xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp (revision ba7b7f94c239ce43343d7af403734fdc941b7664)
1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/PriorityWorklist.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <cassert>
31 #include <iterator>
32 #include <optional>
33 
34 #define DEBUG_TYPE "cgscc"
35 
36 using namespace llvm;
37 
38 // Explicit template instantiations and specialization definitions for core
39 // template typedefs.
40 namespace llvm {
41 static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
42     "abort-on-max-devirt-iterations-reached",
43     cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
44              "pass is reached"));
45 
46 AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key;
47 
48 // Explicit instantiations for the core proxy templates.
49 template class AllAnalysesOn<LazyCallGraph::SCC>;
50 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
51 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
52                            LazyCallGraph &, CGSCCUpdateResult &>;
53 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
54 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
55                                          LazyCallGraph::SCC, LazyCallGraph &>;
56 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
57 
58 /// Explicitly specialize the pass manager run method to handle call graph
59 /// updates.
60 template <>
61 PreservedAnalyses
62 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
63             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
64                                       CGSCCAnalysisManager &AM,
65                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
66   // Request PassInstrumentation from analysis manager, will use it to run
67   // instrumenting callbacks for the passes later.
68   PassInstrumentation PI =
69       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
70 
71   PreservedAnalyses PA = PreservedAnalyses::all();
72 
73   // The SCC may be refined while we are running passes over it, so set up
74   // a pointer that we can update.
75   LazyCallGraph::SCC *C = &InitialC;
76 
77   // Get Function analysis manager from its proxy.
78   FunctionAnalysisManager &FAM =
79       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
80 
81   for (auto &Pass : Passes) {
82     // Check the PassInstrumentation's BeforePass callbacks before running the
83     // pass, skip its execution completely if asked to (callback returns false).
84     if (!PI.runBeforePass(*Pass, *C))
85       continue;
86 
87     PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
88 
89     // Update the SCC if necessary.
90     C = UR.UpdatedC ? UR.UpdatedC : C;
91     if (UR.UpdatedC) {
92       // If C is updated, also create a proxy and update FAM inside the result.
93       auto *ResultFAMCP =
94           &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
95       ResultFAMCP->updateFAM(FAM);
96     }
97 
98     // Intersect the final preserved analyses to compute the aggregate
99     // preserved set for this pass manager.
100     PA.intersect(PassPA);
101 
102     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
103     // current SCC may simply need to be skipped if invalid.
104     if (UR.InvalidatedSCCs.count(C)) {
105       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
106       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
107       break;
108     }
109 
110     // Check that we didn't miss any update scenario.
111     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
112 
113     // Update the analysis manager as each pass runs and potentially
114     // invalidates analyses.
115     AM.invalidate(*C, PassPA);
116 
117     PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
118   }
119 
120   // Before we mark all of *this* SCC's analyses as preserved below, intersect
121   // this with the cross-SCC preserved analysis set. This is used to allow
122   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
123   // for them.
124   UR.CrossSCCPA.intersect(PA);
125 
126   // Invalidation was handled after each pass in the above loop for the current
127   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
128   // preserved. We mark this with a set so that we don't need to inspect each
129   // one individually.
130   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
131 
132   return PA;
133 }
134 
135 PreservedAnalyses
136 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
137   // Setup the CGSCC analysis manager from its proxy.
138   CGSCCAnalysisManager &CGAM =
139       AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
140 
141   // Get the call graph for this module.
142   LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
143 
144   // Get Function analysis manager from its proxy.
145   FunctionAnalysisManager &FAM =
146       AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
147 
148   // We keep worklists to allow us to push more work onto the pass manager as
149   // the passes are run.
150   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
151   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
152 
153   // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
154   // iterating off the worklists.
155   SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
156   SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
157 
158   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
159       InlinedInternalEdges;
160 
161   CGSCCUpdateResult UR = {
162       RCWorklist,           CWorklist, InvalidRefSCCSet,
163       InvalidSCCSet,        nullptr,   PreservedAnalyses::all(),
164       InlinedInternalEdges, {}};
165 
166   // Request PassInstrumentation from analysis manager, will use it to run
167   // instrumenting callbacks for the passes later.
168   PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
169 
170   PreservedAnalyses PA = PreservedAnalyses::all();
171   CG.buildRefSCCs();
172   for (LazyCallGraph::RefSCC &RC :
173        llvm::make_early_inc_range(CG.postorder_ref_sccs())) {
174     assert(RCWorklist.empty() &&
175            "Should always start with an empty RefSCC worklist");
176     // The postorder_ref_sccs range we are walking is lazily constructed, so
177     // we only push the first one onto the worklist. The worklist allows us
178     // to capture *new* RefSCCs created during transformations.
179     //
180     // We really want to form RefSCCs lazily because that makes them cheaper
181     // to update as the program is simplified and allows us to have greater
182     // cache locality as forming a RefSCC touches all the parts of all the
183     // functions within that RefSCC.
184     //
185     // We also eagerly increment the iterator to the next position because
186     // the CGSCC passes below may delete the current RefSCC.
187     RCWorklist.insert(&RC);
188 
189     do {
190       LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
191       if (InvalidRefSCCSet.count(RC)) {
192         LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
193         continue;
194       }
195 
196       assert(CWorklist.empty() &&
197              "Should always start with an empty SCC worklist");
198 
199       LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
200                         << "\n");
201 
202       // The top of the worklist may *also* be the same SCC we just ran over
203       // (and invalidated for). Keep track of that last SCC we processed due
204       // to SCC update to avoid redundant processing when an SCC is both just
205       // updated itself and at the top of the worklist.
206       LazyCallGraph::SCC *LastUpdatedC = nullptr;
207 
208       // Push the initial SCCs in reverse post-order as we'll pop off the
209       // back and so see this in post-order.
210       for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
211         CWorklist.insert(&C);
212 
213       do {
214         LazyCallGraph::SCC *C = CWorklist.pop_back_val();
215         // Due to call graph mutations, we may have invalid SCCs or SCCs from
216         // other RefSCCs in the worklist. The invalid ones are dead and the
217         // other RefSCCs should be queued above, so we just need to skip both
218         // scenarios here.
219         if (InvalidSCCSet.count(C)) {
220           LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
221           continue;
222         }
223         if (LastUpdatedC == C) {
224           LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
225           continue;
226         }
227         // We used to also check if the current SCC is part of the current
228         // RefSCC and bail if it wasn't, since it should be in RCWorklist.
229         // However, this can cause compile time explosions in some cases on
230         // modules with a huge RefSCC. If a non-trivial amount of SCCs in the
231         // huge RefSCC can become their own child RefSCC, we create one child
232         // RefSCC, bail on the current RefSCC, visit the child RefSCC, revisit
233         // the huge RefSCC, and repeat. By visiting all SCCs in the original
234         // RefSCC we create all the child RefSCCs in one pass of the RefSCC,
235         // rather one pass of the RefSCC creating one child RefSCC at a time.
236 
237         // Ensure we can proxy analysis updates from the CGSCC analysis manager
238         // into the the Function analysis manager by getting a proxy here.
239         // This also needs to update the FunctionAnalysisManager, as this may be
240         // the first time we see this SCC.
241         CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
242             FAM);
243 
244         // Each time we visit a new SCC pulled off the worklist,
245         // a transformation of a child SCC may have also modified this parent
246         // and invalidated analyses. So we invalidate using the update record's
247         // cross-SCC preserved set. This preserved set is intersected by any
248         // CGSCC pass that handles invalidation (primarily pass managers) prior
249         // to marking its SCC as preserved. That lets us track everything that
250         // might need invalidation across SCCs without excessive invalidations
251         // on a single SCC.
252         //
253         // This essentially allows SCC passes to freely invalidate analyses
254         // of any ancestor SCC. If this becomes detrimental to successfully
255         // caching analyses, we could force each SCC pass to manually
256         // invalidate the analyses for any SCCs other than themselves which
257         // are mutated. However, that seems to lose the robustness of the
258         // pass-manager driven invalidation scheme.
259         CGAM.invalidate(*C, UR.CrossSCCPA);
260 
261         do {
262           // Check that we didn't miss any update scenario.
263           assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
264           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
265 
266           LastUpdatedC = UR.UpdatedC;
267           UR.UpdatedC = nullptr;
268 
269           // Check the PassInstrumentation's BeforePass callbacks before
270           // running the pass, skip its execution completely if asked to
271           // (callback returns false).
272           if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
273             continue;
274 
275           PreservedAnalyses PassPA = Pass->run(*C, CGAM, CG, UR);
276 
277           // Update the SCC and RefSCC if necessary.
278           C = UR.UpdatedC ? UR.UpdatedC : C;
279 
280           if (UR.UpdatedC) {
281             // If we're updating the SCC, also update the FAM inside the proxy's
282             // result.
283             CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
284                 FAM);
285           }
286 
287           // Intersect with the cross-SCC preserved set to capture any
288           // cross-SCC invalidation.
289           UR.CrossSCCPA.intersect(PassPA);
290           // Intersect the preserved set so that invalidation of module
291           // analyses will eventually occur when the module pass completes.
292           PA.intersect(PassPA);
293 
294           // If the CGSCC pass wasn't able to provide a valid updated SCC,
295           // the current SCC may simply need to be skipped if invalid.
296           if (UR.InvalidatedSCCs.count(C)) {
297             PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
298             LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
299             break;
300           }
301 
302           // Check that we didn't miss any update scenario.
303           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
304 
305           // We handle invalidating the CGSCC analysis manager's information
306           // for the (potentially updated) SCC here. Note that any other SCCs
307           // whose structure has changed should have been invalidated by
308           // whatever was updating the call graph. This SCC gets invalidated
309           // late as it contains the nodes that were actively being
310           // processed.
311           CGAM.invalidate(*C, PassPA);
312 
313           PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
314 
315           // The pass may have restructured the call graph and refined the
316           // current SCC and/or RefSCC. We need to update our current SCC and
317           // RefSCC pointers to follow these. Also, when the current SCC is
318           // refined, re-run the SCC pass over the newly refined SCC in order
319           // to observe the most precise SCC model available. This inherently
320           // cannot cycle excessively as it only happens when we split SCCs
321           // apart, at most converging on a DAG of single nodes.
322           // FIXME: If we ever start having RefSCC passes, we'll want to
323           // iterate there too.
324           if (UR.UpdatedC)
325             LLVM_DEBUG(dbgs()
326                        << "Re-running SCC passes after a refinement of the "
327                           "current SCC: "
328                        << *UR.UpdatedC << "\n");
329 
330           // Note that both `C` and `RC` may at this point refer to deleted,
331           // invalid SCC and RefSCCs respectively. But we will short circuit
332           // the processing when we check them in the loop above.
333         } while (UR.UpdatedC);
334       } while (!CWorklist.empty());
335 
336       // We only need to keep internal inlined edge information within
337       // a RefSCC, clear it to save on space and let the next time we visit
338       // any of these functions have a fresh start.
339       InlinedInternalEdges.clear();
340     } while (!RCWorklist.empty());
341   }
342 
343   // By definition we preserve the call garph, all SCC analyses, and the
344   // analysis proxies by handling them above and in any nested pass managers.
345   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
346   PA.preserve<LazyCallGraphAnalysis>();
347   PA.preserve<CGSCCAnalysisManagerModuleProxy>();
348   PA.preserve<FunctionAnalysisManagerModuleProxy>();
349   return PA;
350 }
351 
352 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
353                                              CGSCCAnalysisManager &AM,
354                                              LazyCallGraph &CG,
355                                              CGSCCUpdateResult &UR) {
356   PreservedAnalyses PA = PreservedAnalyses::all();
357   PassInstrumentation PI =
358       AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
359 
360   // The SCC may be refined while we are running passes over it, so set up
361   // a pointer that we can update.
362   LazyCallGraph::SCC *C = &InitialC;
363 
364   // Struct to track the counts of direct and indirect calls in each function
365   // of the SCC.
366   struct CallCount {
367     int Direct;
368     int Indirect;
369   };
370 
371   // Put value handles on all of the indirect calls and return the number of
372   // direct calls for each function in the SCC.
373   auto ScanSCC = [](LazyCallGraph::SCC &C,
374                     SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
375     assert(CallHandles.empty() && "Must start with a clear set of handles.");
376 
377     SmallDenseMap<Function *, CallCount> CallCounts;
378     CallCount CountLocal = {0, 0};
379     for (LazyCallGraph::Node &N : C) {
380       CallCount &Count =
381           CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
382               .first->second;
383       for (Instruction &I : instructions(N.getFunction()))
384         if (auto *CB = dyn_cast<CallBase>(&I)) {
385           if (CB->getCalledFunction()) {
386             ++Count.Direct;
387           } else {
388             ++Count.Indirect;
389             CallHandles.insert({CB, WeakTrackingVH(CB)});
390           }
391         }
392     }
393 
394     return CallCounts;
395   };
396 
397   UR.IndirectVHs.clear();
398   // Populate the initial call handles and get the initial call counts.
399   auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
400 
401   for (int Iteration = 0;; ++Iteration) {
402     if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
403       continue;
404 
405     PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
406 
407     PA.intersect(PassPA);
408 
409     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
410     // current SCC may simply need to be skipped if invalid.
411     if (UR.InvalidatedSCCs.count(C)) {
412       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
413       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
414       break;
415     }
416 
417     // Update the analysis manager with each run and intersect the total set
418     // of preserved analyses so we're ready to iterate.
419     AM.invalidate(*C, PassPA);
420 
421     PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
422 
423     // If the SCC structure has changed, bail immediately and let the outer
424     // CGSCC layer handle any iteration to reflect the refined structure.
425     if (UR.UpdatedC && UR.UpdatedC != C)
426       break;
427 
428     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
429 
430     // Check whether any of the handles were devirtualized.
431     bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
432       if (P.second) {
433         if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
434           if (CB->getCalledFunction()) {
435             LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
436             return true;
437           }
438         }
439       }
440       return false;
441     });
442 
443     // Rescan to build up a new set of handles and count how many direct
444     // calls remain. If we decide to iterate, this also sets up the input to
445     // the next iteration.
446     UR.IndirectVHs.clear();
447     auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
448 
449     // If we haven't found an explicit devirtualization already see if we
450     // have decreased the number of indirect calls and increased the number
451     // of direct calls for any function in the SCC. This can be fooled by all
452     // manner of transformations such as DCE and other things, but seems to
453     // work well in practice.
454     if (!Devirt)
455       // Iterate over the keys in NewCallCounts, if Function also exists in
456       // CallCounts, make the check below.
457       for (auto &Pair : NewCallCounts) {
458         auto &CallCountNew = Pair.second;
459         auto CountIt = CallCounts.find(Pair.first);
460         if (CountIt != CallCounts.end()) {
461           const auto &CallCountOld = CountIt->second;
462           if (CallCountOld.Indirect > CallCountNew.Indirect &&
463               CallCountOld.Direct < CallCountNew.Direct) {
464             Devirt = true;
465             break;
466           }
467         }
468       }
469 
470     if (!Devirt) {
471       break;
472     }
473 
474     // Otherwise, if we've already hit our max, we're done.
475     if (Iteration >= MaxIterations) {
476       if (AbortOnMaxDevirtIterationsReached)
477         report_fatal_error("Max devirtualization iterations reached");
478       LLVM_DEBUG(
479           dbgs() << "Found another devirtualization after hitting the max "
480                     "number of repetitions ("
481                  << MaxIterations << ") on SCC: " << *C << "\n");
482       break;
483     }
484 
485     LLVM_DEBUG(
486         dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
487                << *C << "\n");
488 
489     // Move over the new call counts in preparation for iterating.
490     CallCounts = std::move(NewCallCounts);
491   }
492 
493   // Note that we don't add any preserved entries here unlike a more normal
494   // "pass manager" because we only handle invalidation *between* iterations,
495   // not after the last iteration.
496   return PA;
497 }
498 
499 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
500                                                   CGSCCAnalysisManager &AM,
501                                                   LazyCallGraph &CG,
502                                                   CGSCCUpdateResult &UR) {
503   // Setup the function analysis manager from its proxy.
504   FunctionAnalysisManager &FAM =
505       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
506 
507   SmallVector<LazyCallGraph::Node *, 4> Nodes;
508   for (LazyCallGraph::Node &N : C)
509     Nodes.push_back(&N);
510 
511   // The SCC may get split while we are optimizing functions due to deleting
512   // edges. If this happens, the current SCC can shift, so keep track of
513   // a pointer we can overwrite.
514   LazyCallGraph::SCC *CurrentC = &C;
515 
516   LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
517 
518   PreservedAnalyses PA = PreservedAnalyses::all();
519   for (LazyCallGraph::Node *N : Nodes) {
520     // Skip nodes from other SCCs. These may have been split out during
521     // processing. We'll eventually visit those SCCs and pick up the nodes
522     // there.
523     if (CG.lookupSCC(*N) != CurrentC)
524       continue;
525 
526     Function &F = N->getFunction();
527 
528     if (NoRerun && FAM.getCachedResult<ShouldNotRunFunctionPassesAnalysis>(F))
529       continue;
530 
531     PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
532     if (!PI.runBeforePass<Function>(*Pass, F))
533       continue;
534 
535     PreservedAnalyses PassPA = Pass->run(F, FAM);
536 
537     // We know that the function pass couldn't have invalidated any other
538     // function's analyses (that's the contract of a function pass), so
539     // directly handle the function analysis manager's invalidation here.
540     FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA);
541 
542     PI.runAfterPass<Function>(*Pass, F, PassPA);
543 
544     // Then intersect the preserved set so that invalidation of module
545     // analyses will eventually occur when the module pass completes.
546     PA.intersect(std::move(PassPA));
547 
548     // If the call graph hasn't been preserved, update it based on this
549     // function pass. This may also update the current SCC to point to
550     // a smaller, more refined SCC.
551     auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
552     if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
553       CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
554                                                             AM, UR, FAM);
555       assert(CG.lookupSCC(*N) == CurrentC &&
556              "Current SCC not updated to the SCC containing the current node!");
557     }
558   }
559 
560   // By definition we preserve the proxy. And we preserve all analyses on
561   // Functions. This precludes *any* invalidation of function analyses by the
562   // proxy, but that's OK because we've taken care to invalidate analyses in
563   // the function analysis manager incrementally above.
564   PA.preserveSet<AllAnalysesOn<Function>>();
565   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
566 
567   // We've also ensured that we updated the call graph along the way.
568   PA.preserve<LazyCallGraphAnalysis>();
569 
570   return PA;
571 }
572 
573 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
574     Module &M, const PreservedAnalyses &PA,
575     ModuleAnalysisManager::Invalidator &Inv) {
576   // If literally everything is preserved, we're done.
577   if (PA.areAllPreserved())
578     return false; // This is still a valid proxy.
579 
580   // If this proxy or the call graph is going to be invalidated, we also need
581   // to clear all the keys coming from that analysis.
582   //
583   // We also directly invalidate the FAM's module proxy if necessary, and if
584   // that proxy isn't preserved we can't preserve this proxy either. We rely on
585   // it to handle module -> function analysis invalidation in the face of
586   // structural changes and so if it's unavailable we conservatively clear the
587   // entire SCC layer as well rather than trying to do invalidation ourselves.
588   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
589   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
590       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
591       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
592     InnerAM->clear();
593 
594     // And the proxy itself should be marked as invalid so that we can observe
595     // the new call graph. This isn't strictly necessary because we cheat
596     // above, but is still useful.
597     return true;
598   }
599 
600   // Directly check if the relevant set is preserved so we can short circuit
601   // invalidating SCCs below.
602   bool AreSCCAnalysesPreserved =
603       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
604 
605   // Ok, we have a graph, so we can propagate the invalidation down into it.
606   G->buildRefSCCs();
607   for (auto &RC : G->postorder_ref_sccs())
608     for (auto &C : RC) {
609       std::optional<PreservedAnalyses> InnerPA;
610 
611       // Check to see whether the preserved set needs to be adjusted based on
612       // module-level analysis invalidation triggering deferred invalidation
613       // for this SCC.
614       if (auto *OuterProxy =
615               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
616         for (const auto &OuterInvalidationPair :
617              OuterProxy->getOuterInvalidations()) {
618           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
619           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
620           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
621             if (!InnerPA)
622               InnerPA = PA;
623             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
624               InnerPA->abandon(InnerAnalysisID);
625           }
626         }
627 
628       // Check if we needed a custom PA set. If so we'll need to run the inner
629       // invalidation.
630       if (InnerPA) {
631         InnerAM->invalidate(C, *InnerPA);
632         continue;
633       }
634 
635       // Otherwise we only need to do invalidation if the original PA set didn't
636       // preserve all SCC analyses.
637       if (!AreSCCAnalysesPreserved)
638         InnerAM->invalidate(C, PA);
639     }
640 
641   // Return false to indicate that this result is still a valid proxy.
642   return false;
643 }
644 
645 template <>
646 CGSCCAnalysisManagerModuleProxy::Result
647 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
648   // Force the Function analysis manager to also be available so that it can
649   // be accessed in an SCC analysis and proxied onward to function passes.
650   // FIXME: It is pretty awkward to just drop the result here and assert that
651   // we can find it again later.
652   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
653 
654   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
655 }
656 
657 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
658 
659 FunctionAnalysisManagerCGSCCProxy::Result
660 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
661                                        CGSCCAnalysisManager &AM,
662                                        LazyCallGraph &CG) {
663   // Note: unconditionally getting checking that the proxy exists may get it at
664   // this point. There are cases when this is being run unnecessarily, but
665   // it is cheap and having the assertion in place is more valuable.
666   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
667   Module &M = *C.begin()->getFunction().getParent();
668   bool ProxyExists =
669       MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
670   assert(ProxyExists &&
671          "The CGSCC pass manager requires that the FAM module proxy is run "
672          "on the module prior to entering the CGSCC walk");
673   (void)ProxyExists;
674 
675   // We just return an empty result. The caller will use the updateFAM interface
676   // to correctly register the relevant FunctionAnalysisManager based on the
677   // context in which this proxy is run.
678   return Result();
679 }
680 
681 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
682     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
683     CGSCCAnalysisManager::Invalidator &Inv) {
684   // If literally everything is preserved, we're done.
685   if (PA.areAllPreserved())
686     return false; // This is still a valid proxy.
687 
688   // All updates to preserve valid results are done below, so we don't need to
689   // invalidate this proxy.
690   //
691   // Note that in order to preserve this proxy, a module pass must ensure that
692   // the FAM has been completely updated to handle the deletion of functions.
693   // Specifically, any FAM-cached results for those functions need to have been
694   // forcibly cleared. When preserved, this proxy will only invalidate results
695   // cached on functions *still in the module* at the end of the module pass.
696   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
697   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
698     for (LazyCallGraph::Node &N : C)
699       FAM->invalidate(N.getFunction(), PA);
700 
701     return false;
702   }
703 
704   // Directly check if the relevant set is preserved.
705   bool AreFunctionAnalysesPreserved =
706       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
707 
708   // Now walk all the functions to see if any inner analysis invalidation is
709   // necessary.
710   for (LazyCallGraph::Node &N : C) {
711     Function &F = N.getFunction();
712     std::optional<PreservedAnalyses> FunctionPA;
713 
714     // Check to see whether the preserved set needs to be pruned based on
715     // SCC-level analysis invalidation that triggers deferred invalidation
716     // registered with the outer analysis manager proxy for this function.
717     if (auto *OuterProxy =
718             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
719       for (const auto &OuterInvalidationPair :
720            OuterProxy->getOuterInvalidations()) {
721         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
722         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
723         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
724           if (!FunctionPA)
725             FunctionPA = PA;
726           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
727             FunctionPA->abandon(InnerAnalysisID);
728         }
729       }
730 
731     // Check if we needed a custom PA set, and if so we'll need to run the
732     // inner invalidation.
733     if (FunctionPA) {
734       FAM->invalidate(F, *FunctionPA);
735       continue;
736     }
737 
738     // Otherwise we only need to do invalidation if the original PA set didn't
739     // preserve all function analyses.
740     if (!AreFunctionAnalysesPreserved)
741       FAM->invalidate(F, PA);
742   }
743 
744   // Return false to indicate that this result is still a valid proxy.
745   return false;
746 }
747 
748 } // end namespace llvm
749 
750 /// When a new SCC is created for the graph we first update the
751 /// FunctionAnalysisManager in the Proxy's result.
752 /// As there might be function analysis results cached for the functions now in
753 /// that SCC, two forms of  updates are required.
754 ///
755 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
756 /// created so that any subsequent invalidation events to the SCC are
757 /// propagated to the function analysis results cached for functions within it.
758 ///
759 /// Second, if any of the functions within the SCC have analysis results with
760 /// outer analysis dependencies, then those dependencies would point to the
761 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
762 /// function analyses so that they don't retain stale handles.
763 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
764                                          LazyCallGraph &G,
765                                          CGSCCAnalysisManager &AM,
766                                          FunctionAnalysisManager &FAM) {
767   AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
768 
769   // Now walk the functions in this SCC and invalidate any function analysis
770   // results that might have outer dependencies on an SCC analysis.
771   for (LazyCallGraph::Node &N : C) {
772     Function &F = N.getFunction();
773 
774     auto *OuterProxy =
775         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
776     if (!OuterProxy)
777       // No outer analyses were queried, nothing to do.
778       continue;
779 
780     // Forcibly abandon all the inner analyses with dependencies, but
781     // invalidate nothing else.
782     auto PA = PreservedAnalyses::all();
783     for (const auto &OuterInvalidationPair :
784          OuterProxy->getOuterInvalidations()) {
785       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
786       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
787         PA.abandon(InnerAnalysisID);
788     }
789 
790     // Now invalidate anything we found.
791     FAM.invalidate(F, PA);
792   }
793 }
794 
795 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
796 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
797 /// added SCCs.
798 ///
799 /// The range of new SCCs must be in postorder already. The SCC they were split
800 /// out of must be provided as \p C. The current node being mutated and
801 /// triggering updates must be passed as \p N.
802 ///
803 /// This function returns the SCC containing \p N. This will be either \p C if
804 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
805 template <typename SCCRangeT>
806 static LazyCallGraph::SCC *
807 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
808                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
809                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
810   using SCC = LazyCallGraph::SCC;
811 
812   if (NewSCCRange.empty())
813     return C;
814 
815   // Add the current SCC to the worklist as its shape has changed.
816   UR.CWorklist.insert(C);
817   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
818                     << "\n");
819 
820   SCC *OldC = C;
821 
822   // Update the current SCC. Note that if we have new SCCs, this must actually
823   // change the SCC.
824   assert(C != &*NewSCCRange.begin() &&
825          "Cannot insert new SCCs without changing current SCC!");
826   C = &*NewSCCRange.begin();
827   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
828 
829   // If we had a cached FAM proxy originally, we will want to create more of
830   // them for each SCC that was split off.
831   FunctionAnalysisManager *FAM = nullptr;
832   if (auto *FAMProxy =
833           AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
834     FAM = &FAMProxy->getManager();
835 
836   // We need to propagate an invalidation call to all but the newly current SCC
837   // because the outer pass manager won't do that for us after splitting them.
838   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
839   // there are preserved analysis we can avoid invalidating them here for
840   // split-off SCCs.
841   // We know however that this will preserve any FAM proxy so go ahead and mark
842   // that.
843   auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
844   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
845   AM.invalidate(*OldC, PA);
846 
847   // Ensure the now-current SCC's function analyses are updated.
848   if (FAM)
849     updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
850 
851   for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) {
852     assert(C != &NewC && "No need to re-visit the current SCC!");
853     assert(OldC != &NewC && "Already handled the original SCC!");
854     UR.CWorklist.insert(&NewC);
855     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
856 
857     // Ensure new SCCs' function analyses are updated.
858     if (FAM)
859       updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
860 
861     // Also propagate a normal invalidation to the new SCC as only the current
862     // will get one from the pass manager infrastructure.
863     AM.invalidate(NewC, PA);
864   }
865   return C;
866 }
867 
868 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
869     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
870     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
871     FunctionAnalysisManager &FAM, bool FunctionPass) {
872   using Node = LazyCallGraph::Node;
873   using Edge = LazyCallGraph::Edge;
874   using SCC = LazyCallGraph::SCC;
875   using RefSCC = LazyCallGraph::RefSCC;
876 
877   RefSCC &InitialRC = InitialC.getOuterRefSCC();
878   SCC *C = &InitialC;
879   RefSCC *RC = &InitialRC;
880   Function &F = N.getFunction();
881 
882   // Walk the function body and build up the set of retained, promoted, and
883   // demoted edges.
884   SmallVector<Constant *, 16> Worklist;
885   SmallPtrSet<Constant *, 16> Visited;
886   SmallPtrSet<Node *, 16> RetainedEdges;
887   SmallSetVector<Node *, 4> PromotedRefTargets;
888   SmallSetVector<Node *, 4> DemotedCallTargets;
889   SmallSetVector<Node *, 4> NewCallEdges;
890   SmallSetVector<Node *, 4> NewRefEdges;
891 
892   // First walk the function and handle all called functions. We do this first
893   // because if there is a single call edge, whether there are ref edges is
894   // irrelevant.
895   for (Instruction &I : instructions(F)) {
896     if (auto *CB = dyn_cast<CallBase>(&I)) {
897       if (Function *Callee = CB->getCalledFunction()) {
898         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
899           Node *CalleeN = G.lookup(*Callee);
900           assert(CalleeN &&
901                  "Visited function should already have an associated node");
902           Edge *E = N->lookup(*CalleeN);
903           assert((E || !FunctionPass) &&
904                  "No function transformations should introduce *new* "
905                  "call edges! Any new calls should be modeled as "
906                  "promoted existing ref edges!");
907           bool Inserted = RetainedEdges.insert(CalleeN).second;
908           (void)Inserted;
909           assert(Inserted && "We should never visit a function twice.");
910           if (!E)
911             NewCallEdges.insert(CalleeN);
912           else if (!E->isCall())
913             PromotedRefTargets.insert(CalleeN);
914         }
915       } else {
916         // We can miss devirtualization if an indirect call is created then
917         // promoted before updateCGAndAnalysisManagerForPass runs.
918         auto *Entry = UR.IndirectVHs.find(CB);
919         if (Entry == UR.IndirectVHs.end())
920           UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
921         else if (!Entry->second)
922           Entry->second = WeakTrackingVH(CB);
923       }
924     }
925   }
926 
927   // Now walk all references.
928   for (Instruction &I : instructions(F))
929     for (Value *Op : I.operand_values())
930       if (auto *OpC = dyn_cast<Constant>(Op))
931         if (Visited.insert(OpC).second)
932           Worklist.push_back(OpC);
933 
934   auto VisitRef = [&](Function &Referee) {
935     Node *RefereeN = G.lookup(Referee);
936     assert(RefereeN &&
937            "Visited function should already have an associated node");
938     Edge *E = N->lookup(*RefereeN);
939     assert((E || !FunctionPass) &&
940            "No function transformations should introduce *new* ref "
941            "edges! Any new ref edges would require IPO which "
942            "function passes aren't allowed to do!");
943     bool Inserted = RetainedEdges.insert(RefereeN).second;
944     (void)Inserted;
945     assert(Inserted && "We should never visit a function twice.");
946     if (!E)
947       NewRefEdges.insert(RefereeN);
948     else if (E->isCall())
949       DemotedCallTargets.insert(RefereeN);
950   };
951   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
952 
953   // Handle new ref edges.
954   for (Node *RefTarget : NewRefEdges) {
955     SCC &TargetC = *G.lookupSCC(*RefTarget);
956     RefSCC &TargetRC = TargetC.getOuterRefSCC();
957     (void)TargetRC;
958     // TODO: This only allows trivial edges to be added for now.
959 #ifdef EXPENSIVE_CHECKS
960     assert((RC == &TargetRC ||
961            RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
962 #endif
963     RC->insertTrivialRefEdge(N, *RefTarget);
964   }
965 
966   // Handle new call edges.
967   for (Node *CallTarget : NewCallEdges) {
968     SCC &TargetC = *G.lookupSCC(*CallTarget);
969     RefSCC &TargetRC = TargetC.getOuterRefSCC();
970     (void)TargetRC;
971     // TODO: This only allows trivial edges to be added for now.
972 #ifdef EXPENSIVE_CHECKS
973     assert((RC == &TargetRC ||
974            RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
975 #endif
976     // Add a trivial ref edge to be promoted later on alongside
977     // PromotedRefTargets.
978     RC->insertTrivialRefEdge(N, *CallTarget);
979   }
980 
981   // Include synthetic reference edges to known, defined lib functions.
982   for (auto *LibFn : G.getLibFunctions())
983     // While the list of lib functions doesn't have repeats, don't re-visit
984     // anything handled above.
985     if (!Visited.count(LibFn))
986       VisitRef(*LibFn);
987 
988   // First remove all of the edges that are no longer present in this function.
989   // The first step makes these edges uniformly ref edges and accumulates them
990   // into a separate data structure so removal doesn't invalidate anything.
991   SmallVector<Node *, 4> DeadTargets;
992   for (Edge &E : *N) {
993     if (RetainedEdges.count(&E.getNode()))
994       continue;
995 
996     SCC &TargetC = *G.lookupSCC(E.getNode());
997     RefSCC &TargetRC = TargetC.getOuterRefSCC();
998     if (&TargetRC == RC && E.isCall()) {
999       if (C != &TargetC) {
1000         // For separate SCCs this is trivial.
1001         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
1002       } else {
1003         // Now update the call graph.
1004         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
1005                                    G, N, C, AM, UR);
1006       }
1007     }
1008 
1009     // Now that this is ready for actual removal, put it into our list.
1010     DeadTargets.push_back(&E.getNode());
1011   }
1012   // Remove the easy cases quickly and actually pull them out of our list.
1013   llvm::erase_if(DeadTargets, [&](Node *TargetN) {
1014     SCC &TargetC = *G.lookupSCC(*TargetN);
1015     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1016 
1017     // We can't trivially remove internal targets, so skip
1018     // those.
1019     if (&TargetRC == RC)
1020       return false;
1021 
1022     LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
1023                       << *TargetN << "'\n");
1024     RC->removeOutgoingEdge(N, *TargetN);
1025     return true;
1026   });
1027 
1028   // Now do a batch removal of the internal ref edges left.
1029   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
1030   if (!NewRefSCCs.empty()) {
1031     // The old RefSCC is dead, mark it as such.
1032     UR.InvalidatedRefSCCs.insert(RC);
1033 
1034     // Note that we don't bother to invalidate analyses as ref-edge
1035     // connectivity is not really observable in any way and is intended
1036     // exclusively to be used for ordering of transforms rather than for
1037     // analysis conclusions.
1038 
1039     // Update RC to the "bottom".
1040     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
1041     RC = &C->getOuterRefSCC();
1042     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
1043 
1044     // The RC worklist is in reverse postorder, so we enqueue the new ones in
1045     // RPO except for the one which contains the source node as that is the
1046     // "bottom" we will continue processing in the bottom-up walk.
1047     assert(NewRefSCCs.front() == RC &&
1048            "New current RefSCC not first in the returned list!");
1049     for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) {
1050       assert(NewRC != RC && "Should not encounter the current RefSCC further "
1051                             "in the postorder list of new RefSCCs.");
1052       UR.RCWorklist.insert(NewRC);
1053       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1054                         << *NewRC << "\n");
1055     }
1056   }
1057 
1058   // Next demote all the call edges that are now ref edges. This helps make
1059   // the SCCs small which should minimize the work below as we don't want to
1060   // form cycles that this would break.
1061   for (Node *RefTarget : DemotedCallTargets) {
1062     SCC &TargetC = *G.lookupSCC(*RefTarget);
1063     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1064 
1065     // The easy case is when the target RefSCC is not this RefSCC. This is
1066     // only supported when the target RefSCC is a child of this RefSCC.
1067     if (&TargetRC != RC) {
1068 #ifdef EXPENSIVE_CHECKS
1069       assert(RC->isAncestorOf(TargetRC) &&
1070              "Cannot potentially form RefSCC cycles here!");
1071 #endif
1072       RC->switchOutgoingEdgeToRef(N, *RefTarget);
1073       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1074                         << "' to '" << *RefTarget << "'\n");
1075       continue;
1076     }
1077 
1078     // We are switching an internal call edge to a ref edge. This may split up
1079     // some SCCs.
1080     if (C != &TargetC) {
1081       // For separate SCCs this is trivial.
1082       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
1083       continue;
1084     }
1085 
1086     // Now update the call graph.
1087     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
1088                                C, AM, UR);
1089   }
1090 
1091   // We added a ref edge earlier for new call edges, promote those to call edges
1092   // alongside PromotedRefTargets.
1093   for (Node *E : NewCallEdges)
1094     PromotedRefTargets.insert(E);
1095 
1096   // Now promote ref edges into call edges.
1097   for (Node *CallTarget : PromotedRefTargets) {
1098     SCC &TargetC = *G.lookupSCC(*CallTarget);
1099     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1100 
1101     // The easy case is when the target RefSCC is not this RefSCC. This is
1102     // only supported when the target RefSCC is a child of this RefSCC.
1103     if (&TargetRC != RC) {
1104 #ifdef EXPENSIVE_CHECKS
1105       assert(RC->isAncestorOf(TargetRC) &&
1106              "Cannot potentially form RefSCC cycles here!");
1107 #endif
1108       RC->switchOutgoingEdgeToCall(N, *CallTarget);
1109       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1110                         << "' to '" << *CallTarget << "'\n");
1111       continue;
1112     }
1113     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1114                       << N << "' to '" << *CallTarget << "'\n");
1115 
1116     // Otherwise we are switching an internal ref edge to a call edge. This
1117     // may merge away some SCCs, and we add those to the UpdateResult. We also
1118     // need to make sure to update the worklist in the event SCCs have moved
1119     // before the current one in the post-order sequence
1120     bool HasFunctionAnalysisProxy = false;
1121     auto InitialSCCIndex = RC->find(*C) - RC->begin();
1122     bool FormedCycle = RC->switchInternalEdgeToCall(
1123         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
1124           for (SCC *MergedC : MergedSCCs) {
1125             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
1126 
1127             HasFunctionAnalysisProxy |=
1128                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
1129                     *MergedC) != nullptr;
1130 
1131             // Mark that this SCC will no longer be valid.
1132             UR.InvalidatedSCCs.insert(MergedC);
1133 
1134             // FIXME: We should really do a 'clear' here to forcibly release
1135             // memory, but we don't have a good way of doing that and
1136             // preserving the function analyses.
1137             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1138             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1139             AM.invalidate(*MergedC, PA);
1140           }
1141         });
1142 
1143     // If we formed a cycle by creating this call, we need to update more data
1144     // structures.
1145     if (FormedCycle) {
1146       C = &TargetC;
1147       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
1148 
1149       // If one of the invalidated SCCs had a cached proxy to a function
1150       // analysis manager, we need to create a proxy in the new current SCC as
1151       // the invalidated SCCs had their functions moved.
1152       if (HasFunctionAnalysisProxy)
1153         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
1154 
1155       // Any analyses cached for this SCC are no longer precise as the shape
1156       // has changed by introducing this cycle. However, we have taken care to
1157       // update the proxies so it remains valide.
1158       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1159       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1160       AM.invalidate(*C, PA);
1161     }
1162     auto NewSCCIndex = RC->find(*C) - RC->begin();
1163     // If we have actually moved an SCC to be topologically "below" the current
1164     // one due to merging, we will need to revisit the current SCC after
1165     // visiting those moved SCCs.
1166     //
1167     // It is critical that we *do not* revisit the current SCC unless we
1168     // actually move SCCs in the process of merging because otherwise we may
1169     // form a cycle where an SCC is split apart, merged, split, merged and so
1170     // on infinitely.
1171     if (InitialSCCIndex < NewSCCIndex) {
1172       // Put our current SCC back onto the worklist as we'll visit other SCCs
1173       // that are now definitively ordered prior to the current one in the
1174       // post-order sequence, and may end up observing more precise context to
1175       // optimize the current SCC.
1176       UR.CWorklist.insert(C);
1177       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1178                         << "\n");
1179       // Enqueue in reverse order as we pop off the back of the worklist.
1180       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
1181                                                   RC->begin() + NewSCCIndex))) {
1182         UR.CWorklist.insert(&MovedC);
1183         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1184                           << MovedC << "\n");
1185       }
1186     }
1187   }
1188 
1189   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
1190   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
1191   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
1192 
1193   // Record the current SCC for higher layers of the CGSCC pass manager now that
1194   // all the updates have been applied.
1195   if (C != &InitialC)
1196     UR.UpdatedC = C;
1197 
1198   return *C;
1199 }
1200 
1201 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
1202     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1203     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1204     FunctionAnalysisManager &FAM) {
1205   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1206                                            /* FunctionPass */ true);
1207 }
1208 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
1209     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1210     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1211     FunctionAnalysisManager &FAM) {
1212   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1213                                            /* FunctionPass */ false);
1214 }
1215