValue(DstEltTy);
212     unsigned Ratio = NumSrcElt/NumDstElt;
213     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214     unsigned SrcElt = 0;
215     for (unsigned i = 0; i != NumDstElt; ++i) {
216       // Build each element of the result.
217       Constant *Elt = Zero;
218       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219       for (unsigned j = 0; j != Ratio; ++j) {
220         Constant *Src = C->getAggregateElement(SrcElt++);
221         if (Src && isa<UndefValue>(Src))
222           Src = Constant::getNullValue(
223               cast<VectorType>(C->getType())->getElementType());
224         else
225           Src = dyn_cast_or_null<ConstantInt>(Src);
226         if (!Src)  // Reject constantexpr elements.
227           return ConstantExpr::getBitCast(C, DestTy);
228 
229         // Zero extend the element to the right size.
230         Src = ConstantExpr::getZExt(Src, Elt->getType());
231 
232         // Shift it to the right place, depending on endianness.
233         Src = ConstantExpr::getShl(Src,
234                                    ConstantInt::get(Src->getType(), ShiftAmt));
235         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
236 
237         // Mix it in.
238         Elt = ConstantExpr::getOr(Elt, Src);
239       }
240       Result.push_back(Elt);
241     }
242     return ConstantVector::get(Result);
243   }
244 
245   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
246   unsigned Ratio = NumDstElt/NumSrcElt;
247   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
248 
249   // Loop over each source value, expanding into multiple results.
250   for (unsigned i = 0; i != NumSrcElt; ++i) {
251     auto *Element = C->getAggregateElement(i);
252 
253     if (!Element) // Reject constantexpr elements.
254       return ConstantExpr::getBitCast(C, DestTy);
255 
256     if (isa<UndefValue>(Element)) {
257       // Correctly Propagate undef values.
258       Result.append(Ratio, UndefValue::get(DstEltTy));
259       continue;
260     }
261 
262     auto *Src = dyn_cast<ConstantInt>(Element);
263     if (!Src)
264       return ConstantExpr::getBitCast(C, DestTy);
265 
266     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
267     for (unsigned j = 0; j != Ratio; ++j) {
268       // Shift the piece of the value into the right place, depending on
269       // endianness.
270       Constant *Elt = ConstantExpr::getLShr(Src,
271                                   ConstantInt::get(Src->getType(), ShiftAmt));
272       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
273 
274       // Truncate the element to an integer with the same pointer size and
275       // convert the element back to a pointer using a inttoptr.
276       if (DstEltTy->isPointerTy()) {
277         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
278         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
279         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
280         continue;
281       }
282 
283       // Truncate and remember this piece.
284       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
285     }
286   }
287 
288   return ConstantVector::get(Result);
289 }
290 
291 } // end anonymous namespace
292 
293 /// If this constant is a constant offset from a global, return the global and
294 /// the constant. Because of constantexprs, this function is recursive.
295 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
296                                       APInt &Offset, const DataLayout &DL,
297                                       DSOLocalEquivalent **DSOEquiv) {
298   if (DSOEquiv)
299     *DSOEquiv = nullptr;
300 
301   // Trivial case, constant is the global.
302   if ((GV = dyn_cast<GlobalValue>(C))) {
303     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
304     Offset = APInt(BitWidth, 0);
305     return true;
306   }
307 
308   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
309     if (DSOEquiv)
310       *DSOEquiv = FoundDSOEquiv;
311     GV = FoundDSOEquiv->getGlobalValue();
312     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313     Offset = APInt(BitWidth, 0);
314     return true;
315   }
316 
317   // Otherwise, if this isn't a constant expr, bail out.
318   auto *CE = dyn_cast<ConstantExpr>(C);
319   if (!CE) return false;
320 
321   // Look through ptr->int and ptr->ptr casts.
322   if (CE->getOpcode() == Instruction::PtrToInt ||
323       CE->getOpcode() == Instruction::BitCast)
324     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
325                                       DSOEquiv);
326 
327   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
328   auto *GEP = dyn_cast<GEPOperator>(CE);
329   if (!GEP)
330     return false;
331 
332   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
333   APInt TmpOffset(BitWidth, 0);
334 
335   // If the base isn't a global+constant, we aren't either.
336   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
337                                   DSOEquiv))
338     return false;
339 
340   // Otherwise, add any offset that our operands provide.
341   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
342     return false;
343 
344   Offset = TmpOffset;
345   return true;
346 }
347 
348 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
349                                          const DataLayout &DL) {
350   do {
351     Type *SrcTy = C->getType();
352     if (SrcTy == DestTy)
353       return C;
354 
355     TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
356     TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
357     if (!TypeSize::isKnownGE(SrcSize, DestSize))
358       return nullptr;
359 
360     // Catch the obvious splat cases (since all-zeros can coerce non-integral
361     // pointers legally).
362     if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
363       return Res;
364 
365     // If the type sizes are the same and a cast is legal, just directly
366     // cast the constant.
367     // But be careful not to coerce non-integral pointers illegally.
368     if (SrcSize == DestSize &&
369         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
370             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
371       Instruction::CastOps Cast = Instruction::BitCast;
372       // If we are going from a pointer to int or vice versa, we spell the cast
373       // differently.
374       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
375         Cast = Instruction::IntToPtr;
376       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
377         Cast = Instruction::PtrToInt;
378 
379       if (CastInst::castIsValid(Cast, C, DestTy))
380         return ConstantExpr::getCast(Cast, C, DestTy);
381     }
382 
383     // If this isn't an aggregate type, there is nothing we can do to drill down
384     // and find a bitcastable constant.
385     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
386       return nullptr;
387 
388     // We're simulating a load through a pointer that was bitcast to point to
389     // a different type, so we can try to walk down through the initial
390     // elements of an aggregate to see if some part of the aggregate is
391     // castable to implement the "load" semantic model.
392     if (SrcTy->isStructTy()) {
393       // Struct types might have leading zero-length elements like [0 x i32],
394       // which are certainly not what we are looking for, so skip them.
395       unsigned Elem = 0;
396       Constant *ElemC;
397       do {
398         ElemC = C->getAggregateElement(Elem++);
399       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
400       C = ElemC;
401     } else {
402       // For non-byte-sized vector elements, the first element is not
403       // necessarily located at the vector base address.
404       if (auto *VT = dyn_cast<VectorType>(SrcTy))
405         if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
406           return nullptr;
407 
408       C = C->getAggregateElement(0u);
409     }
410   } while (C);
411 
412   return nullptr;
413 }
414 
415 namespace {
416 
417 /// Recursive helper to read bits out of global. C is the constant being copied
418 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
419 /// results into and BytesLeft is the number of bytes left in
420 /// the CurPtr buffer. DL is the DataLayout.
421 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
422                         unsigned BytesLeft, const DataLayout &DL) {
423   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
424          "Out of range access");
425 
426   // If this element is zero or undefined, we can just return since *CurPtr is
427   // zero initialized.
428   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
429     return true;
430 
431   if (auto *CI = dyn_cast<ConstantInt>(C)) {
432     if (CI->getBitWidth() > 64 ||
433         (CI->getBitWidth() & 7) != 0)
434       return false;
435 
436     uint64_t Val = CI->getZExtValue();
437     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
438 
439     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
440       int n = ByteOffset;
441       if (!DL.isLittleEndian())
442         n = IntBytes - n - 1;
443       CurPtr[i] = (unsigned char)(Val >> (n * 8));
444       ++ByteOffset;
445     }
446     return true;
447   }
448 
449   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
450     if (CFP->getType()->isDoubleTy()) {
451       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
452       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
453     }
454     if (CFP->getType()->isFloatTy()){
455       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
456       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
457     }
458     if (CFP->getType()->isHalfTy()){
459       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
460       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
461     }
462     return false;
463   }
464 
465   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
466     const StructLayout *SL = DL.getStructLayout(CS->getType());
467     unsigned Index = SL->getElementContainingOffset(ByteOffset);
468     uint64_t CurEltOffset = SL->getElementOffset(Index);
469     ByteOffset -= CurEltOffset;
470 
471     while (true) {
472       // If the element access is to the element itself and not to tail padding,
473       // read the bytes from the element.
474       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
475 
476       if (ByteOffset < EltSize &&
477           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
478                               BytesLeft, DL))
479         return false;
480 
481       ++Index;
482 
483       // Check to see if we read from the last struct element, if so we're done.
484       if (Index == CS->getType()->getNumElements())
485         return true;
486 
487       // If we read all of the bytes we needed from this element we're done.
488       uint64_t NextEltOffset = SL->getElementOffset(Index);
489 
490       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
491         return true;
492 
493       // Move to the next element of the struct.
494       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
495       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
496       ByteOffset = 0;
497       CurEltOffset = NextEltOffset;
498     }
499     // not reached.
500   }
501 
502   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
503       isa<ConstantDataSequential>(C)) {
504     uint64_t NumElts;
505     Type *EltTy;
506     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
507       NumElts = AT->getNumElements();
508       EltTy = AT->getElementType();
509     } else {
510       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
511       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
512     }
513     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
514     uint64_t Index = ByteOffset / EltSize;
515     uint64_t Offset = ByteOffset - Index * EltSize;
516 
517     for (; Index != NumElts; ++Index) {
518       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
519                               BytesLeft, DL))
520         return false;
521 
522       uint64_t BytesWritten = EltSize - Offset;
523       assert(BytesWritten <= EltSize && "Not indexing into this element?");
524       if (BytesWritten >= BytesLeft)
525         return true;
526 
527       Offset = 0;
528       BytesLeft -= BytesWritten;
529       CurPtr += BytesWritten;
530     }
531     return true;
532   }
533 
534   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
535     if (CE->getOpcode() == Instruction::IntToPtr &&
536         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
537       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
538                                 BytesLeft, DL);
539     }
540   }
541 
542   // Otherwise, unknown initializer type.
543   return false;
544 }
545 
546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
547                                        int64_t Offset, const DataLayout &DL) {
548   // Bail out early. Not expect to load from scalable global variable.
549   if (isa<ScalableVectorType>(LoadTy))
550     return nullptr;
551 
552   auto *IntType = dyn_cast<IntegerType>(LoadTy);
553 
554   // If this isn't an integer load we can't fold it directly.
555   if (!IntType) {
556     // If this is a non-integer load, we can try folding it as an int load and
557     // then bitcast the result.  This can be useful for union cases.  Note
558     // that address spaces don't matter here since we're not going to result in
559     // an actual new load.
560     if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
561         !LoadTy->isVectorTy())
562       return nullptr;
563 
564     Type *MapTy = Type::getIntNTy(C->getContext(),
565                                   DL.getTypeSizeInBits(LoadTy).getFixedValue());
566     if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
567       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
568           !LoadTy->isX86_AMXTy())
569         // Materializing a zero can be done trivially without a bitcast
570         return Constant::getNullValue(LoadTy);
571       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
572       Res = FoldBitCast(Res, CastTy, DL);
573       if (LoadTy->isPtrOrPtrVectorTy()) {
574         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
575         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
576             !LoadTy->isX86_AMXTy())
577           return Constant::getNullValue(LoadTy);
578         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
579           // Be careful not to replace a load of an addrspace value with an inttoptr here
580           return nullptr;
581         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
582       }
583       return Res;
584     }
585     return nullptr;
586   }
587 
588   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
589   if (BytesLoaded > 32 || BytesLoaded == 0)
590     return nullptr;
591 
592   // If we're not accessing anything in this constant, the result is undefined.
593   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
594     return PoisonValue::get(IntType);
595 
596   // TODO: We should be able to support scalable types.
597   TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
598   if (InitializerSize.isScalable())
599     return nullptr;
600 
601   // If we're not accessing anything in this constant, the result is undefined.
602   if (Offset >= (int64_t)InitializerSize.getFixedValue())
603     return PoisonValue::get(IntType);
604 
605   unsigned char RawBytes[32] = {0};
606   unsigned char *CurPtr = RawBytes;
607   unsigned BytesLeft = BytesLoaded;
608 
609   // If we're loading off the beginning of the global, some bytes may be valid.
610   if (Offset < 0) {
611     CurPtr += -Offset;
612     BytesLeft += Offset;
613     Offset = 0;
614   }
615 
616   if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
617     return nullptr;
618 
619   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
620   if (DL.isLittleEndian()) {
621     ResultVal = RawBytes[BytesLoaded - 1];
622     for (unsigned i = 1; i != BytesLoaded; ++i) {
623       ResultVal <<= 8;
624       ResultVal |= RawBytes[BytesLoaded - 1 - i];
625     }
626   } else {
627     ResultVal = RawBytes[0];
628     for (unsigned i = 1; i != BytesLoaded; ++i) {
629       ResultVal <<= 8;
630       ResultVal |= RawBytes[i];
631     }
632   }
633 
634   return ConstantInt::get(IntType->getContext(), ResultVal);
635 }
636 
637 } // anonymous namespace
638 
639 // If GV is a constant with an initializer read its representation starting
640 // at Offset and return it as a constant array of unsigned char.  Otherwise
641 // return null.
642 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
643                                         uint64_t Offset) {
644   if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
645     return nullptr;
646 
647   const DataLayout &DL = GV->getParent()->getDataLayout();
648   Constant *Init = const_cast<Constant *>(GV->getInitializer());
649   TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
650   if (InitSize < Offset)
651     return nullptr;
652 
653   uint64_t NBytes = InitSize - Offset;
654   if (NBytes > UINT16_MAX)
655     // Bail for large initializers in excess of 64K to avoid allocating
656     // too much memory.
657     // Offset is assumed to be less than or equal than InitSize (this
658     // is enforced in ReadDataFromGlobal).
659     return nullptr;
660 
661   SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
662   unsigned char *CurPtr = RawBytes.data();
663 
664   if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
665     return nullptr;
666 
667   return ConstantDataArray::get(GV->getContext(), RawBytes);
668 }
669 
670 /// If this Offset points exactly to the start of an aggregate element, return
671 /// that element, otherwise return nullptr.
672 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
673                               const DataLayout &DL) {
674   if (Offset.isZero())
675     return Base;
676 
677   if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
678     return nullptr;
679 
680   Type *ElemTy = Base->getType();
681   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
682   if (!Offset.isZero() || !Indices[0].isZero())
683     return nullptr;
684 
685   Constant *C = Base;
686   for (const APInt &Index : drop_begin(Indices)) {
687     if (Index.isNegative() || Index.getActiveBits() >= 32)
688       return nullptr;
689 
690     C = C->getAggregateElement(Index.getZExtValue());
691     if (!C)
692       return nullptr;
693   }
694 
695   return C;
696 }
697 
698 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
699                                           const APInt &Offset,
700                                           const DataLayout &DL) {
701   if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
702     if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
703       return Result;
704 
705   // Explicitly check for out-of-bounds access, so we return poison even if the
706   // constant is a uniform value.
707   TypeSize Size = DL.getTypeAllocSize(C->getType());
708   if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
709     return PoisonValue::get(Ty);
710 
711   // Try an offset-independent fold of a uniform value.
712   if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
713     return Result;
714 
715   // Try hard to fold loads from bitcasted strange and non-type-safe things.
716   if (Offset.getMinSignedBits() <= 64)
717     if (Constant *Result =
718             FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
719       return Result;
720 
721   return nullptr;
722 }
723 
724 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
725                                           const DataLayout &DL) {
726   return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
727 }
728 
729 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
730                                              APInt Offset,
731                                              const DataLayout &DL) {
732   C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
733           DL, Offset, /* AllowNonInbounds */ true));
734 
735   if (auto *GV = dyn_cast<GlobalVariable>(C))
736     if (GV->isConstant() && GV->hasDefinitiveInitializer())
737       if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
738                                                        Offset, DL))
739         return Result;
740 
741   // If this load comes from anywhere in a uniform constant global, the value
742   // is always the same, regardless of the loaded offset.
743   if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
744     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
745       if (Constant *Res =
746               ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty))
747         return Res;
748     }
749   }
750 
751   return nullptr;
752 }
753 
754 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
755                                              const DataLayout &DL) {
756   APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
757   return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
758 }
759 
760 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
761   if (isa<PoisonValue>(C))
762     return PoisonValue::get(Ty);
763   if (isa<UndefValue>(C))
764     return UndefValue::get(Ty);
765   if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
766     return Constant::getNullValue(Ty);
767   if (C->isAllOnesValue() &&
768       (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
769     return Constant::getAllOnesValue(Ty);
770   return nullptr;
771 }
772 
773 namespace {
774 
775 /// One of Op0/Op1 is a constant expression.
776 /// Attempt to symbolically evaluate the result of a binary operator merging
777 /// these together.  If target data info is available, it is provided as DL,
778 /// otherwise DL is null.
779 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
780                                     const DataLayout &DL) {
781   // SROA
782 
783   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
784   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
785   // bits.
786 
787   if (Opc == Instruction::And) {
788     KnownBits Known0 = computeKnownBits(Op0, DL);
789     KnownBits Known1 = computeKnownBits(Op1, DL);
790     if ((Known1.One | Known0.Zero).isAllOnes()) {
791       // All the bits of Op0 that the 'and' could be masking are already zero.
792       return Op0;
793     }
794     if ((Known0.One | Known1.Zero).isAllOnes()) {
795       // All the bits of Op1 that the 'and' could be masking are already zero.
796       return Op1;
797     }
798 
799     Known0 &= Known1;
800     if (Known0.isConstant())
801       return ConstantInt::get(Op0->getType(), Known0.getConstant());
802   }
803 
804   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
805   // constant.  This happens frequently when iterating over a global array.
806   if (Opc == Instruction::Sub) {
807     GlobalValue *GV1, *GV2;
808     APInt Offs1, Offs2;
809 
810     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
811       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
812         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
813 
814         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
815         // PtrToInt may change the bitwidth so we have convert to the right size
816         // first.
817         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
818                                                 Offs2.zextOrTrunc(OpSize));
819       }
820   }
821 
822   return nullptr;
823 }
824 
825 /// If array indices are not pointer-sized integers, explicitly cast them so
826 /// that they aren't implicitly casted by the getelementptr.
827 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
828                          Type *ResultTy, std::optional<unsigned> InRangeIndex,
829                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
830   Type *IntIdxTy = DL.getIndexType(ResultTy);
831   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
832 
833   bool Any = false;
834   SmallVector<Constant*, 32> NewIdxs;
835   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
836     if ((i == 1 ||
837          !isa<StructType>(GetElementPtrInst::getIndexedType(
838              SrcElemTy, Ops.slice(1, i - 1)))) &&
839         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
840       Any = true;
841       Type *NewType = Ops[i]->getType()->isVectorTy()
842                           ? IntIdxTy
843                           : IntIdxScalarTy;
844       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
845                                                                       true,
846                                                                       NewType,
847                                                                       true),
848                                               Ops[i], NewType));
849     } else
850       NewIdxs.push_back(Ops[i]);
851   }
852 
853   if (!Any)
854     return nullptr;
855 
856   Constant *C = ConstantExpr::getGetElementPtr(
857       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
858   return ConstantFoldConstant(C, DL, TLI);
859 }
860 
861 /// Strip the pointer casts, but preserve the address space information.
862 Constant *StripPtrCastKeepAS(Constant *Ptr) {
863   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
864   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
865   Ptr = cast<Constant>(Ptr->stripPointerCasts());
866   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
867 
868   // Preserve the address space number of the pointer.
869   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
870     Ptr = ConstantExpr::getPointerCast(
871         Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
872                                                  OldPtrTy->getAddressSpace()));
873   }
874   return Ptr;
875 }
876 
877 /// If we can symbolically evaluate the GEP constant expression, do so.
878 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
879                                   ArrayRef<Constant *> Ops,
880                                   const DataLayout &DL,
881                                   const TargetLibraryInfo *TLI) {
882   const GEPOperator *InnermostGEP = GEP;
883   bool InBounds = GEP->isInBounds();
884 
885   Type *SrcElemTy = GEP->getSourceElementType();
886   Type *ResElemTy = GEP->getResultElementType();
887   Type *ResTy = GEP->getType();
888   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
889     return nullptr;
890 
891   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
892                                    GEP->getInRangeIndex(), DL, TLI))
893     return C;
894 
895   Constant *Ptr = Ops[0];
896   if (!Ptr->getType()->isPointerTy())
897     return nullptr;
898 
899   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
900 
901   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
902     if (!isa<ConstantInt>(Ops[i]))
903       return nullptr;
904 
905   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
906   APInt Offset = APInt(
907       BitWidth,
908       DL.getIndexedOffsetInType(
909           SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
910   Ptr = StripPtrCastKeepAS(Ptr);
911 
912   // If this is a GEP of a GEP, fold it all into a single GEP.
913   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
914     InnermostGEP = GEP;
915     InBounds &= GEP->isInBounds();
916 
917     SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
918 
919     // Do not try the incorporate the sub-GEP if some index is not a number.
920     bool AllConstantInt = true;
921     for (Value *NestedOp : NestedOps)
922       if (!isa<ConstantInt>(NestedOp)) {
923         AllConstantInt = false;
924         break;
925       }
926     if (!AllConstantInt)
927       break;
928 
929     Ptr = cast<Constant>(GEP->getOperand(0));
930     SrcElemTy = GEP->getSourceElementType();
931     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
932     Ptr = StripPtrCastKeepAS(Ptr);
933   }
934 
935   // If the base value for this address is a literal integer value, fold the
936   // getelementptr to the resulting integer value casted to the pointer type.
937   APInt BasePtr(BitWidth, 0);
938   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
939     if (CE->getOpcode() == Instruction::IntToPtr) {
940       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
941         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
942     }
943   }
944 
945   auto *PTy = cast<PointerType>(Ptr->getType());
946   if ((Ptr->isNullValue() || BasePtr != 0) &&
947       !DL.isNonIntegralPointerType(PTy)) {
948     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
949     return ConstantExpr::getIntToPtr(C, ResTy);
950   }
951 
952   // Otherwise form a regular getelementptr. Recompute the indices so that
953   // we eliminate over-indexing of the notional static type array bounds.
954   // This makes it easy to determine if the getelementptr is "inbounds".
955   // Also, this helps GlobalOpt do SROA on GlobalVariables.
956 
957   // For GEPs of GlobalValues, use the value type even for opaque pointers.
958   // Otherwise use an i8 GEP.
959   if (auto *GV = dyn_cast<GlobalValue>(Ptr))
960     SrcElemTy = GV->getValueType();
961   else if (!PTy->isOpaque())
962     SrcElemTy = PTy->getNonOpaquePointerElementType();
963   else
964     SrcElemTy = Type::getInt8Ty(Ptr->getContext());
965 
966   if (!SrcElemTy->isSized())
967     return nullptr;
968 
969   Type *ElemTy = SrcElemTy;
970   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
971   if (Offset != 0)
972     return nullptr;
973 
974   // Try to add additional zero indices to reach the desired result element
975   // type.
976   // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
977   // we'll have to insert a bitcast anyway?
978   while (ElemTy != ResElemTy) {
979     Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
980     if (!NextTy)
981       break;
982 
983     Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
984     ElemTy = NextTy;
985   }
986 
987   SmallVector<Constant *, 32> NewIdxs;
988   for (const APInt &Index : Indices)
989     NewIdxs.push_back(ConstantInt::get(
990         Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
991 
992   // Preserve the inrange index from the innermost GEP if possible. We must
993   // have calculated the same indices up to and including the inrange index.
994   std::optional<unsigned> InRangeIndex;
995   if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
996     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
997         NewIdxs.size() > *LastIRIndex) {
998       InRangeIndex = LastIRIndex;
999       for (unsigned I = 0; I <= *LastIRIndex; ++I)
1000         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
1001           return nullptr;
1002     }
1003 
1004   // Create a GEP.
1005   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1006                                                InBounds, InRangeIndex);
1007   assert(
1008       cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1009       "Computed GetElementPtr has unexpected type!");
1010 
1011   // If we ended up indexing a member with a type that doesn't match
1012   // the type of what the original indices indexed, add a cast.
1013   if (C->getType() != ResTy)
1014     C = FoldBitCast(C, ResTy, DL);
1015 
1016   return C;
1017 }
1018 
1019 /// Attempt to constant fold an instruction with the
1020 /// specified opcode and operands.  If successful, the constant result is
1021 /// returned, if not, null is returned.  Note that this function can fail when
1022 /// attempting to fold instructions like loads and stores, which have no
1023 /// constant expression form.
1024 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1025                                        ArrayRef<Constant *> Ops,
1026                                        const DataLayout &DL,
1027                                        const TargetLibraryInfo *TLI) {
1028   Type *DestTy = InstOrCE->getType();
1029 
1030   if (Instruction::isUnaryOp(Opcode))
1031     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1032 
1033   if (Instruction::isBinaryOp(Opcode)) {
1034     switch (Opcode) {
1035     default:
1036       break;
1037     case Instruction::FAdd:
1038     case Instruction::FSub:
1039     case Instruction::FMul:
1040     case Instruction::FDiv:
1041     case Instruction::FRem:
1042       // Handle floating point instructions separately to account for denormals
1043       // TODO: If a constant expression is being folded rather than an
1044       // instruction, denormals will not be flushed/treated as zero
1045       if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1046         return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
1047       }
1048     }
1049     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1050   }
1051 
1052   if (Instruction::isCast(Opcode))
1053     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1054 
1055   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1056     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1057       return C;
1058 
1059     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1060                                           Ops.slice(1), GEP->isInBounds(),
1061                                           GEP->getInRangeIndex());
1062   }
1063 
1064   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) {
1065     if (CE->isCompare())
1066       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1067                                              DL, TLI);
1068     return CE->getWithOperands(Ops);
1069   }
1070 
1071   switch (Opcode) {
1072   default: return nullptr;
1073   case Instruction::ICmp:
1074   case Instruction::FCmp: {
1075     auto *C = cast<CmpInst>(InstOrCE);
1076     return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1077                                            DL, TLI, C);
1078   }
1079   case Instruction::Freeze:
1080     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1081   case Instruction::Call:
1082     if (auto *F = dyn_cast<Function>(Ops.back())) {
1083       const auto *Call = cast<CallBase>(InstOrCE);
1084       if (canConstantFoldCallTo(Call, F))
1085         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1086     }
1087     return nullptr;
1088   case Instruction::Select:
1089     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1090   case Instruction::ExtractElement:
1091     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1092   case Instruction::ExtractValue:
1093     return ConstantFoldExtractValueInstruction(
1094         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1095   case Instruction::InsertElement:
1096     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1097   case Instruction::InsertValue:
1098     return ConstantFoldInsertValueInstruction(
1099         Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1100   case Instruction::ShuffleVector:
1101     return ConstantExpr::getShuffleVector(
1102         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1103   case Instruction::Load: {
1104     const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1105     if (LI->isVolatile())
1106       return nullptr;
1107     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1108   }
1109   }
1110 }
1111 
1112 } // end anonymous namespace
1113 
1114 //===----------------------------------------------------------------------===//
1115 // Constant Folding public APIs
1116 //===----------------------------------------------------------------------===//
1117 
1118 namespace {
1119 
1120 Constant *
1121 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1122                          const TargetLibraryInfo *TLI,
1123                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1124   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1125     return const_cast<Constant *>(C);
1126 
1127   SmallVector<Constant *, 8> Ops;
1128   for (const Use &OldU : C->operands()) {
1129     Constant *OldC = cast<Constant>(&OldU);
1130     Constant *NewC = OldC;
1131     // Recursively fold the ConstantExpr's operands. If we have already folded
1132     // a ConstantExpr, we don't have to process it again.
1133     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1134       auto It = FoldedOps.find(OldC);
1135       if (It == FoldedOps.end()) {
1136         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1137         FoldedOps.insert({OldC, NewC});
1138       } else {
1139         NewC = It->second;
1140       }
1141     }
1142     Ops.push_back(NewC);
1143   }
1144 
1145   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1146     if (Constant *Res =
1147             ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
1148       return Res;
1149     return const_cast<Constant *>(C);
1150   }
1151 
1152   assert(isa<ConstantVector>(C));
1153   return ConstantVector::get(Ops);
1154 }
1155 
1156 } // end anonymous namespace
1157 
1158 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1159                                         const TargetLibraryInfo *TLI) {
1160   // Handle PHI nodes quickly here...
1161   if (auto *PN = dyn_cast<PHINode>(I)) {
1162     Constant *CommonValue = nullptr;
1163 
1164     SmallDenseMap<Constant *, Constant *> FoldedOps;
1165     for (Value *Incoming : PN->incoming_values()) {
1166       // If the incoming value is undef then skip it.  Note that while we could
1167       // skip the value if it is equal to the phi node itself we choose not to
1168       // because that would break the rule that constant folding only applies if
1169       // all operands are constants.
1170       if (isa<UndefValue>(Incoming))
1171         continue;
1172       // If the incoming value is not a constant, then give up.
1173       auto *C = dyn_cast<Constant>(Incoming);
1174       if (!C)
1175         return nullptr;
1176       // Fold the PHI's operands.
1177       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1178       // If the incoming value is a different constant to
1179       // the one we saw previously, then give up.
1180       if (CommonValue && C != CommonValue)
1181         return nullptr;
1182       CommonValue = C;
1183     }
1184 
1185     // If we reach here, all incoming values are the same constant or undef.
1186     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1187   }
1188 
1189   // Scan the operand list, checking to see if they are all constants, if so,
1190   // hand off to ConstantFoldInstOperandsImpl.
1191   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1192     return nullptr;
1193 
1194   SmallDenseMap<Constant *, Constant *> FoldedOps;
1195   SmallVector<Constant *, 8> Ops;
1196   for (const Use &OpU : I->operands()) {
1197     auto *Op = cast<Constant>(&OpU);
1198     // Fold the Instruction's operands.
1199     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1200     Ops.push_back(Op);
1201   }
1202 
1203   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1204 }
1205 
1206 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1207                                      const TargetLibraryInfo *TLI) {
1208   SmallDenseMap<Constant *, Constant *> FoldedOps;
1209   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1210 }
1211 
1212 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1213                                          ArrayRef<Constant *> Ops,
1214                                          const DataLayout &DL,
1215                                          const TargetLibraryInfo *TLI) {
1216   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1217 }
1218 
1219 Constant *llvm::ConstantFoldCompareInstOperands(
1220     unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1221     const TargetLibraryInfo *TLI, const Instruction *I) {
1222   CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1223   // fold: icmp (inttoptr x), null         -> icmp x, 0
1224   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1225   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1226   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1227   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1228   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1229   //
1230   // FIXME: The following comment is out of data and the DataLayout is here now.
1231   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1232   // around to know if bit truncation is happening.
1233   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1234     if (Ops1->isNullValue()) {
1235       if (CE0->getOpcode() == Instruction::IntToPtr) {
1236         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1237         // Convert the integer value to the right size to ensure we get the
1238         // proper extension or truncation.
1239         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1240                                                    IntPtrTy, false);
1241         Constant *Null = Constant::getNullValue(C->getType());
1242         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1243       }
1244 
1245       // Only do this transformation if the int is intptrty in size, otherwise
1246       // there is a truncation or extension that we aren't modeling.
1247       if (CE0->getOpcode() == Instruction::PtrToInt) {
1248         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1249         if (CE0->getType() == IntPtrTy) {
1250           Constant *C = CE0->getOperand(0);
1251           Constant *Null = Constant::getNullValue(C->getType());
1252           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1253         }
1254       }
1255     }
1256 
1257     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1258       if (CE0->getOpcode() == CE1->getOpcode()) {
1259         if (CE0->getOpcode() == Instruction::IntToPtr) {
1260           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1261 
1262           // Convert the integer value to the right size to ensure we get the
1263           // proper extension or truncation.
1264           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1265                                                       IntPtrTy, false);
1266           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1267                                                       IntPtrTy, false);
1268           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1269         }
1270 
1271         // Only do this transformation if the int is intptrty in size, otherwise
1272         // there is a truncation or extension that we aren't modeling.
1273         if (CE0->getOpcode() == Instruction::PtrToInt) {
1274           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1275           if (CE0->getType() == IntPtrTy &&
1276               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1277             return ConstantFoldCompareInstOperands(
1278                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1279           }
1280         }
1281       }
1282     }
1283 
1284     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1285     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1286     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1287         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1288       Constant *LHS = ConstantFoldCompareInstOperands(
1289           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1290       Constant *RHS = ConstantFoldCompareInstOperands(
1291           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1292       unsigned OpC =
1293         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1294       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1295     }
1296 
1297     // Convert pointer comparison (base+offset1) pred (base+offset2) into
1298     // offset1 pred offset2, for the case where the offset is inbounds. This
1299     // only works for equality and unsigned comparison, as inbounds permits
1300     // crossing the sign boundary. However, the offset comparison itself is
1301     // signed.
1302     if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1303       unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1304       APInt Offset0(IndexWidth, 0);
1305       Value *Stripped0 =
1306           Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1307       APInt Offset1(IndexWidth, 0);
1308       Value *Stripped1 =
1309           Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1310       if (Stripped0 == Stripped1)
1311         return ConstantExpr::getCompare(
1312             ICmpInst::getSignedPredicate(Predicate),
1313             ConstantInt::get(CE0->getContext(), Offset0),
1314             ConstantInt::get(CE0->getContext(), Offset1));
1315     }
1316   } else if (isa<ConstantExpr>(Ops1)) {
1317     // If RHS is a constant expression, but the left side isn't, swap the
1318     // operands and try again.
1319     Predicate = ICmpInst::getSwappedPredicate(Predicate);
1320     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1321   }
1322 
1323   // Flush any denormal constant float input according to denormal handling
1324   // mode.
1325   Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1326   Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1327 
1328   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1329 }
1330 
1331 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1332                                            const DataLayout &DL) {
1333   assert(Instruction::isUnaryOp(Opcode));
1334 
1335   return ConstantFoldUnaryInstruction(Opcode, Op);
1336 }
1337 
1338 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1339                                              Constant *RHS,
1340                                              const DataLayout &DL) {
1341   assert(Instruction::isBinaryOp(Opcode));
1342   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1343     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1344       return C;
1345 
1346   if (ConstantExpr::isDesirableBinOp(Opcode))
1347     return ConstantExpr::get(Opcode, LHS, RHS);
1348   return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1349 }
1350 
1351 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1352                                 bool IsOutput) {
1353   if (!I || !I->getParent() || !I->getFunction())
1354     return Operand;
1355 
1356   ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1357   if (!CFP)
1358     return Operand;
1359 
1360   const APFloat &APF = CFP->getValueAPF();
1361   Type *Ty = CFP->getType();
1362   DenormalMode DenormMode =
1363       I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1364   DenormalMode::DenormalModeKind Mode =
1365       IsOutput ? DenormMode.Output : DenormMode.Input;
1366   switch (Mode) {
1367   default:
1368     llvm_unreachable("unknown denormal mode");
1369     return Operand;
1370   case DenormalMode::IEEE:
1371     return Operand;
1372   case DenormalMode::PreserveSign:
1373     if (APF.isDenormal()) {
1374       return ConstantFP::get(
1375           Ty->getContext(),
1376           APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1377     }
1378     return Operand;
1379   case DenormalMode::PositiveZero:
1380     if (APF.isDenormal()) {
1381       return ConstantFP::get(Ty->getContext(),
1382                              APFloat::getZero(Ty->getFltSemantics(), false));
1383     }
1384     return Operand;
1385   }
1386   return Operand;
1387 }
1388 
1389 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1390                                            Constant *RHS, const DataLayout &DL,
1391                                            const Instruction *I) {
1392   if (Instruction::isBinaryOp(Opcode)) {
1393     // Flush denormal inputs if needed.
1394     Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1395     Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1396 
1397     // Calculate constant result.
1398     Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1399     if (!C)
1400       return nullptr;
1401 
1402     // Flush denormal output if needed.
1403     return FlushFPConstant(C, I, /* IsOutput */ true);
1404   }
1405   // If instruction lacks a parent/function and the denormal mode cannot be
1406   // determined, use the default (IEEE).
1407   return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1408 }
1409 
1410 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1411                                         Type *DestTy, const DataLayout &DL) {
1412   assert(Instruction::isCast(Opcode));
1413   switch (Opcode) {
1414   default:
1415     llvm_unreachable("Missing case");
1416   case Instruction::PtrToInt:
1417     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1418       Constant *FoldedValue = nullptr;
1419       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1420       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1421       if (CE->getOpcode() == Instruction::IntToPtr) {
1422         // zext/trunc the inttoptr to pointer size.
1423         FoldedValue = ConstantExpr::getIntegerCast(
1424             CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1425             /*IsSigned=*/false);
1426       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1427         // If we have GEP, we can perform the following folds:
1428         // (ptrtoint (gep null, x)) -> x
1429         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1430         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1431         APInt BaseOffset(BitWidth, 0);
1432         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1433             DL, BaseOffset, /*AllowNonInbounds=*/true));
1434         if (Base->isNullValue()) {
1435           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1436         } else {
1437           // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1438           if (GEP->getNumIndices() == 1 &&
1439               GEP->getSourceElementType()->isIntegerTy(8)) {
1440             auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1441             auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1442             Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1443             if (Sub && Sub->getType() == IntIdxTy &&
1444                 Sub->getOpcode() == Instruction::Sub &&
1445                 Sub->getOperand(0)->isNullValue())
1446               FoldedValue = ConstantExpr::getSub(
1447                   ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1448           }
1449         }
1450       }
1451       if (FoldedValue) {
1452         // Do a zext or trunc to get to the ptrtoint dest size.
1453         return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1454                                             /*IsSigned=*/false);
1455       }
1456     }
1457     return ConstantExpr::getCast(Opcode, C, DestTy);
1458   case Instruction::IntToPtr:
1459     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1460     // the int size is >= the ptr size and the address spaces are the same.
1461     // This requires knowing the width of a pointer, so it can't be done in
1462     // ConstantExpr::getCast.
1463     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1464       if (CE->getOpcode() == Instruction::PtrToInt) {
1465         Constant *SrcPtr = CE->getOperand(0);
1466         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1467         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1468 
1469         if (MidIntSize >= SrcPtrSize) {
1470           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1471           if (SrcAS == DestTy->getPointerAddressSpace())
1472             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1473         }
1474       }
1475     }
1476 
1477     return ConstantExpr::getCast(Opcode, C, DestTy);
1478   case Instruction::Trunc:
1479   case Instruction::ZExt:
1480   case Instruction::SExt:
1481   case Instruction::FPTrunc:
1482   case Instruction::FPExt:
1483   case Instruction::UIToFP:
1484   case Instruction::SIToFP:
1485   case Instruction::FPToUI:
1486   case Instruction::FPToSI:
1487   case Instruction::AddrSpaceCast:
1488       return ConstantExpr::getCast(Opcode, C, DestTy);
1489   case Instruction::BitCast:
1490     return FoldBitCast(C, DestTy, DL);
1491   }
1492 }
1493 
1494 //===----------------------------------------------------------------------===//
1495 //  Constant Folding for Calls
1496 //
1497 
1498 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1499   if (Call->isNoBuiltin())
1500     return false;
1501   if (Call->getFunctionType() != F->getFunctionType())
1502     return false;
1503   switch (F->getIntrinsicID()) {
1504   // Operations that do not operate floating-point numbers and do not depend on
1505   // FP environment can be folded even in strictfp functions.
1506   case Intrinsic::bswap:
1507   case Intrinsic::ctpop:
1508   case Intrinsic::ctlz:
1509   case Intrinsic::cttz:
1510   case Intrinsic::fshl:
1511   case Intrinsic::fshr:
1512   case Intrinsic::launder_invariant_group:
1513   case Intrinsic::strip_invariant_group:
1514   case Intrinsic::masked_load:
1515   case Intrinsic::get_active_lane_mask:
1516   case Intrinsic::abs:
1517   case Intrinsic::smax:
1518   case Intrinsic::smin:
1519   case Intrinsic::umax:
1520   case Intrinsic::umin:
1521   case Intrinsic::sadd_with_overflow:
1522   case Intrinsic::uadd_with_overflow:
1523   case Intrinsic::ssub_with_overflow:
1524   case Intrinsic::usub_with_overflow:
1525   case Intrinsic::smul_with_overflow:
1526   case Intrinsic::umul_with_overflow:
1527   case Intrinsic::sadd_sat:
1528   case Intrinsic::uadd_sat:
1529   case Intrinsic::ssub_sat:
1530   case Intrinsic::usub_sat:
1531   case Intrinsic::smul_fix:
1532   case Intrinsic::smul_fix_sat:
1533   case Intrinsic::bitreverse:
1534   case Intrinsic::is_constant:
1535   case Intrinsic::vector_reduce_add:
1536   case Intrinsic::vector_reduce_mul:
1537   case Intrinsic::vector_reduce_and:
1538   case Intrinsic::vector_reduce_or:
1539   case Intrinsic::vector_reduce_xor:
1540   case Intrinsic::vector_reduce_smin:
1541   case Intrinsic::vector_reduce_smax:
1542   case Intrinsic::vector_reduce_umin:
1543   case Intrinsic::vector_reduce_umax:
1544   // Target intrinsics
1545   case Intrinsic::amdgcn_perm:
1546   case Intrinsic::arm_mve_vctp8:
1547   case Intrinsic::arm_mve_vctp16:
1548   case Intrinsic::arm_mve_vctp32:
1549   case Intrinsic::arm_mve_vctp64:
1550   case Intrinsic::aarch64_sve_convert_from_svbool:
1551   // WebAssembly float semantics are always known
1552   case Intrinsic::wasm_trunc_signed:
1553   case Intrinsic::wasm_trunc_unsigned:
1554     return true;
1555 
1556   // Floating point operations cannot be folded in strictfp functions in
1557   // general case. They can be folded if FP environment is known to compiler.
1558   case Intrinsic::minnum:
1559   case Intrinsic::maxnum:
1560   case Intrinsic::minimum:
1561   case Intrinsic::maximum:
1562   case Intrinsic::log:
1563   case Intrinsic::log2:
1564   case Intrinsic::log10:
1565   case Intrinsic::exp:
1566   case Intrinsic::exp2:
1567   case Intrinsic::sqrt:
1568   case Intrinsic::sin:
1569   case Intrinsic::cos:
1570   case Intrinsic::pow:
1571   case Intrinsic::powi:
1572   case Intrinsic::fma:
1573   case Intrinsic::fmuladd:
1574   case Intrinsic::fptoui_sat:
1575   case Intrinsic::fptosi_sat:
1576   case Intrinsic::convert_from_fp16:
1577   case Intrinsic::convert_to_fp16:
1578   case Intrinsic::amdgcn_cos:
1579   case Intrinsic::amdgcn_cubeid:
1580   case Intrinsic::amdgcn_cubema:
1581   case Intrinsic::amdgcn_cubesc:
1582   case Intrinsic::amdgcn_cubetc:
1583   case Intrinsic::amdgcn_fmul_legacy:
1584   case Intrinsic::amdgcn_fma_legacy:
1585   case Intrinsic::amdgcn_fract:
1586   case Intrinsic::amdgcn_ldexp:
1587   case Intrinsic::amdgcn_sin:
1588   // The intrinsics below depend on rounding mode in MXCSR.
1589   case Intrinsic::x86_sse_cvtss2si:
1590   case Intrinsic::x86_sse_cvtss2si64:
1591   case Intrinsic::x86_sse_cvttss2si:
1592   case Intrinsic::x86_sse_cvttss2si64:
1593   case Intrinsic::x86_sse2_cvtsd2si:
1594   case Intrinsic::x86_sse2_cvtsd2si64:
1595   case Intrinsic::x86_sse2_cvttsd2si:
1596   case Intrinsic::x86_sse2_cvttsd2si64:
1597   case Intrinsic::x86_avx512_vcvtss2si32:
1598   case Intrinsic::x86_avx512_vcvtss2si64:
1599   case Intrinsic::x86_avx512_cvttss2si:
1600   case Intrinsic::x86_avx512_cvttss2si64:
1601   case Intrinsic::x86_avx512_vcvtsd2si32:
1602   case Intrinsic::x86_avx512_vcvtsd2si64:
1603   case Intrinsic::x86_avx512_cvttsd2si:
1604   case Intrinsic::x86_avx512_cvttsd2si64:
1605   case Intrinsic::x86_avx512_vcvtss2usi32:
1606   case Intrinsic::x86_avx512_vcvtss2usi64:
1607   case Intrinsic::x86_avx512_cvttss2usi:
1608   case Intrinsic::x86_avx512_cvttss2usi64:
1609   case Intrinsic::x86_avx512_vcvtsd2usi32:
1610   case Intrinsic::x86_avx512_vcvtsd2usi64:
1611   case Intrinsic::x86_avx512_cvttsd2usi:
1612   case Intrinsic::x86_avx512_cvttsd2usi64:
1613     return !Call->isStrictFP();
1614 
1615   // Sign operations are actually bitwise operations, they do not raise
1616   // exceptions even for SNANs.
1617   case Intrinsic::fabs:
1618   case Intrinsic::copysign:
1619   case Intrinsic::is_fpclass:
1620   // Non-constrained variants of rounding operations means default FP
1621   // environment, they can be folded in any case.
1622   case Intrinsic::ceil:
1623   case Intrinsic::floor:
1624   case Intrinsic::round:
1625   case Intrinsic::roundeven:
1626   case Intrinsic::trunc:
1627   case Intrinsic::nearbyint:
1628   case Intrinsic::rint:
1629   case Intrinsic::canonicalize:
1630   // Constrained intrinsics can be folded if FP environment is known
1631   // to compiler.
1632   case Intrinsic::experimental_constrained_fma:
1633   case Intrinsic::experimental_constrained_fmuladd:
1634   case Intrinsic::experimental_constrained_fadd:
1635   case Intrinsic::experimental_constrained_fsub:
1636   case Intrinsic::experimental_constrained_fmul:
1637   case Intrinsic::experimental_constrained_fdiv:
1638   case Intrinsic::experimental_constrained_frem:
1639   case Intrinsic::experimental_constrained_ceil:
1640   case Intrinsic::experimental_constrained_floor:
1641   case Intrinsic::experimental_constrained_round:
1642   case Intrinsic::experimental_constrained_roundeven:
1643   case Intrinsic::experimental_constrained_trunc:
1644   case Intrinsic::experimental_constrained_nearbyint:
1645   case Intrinsic::experimental_constrained_rint:
1646   case Intrinsic::experimental_constrained_fcmp:
1647   case Intrinsic::experimental_constrained_fcmps:
1648     return true;
1649   default:
1650     return false;
1651   case Intrinsic::not_intrinsic: break;
1652   }
1653 
1654   if (!F->hasName() || Call->isStrictFP())
1655     return false;
1656 
1657   // In these cases, the check of the length is required.  We don't want to
1658   // return true for a name like "cos\0blah" which strcmp would return equal to
1659   // "cos", but has length 8.
1660   StringRef Name = F->getName();
1661   switch (Name[0]) {
1662   default:
1663     return false;
1664   case 'a':
1665     return Name == "acos" || Name == "acosf" ||
1666            Name == "asin" || Name == "asinf" ||
1667            Name == "atan" || Name == "atanf" ||
1668            Name == "atan2" || Name == "atan2f";
1669   case 'c':
1670     return Name == "ceil" || Name == "ceilf" ||
1671            Name == "cos" || Name == "cosf" ||
1672            Name == "cosh" || Name == "coshf";
1673   case 'e':
1674     return Name == "exp" || Name == "expf" ||
1675            Name == "exp2" || Name == "exp2f";
1676   case 'f':
1677     return Name == "fabs" || Name == "fabsf" ||
1678            Name == "floor" || Name == "floorf" ||
1679            Name == "fmod" || Name == "fmodf";
1680   case 'l':
1681     return Name == "log" || Name == "logf" ||
1682            Name == "log2" || Name == "log2f" ||
1683            Name == "log10" || Name == "log10f";
1684   case 'n':
1685     return Name == "nearbyint" || Name == "nearbyintf";
1686   case 'p':
1687     return Name == "pow" || Name == "powf";
1688   case 'r':
1689     return Name == "remainder" || Name == "remainderf" ||
1690            Name == "rint" || Name == "rintf" ||
1691            Name == "round" || Name == "roundf";
1692   case 's':
1693     return Name == "sin" || Name == "sinf" ||
1694            Name == "sinh" || Name == "sinhf" ||
1695            Name == "sqrt" || Name == "sqrtf";
1696   case 't':
1697     return Name == "tan" || Name == "tanf" ||
1698            Name == "tanh" || Name == "tanhf" ||
1699            Name == "trunc" || Name == "truncf";
1700   case '_':
1701     // Check for various function names that get used for the math functions
1702     // when the header files are preprocessed with the macro
1703     // __FINITE_MATH_ONLY__ enabled.
1704     // The '12' here is the length of the shortest name that can match.
1705     // We need to check the size before looking at Name[1] and Name[2]
1706     // so we may as well check a limit that will eliminate mismatches.
1707     if (Name.size() < 12 || Name[1] != '_')
1708       return false;
1709     switch (Name[2]) {
1710     default:
1711       return false;
1712     case 'a':
1713       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1714              Name == "__asin_finite" || Name == "__asinf_finite" ||
1715              Name == "__atan2_finite" || Name == "__atan2f_finite";
1716     case 'c':
1717       return Name == "__cosh_finite" || Name == "__coshf_finite";
1718     case 'e':
1719       return Name == "__exp_finite" || Name == "__expf_finite" ||
1720              Name == "__exp2_finite" || Name == "__exp2f_finite";
1721     case 'l':
1722       return Name == "__log_finite" || Name == "__logf_finite" ||
1723              Name == "__log10_finite" || Name == "__log10f_finite";
1724     case 'p':
1725       return Name == "__pow_finite" || Name == "__powf_finite";
1726     case 's':
1727       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1728     }
1729   }
1730 }
1731 
1732 namespace {
1733 
1734 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1735   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1736     APFloat APF(V);
1737     bool unused;
1738     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1739     return ConstantFP::get(Ty->getContext(), APF);
1740   }
1741   if (Ty->isDoubleTy())
1742     return ConstantFP::get(Ty->getContext(), APFloat(V));
1743   llvm_unreachable("Can only constant fold half/float/double");
1744 }
1745 
1746 /// Clear the floating-point exception state.
1747 inline void llvm_fenv_clearexcept() {
1748 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1749   feclearexcept(FE_ALL_EXCEPT);
1750 #endif
1751   errno = 0;
1752 }
1753 
1754 /// Test if a floating-point exception was raised.
1755 inline bool llvm_fenv_testexcept() {
1756   int errno_val = errno;
1757   if (errno_val == ERANGE || errno_val == EDOM)
1758     return true;
1759 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1760   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1761     return true;
1762 #endif
1763   return false;
1764 }
1765 
1766 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1767                          Type *Ty) {
1768   llvm_fenv_clearexcept();
1769   double Result = NativeFP(V.convertToDouble());
1770   if (llvm_fenv_testexcept()) {
1771     llvm_fenv_clearexcept();
1772     return nullptr;
1773   }
1774 
1775   return GetConstantFoldFPValue(Result, Ty);
1776 }
1777 
1778 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1779                                const APFloat &V, const APFloat &W, Type *Ty) {
1780   llvm_fenv_clearexcept();
1781   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1782   if (llvm_fenv_testexcept()) {
1783     llvm_fenv_clearexcept();
1784     return nullptr;
1785   }
1786 
1787   return GetConstantFoldFPValue(Result, Ty);
1788 }
1789 
1790 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1791   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1792   if (!VT)
1793     return nullptr;
1794 
1795   // This isn't strictly necessary, but handle the special/common case of zero:
1796   // all integer reductions of a zero input produce zero.
1797   if (isa<ConstantAggregateZero>(Op))
1798     return ConstantInt::get(VT->getElementType(), 0);
1799 
1800   // This is the same as the underlying binops - poison propagates.
1801   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1802     return PoisonValue::get(VT->getElementType());
1803 
1804   // TODO: Handle undef.
1805   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1806     return nullptr;
1807 
1808   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1809   if (!EltC)
1810     return nullptr;
1811 
1812   APInt Acc = EltC->getValue();
1813   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1814     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1815       return nullptr;
1816     const APInt &X = EltC->getValue();
1817     switch (IID) {
1818     case Intrinsic::vector_reduce_add:
1819       Acc = Acc + X;
1820       break;
1821     case Intrinsic::vector_reduce_mul:
1822       Acc = Acc * X;
1823       break;
1824     case Intrinsic::vector_reduce_and:
1825       Acc = Acc & X;
1826       break;
1827     case Intrinsic::vector_reduce_or:
1828       Acc = Acc | X;
1829       break;
1830     case Intrinsic::vector_reduce_xor:
1831       Acc = Acc ^ X;
1832       break;
1833     case Intrinsic::vector_reduce_smin:
1834       Acc = APIntOps::smin(Acc, X);
1835       break;
1836     case Intrinsic::vector_reduce_smax:
1837       Acc = APIntOps::smax(Acc, X);
1838       break;
1839     case Intrinsic::vector_reduce_umin:
1840       Acc = APIntOps::umin(Acc, X);
1841       break;
1842     case Intrinsic::vector_reduce_umax:
1843       Acc = APIntOps::umax(Acc, X);
1844       break;
1845     }
1846   }
1847 
1848   return ConstantInt::get(Op->getContext(), Acc);
1849 }
1850 
1851 /// Attempt to fold an SSE floating point to integer conversion of a constant
1852 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1853 /// used (toward nearest, ties to even). This matches the behavior of the
1854 /// non-truncating SSE instructions in the default rounding mode. The desired
1855 /// integer type Ty is used to select how many bits are available for the
1856 /// result. Returns null if the conversion cannot be performed, otherwise
1857 /// returns the Constant value resulting from the conversion.
1858 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1859                                       Type *Ty, bool IsSigned) {
1860   // All of these conversion intrinsics form an integer of at most 64bits.
1861   unsigned ResultWidth = Ty->getIntegerBitWidth();
1862   assert(ResultWidth <= 64 &&
1863          "Can only constant fold conversions to 64 and 32 bit ints");
1864 
1865   uint64_t UIntVal;
1866   bool isExact = false;
1867   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1868                                               : APFloat::rmNearestTiesToEven;
1869   APFloat::opStatus status =
1870       Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
1871                            IsSigned, mode, &isExact);
1872   if (status != APFloat::opOK &&
1873       (!roundTowardZero || status != APFloat::opInexact))
1874     return nullptr;
1875   return ConstantInt::get(Ty, UIntVal, IsSigned);
1876 }
1877 
1878 double getValueAsDouble(ConstantFP *Op) {
1879   Type *Ty = Op->getType();
1880 
1881   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1882     return Op->getValueAPF().convertToDouble();
1883 
1884   bool unused;
1885   APFloat APF = Op->getValueAPF();
1886   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1887   return APF.convertToDouble();
1888 }
1889 
1890 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1891   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1892     C = &CI->getValue();
1893     return true;
1894   }
1895   if (isa<UndefValue>(Op)) {
1896     C = nullptr;
1897     return true;
1898   }
1899   return false;
1900 }
1901 
1902 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1903 /// to be folded.
1904 ///
1905 /// \param CI Constrained intrinsic call.
1906 /// \param St Exception flags raised during constant evaluation.
1907 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1908                                APFloat::opStatus St) {
1909   std::optional<RoundingMode> ORM = CI->getRoundingMode();
1910   std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1911 
1912   // If the operation does not change exception status flags, it is safe
1913   // to fold.
1914   if (St == APFloat::opStatus::opOK)
1915     return true;
1916 
1917   // If evaluation raised FP exception, the result can depend on rounding
1918   // mode. If the latter is unknown, folding is not possible.
1919   if (ORM && *ORM == RoundingMode::Dynamic)
1920     return false;
1921 
1922   // If FP exceptions are ignored, fold the call, even if such exception is
1923   // raised.
1924   if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1925     return true;
1926 
1927   // Leave the calculation for runtime so that exception flags be correctly set
1928   // in hardware.
1929   return false;
1930 }
1931 
1932 /// Returns the rounding mode that should be used for constant evaluation.
1933 static RoundingMode
1934 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1935   std::optional<RoundingMode> ORM = CI->getRoundingMode();
1936   if (!ORM || *ORM == RoundingMode::Dynamic)
1937     // Even if the rounding mode is unknown, try evaluating the operation.
1938     // If it does not raise inexact exception, rounding was not applied,
1939     // so the result is exact and does not depend on rounding mode. Whether
1940     // other FP exceptions are raised, it does not depend on rounding mode.
1941     return RoundingMode::NearestTiesToEven;
1942   return *ORM;
1943 }
1944 
1945 /// Try to constant fold llvm.canonicalize for the given caller and value.
1946 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
1947                                           const APFloat &Src) {
1948   // Zero, positive and negative, is always OK to fold.
1949   if (Src.isZero()) {
1950     // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1951     return ConstantFP::get(
1952         CI->getContext(),
1953         APFloat::getZero(Src.getSemantics(), Src.isNegative()));
1954   }
1955 
1956   if (!Ty->isIEEELikeFPTy())
1957     return nullptr;
1958 
1959   // Zero is always canonical and the sign must be preserved.
1960   //
1961   // Denorms and nans may have special encodings, but it should be OK to fold a
1962   // totally average number.
1963   if (Src.isNormal() || Src.isInfinity())
1964     return ConstantFP::get(CI->getContext(), Src);
1965 
1966   if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
1967     DenormalMode DenormMode =
1968         CI->getFunction()->getDenormalMode(Src.getSemantics());
1969     if (DenormMode == DenormalMode::getIEEE())
1970       return nullptr;
1971 
1972     bool IsPositive =
1973         (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
1974          (DenormMode.Output == DenormalMode::PositiveZero &&
1975           DenormMode.Input == DenormalMode::IEEE));
1976     return ConstantFP::get(CI->getContext(),
1977                            APFloat::getZero(Src.getSemantics(), !IsPositive));
1978   }
1979 
1980   return nullptr;
1981 }
1982 
1983 static Constant *ConstantFoldScalarCall1(StringRef Name,
1984                                          Intrinsic::ID IntrinsicID,
1985                                          Type *Ty,
1986                                          ArrayRef<Constant *> Operands,
1987                                          const TargetLibraryInfo *TLI,
1988                                          const CallBase *Call) {
1989   assert(Operands.size() == 1 && "Wrong number of operands.");
1990 
1991   if (IntrinsicID == Intrinsic::is_constant) {
1992     // We know we have a "Constant" argument. But we want to only
1993     // return true for manifest constants, not those that depend on
1994     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1995     if (Operands[0]->isManifestConstant())
1996       return ConstantInt::getTrue(Ty->getContext());
1997     return nullptr;
1998   }
1999 
2000   if (isa<PoisonValue>(Operands[0])) {
2001     // TODO: All of these operations should probably propagate poison.
2002     if (IntrinsicID == Intrinsic::canonicalize)
2003       return PoisonValue::get(Ty);
2004   }
2005 
2006   if (isa<UndefValue>(Operands[0])) {
2007     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2008     // ctpop() is between 0 and bitwidth, pick 0 for undef.
2009     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2010     if (IntrinsicID == Intrinsic::cos ||
2011         IntrinsicID == Intrinsic::ctpop ||
2012         IntrinsicID == Intrinsic::fptoui_sat ||
2013         IntrinsicID == Intrinsic::fptosi_sat ||
2014         IntrinsicID == Intrinsic::canonicalize)
2015       return Constant::getNullValue(Ty);
2016     if (IntrinsicID == Intrinsic::bswap ||
2017         IntrinsicID == Intrinsic::bitreverse ||
2018         IntrinsicID == Intrinsic::launder_invariant_group ||
2019         IntrinsicID == Intrinsic::strip_invariant_group)
2020       return Operands[0];
2021   }
2022 
2023   if (isa<ConstantPointerNull>(Operands[0])) {
2024     // launder(null) == null == strip(null) iff in addrspace 0
2025     if (IntrinsicID == Intrinsic::launder_invariant_group ||
2026         IntrinsicID == Intrinsic::strip_invariant_group) {
2027       // If instruction is not yet put in a basic block (e.g. when cloning
2028       // a function during inlining), Call's caller may not be available.
2029       // So check Call's BB first before querying Call->getCaller.
2030       const Function *Caller =
2031           Call->getParent() ? Call->getCaller() : nullptr;
2032       if (Caller &&
2033           !NullPointerIsDefined(
2034               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2035         return Operands[0];
2036       }
2037       return nullptr;
2038     }
2039   }
2040 
2041   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2042     if (IntrinsicID == Intrinsic::convert_to_fp16) {
2043       APFloat Val(Op->getValueAPF());
2044 
2045       bool lost = false;
2046       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2047 
2048       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2049     }
2050 
2051     APFloat U = Op->getValueAPF();
2052 
2053     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2054         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2055       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2056 
2057       if (U.isNaN())
2058         return nullptr;
2059 
2060       unsigned Width = Ty->getIntegerBitWidth();
2061       APSInt Int(Width, !Signed);
2062       bool IsExact = false;
2063       APFloat::opStatus Status =
2064           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2065 
2066       if (Status == APFloat::opOK || Status == APFloat::opInexact)
2067         return ConstantInt::get(Ty, Int);
2068 
2069       return nullptr;
2070     }
2071 
2072     if (IntrinsicID == Intrinsic::fptoui_sat ||
2073         IntrinsicID == Intrinsic::fptosi_sat) {
2074       // convertToInteger() already has the desired saturation semantics.
2075       APSInt Int(Ty->getIntegerBitWidth(),
2076                  IntrinsicID == Intrinsic::fptoui_sat);
2077       bool IsExact;
2078       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2079       return ConstantInt::get(Ty, Int);
2080     }
2081 
2082     if (IntrinsicID == Intrinsic::canonicalize)
2083       return constantFoldCanonicalize(Ty, Call, U);
2084 
2085     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2086       return nullptr;
2087 
2088     // Use internal versions of these intrinsics.
2089 
2090     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2091       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2092       return ConstantFP::get(Ty->getContext(), U);
2093     }
2094 
2095     if (IntrinsicID == Intrinsic::round) {
2096       U.roundToIntegral(APFloat::rmNearestTiesToAway);
2097       return ConstantFP::get(Ty->getContext(), U);
2098     }
2099 
2100     if (IntrinsicID == Intrinsic::roundeven) {
2101       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2102       return ConstantFP::get(Ty->getContext(), U);
2103     }
2104 
2105     if (IntrinsicID == Intrinsic::ceil) {
2106       U.roundToIntegral(APFloat::rmTowardPositive);
2107       return ConstantFP::get(Ty->getContext(), U);
2108     }
2109 
2110     if (IntrinsicID == Intrinsic::floor) {
2111       U.roundToIntegral(APFloat::rmTowardNegative);
2112       return ConstantFP::get(Ty->getContext(), U);
2113     }
2114 
2115     if (IntrinsicID == Intrinsic::trunc) {
2116       U.roundToIntegral(APFloat::rmTowardZero);
2117       return ConstantFP::get(Ty->getContext(), U);
2118     }
2119 
2120     if (IntrinsicID == Intrinsic::fabs) {
2121       U.clearSign();
2122       return ConstantFP::get(Ty->getContext(), U);
2123     }
2124 
2125     if (IntrinsicID == Intrinsic::amdgcn_fract) {
2126       // The v_fract instruction behaves like the OpenCL spec, which defines
2127       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2128       //   there to prevent fract(-small) from returning 1.0. It returns the
2129       //   largest positive floating-point number less than 1.0."
2130       APFloat FloorU(U);
2131       FloorU.roundToIntegral(APFloat::rmTowardNegative);
2132       APFloat FractU(U - FloorU);
2133       APFloat AlmostOne(U.getSemantics(), 1);
2134       AlmostOne.next(/*nextDown*/ true);
2135       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2136     }
2137 
2138     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2139     // raise FP exceptions, unless the argument is signaling NaN.
2140 
2141     std::optional<APFloat::roundingMode> RM;
2142     switch (IntrinsicID) {
2143     default:
2144       break;
2145     case Intrinsic::experimental_constrained_nearbyint:
2146     case Intrinsic::experimental_constrained_rint: {
2147       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2148       RM = CI->getRoundingMode();
2149       if (!RM || *RM == RoundingMode::Dynamic)
2150         return nullptr;
2151       break;
2152     }
2153     case Intrinsic::experimental_constrained_round:
2154       RM = APFloat::rmNearestTiesToAway;
2155       break;
2156     case Intrinsic::experimental_constrained_ceil:
2157       RM = APFloat::rmTowardPositive;
2158       break;
2159     case Intrinsic::experimental_constrained_floor:
2160       RM = APFloat::rmTowardNegative;
2161       break;
2162     case Intrinsic::experimental_constrained_trunc:
2163       RM = APFloat::rmTowardZero;
2164       break;
2165     }
2166     if (RM) {
2167       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2168       if (U.isFinite()) {
2169         APFloat::opStatus St = U.roundToIntegral(*RM);
2170         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2171             St == APFloat::opInexact) {
2172           std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2173           if (EB && *EB == fp::ebStrict)
2174             return nullptr;
2175         }
2176       } else if (U.isSignaling()) {
2177         std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2178         if (EB && *EB != fp::ebIgnore)
2179           return nullptr;
2180         U = APFloat::getQNaN(U.getSemantics());
2181       }
2182       return ConstantFP::get(Ty->getContext(), U);
2183     }
2184 
2185     /// We only fold functions with finite arguments. Folding NaN and inf is
2186     /// likely to be aborted with an exception anyway, and some host libms
2187     /// have known errors raising exceptions.
2188     if (!U.isFinite())
2189       return nullptr;
2190 
2191     /// Currently APFloat versions of these functions do not exist, so we use
2192     /// the host native double versions.  Float versions are not called
2193     /// directly but for all these it is true (float)(f((double)arg)) ==
2194     /// f(arg).  Long double not supported yet.
2195     const APFloat &APF = Op->getValueAPF();
2196 
2197     switch (IntrinsicID) {
2198       default: break;
2199       case Intrinsic::log:
2200         return ConstantFoldFP(log, APF, Ty);
2201       case Intrinsic::log2:
2202         // TODO: What about hosts that lack a C99 library?
2203         return ConstantFoldFP(log2, APF, Ty);
2204       case Intrinsic::log10:
2205         // TODO: What about hosts that lack a C99 library?
2206         return ConstantFoldFP(log10, APF, Ty);
2207       case Intrinsic::exp:
2208         return ConstantFoldFP(exp, APF, Ty);
2209       case Intrinsic::exp2:
2210         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2211         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2212       case Intrinsic::sin:
2213         return ConstantFoldFP(sin, APF, Ty);
2214       case Intrinsic::cos:
2215         return ConstantFoldFP(cos, APF, Ty);
2216       case Intrinsic::sqrt:
2217         return ConstantFoldFP(sqrt, APF, Ty);
2218       case Intrinsic::amdgcn_cos:
2219       case Intrinsic::amdgcn_sin: {
2220         double V = getValueAsDouble(Op);
2221         if (V < -256.0 || V > 256.0)
2222           // The gfx8 and gfx9 architectures handle arguments outside the range
2223           // [-256, 256] differently. This should be a rare case so bail out
2224           // rather than trying to handle the difference.
2225           return nullptr;
2226         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2227         double V4 = V * 4.0;
2228         if (V4 == floor(V4)) {
2229           // Force exact results for quarter-integer inputs.
2230           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2231           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2232         } else {
2233           if (IsCos)
2234             V = cos(V * 2.0 * numbers::pi);
2235           else
2236             V = sin(V * 2.0 * numbers::pi);
2237         }
2238         return GetConstantFoldFPValue(V, Ty);
2239       }
2240     }
2241 
2242     if (!TLI)
2243       return nullptr;
2244 
2245     LibFunc Func = NotLibFunc;
2246     if (!TLI->getLibFunc(Name, Func))
2247       return nullptr;
2248 
2249     switch (Func) {
2250     default:
2251       break;
2252     case LibFunc_acos:
2253     case LibFunc_acosf:
2254     case LibFunc_acos_finite:
2255     case LibFunc_acosf_finite:
2256       if (TLI->has(Func))
2257         return ConstantFoldFP(acos, APF, Ty);
2258       break;
2259     case LibFunc_asin:
2260     case LibFunc_asinf:
2261     case LibFunc_asin_finite:
2262     case LibFunc_asinf_finite:
2263       if (TLI->has(Func))
2264         return ConstantFoldFP(asin, APF, Ty);
2265       break;
2266     case LibFunc_atan:
2267     case LibFunc_atanf:
2268       if (TLI->has(Func))
2269         return ConstantFoldFP(atan, APF, Ty);
2270       break;
2271     case LibFunc_ceil:
2272     case LibFunc_ceilf:
2273       if (TLI->has(Func)) {
2274         U.roundToIntegral(APFloat::rmTowardPositive);
2275         return ConstantFP::get(Ty->getContext(), U);
2276       }
2277       break;
2278     case LibFunc_cos:
2279     case LibFunc_cosf:
2280       if (TLI->has(Func))
2281         return ConstantFoldFP(cos, APF, Ty);
2282       break;
2283     case LibFunc_cosh:
2284     case LibFunc_coshf:
2285     case LibFunc_cosh_finite:
2286     case LibFunc_coshf_finite:
2287       if (TLI->has(Func))
2288         return ConstantFoldFP(cosh, APF, Ty);
2289       break;
2290     case LibFunc_exp:
2291     case LibFunc_expf:
2292     case LibFunc_exp_finite:
2293     case LibFunc_expf_finite:
2294       if (TLI->has(Func))
2295         return ConstantFoldFP(exp, APF, Ty);
2296       break;
2297     case LibFunc_exp2:
2298     case LibFunc_exp2f:
2299     case LibFunc_exp2_finite:
2300     case LibFunc_exp2f_finite:
2301       if (TLI->has(Func))
2302         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2303         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2304       break;
2305     case LibFunc_fabs:
2306     case LibFunc_fabsf:
2307       if (TLI->has(Func)) {
2308         U.clearSign();
2309         return ConstantFP::get(Ty->getContext(), U);
2310       }
2311       break;
2312     case LibFunc_floor:
2313     case LibFunc_floorf:
2314       if (TLI->has(Func)) {
2315         U.roundToIntegral(APFloat::rmTowardNegative);
2316         return ConstantFP::get(Ty->getContext(), U);
2317       }
2318       break;
2319     case LibFunc_log:
2320     case LibFunc_logf:
2321     case LibFunc_log_finite:
2322     case LibFunc_logf_finite:
2323       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2324         return ConstantFoldFP(log, APF, Ty);
2325       break;
2326     case LibFunc_log2:
2327     case LibFunc_log2f:
2328     case LibFunc_log2_finite:
2329     case LibFunc_log2f_finite:
2330       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2331         // TODO: What about hosts that lack a C99 library?
2332         return ConstantFoldFP(log2, APF, Ty);
2333       break;
2334     case LibFunc_log10:
2335     case LibFunc_log10f:
2336     case LibFunc_log10_finite:
2337     case LibFunc_log10f_finite:
2338       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2339         // TODO: What about hosts that lack a C99 library?
2340         return ConstantFoldFP(log10, APF, Ty);
2341       break;
2342     case LibFunc_nearbyint:
2343     case LibFunc_nearbyintf:
2344     case LibFunc_rint:
2345     case LibFunc_rintf:
2346       if (TLI->has(Func)) {
2347         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2348         return ConstantFP::get(Ty->getContext(), U);
2349       }
2350       break;
2351     case LibFunc_round:
2352     case LibFunc_roundf:
2353       if (TLI->has(Func)) {
2354         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2355         return ConstantFP::get(Ty->getContext(), U);
2356       }
2357       break;
2358     case LibFunc_sin:
2359     case LibFunc_sinf:
2360       if (TLI->has(Func))
2361         return ConstantFoldFP(sin, APF, Ty);
2362       break;
2363     case LibFunc_sinh:
2364     case LibFunc_sinhf:
2365     case LibFunc_sinh_finite:
2366     case LibFunc_sinhf_finite:
2367       if (TLI->has(Func))
2368         return ConstantFoldFP(sinh, APF, Ty);
2369       break;
2370     case LibFunc_sqrt:
2371     case LibFunc_sqrtf:
2372       if (!APF.isNegative() && TLI->has(Func))
2373         return ConstantFoldFP(sqrt, APF, Ty);
2374       break;
2375     case LibFunc_tan:
2376     case LibFunc_tanf:
2377       if (TLI->has(Func))
2378         return ConstantFoldFP(tan, APF, Ty);
2379       break;
2380     case LibFunc_tanh:
2381     case LibFunc_tanhf:
2382       if (TLI->has(Func))
2383         return ConstantFoldFP(tanh, APF, Ty);
2384       break;
2385     case LibFunc_trunc:
2386     case LibFunc_truncf:
2387       if (TLI->has(Func)) {
2388         U.roundToIntegral(APFloat::rmTowardZero);
2389         return ConstantFP::get(Ty->getContext(), U);
2390       }
2391       break;
2392     }
2393     return nullptr;
2394   }
2395 
2396   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2397     switch (IntrinsicID) {
2398     case Intrinsic::bswap:
2399       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2400     case Intrinsic::ctpop:
2401       return ConstantInt::get(Ty, Op->getValue().countPopulation());
2402     case Intrinsic::bitreverse:
2403       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2404     case Intrinsic::convert_from_fp16: {
2405       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2406 
2407       bool lost = false;
2408       APFloat::opStatus status = Val.convert(
2409           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2410 
2411       // Conversion is always precise.
2412       (void)status;
2413       assert(status != APFloat::opInexact && !lost &&
2414              "Precision lost during fp16 constfolding");
2415 
2416       return ConstantFP::get(Ty->getContext(), Val);
2417     }
2418     default:
2419       return nullptr;
2420     }
2421   }
2422 
2423   switch (IntrinsicID) {
2424   default: break;
2425   case Intrinsic::vector_reduce_add:
2426   case Intrinsic::vector_reduce_mul:
2427   case Intrinsic::vector_reduce_and:
2428   case Intrinsic::vector_reduce_or:
2429   case Intrinsic::vector_reduce_xor:
2430   case Intrinsic::vector_reduce_smin:
2431   case Intrinsic::vector_reduce_smax:
2432   case Intrinsic::vector_reduce_umin:
2433   case Intrinsic::vector_reduce_umax:
2434     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2435       return C;
2436     break;
2437   }
2438 
2439   // Support ConstantVector in case we have an Undef in the top.
2440   if (isa<ConstantVector>(Operands[0]) ||
2441       isa<ConstantDataVector>(Operands[0])) {
2442     auto *Op = cast<Constant>(Operands[0]);
2443     switch (IntrinsicID) {
2444     default: break;
2445     case Intrinsic::x86_sse_cvtss2si:
2446     case Intrinsic::x86_sse_cvtss2si64:
2447     case Intrinsic::x86_sse2_cvtsd2si:
2448     case Intrinsic::x86_sse2_cvtsd2si64:
2449       if (ConstantFP *FPOp =
2450               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2451         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2452                                            /*roundTowardZero=*/false, Ty,
2453                                            /*IsSigned*/true);
2454       break;
2455     case Intrinsic::x86_sse_cvttss2si:
2456     case Intrinsic::x86_sse_cvttss2si64:
2457     case Intrinsic::x86_sse2_cvttsd2si:
2458     case Intrinsic::x86_sse2_cvttsd2si64:
2459       if (ConstantFP *FPOp =
2460               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2461         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2462                                            /*roundTowardZero=*/true, Ty,
2463                                            /*IsSigned*/true);
2464       break;
2465     }
2466   }
2467 
2468   return nullptr;
2469 }
2470 
2471 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2472                                  const ConstrainedFPIntrinsic *Call) {
2473   APFloat::opStatus St = APFloat::opOK;
2474   auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2475   FCmpInst::Predicate Cond = FCmp->getPredicate();
2476   if (FCmp->isSignaling()) {
2477     if (Op1.isNaN() || Op2.isNaN())
2478       St = APFloat::opInvalidOp;
2479   } else {
2480     if (Op1.isSignaling() || Op2.isSignaling())
2481       St = APFloat::opInvalidOp;
2482   }
2483   bool Result = FCmpInst::compare(Op1, Op2, Cond);
2484   if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2485     return ConstantInt::get(Call->getType()->getScalarType(), Result);
2486   return nullptr;
2487 }
2488 
2489 static Constant *ConstantFoldScalarCall2(StringRef Name,
2490                                          Intrinsic::ID IntrinsicID,
2491                                          Type *Ty,
2492                                          ArrayRef<Constant *> Operands,
2493                                          const TargetLibraryInfo *TLI,
2494                                          const CallBase *Call) {
2495   assert(Operands.size() == 2 && "Wrong number of operands.");
2496 
2497   if (Ty->isFloatingPointTy()) {
2498     // TODO: We should have undef handling for all of the FP intrinsics that
2499     //       are attempted to be folded in this function.
2500     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2501     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2502     switch (IntrinsicID) {
2503     case Intrinsic::maxnum:
2504     case Intrinsic::minnum:
2505     case Intrinsic::maximum:
2506     case Intrinsic::minimum:
2507       // If one argument is undef, return the other argument.
2508       if (IsOp0Undef)
2509         return Operands[1];
2510       if (IsOp1Undef)
2511         return Operands[0];
2512       break;
2513     }
2514   }
2515 
2516   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2517     const APFloat &Op1V = Op1->getValueAPF();
2518 
2519     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2520       if (Op2->getType() != Op1->getType())
2521         return nullptr;
2522       const APFloat &Op2V = Op2->getValueAPF();
2523 
2524       if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2525         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2526         APFloat Res = Op1V;
2527         APFloat::opStatus St;
2528         switch (IntrinsicID) {
2529         default:
2530           return nullptr;
2531         case Intrinsic::experimental_constrained_fadd:
2532           St = Res.add(Op2V, RM);
2533           break;
2534         case Intrinsic::experimental_constrained_fsub:
2535           St = Res.subtract(Op2V, RM);
2536           break;
2537         case Intrinsic::experimental_constrained_fmul:
2538           St = Res.multiply(Op2V, RM);
2539           break;
2540         case Intrinsic::experimental_constrained_fdiv:
2541           St = Res.divide(Op2V, RM);
2542           break;
2543         case Intrinsic::experimental_constrained_frem:
2544           St = Res.mod(Op2V);
2545           break;
2546         case Intrinsic::experimental_constrained_fcmp:
2547         case Intrinsic::experimental_constrained_fcmps:
2548           return evaluateCompare(Op1V, Op2V, ConstrIntr);
2549         }
2550         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2551                                St))
2552           return ConstantFP::get(Ty->getContext(), Res);
2553         return nullptr;
2554       }
2555 
2556       switch (IntrinsicID) {
2557       default:
2558         break;
2559       case Intrinsic::copysign:
2560         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2561       case Intrinsic::minnum:
2562         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2563       case Intrinsic::maxnum:
2564         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2565       case Intrinsic::minimum:
2566         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2567       case Intrinsic::maximum:
2568         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2569       }
2570 
2571       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2572         return nullptr;
2573 
2574       switch (IntrinsicID) {
2575       default:
2576         break;
2577       case Intrinsic::pow:
2578         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2579       case Intrinsic::amdgcn_fmul_legacy:
2580         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2581         // NaN or infinity, gives +0.0.
2582         if (Op1V.isZero() || Op2V.isZero())
2583           return ConstantFP::getNullValue(Ty);
2584         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2585       }
2586 
2587       if (!TLI)
2588         return nullptr;
2589 
2590       LibFunc Func = NotLibFunc;
2591       if (!TLI->getLibFunc(Name, Func))
2592         return nullptr;
2593 
2594       switch (Func) {
2595       default:
2596         break;
2597       case LibFunc_pow:
2598       case LibFunc_powf:
2599       case LibFunc_pow_finite:
2600       case LibFunc_powf_finite:
2601         if (TLI->has(Func))
2602           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2603         break;
2604       case LibFunc_fmod:
2605       case LibFunc_fmodf:
2606         if (TLI->has(Func)) {
2607           APFloat V = Op1->getValueAPF();
2608           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2609             return ConstantFP::get(Ty->getContext(), V);
2610         }
2611         break;
2612       case LibFunc_remainder:
2613       case LibFunc_remainderf:
2614         if (TLI->has(Func)) {
2615           APFloat V = Op1->getValueAPF();
2616           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2617             return ConstantFP::get(Ty->getContext(), V);
2618         }
2619         break;
2620       case LibFunc_atan2:
2621       case LibFunc_atan2f:
2622         // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2623         // (Solaris), so we do not assume a known result for that.
2624         if (Op1V.isZero() && Op2V.isZero())
2625           return nullptr;
2626         [[fallthrough]];
2627       case LibFunc_atan2_finite:
2628       case LibFunc_atan2f_finite:
2629         if (TLI->has(Func))
2630           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2631         break;
2632       }
2633     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2634       switch (IntrinsicID) {
2635       case Intrinsic::is_fpclass: {
2636         uint32_t Mask = Op2C->getZExtValue();
2637         bool Result =
2638           ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
2639           ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
2640           ((Mask & fcNegInf) && Op1V.isInfinity() && Op1V.isNegative()) ||
2641           ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
2642           ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
2643           ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
2644           ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
2645           ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
2646           ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
2647           ((Mask & fcPosInf) && Op1V.isInfinity() && !Op1V.isNegative());
2648         return ConstantInt::get(Ty, Result);
2649       }
2650       default:
2651         break;
2652       }
2653 
2654       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2655         return nullptr;
2656       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2657         return ConstantFP::get(
2658             Ty->getContext(),
2659             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2660                                     (int)Op2C->getZExtValue())));
2661       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2662         return ConstantFP::get(
2663             Ty->getContext(),
2664             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2665                                     (int)Op2C->getZExtValue())));
2666       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2667         return ConstantFP::get(
2668             Ty->getContext(),
2669             APFloat((double)std::pow(Op1V.convertToDouble(),
2670                                      (int)Op2C->getZExtValue())));
2671 
2672       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2673         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2674         // everywhere else.
2675 
2676         // scalbn is equivalent to ldexp with float radix 2
2677         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2678                                 APFloat::rmNearestTiesToEven);
2679         return ConstantFP::get(Ty->getContext(), Result);
2680       }
2681     }
2682     return nullptr;
2683   }
2684 
2685   if (Operands[0]->getType()->isIntegerTy() &&
2686       Operands[1]->getType()->isIntegerTy()) {
2687     const APInt *C0, *C1;
2688     if (!getConstIntOrUndef(Operands[0], C0) ||
2689         !getConstIntOrUndef(Operands[1], C1))
2690       return nullptr;
2691 
2692     switch (IntrinsicID) {
2693     default: break;
2694     case Intrinsic::smax:
2695     case Intrinsic::smin:
2696     case Intrinsic::umax:
2697     case Intrinsic::umin:
2698       // This is the same as for binary ops - poison propagates.
2699       // TODO: Poison handling should be consolidated.
2700       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2701         return PoisonValue::get(Ty);
2702 
2703       if (!C0 && !C1)
2704         return UndefValue::get(Ty);
2705       if (!C0 || !C1)
2706         return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2707       return ConstantInt::get(
2708           Ty, ICmpInst::compare(*C0, *C1,
2709                                 MinMaxIntrinsic::getPredicate(IntrinsicID))
2710                   ? *C0
2711                   : *C1);
2712 
2713     case Intrinsic::usub_with_overflow:
2714     case Intrinsic::ssub_with_overflow:
2715       // X - undef -> { 0, false }
2716       // undef - X -> { 0, false }
2717       if (!C0 || !C1)
2718         return Constant::getNullValue(Ty);
2719       [[fallthrough]];
2720     case Intrinsic::uadd_with_overflow:
2721     case Intrinsic::sadd_with_overflow:
2722       // X + undef -> { -1, false }
2723       // undef + x -> { -1, false }
2724       if (!C0 || !C1) {
2725         return ConstantStruct::get(
2726             cast<StructType>(Ty),
2727             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2728              Constant::getNullValue(Ty->getStructElementType(1))});
2729       }
2730       [[fallthrough]];
2731     case Intrinsic::smul_with_overflow:
2732     case Intrinsic::umul_with_overflow: {
2733       // undef * X -> { 0, false }
2734       // X * undef -> { 0, false }
2735       if (!C0 || !C1)
2736         return Constant::getNullValue(Ty);
2737 
2738       APInt Res;
2739       bool Overflow;
2740       switch (IntrinsicID) {
2741       default: llvm_unreachable("Invalid case");
2742       case Intrinsic::sadd_with_overflow:
2743         Res = C0->sadd_ov(*C1, Overflow);
2744         break;
2745       case Intrinsic::uadd_with_overflow:
2746         Res = C0->uadd_ov(*C1, Overflow);
2747         break;
2748       case Intrinsic::ssub_with_overflow:
2749         Res = C0->ssub_ov(*C1, Overflow);
2750         break;
2751       case Intrinsic::usub_with_overflow:
2752         Res = C0->usub_ov(*C1, Overflow);
2753         break;
2754       case Intrinsic::smul_with_overflow:
2755         Res = C0->smul_ov(*C1, Overflow);
2756         break;
2757       case Intrinsic::umul_with_overflow:
2758         Res = C0->umul_ov(*C1, Overflow);
2759         break;
2760       }
2761       Constant *Ops[] = {
2762         ConstantInt::get(Ty->getContext(), Res),
2763         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2764       };
2765       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2766     }
2767     case Intrinsic::uadd_sat:
2768     case Intrinsic::sadd_sat:
2769       // This is the same as for binary ops - poison propagates.
2770       // TODO: Poison handling should be consolidated.
2771       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2772         return PoisonValue::get(Ty);
2773 
2774       if (!C0 && !C1)
2775         return UndefValue::get(Ty);
2776       if (!C0 || !C1)
2777         return Constant::getAllOnesValue(Ty);
2778       if (IntrinsicID == Intrinsic::uadd_sat)
2779         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2780       else
2781         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2782     case Intrinsic::usub_sat:
2783     case Intrinsic::ssub_sat:
2784       // This is the same as for binary ops - poison propagates.
2785       // TODO: Poison handling should be consolidated.
2786       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2787         return PoisonValue::get(Ty);
2788 
2789       if (!C0 && !C1)
2790         return UndefValue::get(Ty);
2791       if (!C0 || !C1)
2792         return Constant::getNullValue(Ty);
2793       if (IntrinsicID == Intrinsic::usub_sat)
2794         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2795       else
2796         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2797     case Intrinsic::cttz:
2798     case Intrinsic::ctlz:
2799       assert(C1 && "Must be constant int");
2800 
2801       // cttz(0, 1) and ctlz(0, 1) are poison.
2802       if (C1->isOne() && (!C0 || C0->isZero()))
2803         return PoisonValue::get(Ty);
2804       if (!C0)
2805         return Constant::getNullValue(Ty);
2806       if (IntrinsicID == Intrinsic::cttz)
2807         return ConstantInt::get(Ty, C0->countTrailingZeros());
2808       else
2809         return ConstantInt::get(Ty, C0->countLeadingZeros());
2810 
2811     case Intrinsic::abs:
2812       assert(C1 && "Must be constant int");
2813       assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2814 
2815       // Undef or minimum val operand with poison min --> undef
2816       if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2817         return UndefValue::get(Ty);
2818 
2819       // Undef operand with no poison min --> 0 (sign bit must be clear)
2820       if (!C0)
2821         return Constant::getNullValue(Ty);
2822 
2823       return ConstantInt::get(Ty, C0->abs());
2824     }
2825 
2826     return nullptr;
2827   }
2828 
2829   // Support ConstantVector in case we have an Undef in the top.
2830   if ((isa<ConstantVector>(Operands[0]) ||
2831        isa<ConstantDataVector>(Operands[0])) &&
2832       // Check for default rounding mode.
2833       // FIXME: Support other rounding modes?
2834       isa<ConstantInt>(Operands[1]) &&
2835       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2836     auto *Op = cast<Constant>(Operands[0]);
2837     switch (IntrinsicID) {
2838     default: break;
2839     case Intrinsic::x86_avx512_vcvtss2si32:
2840     case Intrinsic::x86_avx512_vcvtss2si64:
2841     case Intrinsic::x86_avx512_vcvtsd2si32:
2842     case Intrinsic::x86_avx512_vcvtsd2si64:
2843       if (ConstantFP *FPOp =
2844               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2845         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2846                                            /*roundTowardZero=*/false, Ty,
2847                                            /*IsSigned*/true);
2848       break;
2849     case Intrinsic::x86_avx512_vcvtss2usi32:
2850     case Intrinsic::x86_avx512_vcvtss2usi64:
2851     case Intrinsic::x86_avx512_vcvtsd2usi32:
2852     case Intrinsic::x86_avx512_vcvtsd2usi64:
2853       if (ConstantFP *FPOp =
2854               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2855         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2856                                            /*roundTowardZero=*/false, Ty,
2857                                            /*IsSigned*/false);
2858       break;
2859     case Intrinsic::x86_avx512_cvttss2si:
2860     case Intrinsic::x86_avx512_cvttss2si64:
2861     case Intrinsic::x86_avx512_cvttsd2si:
2862     case Intrinsic::x86_avx512_cvttsd2si64:
2863       if (ConstantFP *FPOp =
2864               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2865         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2866                                            /*roundTowardZero=*/true, Ty,
2867                                            /*IsSigned*/true);
2868       break;
2869     case Intrinsic::x86_avx512_cvttss2usi:
2870     case Intrinsic::x86_avx512_cvttss2usi64:
2871     case Intrinsic::x86_avx512_cvttsd2usi:
2872     case Intrinsic::x86_avx512_cvttsd2usi64:
2873       if (ConstantFP *FPOp =
2874               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2875         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2876                                            /*roundTowardZero=*/true, Ty,
2877                                            /*IsSigned*/false);
2878       break;
2879     }
2880   }
2881   return nullptr;
2882 }
2883 
2884 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2885                                                const APFloat &S0,
2886                                                const APFloat &S1,
2887                                                const APFloat &S2) {
2888   unsigned ID;
2889   const fltSemantics &Sem = S0.getSemantics();
2890   APFloat MA(Sem), SC(Sem), TC(Sem);
2891   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2892     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2893       // S2 < 0
2894       ID = 5;
2895       SC = -S0;
2896     } else {
2897       ID = 4;
2898       SC = S0;
2899     }
2900     MA = S2;
2901     TC = -S1;
2902   } else if (abs(S1) >= abs(S0)) {
2903     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2904       // S1 < 0
2905       ID = 3;
2906       TC = -S2;
2907     } else {
2908       ID = 2;
2909       TC = S2;
2910     }
2911     MA = S1;
2912     SC = S0;
2913   } else {
2914     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2915       // S0 < 0
2916       ID = 1;
2917       SC = S2;
2918     } else {
2919       ID = 0;
2920       SC = -S2;
2921     }
2922     MA = S0;
2923     TC = -S1;
2924   }
2925   switch (IntrinsicID) {
2926   default:
2927     llvm_unreachable("unhandled amdgcn cube intrinsic");
2928   case Intrinsic::amdgcn_cubeid:
2929     return APFloat(Sem, ID);
2930   case Intrinsic::amdgcn_cubema:
2931     return MA + MA;
2932   case Intrinsic::amdgcn_cubesc:
2933     return SC;
2934   case Intrinsic::amdgcn_cubetc:
2935     return TC;
2936   }
2937 }
2938 
2939 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2940                                                  Type *Ty) {
2941   const APInt *C0, *C1, *C2;
2942   if (!getConstIntOrUndef(Operands[0], C0) ||
2943       !getConstIntOrUndef(Operands[1], C1) ||
2944       !getConstIntOrUndef(Operands[2], C2))
2945     return nullptr;
2946 
2947   if (!C2)
2948     return UndefValue::get(Ty);
2949 
2950   APInt Val(32, 0);
2951   unsigned NumUndefBytes = 0;
2952   for (unsigned I = 0; I < 32; I += 8) {
2953     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2954     unsigned B = 0;
2955 
2956     if (Sel >= 13)
2957       B = 0xff;
2958     else if (Sel == 12)
2959       B = 0x00;
2960     else {
2961       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2962       if (!Src)
2963         ++NumUndefBytes;
2964       else if (Sel < 8)
2965         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2966       else
2967         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2968     }
2969 
2970     Val.insertBits(B, I, 8);
2971   }
2972 
2973   if (NumUndefBytes == 4)
2974     return UndefValue::get(Ty);
2975 
2976   return ConstantInt::get(Ty, Val);
2977 }
2978 
2979 static Constant *ConstantFoldScalarCall3(StringRef Name,
2980                                          Intrinsic::ID IntrinsicID,
2981                                          Type *Ty,
2982                                          ArrayRef<Constant *> Operands,
2983                                          const TargetLibraryInfo *TLI,
2984                                          const CallBase *Call) {
2985   assert(Operands.size() == 3 && "Wrong number of operands.");
2986 
2987   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2988     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2989       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2990         const APFloat &C1 = Op1->getValueAPF();
2991         const APFloat &C2 = Op2->getValueAPF();
2992         const APFloat &C3 = Op3->getValueAPF();
2993 
2994         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2995           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2996           APFloat Res = C1;
2997           APFloat::opStatus St;
2998           switch (IntrinsicID) {
2999           default:
3000             return nullptr;
3001           case Intrinsic::experimental_constrained_fma:
3002           case Intrinsic::experimental_constrained_fmuladd:
3003             St = Res.fusedMultiplyAdd(C2, C3, RM);
3004             break;
3005           }
3006           if (mayFoldConstrained(
3007                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3008             return ConstantFP::get(Ty->getContext(), Res);
3009           return nullptr;
3010         }
3011 
3012         switch (IntrinsicID) {
3013         default: break;
3014         case Intrinsic::amdgcn_fma_legacy: {
3015           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3016           // NaN or infinity, gives +0.0.
3017           if (C1.isZero() || C2.isZero()) {
3018             // It's tempting to just return C3 here, but that would give the
3019             // wrong result if C3 was -0.0.
3020             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3021           }
3022           [[fallthrough]];
3023         }
3024         case Intrinsic::fma:
3025         case Intrinsic::fmuladd: {
3026           APFloat V = C1;
3027           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3028           return ConstantFP::get(Ty->getContext(), V);
3029         }
3030         case Intrinsic::amdgcn_cubeid:
3031         case Intrinsic::amdgcn_cubema:
3032         case Intrinsic::amdgcn_cubesc:
3033         case Intrinsic::amdgcn_cubetc: {
3034           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3035           return ConstantFP::get(Ty->getContext(), V);
3036         }
3037         }
3038       }
3039     }
3040   }
3041 
3042   if (IntrinsicID == Intrinsic::smul_fix ||
3043       IntrinsicID == Intrinsic::smul_fix_sat) {
3044     // poison * C -> poison
3045     // C * poison -> poison
3046     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3047       return PoisonValue::get(Ty);
3048 
3049     const APInt *C0, *C1;
3050     if (!getConstIntOrUndef(Operands[0], C0) ||
3051         !getConstIntOrUndef(Operands[1], C1))
3052       return nullptr;
3053 
3054     // undef * C -> 0
3055     // C * undef -> 0
3056     if (!C0 || !C1)
3057       return Constant::getNullValue(Ty);
3058 
3059     // This code performs rounding towards negative infinity in case the result
3060     // cannot be represented exactly for the given scale. Targets that do care
3061     // about rounding should use a target hook for specifying how rounding
3062     // should be done, and provide their own folding to be consistent with
3063     // rounding. This is the same approach as used by
3064     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3065     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3066     unsigned Width = C0->getBitWidth();
3067     assert(Scale < Width && "Illegal scale.");
3068     unsigned ExtendedWidth = Width * 2;
3069     APInt Product =
3070         (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3071     if (IntrinsicID == Intrinsic::smul_fix_sat) {
3072       APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3073       APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3074       Product = APIntOps::smin(Product, Max);
3075       Product = APIntOps::smax(Product, Min);
3076     }
3077     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3078   }
3079 
3080   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3081     const APInt *C0, *C1, *C2;
3082     if (!getConstIntOrUndef(Operands[0], C0) ||
3083         !getConstIntOrUndef(Operands[1], C1) ||
3084         !getConstIntOrUndef(Operands[2], C2))
3085       return nullptr;
3086 
3087     bool IsRight = IntrinsicID == Intrinsic::fshr;
3088     if (!C2)
3089       return Operands[IsRight ? 1 : 0];
3090     if (!C0 && !C1)
3091       return UndefValue::get(Ty);
3092 
3093     // The shift amount is interpreted as modulo the bitwidth. If the shift
3094     // amount is effectively 0, avoid UB due to oversized inverse shift below.
3095     unsigned BitWidth = C2->getBitWidth();
3096     unsigned ShAmt = C2->urem(BitWidth);
3097     if (!ShAmt)
3098       return Operands[IsRight ? 1 : 0];
3099 
3100     // (C0 << ShlAmt) | (C1 >> LshrAmt)
3101     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3102     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3103     if (!C0)
3104       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3105     if (!C1)
3106       return ConstantInt::get(Ty, C0->shl(ShlAmt));
3107     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3108   }
3109 
3110   if (IntrinsicID == Intrinsic::amdgcn_perm)
3111     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3112 
3113   return nullptr;
3114 }
3115 
3116 static Constant *ConstantFoldScalarCall(StringRef Name,
3117                                         Intrinsic::ID IntrinsicID,
3118                                         Type *Ty,
3119                                         ArrayRef<Constant *> Operands,
3120                                         const TargetLibraryInfo *TLI,
3121                                         const CallBase *Call) {
3122   if (Operands.size() == 1)
3123     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3124 
3125   if (Operands.size() == 2)
3126     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
3127 
3128   if (Operands.size() == 3)
3129     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3130 
3131   return nullptr;
3132 }
3133 
3134 static Constant *ConstantFoldFixedVectorCall(
3135     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3136     ArrayRef<Constant *> Operands, const DataLayout &DL,
3137     const TargetLibraryInfo *TLI, const CallBase *Call) {
3138   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3139   SmallVector<Constant *, 4> Lane(Operands.size());
3140   Type *Ty = FVTy->getElementType();
3141 
3142   switch (IntrinsicID) {
3143   case Intrinsic::masked_load: {
3144     auto *SrcPtr = Operands[0];
3145     auto *Mask = Operands[2];
3146     auto *Passthru = Operands[3];
3147 
3148     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3149 
3150     SmallVector<Constant *, 32> NewElements;
3151     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3152       auto *MaskElt = Mask->getAggregateElement(I);
3153       if (!MaskElt)
3154         break;
3155       auto *PassthruElt = Passthru->getAggregateElement(I);
3156       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3157       if (isa<UndefValue>(MaskElt)) {
3158         if (PassthruElt)
3159           NewElements.push_back(PassthruElt);
3160         else if (VecElt)
3161           NewElements.push_back(VecElt);
3162         else
3163           return nullptr;
3164       }
3165       if (MaskElt->isNullValue()) {
3166         if (!PassthruElt)
3167           return nullptr;
3168         NewElements.push_back(PassthruElt);
3169       } else if (MaskElt->isOneValue()) {
3170         if (!VecElt)
3171           return nullptr;
3172         NewElements.push_back(VecElt);
3173       } else {
3174         return nullptr;
3175       }
3176     }
3177     if (NewElements.size() != FVTy->getNumElements())
3178       return nullptr;
3179     return ConstantVector::get(NewElements);
3180   }
3181   case Intrinsic::arm_mve_vctp8:
3182   case Intrinsic::arm_mve_vctp16:
3183   case Intrinsic::arm_mve_vctp32:
3184   case Intrinsic::arm_mve_vctp64: {
3185     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3186       unsigned Lanes = FVTy->getNumElements();
3187       uint64_t Limit = Op->getZExtValue();
3188 
3189       SmallVector<Constant *, 16> NCs;
3190       for (unsigned i = 0; i < Lanes; i++) {
3191         if (i < Limit)
3192           NCs.push_back(ConstantInt::getTrue(Ty));
3193         else
3194           NCs.push_back(ConstantInt::getFalse(Ty));
3195       }
3196       return ConstantVector::get(NCs);
3197     }
3198     return nullptr;
3199   }
3200   case Intrinsic::get_active_lane_mask: {
3201     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3202     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3203     if (Op0 && Op1) {
3204       unsigned Lanes = FVTy->getNumElements();
3205       uint64_t Base = Op0->getZExtValue();
3206       uint64_t Limit = Op1->getZExtValue();
3207 
3208       SmallVector<Constant *, 16> NCs;
3209       for (unsigned i = 0; i < Lanes; i++) {
3210         if (Base + i < Limit)
3211           NCs.push_back(ConstantInt::getTrue(Ty));
3212         else
3213           NCs.push_back(ConstantInt::getFalse(Ty));
3214       }
3215       return ConstantVector::get(NCs);
3216     }
3217     return nullptr;
3218   }
3219   default:
3220     break;
3221   }
3222 
3223   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3224     // Gather a column of constants.
3225     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3226       // Some intrinsics use a scalar type for certain arguments.
3227       if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3228         Lane[J] = Operands[J];
3229         continue;
3230       }
3231 
3232       Constant *Agg = Operands[J]->getAggregateElement(I);
3233       if (!Agg)
3234         return nullptr;
3235 
3236       Lane[J] = Agg;
3237     }
3238 
3239     // Use the regular scalar folding to simplify this column.
3240     Constant *Folded =
3241         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3242     if (!Folded)
3243       return nullptr;
3244     Result[I] = Folded;
3245   }
3246 
3247   return ConstantVector::get(Result);
3248 }
3249 
3250 static Constant *ConstantFoldScalableVectorCall(
3251     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3252     ArrayRef<Constant *> Operands, const DataLayout &DL,
3253     const TargetLibraryInfo *TLI, const CallBase *Call) {
3254   switch (IntrinsicID) {
3255   case Intrinsic::aarch64_sve_convert_from_svbool: {
3256     auto *Src = dyn_cast<Constant>(Operands[0]);
3257     if (!Src || !Src->isNullValue())
3258       break;
3259 
3260     return ConstantInt::getFalse(SVTy);
3261   }
3262   default:
3263     break;
3264   }
3265   return nullptr;
3266 }
3267 
3268 } // end anonymous namespace
3269 
3270 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3271                                  ArrayRef<Constant *> Operands,
3272                                  const TargetLibraryInfo *TLI) {
3273   if (Call->isNoBuiltin())
3274     return nullptr;
3275   if (!F->hasName())
3276     return nullptr;
3277 
3278   // If this is not an intrinsic and not recognized as a library call, bail out.
3279   if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3280     if (!TLI)
3281       return nullptr;
3282     LibFunc LibF;
3283     if (!TLI->getLibFunc(*F, LibF))
3284       return nullptr;
3285   }
3286 
3287   StringRef Name = F->getName();
3288   Type *Ty = F->getReturnType();
3289   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3290     return ConstantFoldFixedVectorCall(
3291         Name, F->getIntrinsicID(), FVTy, Operands,
3292         F->getParent()->getDataLayout(), TLI, Call);
3293 
3294   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3295     return ConstantFoldScalableVectorCall(
3296         Name, F->getIntrinsicID(), SVTy, Operands,
3297         F->getParent()->getDataLayout(), TLI, Call);
3298 
3299   // TODO: If this is a library function, we already discovered that above,
3300   //       so we should pass the LibFunc, not the name (and it might be better
3301   //       still to separate intrinsic handling from libcalls).
3302   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3303                                 Call);
3304 }
3305 
3306 bool llvm::isMathLibCallNoop(const CallBase *Call,
3307                              const TargetLibraryInfo *TLI) {
3308   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3309   // (and to some extent ConstantFoldScalarCall).
3310   if (Call->isNoBuiltin() || Call->isStrictFP())
3311     return false;
3312   Function *F = Call->getCalledFunction();
3313   if (!F)
3314     return false;
3315 
3316   LibFunc Func;
3317   if (!TLI || !TLI->getLibFunc(*F, Func))
3318     return false;
3319 
3320   if (Call->arg_size() == 1) {
3321     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3322       const APFloat &Op = OpC->getValueAPF();
3323       switch (Func) {
3324       case LibFunc_logl:
3325       case LibFunc_log:
3326       case LibFunc_logf:
3327       case LibFunc_log2l:
3328       case LibFunc_log2:
3329       case LibFunc_log2f:
3330       case LibFunc_log10l:
3331       case LibFunc_log10:
3332       case LibFunc_log10f:
3333         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3334 
3335       case LibFunc_expl:
3336       case LibFunc_exp:
3337       case LibFunc_expf:
3338         // FIXME: These boundaries are slightly conservative.
3339         if (OpC->getType()->isDoubleTy())
3340           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3341         if (OpC->getType()->isFloatTy())
3342           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3343         break;
3344 
3345       case LibFunc_exp2l:
3346       case LibFunc_exp2:
3347       case LibFunc_exp2f:
3348         // FIXME: These boundaries are slightly conservative.
3349         if (OpC->getType()->isDoubleTy())
3350           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3351         if (OpC->getType()->isFloatTy())
3352           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3353         break;
3354 
3355       case LibFunc_sinl:
3356       case LibFunc_sin:
3357       case LibFunc_sinf:
3358       case LibFunc_cosl:
3359       case LibFunc_cos:
3360       case LibFunc_cosf:
3361         return !Op.isInfinity();
3362 
3363       case LibFunc_tanl:
3364       case LibFunc_tan:
3365       case LibFunc_tanf: {
3366         // FIXME: Stop using the host math library.
3367         // FIXME: The computation isn't done in the right precision.
3368         Type *Ty = OpC->getType();
3369         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3370           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3371         break;
3372       }
3373 
3374       case LibFunc_atan:
3375       case LibFunc_atanf:
3376       case LibFunc_atanl:
3377         // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3378         return true;
3379 
3380 
3381       case LibFunc_asinl:
3382       case LibFunc_asin:
3383       case LibFunc_asinf:
3384       case LibFunc_acosl:
3385       case LibFunc_acos:
3386       case LibFunc_acosf:
3387         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3388                  Op > APFloat(Op.getSemantics(), "1"));
3389 
3390       case LibFunc_sinh:
3391       case LibFunc_cosh:
3392       case LibFunc_sinhf:
3393       case LibFunc_coshf:
3394       case LibFunc_sinhl:
3395       case LibFunc_coshl:
3396         // FIXME: These boundaries are slightly conservative.
3397         if (OpC->getType()->isDoubleTy())
3398           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3399         if (OpC->getType()->isFloatTy())
3400           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3401         break;
3402 
3403       case LibFunc_sqrtl:
3404       case LibFunc_sqrt:
3405       case LibFunc_sqrtf:
3406         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3407 
3408       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3409       // maybe others?
3410       default:
3411         break;
3412       }
3413     }
3414   }
3415 
3416   if (Call->arg_size() == 2) {
3417     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3418     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3419     if (Op0C && Op1C) {
3420       const APFloat &Op0 = Op0C->getValueAPF();
3421       const APFloat &Op1 = Op1C->getValueAPF();
3422 
3423       switch (Func) {
3424       case LibFunc_powl:
3425       case LibFunc_pow:
3426       case LibFunc_powf: {
3427         // FIXME: Stop using the host math library.
3428         // FIXME: The computation isn't done in the right precision.
3429         Type *Ty = Op0C->getType();
3430         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3431           if (Ty == Op1C->getType())
3432             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3433         }
3434         break;
3435       }
3436 
3437       case LibFunc_fmodl:
3438       case LibFunc_fmod:
3439       case LibFunc_fmodf:
3440       case LibFunc_remainderl:
3441       case LibFunc_remainder:
3442       case LibFunc_remainderf:
3443         return Op0.isNaN() || Op1.isNaN() ||
3444                (!Op0.isInfinity() && !Op1.isZero());
3445 
3446       case LibFunc_atan2:
3447       case LibFunc_atan2f:
3448       case LibFunc_atan2l:
3449         // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3450         // GLIBC and MSVC do not appear to raise an error on those, we
3451         // cannot rely on that behavior. POSIX and C11 say that a domain error
3452         // may occur, so allow for that possibility.
3453         return !Op0.isZero() || !Op1.isZero();
3454 
3455       default:
3456         break;
3457       }
3458     }
3459   }
3460 
3461   return false;
3462 }
3463 
3464 void TargetFolder::anchor() {}
3465