xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/Support/Casting.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Support/TimeProfiler.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <iterator>
30 
31 #define DEBUG_TYPE "cgscc"
32 
33 using namespace llvm;
34 
35 // Explicit template instantiations and specialization definitions for core
36 // template typedefs.
37 namespace llvm {
38 
39 // Explicit instantiations for the core proxy templates.
40 template class AllAnalysesOn<LazyCallGraph::SCC>;
41 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
42 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
43                            LazyCallGraph &, CGSCCUpdateResult &>;
44 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
45 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
46                                          LazyCallGraph::SCC, LazyCallGraph &>;
47 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
48 
49 /// Explicitly specialize the pass manager run method to handle call graph
50 /// updates.
51 template <>
52 PreservedAnalyses
53 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
54             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
55                                       CGSCCAnalysisManager &AM,
56                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
57   // Request PassInstrumentation from analysis manager, will use it to run
58   // instrumenting callbacks for the passes later.
59   PassInstrumentation PI =
60       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
61 
62   PreservedAnalyses PA = PreservedAnalyses::all();
63 
64   if (DebugLogging)
65     dbgs() << "Starting CGSCC pass manager run.\n";
66 
67   // The SCC may be refined while we are running passes over it, so set up
68   // a pointer that we can update.
69   LazyCallGraph::SCC *C = &InitialC;
70 
71   // Get Function analysis manager from its proxy.
72   FunctionAnalysisManager &FAM =
73       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
74 
75   for (auto &Pass : Passes) {
76     // Check the PassInstrumentation's BeforePass callbacks before running the
77     // pass, skip its execution completely if asked to (callback returns false).
78     if (!PI.runBeforePass(*Pass, *C))
79       continue;
80 
81     if (DebugLogging)
82       dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
83 
84     PreservedAnalyses PassPA;
85     {
86       TimeTraceScope TimeScope(Pass->name());
87       PassPA = Pass->run(*C, AM, G, UR);
88     }
89 
90     if (UR.InvalidatedSCCs.count(C))
91       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass);
92     else
93       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C);
94 
95     // Update the SCC if necessary.
96     C = UR.UpdatedC ? UR.UpdatedC : C;
97     if (UR.UpdatedC) {
98       // If C is updated, also create a proxy and update FAM inside the result.
99       auto *ResultFAMCP =
100           &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
101       ResultFAMCP->updateFAM(FAM);
102     }
103 
104     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
105     // current SCC may simply need to be skipped if invalid.
106     if (UR.InvalidatedSCCs.count(C)) {
107       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
108       break;
109     }
110     // Check that we didn't miss any update scenario.
111     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
112 
113     // Update the analysis manager as each pass runs and potentially
114     // invalidates analyses.
115     AM.invalidate(*C, PassPA);
116 
117     // Finally, we intersect the final preserved analyses to compute the
118     // aggregate preserved set for this pass manager.
119     PA.intersect(std::move(PassPA));
120 
121     // FIXME: Historically, the pass managers all called the LLVM context's
122     // yield function here. We don't have a generic way to acquire the
123     // context and it isn't yet clear what the right pattern is for yielding
124     // in the new pass manager so it is currently omitted.
125     // ...getContext().yield();
126   }
127 
128   // Before we mark all of *this* SCC's analyses as preserved below, intersect
129   // this with the cross-SCC preserved analysis set. This is used to allow
130   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
131   // for them.
132   UR.CrossSCCPA.intersect(PA);
133 
134   // Invalidation was handled after each pass in the above loop for the current
135   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
136   // preserved. We mark this with a set so that we don't need to inspect each
137   // one individually.
138   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
139 
140   if (DebugLogging)
141     dbgs() << "Finished CGSCC pass manager run.\n";
142 
143   return PA;
144 }
145 
146 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
147     Module &M, const PreservedAnalyses &PA,
148     ModuleAnalysisManager::Invalidator &Inv) {
149   // If literally everything is preserved, we're done.
150   if (PA.areAllPreserved())
151     return false; // This is still a valid proxy.
152 
153   // If this proxy or the call graph is going to be invalidated, we also need
154   // to clear all the keys coming from that analysis.
155   //
156   // We also directly invalidate the FAM's module proxy if necessary, and if
157   // that proxy isn't preserved we can't preserve this proxy either. We rely on
158   // it to handle module -> function analysis invalidation in the face of
159   // structural changes and so if it's unavailable we conservatively clear the
160   // entire SCC layer as well rather than trying to do invalidation ourselves.
161   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
162   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
163       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
164       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
165     InnerAM->clear();
166 
167     // And the proxy itself should be marked as invalid so that we can observe
168     // the new call graph. This isn't strictly necessary because we cheat
169     // above, but is still useful.
170     return true;
171   }
172 
173   // Directly check if the relevant set is preserved so we can short circuit
174   // invalidating SCCs below.
175   bool AreSCCAnalysesPreserved =
176       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
177 
178   // Ok, we have a graph, so we can propagate the invalidation down into it.
179   G->buildRefSCCs();
180   for (auto &RC : G->postorder_ref_sccs())
181     for (auto &C : RC) {
182       Optional<PreservedAnalyses> InnerPA;
183 
184       // Check to see whether the preserved set needs to be adjusted based on
185       // module-level analysis invalidation triggering deferred invalidation
186       // for this SCC.
187       if (auto *OuterProxy =
188               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
189         for (const auto &OuterInvalidationPair :
190              OuterProxy->getOuterInvalidations()) {
191           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
192           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
193           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
194             if (!InnerPA)
195               InnerPA = PA;
196             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
197               InnerPA->abandon(InnerAnalysisID);
198           }
199         }
200 
201       // Check if we needed a custom PA set. If so we'll need to run the inner
202       // invalidation.
203       if (InnerPA) {
204         InnerAM->invalidate(C, *InnerPA);
205         continue;
206       }
207 
208       // Otherwise we only need to do invalidation if the original PA set didn't
209       // preserve all SCC analyses.
210       if (!AreSCCAnalysesPreserved)
211         InnerAM->invalidate(C, PA);
212     }
213 
214   // Return false to indicate that this result is still a valid proxy.
215   return false;
216 }
217 
218 template <>
219 CGSCCAnalysisManagerModuleProxy::Result
220 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
221   // Force the Function analysis manager to also be available so that it can
222   // be accessed in an SCC analysis and proxied onward to function passes.
223   // FIXME: It is pretty awkward to just drop the result here and assert that
224   // we can find it again later.
225   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
226 
227   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
228 }
229 
230 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
231 
232 FunctionAnalysisManagerCGSCCProxy::Result
233 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
234                                        CGSCCAnalysisManager &AM,
235                                        LazyCallGraph &CG) {
236   // Note: unconditionally getting checking that the proxy exists may get it at
237   // this point. There are cases when this is being run unnecessarily, but
238   // it is cheap and having the assertion in place is more valuable.
239   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
240   Module &M = *C.begin()->getFunction().getParent();
241   bool ProxyExists =
242       MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
243   assert(ProxyExists &&
244          "The CGSCC pass manager requires that the FAM module proxy is run "
245          "on the module prior to entering the CGSCC walk");
246   (void)ProxyExists;
247 
248   // We just return an empty result. The caller will use the updateFAM interface
249   // to correctly register the relevant FunctionAnalysisManager based on the
250   // context in which this proxy is run.
251   return Result();
252 }
253 
254 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
255     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
256     CGSCCAnalysisManager::Invalidator &Inv) {
257   // If literally everything is preserved, we're done.
258   if (PA.areAllPreserved())
259     return false; // This is still a valid proxy.
260 
261   // All updates to preserve valid results are done below, so we don't need to
262   // invalidate this proxy.
263   //
264   // Note that in order to preserve this proxy, a module pass must ensure that
265   // the FAM has been completely updated to handle the deletion of functions.
266   // Specifically, any FAM-cached results for those functions need to have been
267   // forcibly cleared. When preserved, this proxy will only invalidate results
268   // cached on functions *still in the module* at the end of the module pass.
269   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
270   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
271     for (LazyCallGraph::Node &N : C)
272       FAM->clear(N.getFunction(), N.getFunction().getName());
273 
274     return false;
275   }
276 
277   // Directly check if the relevant set is preserved.
278   bool AreFunctionAnalysesPreserved =
279       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
280 
281   // Now walk all the functions to see if any inner analysis invalidation is
282   // necessary.
283   for (LazyCallGraph::Node &N : C) {
284     Function &F = N.getFunction();
285     Optional<PreservedAnalyses> FunctionPA;
286 
287     // Check to see whether the preserved set needs to be pruned based on
288     // SCC-level analysis invalidation that triggers deferred invalidation
289     // registered with the outer analysis manager proxy for this function.
290     if (auto *OuterProxy =
291             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
292       for (const auto &OuterInvalidationPair :
293            OuterProxy->getOuterInvalidations()) {
294         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
295         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
296         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
297           if (!FunctionPA)
298             FunctionPA = PA;
299           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
300             FunctionPA->abandon(InnerAnalysisID);
301         }
302       }
303 
304     // Check if we needed a custom PA set, and if so we'll need to run the
305     // inner invalidation.
306     if (FunctionPA) {
307       FAM->invalidate(F, *FunctionPA);
308       continue;
309     }
310 
311     // Otherwise we only need to do invalidation if the original PA set didn't
312     // preserve all function analyses.
313     if (!AreFunctionAnalysesPreserved)
314       FAM->invalidate(F, PA);
315   }
316 
317   // Return false to indicate that this result is still a valid proxy.
318   return false;
319 }
320 
321 } // end namespace llvm
322 
323 /// When a new SCC is created for the graph we first update the
324 /// FunctionAnalysisManager in the Proxy's result.
325 /// As there might be function analysis results cached for the functions now in
326 /// that SCC, two forms of  updates are required.
327 ///
328 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
329 /// created so that any subsequent invalidation events to the SCC are
330 /// propagated to the function analysis results cached for functions within it.
331 ///
332 /// Second, if any of the functions within the SCC have analysis results with
333 /// outer analysis dependencies, then those dependencies would point to the
334 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
335 /// function analyses so that they don't retain stale handles.
336 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
337                                          LazyCallGraph &G,
338                                          CGSCCAnalysisManager &AM,
339                                          FunctionAnalysisManager &FAM) {
340   AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
341 
342   // Now walk the functions in this SCC and invalidate any function analysis
343   // results that might have outer dependencies on an SCC analysis.
344   for (LazyCallGraph::Node &N : C) {
345     Function &F = N.getFunction();
346 
347     auto *OuterProxy =
348         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
349     if (!OuterProxy)
350       // No outer analyses were queried, nothing to do.
351       continue;
352 
353     // Forcibly abandon all the inner analyses with dependencies, but
354     // invalidate nothing else.
355     auto PA = PreservedAnalyses::all();
356     for (const auto &OuterInvalidationPair :
357          OuterProxy->getOuterInvalidations()) {
358       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
359       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
360         PA.abandon(InnerAnalysisID);
361     }
362 
363     // Now invalidate anything we found.
364     FAM.invalidate(F, PA);
365   }
366 }
367 
368 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
369 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
370 /// added SCCs.
371 ///
372 /// The range of new SCCs must be in postorder already. The SCC they were split
373 /// out of must be provided as \p C. The current node being mutated and
374 /// triggering updates must be passed as \p N.
375 ///
376 /// This function returns the SCC containing \p N. This will be either \p C if
377 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
378 template <typename SCCRangeT>
379 static LazyCallGraph::SCC *
380 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
381                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
382                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
383   using SCC = LazyCallGraph::SCC;
384 
385   if (NewSCCRange.begin() == NewSCCRange.end())
386     return C;
387 
388   // Add the current SCC to the worklist as its shape has changed.
389   UR.CWorklist.insert(C);
390   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
391                     << "\n");
392 
393   SCC *OldC = C;
394 
395   // Update the current SCC. Note that if we have new SCCs, this must actually
396   // change the SCC.
397   assert(C != &*NewSCCRange.begin() &&
398          "Cannot insert new SCCs without changing current SCC!");
399   C = &*NewSCCRange.begin();
400   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
401 
402   // If we had a cached FAM proxy originally, we will want to create more of
403   // them for each SCC that was split off.
404   FunctionAnalysisManager *FAM = nullptr;
405   if (auto *FAMProxy =
406           AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
407     FAM = &FAMProxy->getManager();
408 
409   // We need to propagate an invalidation call to all but the newly current SCC
410   // because the outer pass manager won't do that for us after splitting them.
411   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
412   // there are preserved analysis we can avoid invalidating them here for
413   // split-off SCCs.
414   // We know however that this will preserve any FAM proxy so go ahead and mark
415   // that.
416   PreservedAnalyses PA;
417   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
418   AM.invalidate(*OldC, PA);
419 
420   // Ensure the now-current SCC's function analyses are updated.
421   if (FAM)
422     updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
423 
424   for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
425                                             NewSCCRange.end()))) {
426     assert(C != &NewC && "No need to re-visit the current SCC!");
427     assert(OldC != &NewC && "Already handled the original SCC!");
428     UR.CWorklist.insert(&NewC);
429     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
430 
431     // Ensure new SCCs' function analyses are updated.
432     if (FAM)
433       updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
434 
435     // Also propagate a normal invalidation to the new SCC as only the current
436     // will get one from the pass manager infrastructure.
437     AM.invalidate(NewC, PA);
438   }
439   return C;
440 }
441 
442 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
443     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
444     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
445     FunctionAnalysisManager &FAM, bool FunctionPass) {
446   using Node = LazyCallGraph::Node;
447   using Edge = LazyCallGraph::Edge;
448   using SCC = LazyCallGraph::SCC;
449   using RefSCC = LazyCallGraph::RefSCC;
450 
451   RefSCC &InitialRC = InitialC.getOuterRefSCC();
452   SCC *C = &InitialC;
453   RefSCC *RC = &InitialRC;
454   Function &F = N.getFunction();
455 
456   // Walk the function body and build up the set of retained, promoted, and
457   // demoted edges.
458   SmallVector<Constant *, 16> Worklist;
459   SmallPtrSet<Constant *, 16> Visited;
460   SmallPtrSet<Node *, 16> RetainedEdges;
461   SmallSetVector<Node *, 4> PromotedRefTargets;
462   SmallSetVector<Node *, 4> DemotedCallTargets;
463   SmallSetVector<Node *, 4> NewCallEdges;
464   SmallSetVector<Node *, 4> NewRefEdges;
465 
466   // First walk the function and handle all called functions. We do this first
467   // because if there is a single call edge, whether there are ref edges is
468   // irrelevant.
469   for (Instruction &I : instructions(F))
470     if (auto *CB = dyn_cast<CallBase>(&I))
471       if (Function *Callee = CB->getCalledFunction())
472         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
473           Node &CalleeN = *G.lookup(*Callee);
474           Edge *E = N->lookup(CalleeN);
475           assert((E || !FunctionPass) &&
476                  "No function transformations should introduce *new* "
477                  "call edges! Any new calls should be modeled as "
478                  "promoted existing ref edges!");
479           bool Inserted = RetainedEdges.insert(&CalleeN).second;
480           (void)Inserted;
481           assert(Inserted && "We should never visit a function twice.");
482           if (!E)
483             NewCallEdges.insert(&CalleeN);
484           else if (!E->isCall())
485             PromotedRefTargets.insert(&CalleeN);
486         }
487 
488   // Now walk all references.
489   for (Instruction &I : instructions(F))
490     for (Value *Op : I.operand_values())
491       if (auto *C = dyn_cast<Constant>(Op))
492         if (Visited.insert(C).second)
493           Worklist.push_back(C);
494 
495   auto VisitRef = [&](Function &Referee) {
496     Node &RefereeN = *G.lookup(Referee);
497     Edge *E = N->lookup(RefereeN);
498     assert((E || !FunctionPass) &&
499            "No function transformations should introduce *new* ref "
500            "edges! Any new ref edges would require IPO which "
501            "function passes aren't allowed to do!");
502     bool Inserted = RetainedEdges.insert(&RefereeN).second;
503     (void)Inserted;
504     assert(Inserted && "We should never visit a function twice.");
505     if (!E)
506       NewRefEdges.insert(&RefereeN);
507     else if (E->isCall())
508       DemotedCallTargets.insert(&RefereeN);
509   };
510   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
511 
512   // Handle new ref edges.
513   for (Node *RefTarget : NewRefEdges) {
514     SCC &TargetC = *G.lookupSCC(*RefTarget);
515     RefSCC &TargetRC = TargetC.getOuterRefSCC();
516     (void)TargetRC;
517     // TODO: This only allows trivial edges to be added for now.
518     assert((RC == &TargetRC ||
519            RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
520     RC->insertTrivialRefEdge(N, *RefTarget);
521   }
522 
523   // Handle new call edges.
524   for (Node *CallTarget : NewCallEdges) {
525     SCC &TargetC = *G.lookupSCC(*CallTarget);
526     RefSCC &TargetRC = TargetC.getOuterRefSCC();
527     (void)TargetRC;
528     // TODO: This only allows trivial edges to be added for now.
529     assert((RC == &TargetRC ||
530            RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
531     RC->insertTrivialCallEdge(N, *CallTarget);
532   }
533 
534   // Include synthetic reference edges to known, defined lib functions.
535   for (auto *F : G.getLibFunctions())
536     // While the list of lib functions doesn't have repeats, don't re-visit
537     // anything handled above.
538     if (!Visited.count(F))
539       VisitRef(*F);
540 
541   // First remove all of the edges that are no longer present in this function.
542   // The first step makes these edges uniformly ref edges and accumulates them
543   // into a separate data structure so removal doesn't invalidate anything.
544   SmallVector<Node *, 4> DeadTargets;
545   for (Edge &E : *N) {
546     if (RetainedEdges.count(&E.getNode()))
547       continue;
548 
549     SCC &TargetC = *G.lookupSCC(E.getNode());
550     RefSCC &TargetRC = TargetC.getOuterRefSCC();
551     if (&TargetRC == RC && E.isCall()) {
552       if (C != &TargetC) {
553         // For separate SCCs this is trivial.
554         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
555       } else {
556         // Now update the call graph.
557         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
558                                    G, N, C, AM, UR);
559       }
560     }
561 
562     // Now that this is ready for actual removal, put it into our list.
563     DeadTargets.push_back(&E.getNode());
564   }
565   // Remove the easy cases quickly and actually pull them out of our list.
566   DeadTargets.erase(
567       llvm::remove_if(DeadTargets,
568                       [&](Node *TargetN) {
569                         SCC &TargetC = *G.lookupSCC(*TargetN);
570                         RefSCC &TargetRC = TargetC.getOuterRefSCC();
571 
572                         // We can't trivially remove internal targets, so skip
573                         // those.
574                         if (&TargetRC == RC)
575                           return false;
576 
577                         RC->removeOutgoingEdge(N, *TargetN);
578                         LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
579                                           << N << "' to '" << TargetN << "'\n");
580                         return true;
581                       }),
582       DeadTargets.end());
583 
584   // Now do a batch removal of the internal ref edges left.
585   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
586   if (!NewRefSCCs.empty()) {
587     // The old RefSCC is dead, mark it as such.
588     UR.InvalidatedRefSCCs.insert(RC);
589 
590     // Note that we don't bother to invalidate analyses as ref-edge
591     // connectivity is not really observable in any way and is intended
592     // exclusively to be used for ordering of transforms rather than for
593     // analysis conclusions.
594 
595     // Update RC to the "bottom".
596     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
597     RC = &C->getOuterRefSCC();
598     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
599 
600     // The RC worklist is in reverse postorder, so we enqueue the new ones in
601     // RPO except for the one which contains the source node as that is the
602     // "bottom" we will continue processing in the bottom-up walk.
603     assert(NewRefSCCs.front() == RC &&
604            "New current RefSCC not first in the returned list!");
605     for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
606                                                   NewRefSCCs.end()))) {
607       assert(NewRC != RC && "Should not encounter the current RefSCC further "
608                             "in the postorder list of new RefSCCs.");
609       UR.RCWorklist.insert(NewRC);
610       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
611                         << *NewRC << "\n");
612     }
613   }
614 
615   // Next demote all the call edges that are now ref edges. This helps make
616   // the SCCs small which should minimize the work below as we don't want to
617   // form cycles that this would break.
618   for (Node *RefTarget : DemotedCallTargets) {
619     SCC &TargetC = *G.lookupSCC(*RefTarget);
620     RefSCC &TargetRC = TargetC.getOuterRefSCC();
621 
622     // The easy case is when the target RefSCC is not this RefSCC. This is
623     // only supported when the target RefSCC is a child of this RefSCC.
624     if (&TargetRC != RC) {
625       assert(RC->isAncestorOf(TargetRC) &&
626              "Cannot potentially form RefSCC cycles here!");
627       RC->switchOutgoingEdgeToRef(N, *RefTarget);
628       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
629                         << "' to '" << *RefTarget << "'\n");
630       continue;
631     }
632 
633     // We are switching an internal call edge to a ref edge. This may split up
634     // some SCCs.
635     if (C != &TargetC) {
636       // For separate SCCs this is trivial.
637       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
638       continue;
639     }
640 
641     // Now update the call graph.
642     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
643                                C, AM, UR);
644   }
645 
646   // Now promote ref edges into call edges.
647   for (Node *CallTarget : PromotedRefTargets) {
648     SCC &TargetC = *G.lookupSCC(*CallTarget);
649     RefSCC &TargetRC = TargetC.getOuterRefSCC();
650 
651     // The easy case is when the target RefSCC is not this RefSCC. This is
652     // only supported when the target RefSCC is a child of this RefSCC.
653     if (&TargetRC != RC) {
654       assert(RC->isAncestorOf(TargetRC) &&
655              "Cannot potentially form RefSCC cycles here!");
656       RC->switchOutgoingEdgeToCall(N, *CallTarget);
657       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
658                         << "' to '" << *CallTarget << "'\n");
659       continue;
660     }
661     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
662                       << N << "' to '" << *CallTarget << "'\n");
663 
664     // Otherwise we are switching an internal ref edge to a call edge. This
665     // may merge away some SCCs, and we add those to the UpdateResult. We also
666     // need to make sure to update the worklist in the event SCCs have moved
667     // before the current one in the post-order sequence
668     bool HasFunctionAnalysisProxy = false;
669     auto InitialSCCIndex = RC->find(*C) - RC->begin();
670     bool FormedCycle = RC->switchInternalEdgeToCall(
671         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
672           for (SCC *MergedC : MergedSCCs) {
673             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
674 
675             HasFunctionAnalysisProxy |=
676                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
677                     *MergedC) != nullptr;
678 
679             // Mark that this SCC will no longer be valid.
680             UR.InvalidatedSCCs.insert(MergedC);
681 
682             // FIXME: We should really do a 'clear' here to forcibly release
683             // memory, but we don't have a good way of doing that and
684             // preserving the function analyses.
685             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
686             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
687             AM.invalidate(*MergedC, PA);
688           }
689         });
690 
691     // If we formed a cycle by creating this call, we need to update more data
692     // structures.
693     if (FormedCycle) {
694       C = &TargetC;
695       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
696 
697       // If one of the invalidated SCCs had a cached proxy to a function
698       // analysis manager, we need to create a proxy in the new current SCC as
699       // the invalidated SCCs had their functions moved.
700       if (HasFunctionAnalysisProxy)
701         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
702 
703       // Any analyses cached for this SCC are no longer precise as the shape
704       // has changed by introducing this cycle. However, we have taken care to
705       // update the proxies so it remains valide.
706       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
707       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
708       AM.invalidate(*C, PA);
709     }
710     auto NewSCCIndex = RC->find(*C) - RC->begin();
711     // If we have actually moved an SCC to be topologically "below" the current
712     // one due to merging, we will need to revisit the current SCC after
713     // visiting those moved SCCs.
714     //
715     // It is critical that we *do not* revisit the current SCC unless we
716     // actually move SCCs in the process of merging because otherwise we may
717     // form a cycle where an SCC is split apart, merged, split, merged and so
718     // on infinitely.
719     if (InitialSCCIndex < NewSCCIndex) {
720       // Put our current SCC back onto the worklist as we'll visit other SCCs
721       // that are now definitively ordered prior to the current one in the
722       // post-order sequence, and may end up observing more precise context to
723       // optimize the current SCC.
724       UR.CWorklist.insert(C);
725       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
726                         << "\n");
727       // Enqueue in reverse order as we pop off the back of the worklist.
728       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
729                                                   RC->begin() + NewSCCIndex))) {
730         UR.CWorklist.insert(&MovedC);
731         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
732                           << MovedC << "\n");
733       }
734     }
735   }
736 
737   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
738   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
739   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
740 
741   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
742   // manager now that all the updates have been applied.
743   if (RC != &InitialRC)
744     UR.UpdatedRC = RC;
745   if (C != &InitialC)
746     UR.UpdatedC = C;
747 
748   return *C;
749 }
750 
751 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
752     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
753     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
754     FunctionAnalysisManager &FAM) {
755   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
756                                            /* FunctionPass */ true);
757 }
758 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
759     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
760     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
761     FunctionAnalysisManager &FAM) {
762   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
763                                            /* FunctionPass */ false);
764 }
765